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ABSTRACT

Based on the World Health Organization (WHO), Meningitis is a severe infection of the meninges, the membranes
covering the brain and spinal cord. It is a devastating disease and remains a significant public health challenge. This
study investigates a bacterial meningitis model through deterministic and stochastic versions. Four-compartment
population dynamics explain the concept, particularly the susceptible population, carrier, infected, and recov-
ered. The model predicts the nonnegative equilibrium points and reproduction number, i.e., the Meningitis-
Free Equilibrium (MFE), and Meningitis-Existing Equilibrium (MEE). For the stochastic version of the existing
deterministic model, the two methodologies studied are transition probabilities and non-parametric perturbations.
Also, positivity, boundedness, extinction, and disease persistence are studied rigorously with the help of well-known
theorems. Standard and nonstandard techniques such as Euler Maruyama, stochastic Euler, stochastic Runge Kutta,
and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis
of the stochastic model. Unfortunately, standard methods fail to restore the biological properties of the model, so
the stochastic nonstandard finite difference approximation is offered as an efficient, low-cost, and independent of
time step size. In addition, the convergence, local, and global stability around the equilibria of the nonstandard
computational method is studied by assuming the perturbation effect is zero. The simulations and comparison of
the methods are presented to support the theoretical results and for the best visualization of results.
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1 Introduction

Meningitis caused by bacteria results in inflammation of the membranes surrounding the brain
and spinal cord. The most common bacteria that cause meningitis are Streptococcus pneumoniae,
Neisseria meningitidis, and Haemophilus influenzae type b. The signs and symptoms of bacterial
meningitis include a sharply rising temperature, headache, stiff neck, and light sensitivity. Serious
complications such as brain damage or death are caused by bacterial meningitis, so swift medical
attention is crucial. Specific bacterial strains that cause meningitis can be controlled by effective
vaccination [1]. Medical officers usually prescribe medicines such as ceftriaxone or cefotaxime to
target invading bacteria and cure bacterial meningitis. Corticosteroids such as dexamethasone may
be dispensed to decrease inflammation. Shin et al. [2] studied a mathematical model incorporating
hospitalization and treatment factors. Madaki et al. [3] designed a mathematical model of meningo-
coccal meningitis in Nigeria. In [4,5], the study was based on acute bacterial meningitis in adults.
In [6,7], the study was designed on reviewed reports from the WHO and a model that describes a
bacterial disease. Mohanty et al. [8] explained the different types of vaccines and preventive measures
to control bacterial meningitis in Sweden. Van et al. [9] investigated in great detail all the stages of
bacterial meningitis, from its initiation to its outbreak, and formulated various preventive measures
to control it. Rauti et al. [10] developed a mathematical model for preventing bacterial meningitis in
animals that can be employed to prevent infections of this deadly disease. Hou et al. [11] presented a
dynamic model for preventing bacterial meningitis in young children using metagenomic sequencing,
in which this approach can largely control the disease. Signing et al. [12] created a mathematical
model that can visualize the changes caused by bacterial meningitis disease and their effect and
can be treated accordingly to control the disease. Afridi et al. [13] identified different preventive
measures and vaccines while reviewing bacterial meningitis cases brought to a civil hospital in
Pakistan. Buonomo et al. [14] reported that the meningitis outbreak in Nigeria is analyzed using
a behavior-focused vaccination model. This strategy considers behavioral elements while evaluating
immunization strategies. It contributes to developing more effective preventative methods tailored to
Nigeria’s socioeconomic environment and sheds light on the dynamics of meningitis transmission.
Babatunde et al. [15] employed an online tool using logistic regression to predict cerebrospinal
meningitis incidence is currently being developed. The goal of this initiative is to enhance illness
management and early diagnosis. The initiative uses statistical modeling to evaluate relevant data,
which can give useful information to policymakers and healthcare practitioners. Bradley et al. [16]
reviewed the English medical literature and introduced a method that can be utilized to control
bacterial meningitis. Choi et al. [17] created a mathematical model using AI to control bacterial
meningitis in the future. Chen et al. [18] stated that it is essential to identify clinical and laboratory
parameters to control bacterial meningitis disease. Olu et al. [19] created a mathematical model that
can be very useful to control the growing epidemic of bacterial meningitis in the population. In
[20], the authors studied a new analyzing technique for nonlinear time fractional Cauchy reaction-
diffusion model equations. The stochastic epidemic models with delays are constructed given the
need to incorporate the proper transmission process of the epidemic in any populace. These models
make use of such lags and lags to mimic the period within which a person gets exposed and becomes
infectious and lags in the uptake and efficacy of the implemented interventions. These models help to
explain why so many epidemics exhibit cyclic behavior, this is in terms of the waves and seasonality that
characterize many epidemics, and delay, noise, and heterogeneity are shown to play crucial roles. Also,
the stochastic with delay effect results close to the actual statistics of the problem. So, in the present
study, we extend the deterministic model in the sense of stochastic with delay. Then our new system
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was based on stochastic delay differential equations (SDDEs), due to complexity, we used standard
and nonstandard methods to understand the dynamics of bacterial meningitis.

The structure of the paper is as follows: a brief overview and thorough analysis of bacterial
meningitis-like disorders found in the literature are provided in Section 1. Establishing the delayed
model and the ensuing mathematical analysis are the focus of Section 2. Section 3 presents the
stochastic formulation of the model and the extinction and persistence of the model. The nonstandard
computational method with delay and stochastic is introduced in Section 4, along with its global and
local stability assessment. Numerical simulations and the presentation of the results are the explicit
focus of Section 5. The final opinions provide a comprehensive conclusion of the work in Section 6.

2 Formulation of Model

The dynamics of population theory is a foundation for the model’s development. The classes
susceptible S(t), carrier C(t), infected I(t), and recovered R(t) add up to the population N(t), and they
use the law of mass action to represent the condition of bacterial meningitis (Fig. 1).

Figure 1: Flow of bacterial meningitis [3]

The parameter values of the constants are shown as follows in Table 1.

Table 1: Parameters value of the model

Parameters Descriptions Values/Source [3]

� The recruitment rates. 100
ρ Rate of vaccination. 0.85
γ The preparation rate of disease. 0.52
μ Natural death rate. 0.02
δ The rate of induced death. 0.5
τ1 Rate of treatment. 0.9
β Rate of transmission. 0.88
ω Whining rate. 0.04

The law of mass action specifies the continuous model based on the presumptions. The transmis-
sion flow of bacterial meningitis-type disease is determined using the nonlinear delayed differential
equations (DDEs) as follows:
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S′ (t) = Λ − βSIe−μτ

N
− (μ + ρ) S (t) + ωR (t) . (1)

C ′(t) = βSIe−μτ

N
− (γ + μ) C (t) . (2)

I ′ (t) = γ C (t) − (τ1 + δ + μ) I (t) . (3)

R′ (t) = τ1I (t) + ρS (t) − (ω + μ) R (t) . (4)

with the initial assumptions S(0) ≥ 0, C(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, as well as the constraint that t ≥ 0
and τ ≤ t.

2.1 Model Properties
For the critical analysis of the model to continue, all of the variables S(t), C(t), I(t), and R(t) must

be non-negative. As a result, every time t that is greater than or equal to 0 and less than or equal to τ

inside a feasible zone is covered by the conclusions drawn from the model’s analysis.

H =
{
(S, C, I , R) ε R4

+ : N (t) ≤ Λ

μ
, S ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0

}
.

2.2 Analysis of Model
This section presents a concise analysis of the equilibria in the delayed model for bacterial

meningitis, i.e., Meningitis-Free Equilibrium (MFE − D0), and Meningitis Existing Equilibrium
(MEE − D∗). Hence,

D0 = (S0, C0, I0, R0) =
(

Λ (ω + μ)

[(ω + μ) (μ + ρ) − ωρ]
, 0, 0,

Λρ

[(ω + μ) (μ + ρ) − ωρ]

)
, and

D∗ = (S∗, C∗, I ∗, R∗).

S∗ = N [(Λ + τ1I∗) βγe−μτ + ρN (μ + γ) (τ1 + δ + μ)]
βγe−μτ [βγe−μτ + N (μ + ρ)]

, C∗ = (τ1 + δ + μ) I ∗

γ
,

I ∗ = Λβγe−μτ − Nμ (μ + γ) (τ1 + δ + μ)

(μ + γ) (τ1 + δ + μ) − τ1βγe−μτ
,

R∗ = τ1βγe−μτ + ρN (μ + γ) (τ1 + δ + μ)

βγe−μτ
.

2.3 Reproduction Number
The systems (1)–(4) incorporate the advanced matrix approach to compute the threshold number

R0. Neglected S′, the following can be obtained:
⎡
⎣C ′

I ′

R′

⎤
⎦ =

⎡
⎢⎣0

βSe−μτ

N
0

0 0 0
0 0 0

⎤
⎥⎦

⎡
⎣C

I
R

⎤
⎦ −

⎡
⎣(μ + γ) 0 0

−γ (τ1 + δ + μ) 0
0 −τ1 (ω + μ)

⎤
⎦

⎡
⎣C

I
R

⎤
⎦

F =
⎡
⎢⎣0

βSe−μτ

N
0

0 0 0
0 0 0

⎤
⎥⎦ , G =

⎡
⎣(μ + γ) 0 0

−γ (τ1 + δ + μ) 0
0 −τ1 (ω + μ)

⎤
⎦ .
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FG−1
∣∣

D0
=

⎡
⎢⎢⎣

βγS0e−μτ

N (μ + γ) (τ1 + δ + μ)

βS0e−μτ

N (τ1 + δ + μ)
0

0 0 0
0 0 0

⎤
⎥⎥⎦ .

The spectral radius of FG−1
∣∣

D0
, which is also referred to as the threshold number, is defined as

follows:

R0 = Λ (ω + μ) βγe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
. (5)

3 Transition Probabilities of the Delayed Model

Let us examine the vector U(t) = [S (t), C (t), I(t), R(t)]T, along with the corresponding event
probabilities as outlined in Table 2.

Table 2: Changes in subpopulation of the model

Ti = Transition Pi = Probabilities

M1 =
[
1 0 0 0

]T

P1 = ΛΔt

M2 =
[
−1 1 0 0

]T

P2 = βS (t) I (t) e−μτΔt

M3 =
[
1 0 0 −1

]T

P3 = ωR (t) Δt

M4 =
[
−1 0 0 0

]T

P4 = μS (t) Δt

M5 =
[
−1 0 0 1

]T

P5 = ρS (t) Δt

M6 =
[
0 −1 1 0

]T

P6 = γC (t) Δt

M7 =
[
0 −1 0 0

]T

P7 = μC (t) Δt

M8 =
[
0 0 −1 1

]T

P8 = τ1I (t) Δt

M9 =
[
0 0 −1 0

]T

P9 = (δ + μ) I (t) Δt

M10 =
[
0 0 0 −1

]T

P10 = μR (t) Δt

Here,

E∗ [ΔU] =
∑10

i=1
PiMi =

⎡
⎢⎢⎣

Λ − βS (t) I (t) e−μτ − (μ + ρ) S (t) + ωR (t)
βS (t) I (t) e−μτ − (γ + μ) C (t)

γ C (t) − (τ1 + δ + μ) I (t)
τ1I (t) + ρS (t) − (ω + μ) R (t)

⎤
⎥⎥⎦ Δt.

Var = E∗ [
ΔUΔUT

] =
∑10

i=1
Pi[Mi][Mi]T.
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=

⎡
⎢⎢⎣

P1 + P2 + P3 + P4 + P5 −P2 0 −P3 − P5

−P2 P2 + P6 + P7 −P6 0
0 −P6 P6 + P8 + P9 −P8

−P3 − P5 0 −P8 P3 + P5 + P8 + P10

⎤
⎥⎥⎦ Δt.

drift = H (U (t), t) = E∗ [ΔU]
Δt

, diffusion = K (U(t), t) =
√

E∗[ΔUΔUT]
Δt

, so

dU (t) = H (U(t), t) dt + K (U(t), t) dB(t). (6)

Eq. (6) is the stochastic differential equation, where B(t) is the Brownian motion.

3.1 Euler Maruyama Method
This section discusses a conventional numerical technique for approximating a stochastic delayed

model’s result of (6). In this regard, Iq = {0, 1, 2, 3, . . . , q} is admitted for each q ∈ N. Let N ∈ N,
and with the effect of time 
t divides the partition into equal intervals [0, T] with constant delay. As
follows:

0 = to < t1 < t2 < . . . < tN = T ,

for each n ∈ IN. Needless to mention tn = τn, for each n ∈ IN. Moreover, Un = U(tn) is accepted
whenever n ∈ IN and U = S, E, I, R. Also, it can be set


Bn = B(tn + 1) − B(tn), ∀n ∈ IN − 1.

The mean of each 
 Bn follows a normal distribution with a variance of one and an average of zero.

3.2 Stochastic Delayed Model
The system of stochastic delayed differential equations (SDDEs) is a mathematical model that

describes the evolution of a set of variables over time, where the equations involve both deterministic
time delays and stochastic (random) components. Where the stochastic term σi : (i = 1, 2, 3, 4)d (B (t))
introduces randomness into the system of differential equations as follows:

dS (t) =
[
Λ − βS (t) I (t) e−μτ

N
− (μ + ρ) S (t) + ωR (t)

]
dt + σ1S (t) d (B (t)) . (7)

dC (t) =
[
βS (t) I (t) e−μτ

N
− (γ + μ) C (t)

]
dt + σ2C (t) d (B (t)) . (8)

dI (t) = [γ C (t) − (τ1 + δ + μ) I (t)] dt + σ3I (t) d (B (t)) . (9)

dR (t) = [τ1I (t) + ρS (t) − (ω + μ) R (t)] dt + σ4R (t) d (B (t)) . (10)

Subject to non-negative initial conditions S(t) = S0 ≥ 0, C(t) = C0 ≥ 0, I(t) = I0 ≥ 0, R(t) =
R0 ≥ 0.

3.2.1 Positivity and Boundedness

Let us examine a probability space represented as (Ω, F , P) and filtered by {Ft}tεR. All P-null
sets that fulfill the criteria of being both right-continuous and growing are encompassed inside Fo.
Represent
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U (t) = (S (t), C (t), I (t), R (t)) . (11)

The norm |U(t)| = √
S2 (t) + C2 (t) + I 2 (t) + R2(t), and denote O3,1(R4 × (0, ∞) ; R+).

This study analyzes the collection of all non-negative functions V (U , t) defined on R4 × (0, ∞),
which possess continuous second-order differentiability in U and first-order differentiability in t.
Within this specific framework, the differential operator Q is precisely defined, which is associated
with a three-dimensional stochastic differential equation.

dU (t) = H (U , t) dt + K (U , t) dW(t). (12)

As, Q = ∂

∂t
+ ∑4

i=1 Hi(U , t)
∂

∂ui

+ 1
2

∑4

i,j=1

(
KT (U , t) K (U , t)

)
i,j

× ∂2

∂Ui∂Uj

If Q acts on a function V ∈ O3,1(R4 × (0, ∞) ; R+), then

QV (U , t) = Vt (U , t) + VU (U , t) H (U , t) + 1
2

Trace
(
KT (U , t) VUU (U , t) K (U , t)

)
,

where T means transportation.

Theorem 1. For a given model (7)–(10) and initial values (S (0), C (0), I (0), R(0)) ∈ R4
+, there exists

a single solution (S (t), C (t), I (t), R(t)) on t ≥ 0, τ ≤ t, and this solution will always remain in R4
+

with a probability of one.

Proof: Based on Ito’s formula, the model (7)–(10) has a unique local positive solution in the
interval [0, τe], and the time at which it explodes is represented by τe. Since all the coefficients in the
model above satisfy the local Lipschitz criterion.

Next, this study demonstrates that the provided model (7)–(10) possesses a solution in the global
sense, specifically when τe approaches infinity with practically certain probability.

Assume that mo = 0 is a suitably high value such that S (0), C (0), I (0), and R(0) fall within the
range [ 1

mo
, mo]. Let’s define a sequence of interrupting times for each integer m ≥ mo.

τm = inf
{

t ε [0, τe] : S (t) /∈
(

1
m

, m
)

or C (t) /∈
(

1
m

, m
)

or I(t) /∈
(

1
m

, m
)

or R(t) /∈
(

1
m

, m
)}

. (13)

where this study sets inf φ = ∞(φ represents the empty set). Since τm is non-decreasing as m → ∞,

τ∞ = lim
m→∞

τm. (14)

Thereafter, the limit τ∞ is less than or equal to τe nearly surely. Now, this study must demonstrate
that τ∞ approaches infinity with almost certain probability.

If this condition is not met, then there are positive values T and ε, where T is more than zero, and
ε is between 0 and 1, such that

P {τ∞ ≤ T} > ε. (15)

there is an integer m1 > m0 such that

P {τm ≤ T} ≥ ε, ∀m ≥ m1. (16)

Define a O4− function f : R4
+ → R+ by

f (S, C, I , R) = (S − 1 − ln S) + (C − 1 − ln C) + (I − 1 − ln I) + (R − 1 − ln R) . (17)
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The following can be calculated using Ito’s formula:

df (S, C, I , R) =
(

1 − 1
S

)
dS +

(
1 − 1

C

)
dC +

(
1 − 1

I

)
dI +

(
1 − 1

R

)
dR + σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2
dt.

df (S, C, I , R) =
(

1 − 1
S

)((
Λ − βS (t) I (t) e−μτ

N
− (μ + ρ) S (t) + ωR (t)

)
dt + σ1S (t) d (B (t))

)

+
(

1 − 1
C

) ((
βS (t) I (t) e−μτ

N
− (γ + μ) C (t)

)
dt + σ2C (t) d (B (t))

)

+
(

1 − 1
I

)
((γ C (t) − (τ1 + δ + μ) I (t)) dt + σ3I (t) d (B (t)))

+
(

1 − 1
R

)
(τ1I (t) + ρS (t) − (ω + μ) R (t)) dt + σ4R (t) d (B (t))

df (S, C, I , R) ≤
[
Λ + 4μ + ρ + τ1 + δ + γ + ω + σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4

2

]
dt

+ [σ1S (t) + σ2C (t) + σ3I (t) σ4R (t)]d (B (t)) . (18)

For simplification, this study assumes

N1 = Λ + 4μ + ρ + τ1 + δ + γ + ω + σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4

2
, Then Eq. (18) could be written as

df (S, C, I , R) ≤ N1dt + [σ1S (t) + σ2C (t) + σ3I (t) σ4R (t)]d(B(t)). (19)

Assume N1 be a positive constant. Integrating from 0 to τm ∧ τ yields∫ τm∧τ

0

df (S (t), C (t), I (t), R(t)) ≤
∫ τm∧τ

0

N1ds +
∫ τm∧τ

0

[σ1S (t) + σ2C (t) + σ3I (t) σ4R (t)]d(B(t)). (20)

where τm ∧ τ = min (τm, T), the taking the expectations leads to

Ef (S (τm ∧ τ), C (τm ∧ τ), I (τm ∧ τ), R (τm ∧ τ)) ≤ f (S (0), C (0), I (0), R (0)) + N1T . (21)

Set Ωm = {τm ≤ T} for m > m1 and from (16), then P (Ωm ≥ ε). For every l ∈ Ωm there are some i

such that ui(τm, l) equals either m or
1
m

for i = 1, 2, 3.

Hence, f (S (τm, l), C (τm, l), I (τm, l), R (τm, l)) is less than min
{

m − 1 − ln m,
1
m

− 1 − ln
1
m

}
.

Thereafter, the following can be obtained:

f (S (0), C (0), I (0), R (0)) + N1T ≥ E
(
IΩm(l)V (S (τm), C (τm), I (τm), R (τm))

)

≥
{

min
(

m − 1 − ln m,
1
m

− 1 − ln
1
m

)}
. (22)

The indicator function is represented by IΩm(l) of Ωm. Letting m → ∞ leads to the contradiction

∞ = f (S (0), C (0), I (0), R (0)) + N1T < ∞.

as desired.
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3.2.2 Extinction and Persistence

Definition: Consider B (t) as a Brownian motion and I (t) as an Ito drift-diffusion process that
obeys the stochastic differential equation:

dI (t) = [γ C (t) − (τ1 + δ + μ) I (t)] dt + σ3I (t) d (B (t)) .

If f (I , t) ∈ C2(R2,R) then f (I (t), t) is also an Ito drift-diffusion process, which satisfies as follows:

d (f (I (t), t)) = ∂f
∂t

(I (t), t) dt + f ′ ((I (t), t)) dB(t) + 1
2

f ′′ ((I (t), t)) dB(t)2.

Let us introduce RS
0 = Rd

0 − σ2
3

2 (τ1 + δ + μ)
.

Theorem 2. If RS
0 < 1 and σ2

3 <
Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
, then the number of

infected individuals in the system will exponentially approach zero (lim
t→∞

I (t) = 0).

Proof: Given the initial data (S (0), C (0), I (0), R (0)) ∈ R+
4, this study determines if the

system (7)–(10) fulfills the stochastic differential equation and allows for a solution in the form of
(S (t), C (t), I (t), R (t)).

dI (t) = [γ C (t) − (τ1 + δ + μ) I (t)] dt + σ3cI (t) d (B (t)) .

Let, f (I) = ln (I), then

dln (I) = f ′ (I) dI + 1
2

f ′′ (I) I2σ2dt.

d ln(I) = 1
I

dI + 1
2

(
− 1

I2

)
I2σ2dt.

d ln(I) =
(

γ
C (t)
I(t)

− (τ1 + δ + μ) − 1
2
σ2

3

)
dt + σ3cd (B (t)) .

ln(I) = ln I (0) +
∫ t

0

(
γ

C (t)
I(t)

− (τ1 + δ + μ) − 1
2
σ2

3

)
dt +

∫ t

0

σ3cd (B (t)),

Notice that, W (t) = ∫ t

0
σ3cd (B (t)) with W (0) = 0.

If σ2
3 >

Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
,

ln (I) >

(
Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]

− (τ1 + δ + μ) − 1
2

Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]

)
t + W (t) + ln I (0),

ln (I)
t

>

(
Λ (ω + μ) βγSe−μτ

2 (μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
− (τ1 + δ + μ)

)
+ W (t)

t
+ ln I (0)

t
,
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lim
t→∞

ln (I)
t

>

(
Λ (ω + μ) βγSe−μτ

2 (μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
− (τ1 + δ + μ)

)
> 0, with lim

t→∞

W (t)
t

= 0,

If σ2
3 <

Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
, then

ln (I (t)) <

(
Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ) [(ω + μ) (μ + ρ) − ωρ]
− (τ1 + δ + μ) − 1

2
σ2

3

)
t + W (t) + ln I (0),

ln (I)
t

< (τ1 + δ + μ)

(
Λ (ω + μ) βγSe−μτ

(μ + γ) (τ1 + δ + μ)
2 [(ω + μ) (μ + ρ) − ωρ]

− 1
)

+ W (t)
t

+ ln I (0)

t
,

lim
t→∞

sup
ln (I)

t
< (τ1 + δ + μ)

(
RS

0 − 1
)
, when RS

0 < 1, then lim
t→∞

sup
ln (I)

t
≤ 0 can be obtained,

lim
t→∞

I (t) = 0, as desired.

4 Nonstandard Computational Method

The proposed non-parametric perturbation model’s first Eq. (10) can be stated using an unconven-
tional computing technique; specifically, Eqs. (10)–(13) could be solved using a stochastic nonstandard
finite difference technique.

dS (t) =
[
Λ − βS (t) I (t) e−μτ

N
− (μ + ρ) S (t) + ωR (t)

]
dt + σ1S (t) d (B (t)) . (23)

For the stochastic NSFD approach, the structure of the equation is as follows:

Sn+1 − Sn

h
=

[
Λ − βSnIne−μτ

N
− (μ + ρ) Sn + ωRn + σ1SnΔBn

]
(24)

The system (10)–(13) can be broken down using the stochastic NSFD process, and the complete
system can then be written as follows:

Sn+1 = Sn + h [Λ + ωRn + σ1SnΔBn]
1 + h (βIne−μτ + (μ + ρ))

(25)

Cn+1 = Cn + h [βSnIne−μτ + σ2CnΔBn]
1 + h(γ + μ)

(26)

In+1 = In + h [γ Cn + σ3InΔBn]
1 + h (τ1 + δ + μ)

(27)

Rn+1 = Rn + h [τ1In + σ4RnΔBn]
1 + h (ω + μ)

(28)

where n = 0, 1, 2, . . . , and the discretization gap is denoted by “h.”

4.1 Convergence Analysis
Theorem 3. There is only one positive solution (S, C, I , R) ∈ R4, ∀n > 0 for any initial value

(S(0), C(0), I(0), R(0)) ∈ R4 for Eq. (25) through Eq. (28) with ΔBn = 0.
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Proof: The proof is easily verifiable due to the non-negative nature of the restriction of biological
problems.

Theorem 4. For the region H = {(Sn, Cn, In, Rn) ∈ R+
4 : Sn + Cn + In + Rn = N ≤ Λ

μ
, Sn ≥ 0, Cn ≥

0, In ≥ 0, Rn ≥ 0}. For every, n ≥ 0 is an area of equations that is feasible and positive invariant (25)
to (28) with ΔBn = 0.

Proof: The system (25) to (28) can be deconstructed as follows:

Sn+1 − Sn

h
=

[
Λ − βSnIne−μτ

N
− (μ + ρ) Sn + ωRn

]
,

Cn+1 − Cn

h
=

[
βSnIne−μτ

N
− (γ + μ) Cn

]
,

In+1 − In

h
= [γ Cn − (τ1 + δ + μ) In] ,

Rn+1 − Rn

h
= [τ1In + ρSn − (ω + μ) Rn] ,

After adding the above system of equations, the following can be obtained:

(Sn+1 + Cn+1 + In+1 + Rn+1) − (Sn + Cn + In + Rn)

h
≤ Λ − μ(Sn + Cn + In + Rn).

(Sn+1 + Cn+1 + In+1 + Rn+1) − (Sn + Cn + In + Rn) ≤ hΛ − hμ(Sn + Cn + In + Rn).

(Sn+1 + Cn+1 + In+1 + Rn+1) ≤ Λ

μ
, as desired.

4.2 Local Stability Analysis of Nonstandard Computational Method
Consider the right-hand side of the Eqs. (25)–(28) functions F , G, H, and P and ΔBn = 0.

F = S + h [Λ + ωR]
1 + h (βIe−μτ + (μ + ρ))

, G = C + h [βSIe−μτ]
1 + h(γ + μ)

, H = I + h [γ C]
1 + h (τ1 + δ + μ)

, P = R + h [τ1I + ρS]
1 + h (ω + μ)

.

It is commonly understood that a system of the forms (25)–(28) converges to the model’s optimal
state if and only if the Jacobian’s spectral radius, J,

JD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F
∂S

∂F
∂E

∂F
∂I

∂F
∂R

∂G
∂S

∂G
∂E

∂G
∂I

∂G
∂R

∂H
∂S
∂P
∂S

∂H
∂E
∂P
∂E

∂H
∂I
∂P
∂I

∂H
∂R
∂P
∂R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)
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∂F
∂S

= 1
1 + h (βIe−μτ + (μ + ρ))

,
∂F
∂C

= 0,
∂F
∂I

= − hβe−μτ (S + h [Λ + ωR])

(1 + h (βIe−μτ + (μ + ρ)))
2 ,

∂F
∂R

= hω

1 + h (βIe−μτ + (μ + ρ))
,
∂G
∂S

= 0,
∂G
∂C

= 1
1 + h(γ + μ)

,
∂G
∂I

= hβSe−μτ

1 + h(γ + μ)
,
∂G
∂R

= 0,

∂H
∂S

= 0,
∂H
∂C

= hγ

1 + h (τ1 + δ + μ)
,
∂H
∂I

= 1
1 + h (τ1 + δ + μ)

,
∂H
∂R

= 0,
∂P
∂S

= hρ

1 + h (ω + μ)
,

∂P
∂C

= 0,
∂P
∂I

= hτ1

1 + h (ω + μ)
,
∂P
∂R

= 1
1 + h (ω + μ)

.

Theorem 5. The meningitis-free equilibrium (MFE − D0), D0 = (S0, C0, I0, R0) of the nonstandard
computational method is stable asymptotically in the sense of local if R0 < 1 and ΔBn = 0.

Proof: The Jacobian matrix (29) at D0 is

JD0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h (μ + ρ)

0 −
hβe−μτ

((
Λ (ω + μ)

[(ω + μ) (μ + ρ) − ωρ]

)
+ h

[
Λ + ω

(
Λρ

[(ω + μ) (μ + ρ) − ωρ]

)])

(1 + h (μ + ρ))2

hω

1 + h (μ + ρ)

0
1

1 + h(γ + μ)

hβ

(
Λ (ω + μ)

[(ω + μ) (μ + ρ) − ωρ]

)
e−μτ

1 + h(γ + μ)
0

0
hγ

1 + h (τ1 + δ + μ)

1
1 + h (τ1 + δ + μ)

0

hρ

1 + h (ω + μ)
0

hτ1

1 + h (ω + μ)

1
1 + h (ω + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

λ1 = 1 − h2ρω

1 + h (μ + ρ)
< 1, λ2 =

1 − h2βγ

(
Λ (ω + μ)

[(ω + μ) (μ + ρ) − ωρ]

)
e−μτ

1 + h(γ + μ)
< 1, λ3 = 1

1 + h (ω + μ)
<

1, λ4 = 1
1 + h (τ1 + δ + μ)

< 1.

Using the definition of R0, it is possible to show that if R0 < 1, then λ2 < 1, and D0 is L.A.S. on
the contrary, it is obviously to verify that λ2 > 1, if R0 > 1, which shows that D0 is unstable.

Theorem 6. The meningitis existing equilibrium (MEE − D∗), D∗ = (S∗, C∗, I ∗, R∗) of the
nonstandard computational method is stable asymptotically in the sense of local if R0 > 1 and
ΔBn = 0.

Proof: The Jacobian matrix (29) at D∗ is

JD∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1 + h
(
βI∗e−μτ + (μ + ρ)

) 0 − hβe−μτ
(
S∗ + h

[
Λ + ωR∗])

(
1 + h

(
βI∗e−μτ + (μ + ρ)

))2
hω

1 + h
(
βI∗e−μτ + (μ + ρ)

)

0
1

1 + h(γ + μ)

hβS∗e−μτ

1 + h(γ + μ)
0

0
hγ

1 + h (τ1 + δ + μ)

1
1 + h (τ1 + δ + μ)

0

hρ

1 + h (ω + μ)
0

hτ1
1 + h (ω + μ)

1
1 + h (ω + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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λ1 = 1
1 + h (τ1 + δ + μ)

< 1, λ2 = hβS∗e−μτ

1 + h(γ + μ)
< 1.

|JD∗ − λ| =

∣∣∣∣∣∣∣∣∣

(
1 + h

(
βI∗e−μτ + (μ + ρ)

)) − h2βγI∗e−μτ (S∗ + h [Λ + ωR∗])(
1 + h

(
βI∗e−μτ + (μ + ρ)

)) (
1 − h2βγS∗e−μτ

) − λ
hω

1 + h
(
βI∗e−μτ + (μ + ρ)

)
hρ + h3βγ τ1I∗e−μτ

(1 + h (ω + μ))
(
1 − h2βγS∗e−μτ

) 1
1 + h (ω + μ)

− λ

∣∣∣∣∣∣∣∣∣
= 0

A1 = Trce of JD∗ = (1 + h (βI ∗e−μτ + (μ + ρ))) − h2βγI ∗e−μτ (S∗ + h [Λ + ωR∗])
(1 + h (βI ∗e−μτ + (μ + ρ))) (1 − h2βγS∗e−μτ)

+ 1
1 + h (ω + μ)

.

A2 = Determinent of JD∗ =
((

(1 + h (βI ∗e−μτ + (μ + ρ))) − h2βγI ∗e−μτ (S∗ + h [Λ + ωR∗])
(1 + h (βI ∗e−μτ + (μ + ρ))) (1 − h2βγS∗e−μτ)

)

×
(

1
1 + h (ω + μ)

))
+

((
hω

1 + h (βI ∗e−μτ + (μ + ρ))

) (
hρ + h3βγ τ1I ∗e−μτ

(1 + h (ω + μ)) (1 − h2βγS∗e−μτ)

))

Lemma 1. For the quadratic equation λ2 − A1λ + A2 = 0, |λi| < 1, i = 1, 2. If and only if the
following conditions are satisfied:

(i) 1 + A1 + A2 > 0.

(ii) 1 − A1 + A2 > 0.

(iii) A2 < 1.

Proof : The proof is straightforward.

4.3 Global Stability Analysis of Nonstandard Computational Method
Theorem 7. The meningitis-free equilibrium (MFE − D0), D0 = (S0, C0, I0, R0) of the nonstandard

computational method is stable asymptotically in the sense of global if R0 < 1 and ΔBn = 0.

Proof: Let us consider the Lyapunov function as follows:

m+1 = 1
h

[
S0f

(
Sm

S0

)
+ Cm + Im + Rm

]
.

where f (x) = x − 1 − ln (x) ≥ f (1) = 0. From the system, it can be obtained:

Δ m = m+1 − m = 1
h

[
S0f

(
Sm+1

S0

)
− S0f

(
Sm

S0

)
+ (Cm+1 − Cm) + (Im+1 − Im) + (Rm+1 − Rm)

]
.

m+1 = m = 1
h

[
(Sm+1 − Sm) − S0 ln

(
Sm+1

Sm

)
+ (Sm+1 − Sm)

]
.

Using Entasu et al. [21] criterion ln
(

S2
S1

)
≥ S2 − S1

S2
.

m+1 − m ≤ 1
h

[
(Sm+1 − Sm) − S0

(
Sm+1 − Sm

Sm+1

)
+ (Cm+1 − Cm) + (Im+1 − Im) + (Rm+1 − Rm)

]
.

m+1 − m ≤ −Λ

Sm+1S0

(Sm+1 − S0)
2 − (γ + μ) Cm+1 − (τ1 + δ + μ) Im+1 − (ω + μ) Rm+1.

Definitely, m+1 − m ≤ 0 if R0 < 1 and m+1 − m = 0 iff Sm+1 = S0, Cm+1 = Im+1 = Rm+1 = 0. Thus,
the system is globally asymptotically stable.

Theorem 8. The meningitis existing equilibrium (MEE − D∗), D∗ = (S∗, C∗, I ∗, R∗) of the
nonstandard computational method is stable asymptotically in the sense of global if R0 > 1 and
ΔBn = 0.
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Proof: In order to analyze the sufficient condition for global stability, the Lyapunov functions are
defined as follows:

Fm+1 =
[

S∗f
(

Sm

S∗

)
+ C∗f

(
Cm

C∗

)
+ I ∗f

(
Im

I ∗

)
+ R∗f

(
Rm

R∗

)]
.

where f (a) = a − 1 − ln (a) ≥ f (1) = 0. From the system, the following can be obtained:

ΔFm = Fm+1 − Fm = S∗f
(

Sm+1

S∗

)
− S∗f

(
Sm

S∗

)
+ C∗f

(
Cm+1

C∗

)
− C∗f

(
Cm

C∗

)
+ I ∗f

(
Im+1

I ∗

)
− I ∗f

(
Im

I ∗

)

+ R∗f
(

Rm+1

R∗

)
− R∗f

(
Rm

R∗

)
.

Fm+1 − Fm = (Sm+1 − Sm) − S∗ ln
(

Sm+1

S∗

)
+ (Cm+1 − Cm) − C∗ ln

(
Cm+1

C∗

)
+ (Im+1 − Im)

− I ∗ ln
(

Im+1

I ∗

)
+ (Rm+1 − Rm) − R∗ ln

(
Rm+1

R∗

)
.

Fm+1 − Fm ≤ h
Sm+1

[
(Sm+1 − S∗)

(
Λ − βSm+1Ime−μτ

N
− (μ + ρ) Sm+1 + ωRm

)]

+ h
Cm+1

[
(Cm+1 − C∗)

(
βSmIme−μτ

N
− (γ + μ) Cm+1

)]

+ h
Im+1

[(Im+1 − I ∗) (γ Cm − (τ1 + δ + μ) Im+1)]

+ h
Rm+1

[(Rm+1 − R∗) (τ1Im + ρSm − (ω + μ) Rm+1)] .

Fm+1 − Fm ≤ −hΛ
(Sm+1 − S∗)2

Sm+1S∗ − hω
(Sm+1 − S∗)2

Sm+1S∗ − βSmIme−μτ

N
(Cm+1 − C∗)2

Cm+1C∗ − hγ Cm

(Cm+1 − C∗)2

Cm+1C∗

− h (τ1Im + ρSm)
(Rm+1 − R∗)2

Rm+1R∗ .

Hence, ΔFm is a monotonic decreasing sequence. Thus, D∗ is globally asymptotically stable.
Applying the same technique indicates that lim

n→∞

(
Fm+1 − Fm

) = 0.

5 Comparison

This section compares known numerical approaches to a stochastic nonstandard computational
method with existing methods such as Euler Maruyama, stochastic Euler, and stochastic Runge Kutta
in the literature for the particular real-world problem.

5.1 Results
Fig. 2a,b compares the infected class of the nonstandard computational method in the sense of

delay with stochastic and the Euler Maruyama method. At h = 0.01, both methods demonstrate
convergence in Fig. 2a. When the step size increases to h = 0.5, the Euler Maruyama method exhibits
divergence, whereas the nonstandard computational method in the sense of delay with stochastic
maintains convergence, as illustrated in Fig. 2b. Similarly, Fig. 2c,d compares the infected class of
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the nonstandard computational method in the sense of delay with stochastic and stochastic Euler
methods. At h = 0.01, both methods converge in Fig. 2c; however, with an increment in step size
to h = 0.7, the stochastic Euler method diverges, while the nonstandard computational method in
the sense of delay with stochastic method-maintained convergence, as depicted in Fig. 2d. Figs. 2e,f
compares the infected class of the nonstandard computational method in the sense of delay with
stochastic and stochastic Runge Kutta methods. At h = 0.1, convergence is a numerical analysis of the
stochastic delayed bacterial meningitis epidemic model observed in both methods in Fig. 2e; however,
with an increase in step size to h = 1.0, the stochastic Runge Kutta method diverges. In contrast,
the nonstandard computational method in the sense of delay with the stochastic method continues
to converge, as indicated in Fig. 2f. Fig. 3a depicts the impact of delay on the susceptible class of the
model at various values τ = 0.1, 0.2, 0.3, 0.4, 0.5. Fig. 3b shows the effect of delay on the infected
class of the model at different values τ = 0.1, 0.2, 0.3, 0.4, 0.5, illustrating a gradual decrease in the
disease from the infected class over time. Fig. 4 shows a comparison of the double delay effect with the
reproduction number. The increase in delay value may decrease the value of the reproduction number
and vice versa. The decrease in reproduction number shows that the disease has been controlled in the
population.

(a) (b)

(c) (d)

Figure 2: (Continued)



326 CMES, 2024, vol.141, no.1

(e) (f)

Figure 2: (a) The comparison behavior of Euler Maruyama and stochastic NSFD for a particular
infected class at h = 0.01 (convergent); (b) The comparison behavior of Euler Maruyama and
stochastic NSFD for a particular infected class at h = 0.5 (divergent); (c) The comparison behavior
of stochastic Euler and stochastic NSFD for a particular infected class at h = 0.01 (convergent); (d)
The comparison behavior of stochastic Euler and stochastic NSFD for a particular infected class at
h = 0.7 (divergent); (e) The comparison behavior of stochastic Runge Kutta and stochastic NSFD for
a particular infected class at h = 0.1 (convergent); (f) The comparison behavior of stochastic Runge
Kutta and stochastic NSFD for a particular infected class at h = 1 (divergent)

(a) (b)

Figure 3: Delay effects plots: (a) The effect of delay of different values on the susceptible class at
h = 100; (b) The effect of delay of different values on the infected class at h = 100
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Figure 4: Time plot of the effect of time delay (τ ) with reproduction number (R0)

6 Conclusion

The study thoroughly evaluates the mathematical analysis of delayed epidemic models for
meningitis using reliable delay approaches. Subpopulations are divided by the model into four
categories: susceptible, carrier, infected, and recovered. The model’s equilibria, feasible region, and
reproduction number are investigated rigorously. After that, two techniques, transition probabilities,
and non-parametric perturbation, are implemented successfully on the existing deterministic model
of meningitis bacterial disease in the sense of delay effect. The critical points of the newly stochastic
version of the model, such as positivity, boundedness, extinction (means on which condition disease
will become extinct from the population), and persistence (means on which condition disease will
persist in the population), are studied in support of theorems. The Euler Maruyama, stochastic
Euler, and stochastic Runge Kutta methods are successfully implemented on both stochastic ver-
sions of the model. Unfortunately, as observed in a comparison section, these methods have many
discrepancies, such as negative, unbounded, and inconsistent results, and even work for a short
period. The nonstandard computation method is implemented on the non-parametric version of the
deterministic model to overcome these discrepancies. In this study, the proposed method ensures
the biological properties of real-world problems. The most effective, efficient, and precise technique is
the nonstandard computational method with stochastic in the sense of delay. In addition, the local and
global stabilities of nonstandard computational methods are studied rigorously around the equilibria
of the model using the Lyapunov theory after assuming the perturbation is zero. Accordingly, the
nonstandard computation method with delay and stochastic is a good agreement for studying such
complex models, and their results are close to nature by fulfilling the biological properties of the model.
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