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ABSTRACT

Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.
The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.
Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of
the encryption algorithms, research research on the implementation of quantum circuits is essential. This paper
presents a new framework to construct quantum circuits of substitution boxes (S-boxes) using system modeling.
We model the quantum circuits of S-boxes using two layers: Toffoli and linear layers. We generate vector spaces
based on the values of qubits used in the linear layers and apply them to find quantum circuits. The framework
finds the circuit by matching elements of vector spaces generated from the input and output of a given S-box, using
the forward search or the meet-in-the-middle strategy. We developed a tool to apply this framework to 4-bit S-boxes.
While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented
with four qubits, the proposed tool achieves the circuits with five qubits. The proposed tool can find quantum
circuits of 4-bit odd permutations based on the controlled NOT, NOT, and Toffoli gates, whereas LIGHTER-R is
unable to perform this task in the same environment. We expect this technique to become a critical step toward
optimizing S-box quantum circuits.
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1 Introduction

Quantum computers accelerate many algorithms based on the superposition principle of quantum
mechanics. Shor’s algorithm [1] exponentially reduces the complexity of attacking public-key schemes
on quantum computers. Since 2016, the National Institute of Standards and Technology (NIST)
has been conducting the post-quantum cryptography standardization process [2]. For symmetric-key
schemes, Grover’s and Simon’s algorithms [3,4] offer attackers significant performance to attack the
schemes, but these algorithms do not entirely compromise the security such systems’. However, in
a quantum computing environment, symmetric-key cryptography may have weak properties not yet
studied for each algorithm. Most cryptanalysis, including attacks targeting these vulnerabilities and
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generic attacks, requires the implementation of cipher’s quantum circuits, and its performance depends
on the efficiency of the circuit. For future security, research on the implementation of the quantum
circuits must be conducted, and it is necessary to know what performance bounds there are.

The substitution box (S-box) is a crucial component that provides confusion in symmetric-key
schemes. When implementing a cipher as a quantum circuit, the linear layer can be implemented with
only NOT and controlled-NOT (CNOT) gates. However, highly structured nonlinear layers, such as
the S-box, must employ relatively expensive Toffoli gates and numerous qubits. In quantum circuits
for symmetric-key schemes, the S-box incurs the highest cost.

The complexity of a quantum circuit is evaluated by the number of qubits and the Toffoli-depth
defined by the number of non-parallelizable Toffoli gates. Optimizing these two parameters increases
the implementation efficiency of quantum computers. This approach improves the attackers’ ability
to perform exhaustive search and dedicated attacks using Grover’s algorithm in quantum computer.
Hence, optimizing the quantum circuits of S-boxes is critical to assess the security of symmetric-key
schemes against quantum computer-based attacks.

Extensive recent research has been conducted on finding efficient quantum circuits for the
Advanced Encryption Standard (AES). Grassl et al. [5] initially proposed a quantum circuit for the
AES and introduced a zig-zag structure to reduce the number of qubits required for its implementation.
Subsequently, several studies have been conducted to reduce the number of qubits to implement the
AES [6–9]. However, in NIST’s post-quantum cryptography standardization process, the Toffoli-depth
represents a critical parameter. In response, Jaques et al. [8] attempted to construct an AES quantum
circuit with a shallow Toffoli-depth. Recently, Huang et al. [10] proposed an AES quantum circuit
with the shallowest depth.

The terms and notations used in this paper are explained as follows:

• CNOT, NOT, Toffoli gates: Gates used in quantum circuit

• CNT-circuit: Quantum circuit using only CNOT, NOT, and Toffoli gates

• CT-circuit: Quantum circuit using only CNOT and Toffoli gates

• n: Size of S-box

• q: Number of qubits used in quantum circuit

• C : quantum circuit |α〉|0〉 → |S(α)〉|0〉
• Li and Ti: i-th linear layer and Toffoli layer used in the circuit, respectively

• xi and yi: The i-th qubits of the input and output of the quantum circuit

• Xi: Vector space corresponding to the i-th linear layer of the quantum circuit

Contributions. This paper provides a new framework to construct quantum circuits C : |α〉|0〉 →
|S(α)〉|0〉 of S-boxes. We treat quantum circuits of S-boxes using only CNOT, NOT, and Toffoli gates,
called CNT-circuits, using system modeling. Using the CNT-circuits, we provide a framework for
finding quantum circuits of the S-boxes with low Toffoli-depths according to a limited number of
qubits by matching elements of vector spaces generated from the inputs and outputs of the S-boxes.
The framework employs a meet-in-the-middle strategy, in which the key is to analyze the vector spaces
spanned by the values before and after the Toffoli layers. The framework provides a specialized search
for the Toffoli-depth by ignoring the detailed implementations of the linear layers of S-boxes. To the
best of our knowledge, no study has analyzed the Toffoli-depth and number of qubits using a vector
space and basis analysis between Toffoli layers in the quantum circuits of S-boxes.



CMES, 2024, vol.141, no.1 547

To verify the effectiveness of the framework, we propose a technique and tool for applying the
framework to a 4-bit S-box. These components are currently used as essential elements in many
Authenticated Encryption with Associated Data (AEAD) schemes and block ciphers [11–15]. In
addition, LIGHTER-R [16] provides Toffoli-depth optimized quantum circuits of 4-bit S-boxes with
a 4-qubit restriction. However, this approach fails if the target 4-bit S-boxes are odd permutations.
This result occurs due to the theorem that odd permutations cannot be implemented with 4 qubits
in CNT-circuits and requiress at least 5 qubits [17]. The algorithms offer a wider range of quantum
circuits compared to LIGHTER-R in terms of the Toffoli-depth and number of qubits (up to 5).
This improvement allows the algorithms to produce the quantum circuits of the 4-bit S-boxes of odd
permutations. Given that half of 4-bit S-boxes are odd permutations, this result enables researchers to
implement quantum circuits for all 4-bit S-boxes.

Paper Organization. Section 2 describes quantum computation and quantum circuits. Section 3
describes the properties of the CNT-circuit and the model in the quantum circuit. Section 4 describes
the framework for finding quantum circuits of 4-bit S-boxes according to a limited number of qubits.
Section 5 presents the results of the proposed algorithm in Section 4. Section 6 presents the conclusions
and provides a discussion.

2 Quantum Computation and Quantum Circuits

A fundamental concept in classical computing involves a bit, characterized as either 0 or 1.
Conversely, the qubit plays a role as a bit in quantum computing, holding 0 and 1 at the same
time according to the superposition principle of quantum mechanics. The values |0〉 and |1〉 are
orthonormal bases of the two-dimensional Hilbert space, also called the computational basis. The
superposition state of a qubit can be represented as α|0〉 + β|1〉 (α, β ∈ C), and α and β are called the
complex probability amplitude. The state of the qubit is destroyed by measurement, after which one
can observe |0〉 or |1〉, with the respective probabilities of |α|2 and |β|2 (thus, |α|2 + |β|2 = 1 holds).
To describe n qubits, we need a 2n dimensional Hilbert space for which the orthonormal bases are
|00 · · · 0〉, |00 · · · 1〉, . . . , |11 · · · 1〉, and total 2n.

This work primarily concerns with quantum circuits consisting of CNOT, NOT, and Toffoli gates.
A CNOT gate is the two-qubit gate defined by CNOT : |a〉|b〉 �→ |a〉|b ⊕ a〉, and a NOT gate is the
single-qubit gate defined by NOT : |a〉 �→ |a ⊕ 1〉. A Toffoli gate is the three-qubit gate defined by
Toffoli : |a〉|b〉|c〉 �→ |a〉|b〉|c ⊕ ab〉. A Toffoli gate can handle the XOR and AND of classical gates at
once. Fig. 1 presents these quantum gates.

Figure 1: CNOT (left), NOT (middle), and Toffoli (right) gates

A quantum circuit using only CNOT, NOT, and Toffoli gates is defined as a CNT-circuit. In the
CNT-circuit, the NOT gates can be moved to the circuit’s last operation without changing the Toffoli-
depth, using the properties in Fig. 2. The NOT gates gathered in the last operation are equivalent to
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using an XORing on a constant value in the S-box. All S-boxes can be implemented with CNT-circuits;
thus CT-circuits (without NOT gates) can implement all S-boxes satisfying 0 �→ 0 [17]. Therefore, only
CT-circuits are considered in this paper.

Figure 2: Properties of NOT gates

3 Modeling the Quantum Circuits of S-Boxes

We considered the n-bit S-box defined by the vectorial Boolean function F
n → F

n. In the circuit
of the S-box, n Boolean coordinate functions are represented by wires. Each wire connects to n input
bits, and additional wires may be required depending on the circuit. All these wires become qubits in
a quantum circuit.

We modeled CT-circuits for C : |α〉|0〉 → |S(α)〉|0〉 of S-boxes satisfying 0 �→ 0. Let C use q
qubits with a Toffoli-depth of t. We defined the layers with only Toffoli gates as Toffoli layers and
treated the layers between them as linear layers (including empty layers). In addition, C has t + 1
linear layers, including the outermost two linear layers. We denote the i-th Toffoli layer as Ti and the
i-th linear layer as Li. We established the indices of the layers as represented in Eq. (1). The CNOT
gates can be implemented without additional qubits [18], and their cost is exempted from the analysis
model. Therefore, we omitted the detailed implementation of CNOT gates in the linear layer.

C : Lt ◦ Tt ◦ Lt−1 ◦ Tt−1 ◦ · · · ◦ L1 ◦ T1 ◦ L0. (1)

To facilitate finding the circuit, we arranged the Toffoli gates in order within the Toffoli layers. We
assumed that the control and target qubit positions of the Toffoli gates are fixed, and the exchange of
wires that occurs while fixing them is absorbed by the linear layers. In detail, the control qubits of the
i-th Toffoli gate use the (3i −2)-th and (3i −1)-th qubits, and the 3i-th qubit serves as the target qubit.
Afterward, Toffoli gates are arranged consecutively in the Toffoli layers. Fig. 3 depicts a Toffoli layer
using k Toffoli gates.

Implementing linear layers is equivalent to knowing their input and output values. When Toffoli
layers are implemented, the input value of the following linear layer can be determined through the
output values of the previous linear layer. If the output values of t linear layers are determined, the
entire circuit can be implemented.
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Figure 3: Toffoli layer in the proposed model

The qubit values at each point represent the input and output of the linear layer. We treated the
qubit values as Boolean functions, and considered the vector space spanned by them. The vector spaces
spanned at the input and output points of the linear layer are identical. We defined the vector space
generated by Li as Xi, and each Xi is transformed into Xi+1 by Ti+1 corresponding to the (i + 1)-
th Toffoli layer. In addition, we defined the input and output of the S-box as (x0, · · · , xn−1) and
(y0, · · · , yn−1), respectively, as follows:

span(x0, · · · , xn−1) = X0

T1−→ X1

T2−→ · · · Tt−→ Xt = span(y0, · · · , yn−1).

4 Exploring 4-Bit S-Box Quantum Circuits with the Meet-in-the-Middle Strategy: Up to 5 Qubits
4.1 Properties between Neighboring Vector Spaces

Let Xi be a vector space spanning Li. Quantum circuits comprise reversible gates; thus, these
circuits can be implemented in forward and backward directions.

forward: X0 → X1 → · · · → Xt,

backward: Xt → Xt−1 → · · · → X0.

Of the three qubits included in one Toffoli gate, only the target qubit changes in value. There are
invariant qubit values; hence the intersection of two consecutive spaces, Xi and Xi+1, is non-empty.
This feature is also reflected in the intersection of Xi and Xi+r for a sufficiently small r. This logic is
generalized in Theorem 1 and depicted in Fig. 4.

Figure 4: Depiction of Theorem 1

Theorem 1. Define the CT-circuit of S-box S as C : |α〉|0〉 → |S(α)〉|0〉. If the circuit uses q qubits
and has Toffoli-depth t, for any i ≤ t − r,

dim(Xi) − dim(Xi ∩ Xi+r) ≤ r
q/3�,

dim(Xi+r) − dim(Xi ∩ Xi+r) ≤ r
q/3�.
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Proof. There are r Toffoli layers between the points of Xi and Xi+r. A maximum of 
q/3� Toffoli
gates can be used in one Toffoli layer; hence, at most, r
q/3� values are not in Xi. Therefore, we obtain
dim(Xi) − dim(Xi ∩ Xi+r) ≤ r
q/3�. The lower equation is found using a similar process. �

According to the above theorem, the lower bound of the Toffoli-depth is found for the quantum
circuit |α〉|0〉 → |S(α)〉|0〉. The output of the S-box can be expressed by concatenating the outputs
of n Boolean functions. The linear combination of these Boolean functions is called a component
function. The zero function, a constant function that outputs only 0, is excluded from the definition of
the component function. A Boolean function f that satisfies f (x + y) = f (x) + f (y) for all values of
x, y ∈ F n

2 is called a Boolean linear function.
Theorem 2. For n ≥ 3, let X0 be the set of all n-variable Boolean linear functions, and let Xt be the

set of all component functions of the S-box S (including the zero function). Then, the Toffoli-depth
of the quantum circuit C : |α〉|0〉 → |S(α)〉|0〉 of n-bit S using q-qubit is (n − dim(X0 ∩ Xt))/
q/3� or
greater.

Proof. This situation is a special case where i = 0 and r = t in Theorem 1. The proof is as follows:

dim(X0) − dim(X0 ∩ Xt) ≤ t
q/3�,

n − dim(X0 ∩ Xt) ≤ t
q/3�,

(n − dim(X0 ∩ Xt))/
q/3� ≤ t.

�
We consider both forward and backward directions. The proposed algorithms confirm how many

values of the newly constructed vector space belong to the opposite vector space. For example, we
consider that Xi and Xt−j are obtained by implementing up to the i-th Toffoli layer in the forward
direction and the j-th Toffoli layer in the backward direction. The algorithms select Xi+1 which yields
the greatest intersection with Xt−j, to implement the (i + 1)-th Toffoli layer in the forward direction.
In this case, dim

(
Xi ∩ Xt−j

)
< dim

(
Xi+1 ∩ Xt−j

)
holds, and if Xi+1 = Xt−j, the circuit is completely

implemented.

4.2 Exploring 4-Bit S-Box Quantum Circuits in the Forward Direction
We describe the process of implementing the 4-bit S-box S(x0, x1, x2, x3) = (y0, y1, y2, y3) using 4

and 5 qubits. Due to the limited number of qubits, only one Toffoli gate is in each Toffoli layer. Let
P0 = span(x0, x1, x2, x3) and Pt = span(y0, y1, y2, y3). If P0 = Pt holds, S is a linear function; thus,
the Toffoli-depth is zero. The linear function can be implemented without ancilla qubits (i.e., with 4
qubits). The proposed algorithm takes vector space pairs using the definition below.

Definition 1. The pair of vector spaces in the forward and backward directions are denoted as
(X , X ′). Y represents the vector space that lies ahead of or is equal to X in the forward direction,
whereas Y ′ represents the vector space that lies ahead or is equal to X ′ in the backward direction.
(Y , Y ′) is closer than (X , X ′) if one of the following conditions is satisfied:

• Y = Y ′ holds, or

• dim (Y ∩ Y ′) > dim (X ∩ X ′).

We defined the vector space corresponding to the i-th linear layer in the forward direction as Xi

and the vector space corresponding to the j-th linear layer in the backward direction as Xt−j. The
algorithms take (Xi, Xt−j) as input, and (Xi+1, Y ) as output, which is a closer pair than (Xi, Xt−j). In
addition, Y can be either Xt−j or Xt−j−1.
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Algorithm 1: Forward finding for quantum circuits
input: Xi, Xt−j, n, q where n ≤ q ≤ 5
output: a set D of pairs (Bi+1, Xi+1, Xt−j) where Bi+1 is the basis of Xi+1.
Bi ← a basis of Xi

D ← {}
Fi

→ ← {ab ⊕ c|a, b( �= a), c ∈ Xi, if dim (Xi) = q, then a, b, and c are linearly independent}
for p ∈ Fi

→ do
for a, b, c ∈ Xi do

for each case Bi+1 made from a,b,c do
Xi+1 ← span(Bi+1)

if (Xi+1, Xt−j) is closer than (Xi, Xt−j) then
D ← D ∪ {(Bi+1, Xi+1, Xt−j)}

return D

Algorithm 1 finds the vector space pairs only in the forward direction. If we generate a set Fi
→ that

collects all possible target qubit values after the (i + 1)-th Toffoli layer Ti+1, then

Fi
→ = {ab ⊕ c|a, b( �= a), c ∈ Xi, if q = dim (Xi) , then a, b, and c are linearly independent}.

We consider quantum circuits with q-qubit. When dim (Xi) = q, the values of all qubits at the
input point of Ti+1 form a basis for Ti+1, such that the elements of this set are independent of each
other.

There can be several combinations of a, b, c ∈ Xi that satisfy ab ⊕ c ∈ Fi
→. For each a, b, and c, we

can construct a basis Bi of Xi, where Bi must be constructed so that a and b belong to it. If c is linearly
independent of {a, b}, c is also adjusted to belong to Bi. Let d and e be linearly independent of {a, b, c}
and {a, b, c, d}, respectively. The cases in which Bi is possible are as follows:

1. When dim (Xi) = 5, Bi = {a, b, c, d, e};
2. When dim (Xi) = 4 holds and c is linearly dependent of {a, b}, Bi = {a, b, d, e};
3. When dim (Xi) = 4 holds and a, b, c are linearly independent, Bi = {a, b, c, d}.
Let Bi+1 be the basis of Xi+1 to be generated. In Case 1, c changes to ab ⊕ c, resulting in Bi+1 =

{a, b, ab⊕ c, d, e}. In Case 2, we add a new basis ab⊕ c, Bi+1 = {a, b, ab⊕ c, d, e} holds. In Case 3, c can
change to ab ⊕ c or ab ⊕ c can be newly added, and Bi+1 becomes {a, b, ab ⊕ c, d} or {a, b, ab ⊕ c, c, d}.
If (Xi+1, Xt−j) is closer than (Xi, Xt−j) for all cases, we adopt these spaces and store (Bi+1, Xi+1, Xt−j).
After this process is performed for all ab ⊕ c, the stored set of (Bi+1, Xi+1, Xt−j) becomes the output.

4.3 Exploring 4-Bit S-Box Quantum Circuits Using Meet-in-the-Middle Strategy
We describe Algorithm 2 based on the meet-in-the-middle strategy in the same environment as the

previous section. When constructing a circuit, if Algorithm 1 outputs an empty set, we proceed with
Algorithm 2, which generates Fi

→ in the same way as Algorithm 1. Subsequently, we create a set Fj
←

that collects all the target qubit values that the Toffoli gates in Tt−j−1 can have.

Fj
← = {αβ ⊕ γ |α, β( �= α), γ ∈ Xt−j, if dim

(
Xt−j

) = q, then α, β, and γ are linearly independent}.
For each ab ⊕ c ∈ Fi

→ and a, b, c ∈ Xi, we considered Xi+1 and Bi+1 for all cases constructed in
the mentioned manner. For each αβ ⊕ γ ∈ Fj

← and α, β, γ ∈ Xt−j, the same process can be repeated
to obtain Xt−j−1 and Bt−j−1. If (Xi+1, Xt−j−1) is closer than (Xi, Xt−j) for all cases, we adopt these spaces
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and store (Bi+1, Bt−j−1, Xi+1, Xt−j−1). After this process is conducted for all ab⊕c and αβ ⊕γ , the stored
set of (Bi+1, Bt−j−1, Xi+1, Xt−j−1) represents the output. Fig. 5 depicts the change in the intersection due
to the meet-in-the-middle strategy.

Algorithm 2: Meet-in-the-middle finding for quantum circuits
input: Xi, Xt−j, n, q where n ≤ q ≤ 5
output: a set D of pairs (Bi+1, Bt−j−1, Xi+1, Xt−j−1) where Bi+1 and Bt−j−1 are the bases of Xi+1 and Xt−j−1,
respectively.
Bi ← a basis of Xi

Bt−j ← a basis of Xt−j

D ← {}
Xset ← {}
Fi

→ ← {ab ⊕ c|a, b( �= a), c ∈ Xi, if dim (Xi) = q, then a, b, and c are linearly independent}
Fj

← ← {αβ ⊕ γ |α, β( �= α), γ ∈ Xt−j, if dim
(
Xt−j

) = q, then α, β, and γ are linearly independent}
for p ∈ Fi

→ do
for a, b, c ∈ Xi do

for each case Bi+1 made from a,b,c do
if span(Bi+1) /∈ Xset then

Xset ← Xset ∪ {span(Bi+1)}
for Xi+1 ∈ Xset do

for ρ ∈ Fj
← do

for α, β, γ ∈ Xt−j do
for each case Bt−j−1 made from α, β, γ do

Xt−j−1 ← span(Bt−j−1)

if (Xi+1, Xt−j−1) is closer than (Xi, Xt−j) then
D ← set ∪ {(Bi+1, Bt−j−1, Xi+1, Xt−j−1)}

return D

Figure 5: Description of the meet-in-the-middle strategy

The process of constructing Fi
→ and Fj

← is determined by the dimensions of Xi and Xt−j,
respectively. Thus, if the spatial dimension is dim, the computational cost of Fi

→ or Fj
← is 23dim because

a, b, c, α, β, and γ have 2dim cases. When applying Algorithm 2, the complexity of finding both ab⊕c ∈
Fi

→ and αβ ⊕ γ ∈ Fj
← is less than 26dim (e.g., if dim = 5, the complexity bound is 230). The memory

complexity depends on how many close spaces are stored; thus, it depends on the S-box.
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Searching two linear layers is possible only using the forward search, not the meet-in-the-middle
strategy. However, the forward search requires a complexity of 26dim , so it takes longer than the meet-
in-the-middle strategy. This speed difference can be seen experimentally, which is why we use a meet-
in-the-middle strategy.

5 Results for Some 4-bit S-Boxes

We applied the proposed algorithms to various 4-bit S-boxes. First, we considered all 4-bit optimal
S-boxes classified by Leander and Poschmann [19,20] to demonstrate the validity of the proposed
algorithms (see Table 1). Moreover, LIGHTER-R could not find the circuits of odd permutations
(i.e., G3, G6, G9, G10, G11, G12, G14, and G15), whereas the proposed algorithm could.

Table 1: Toffoli depths of optimal S-boxes using 5 qubits

Class G0 G1 G2 G3 G4 G5 G6 G7

Toffoli-depth 4 4 4 7 5 5 6 5
Class G8 G9 G10 G11 G12 G13 G14 G15

Toffoli-depth 4 6 6 6 6 5 6 6

Second, we consider the 4-bit S-boxes of GIFT [15], SKINNY [14] and Saturnin [21] (see
Table 2). The proposed algorithms and LIGHTER-R output identical Toffoli-depths in the circuit
implementation when using 4 qubits. We executed the proposed algorithm using 5 qubits but outputted
the same Toffoli-depths. To compare the results of this study with those of existing circuits, we checked
the AND-depth, which relates closely to the Toffoli-depth. Quantum circuits with the Toffoli-depth
at the same value as the AND-depth always exist, so comparison is possible [10]. These values
represented the same AND-depths of the classical implementation, as claimed by the designers of
GIFT and SKINNY. The GIFT quantum circuit with 4 qubits was written in Algorithm 3. In the
algorithm, x0 and y0 are least significant bits, and x3 and y3 are most significant bits.

Algorithm 3: Circuits of GIFT S-box
input: (x0, x1, x2, x3)

output: (y0, y2, y3, y4)

(x0, x1, x2, x3) ← (x0 ⊕ x1, x0, x2 ⊕ x3, x1 ⊕ x2)

(x0, x1, x2, x3) ← (x0, x1, x2 ⊕ x0x1, x3)

(x0, x1, x2, x3) ← (x0 ⊕ x3, x1, x2, x2 ⊕ x3)

(x0, x1, x2, x3) ← (x0, x1, x2 ⊕ x0x1, x3)

(x0, x1, x2, x3) ← (x3, x0 ⊕ x2 ⊕ x3, x2, x1 ⊕ x2)

(x0, x1, x2, x3) ← (x0, x1, x2 ⊕ x0x1, x3)

(x0, x1, x2, x3) ← (x2, x1 ⊕ x2 ⊕ x3, x0, x1 ⊕ x2)

(x0, x1, x2, x3) ← (x0, x1, x2 ⊕ x0x1, x3)

(x0, x1, x2, x3) ← (x0 ⊕ x1, x1 ⊕ x3, x1 ⊕ x2 ⊕ x3, x1)

(x0, x1, x2, x3) ← (x0 ⊕ 1, x1, x2, x3)

return (x0, x1, x2, x3)

In the case of Saturnin, we found a more efficient circuit with an AND-depth of 5, rather than a
circuit with an AND-depth of 6 that the designers found. Fig. 6 is the circuit of Saturnin’s S-box σ0
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that we found. We omitted the expression of CNOT gates in Li. The values of the wires leading to the
same output on Li are XORed.

Table 2: Toffoli depths of special S-boxes using 4 qubits

Cipher Saturnin SKINNY GIFT

Toffoli-depth 5 4 4

Figure 6: Circuit of Saturnin S-box σ0

Discussion of the Results Based on the Algorithms. For each i, the proposed algorithms take a pair
(Xi, Xt−j) as input and select the closer pair (Xi+1, Y ), where Y can be either Xt−j or Xt−j−1. The value
of j is determined by the number of times Algorithm 2 is repeated. In the process, a pair that is not
closer to any i and j is never selected. This fact incurs a weakness in that the algorithms sometimes fail
to find circuits with the minimum Toffoli-depth. However, we can determine the whole circuit’s lower
bound of Toffoli-depth using Theorem 2. If the algorithms find a circuit with this lower bound, that
implies the minimum Toffoli-depth. Furthermore, the algorithms offer the advantage of being able to
find all circuits with such a lower bound. This result occurs because, a forward finding can discover
a circuit if one with that lower bound exists (see Algorithm 1). If the output circuit does not have the
lower bound, then the Toffoli-depth of the S-box is greater than the lower bound. We can confirm
that the results of G3, G6, G9, G10, G11, G12, G14, G15, Saturnin, SKINNY, and GIFT are the minimum
Toffoli-depth.

Discussion on 6 Qubits. In this case, the method of this paper can be applied as is, and only
the number of available Toffoli gates in a Toffoli layer increases. The proposed algorithm uses only
one Toffoli gate in a Toffoli layer, so the algorithm selects three qubits. When using 6 qubits, two
Toffoli gates must be found; therefore all 6 qubits are selected. Accordingly, the computational cost
for the forward direction becomes 26dim , and the computational cost for the meet-in-the-middle strategy
becomes under 212dim .

Discussion on Other Methods. There are tools for creating quantum circuits, including LIGHTER-
R and DORCIS [22]. The LIGHTER-R tool is based on the breadth-frist search algorithm and
evaluates paths based on the cost entered by the user. In addition, DORCIS is based on LIGHTER-
R, but the difference is that it evaluates the path based on the depth of the circuit. In the proposed
framework, the vector space pairs corresponding to the forward and backward linear layers become
the nodes, and the patterns for selecting the vector space pairs become the paths. In addition, the
proposed method evaluates the path based on the intersection of a vector space pair. In the breadth-
frist search based algorithm, all CNOT gates become nodes, but this proposed method ignores the
CNOT gates, so the search is reduced.
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The authors of DORCIS used GIFT’s S-box to compare its performance with LIGHTER-R. Both
algorithms achieved Toffoli-depth 4 using 4 qubits, and we obtained the same result using the same
number of qubits. This implies that our tool can handle all the tasks that existing tools are capable of.

6 Conclusion

This paper presents a new framework to construct quantum circuits of S-boxes according to a
limited number of qubits. To construct such circuits, we analyzed the dimension and basis before and
after the Toffoli layer to find qubits for which the equations match based on the forward search or
the meet-in-the-middle strategy. We employed the proposed tool to find the circuits of 4-bit S-boxes
and verified its effectiveness in practice. Through the proposed framework, we discovered all quantum
circuits of odd permutations among all 4-bit optimal S-boxes classified by Leander and Poschmann.
We also implemented quantum circuits of S-boxes for several well-known block ciphers, in which a
more efficient quantum circuit of Saturnin’s S-box was found. The proposed technique can be applied
to find circuits for S-boxes larger than 4 bits, which is left for future work. This technique contributes
to the research field regarding finding optimized quantum circuits of S-boxes.
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Appendix A: Results for the 4-Bit Optimal S-Boxes

Algorithms 4–11 are the results of the proposed framework for the optimal S-boxes G0, G1, · · · , G15.
In inputs/outputs, x0 and y0 are least significant bits, and the rightmost 0 represents ancilla qubits.
The line below refers to the Toffoli layer.

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4).

All lines except the Toffoli layers refer to linear layers.

Algorithm 4: Circuits of G0 (left), G1 (right)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3, x0 ⊕ x1 ⊕ x2, x1 ⊕
x3, x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕x1 ⊕x2, x2, x0 ⊕x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x1 ⊕ x2, x0, x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕x1 ⊕x2 ⊕x3, x2, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕x3, x0 ⊕x3, x1 ⊕x2, x0 ⊕
x2 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x0 ⊕ x2 ⊕ x3, x1 ⊕
x3, x0 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2, x0 ⊕x3, x0, x1 ⊕x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x2, x3, x2, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x1, x3, x0 ⊕ x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x0 ⊕x2 ⊕x3, x0 ⊕x1, x0 ⊕
x1 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)
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Algorithm 5: Circuits of G2 (left), G3 (right)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x0 ⊕x3, x1 ⊕x3, x0 ⊕
x1 ⊕ x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x1, x0 ⊕x3, x0, x0 ⊕x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕ x1 ⊕ x2, x2, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3, x0 ⊕ x1 ⊕ x2 ⊕
x3, x0, x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x2, x2 ⊕ x3, x0 ⊕
x3, x1 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3, x0 ⊕ x1 ⊕ x3, x1 ⊕
x3, x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x1 ⊕ x3, x3, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x3, x0⊕x1⊕x2, 0, x2, x0⊕
x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3 ⊕ x4, x0 ⊕ x1 ⊕
x4, x3, x4, x0 ⊕ x2 ⊕ x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕
x4, x2, x0 ⊕ x2, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x4, x1 ⊕ x3, x2, x2 ⊕ x3, x0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x4, x0 ⊕ x1 ⊕ x3, x2, x2 ⊕
x3, x0 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕x3, x0 ⊕x3 ⊕x4, x0, x0 ⊕
x1, 0)

(x0, x1, x2, x3, 0)

Algorithm 6: Circuits of G4 (left), G5 (right)
input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3, x0 ⊕ x1 ⊕ x3, x1 ⊕
x3, x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x0 ⊕ x3, x3, x1, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕ x2, x3, x2, x0 ⊕ x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2 ⊕x3, x1 ⊕x3, x2, x2 ⊕
x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x0 ⊕x3, x2 ⊕x3, x1 ⊕x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕ x2 ⊕ x3, x0 ⊕ x3, x0 ⊕
x1, x0, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1, x0 ⊕ x1 ⊕ x3, x2 ⊕
x3, x1 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x0 ⊕x1 ⊕x2 ⊕x3, x3, x0 ⊕
x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x1 ⊕x3, x0, x0 ⊕x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x2 ⊕x3, x1, x0 ⊕x2 ⊕x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕ x2, x0, x0 ⊕ x1, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1, x0 ⊕ x2 ⊕ x3, x1 ⊕
x3, x3, 0)

return (x0, x1, x2, x3, 0)
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Algorithm 7: Circuits of G6 (left), G7 (right)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x1 ⊕ x2, x0 ⊕ x1 ⊕ x2, x0 ⊕
x3, x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2, x1 ⊕x3, x0 ⊕x3, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x0 ⊕x2, 0, x3, x1 ⊕x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x1 ⊕ x2, x2 ⊕
x4, x2, x0 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3 ⊕ x4, x1 ⊕ x3, x3, x0, x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x3, x4, x3, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x3, x1 ⊕ x3, x0 ⊕
x2, x2 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x1 ⊕x2, x0 ⊕x3, x2 ⊕x3, x0 ⊕
x1 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2, x1 ⊕ x2 ⊕ x3, x1 ⊕
x2, x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2 ⊕ x3, x0 ⊕ x1 ⊕
x2, x0, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x3, x1 ⊕x2 ⊕x3, x2, x2 ⊕
x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x2, x1 ⊕x2, x0 ⊕x2 ⊕x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x2 ⊕ x3, x0 ⊕
x3, x2, x0 ⊕ x1, 0)

return (x0, x1, x2, x3, 0)

Algorithm 8: Circuits of G8 (left), G9 (right)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x0 ⊕ x1 ⊕ x2, x0 ⊕
x3, x1 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x1, x0, x0 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x0 ⊕ x1, x2, x0, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x3, x1 ⊕x2 ⊕x3, x2, x0 ⊕
x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2, x0, x1, x1 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x2 ⊕ x3, x0, x2 ⊕
x3, x1 ⊕ x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x1 ⊕x2, x2, x0 ⊕x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x3, 0, x0, x1)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x0 ⊕ x1 ⊕ x2, x2 ⊕
x4, x2, x0 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3 ⊕ x4, x1 ⊕ x4, x3, x0, x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3, x3 ⊕ x4, x3, x1, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2, x3, x1, x0 ⊕x1 ⊕x3, 0)

return (x0, x1, x2, x3, 0)
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Algorithm 9: Circuits of G10 (left), G11 (right)
input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2, x0 ⊕x1 ⊕x2, x2 ⊕x3, x1 ⊕
x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1 ⊕ x3, x2 ⊕ x3, x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2, x1 ⊕ x3, 0, x3, x2)

(x0, x1, x2, x3, x4) ← (x1, x0 ⊕ x1, 0, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2 ⊕ x3 ⊕ x4, x1 ⊕ x2, x0 ⊕
x2 ⊕ x4, x0 ⊕ x2, x0 ⊕ x3 ⊕ x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1⊕x3, x0⊕x3⊕x4, x2⊕x3, x0, x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2, x1 ⊕ x3, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x3, x0 ⊕x2 ⊕x3, x1 ⊕x2, x1 ⊕
x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕x1 ⊕x2 ⊕x3, x0, x2 ⊕x3, x1 ⊕
x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0⊕x1⊕x2⊕x3, 0, x2⊕x3, x0⊕
x2)

(x0, x1, x2, x3, x4) ← (x1, x0 ⊕ x1, 0, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2 ⊕ x3, x0 ⊕ x3, x0 ⊕ x2 ⊕
x3 ⊕ x4, x0 ⊕ x2, x1 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3⊕x4, x0⊕x1⊕x3, x3, x0, x2⊕x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x4, x1 ⊕ x3 ⊕ x4, x0, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕ x3, x1 ⊕ x3, x0, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x1 ⊕x3, x1, x2 ⊕x3, x0 ⊕x2 ⊕
x3, 0)

return (x0, x1, x2, x3, 0)

Algorithm 10: Circuits of G12 (left), G13 (right)
input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0⊕x3, x0⊕x2⊕x3, 0, x2⊕x3, x1⊕
x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x2⊕x4, x1⊕x2⊕x3, x2, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x0 ⊕x1 ⊕x2 ⊕x4, x3, x2 ⊕
x3 ⊕ x4, x0 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x3, x1⊕x2⊕x3, x2, x3, x2⊕x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x3 ⊕ x4, x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕
x4, x3, x2, x0 ⊕ x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x2⊕x3⊕x4, x1⊕x2⊕x4, x2⊕
x4, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕x3, x2 ⊕x3, x0 ⊕x1 ⊕x3, x0 ⊕
x2, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x0 ⊕x3, x0 ⊕x2 ⊕x3, x2 ⊕x3, x1 ⊕
x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x2, x0 ⊕x1 ⊕x2 ⊕x3, x2 ⊕x3, x0 ⊕
x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2, x0 ⊕x2 ⊕x3, x0, x0 ⊕x1 ⊕
x2 ⊕ x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x1 ⊕ x2, x3, x0 ⊕ x2, x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x1 ⊕x2 ⊕x3, x0 ⊕x1 ⊕x2, x3, x0 ⊕
x2, 0)

return (x0, x1, x2, x3, 0)
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Algorithm 11: Circuits of G14 (left), G15 (right)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x2 ⊕x3, x0 ⊕x1, x1 ⊕x3, x0 ⊕
x1 ⊕ x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1 ⊕ x2, x3, x2, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x1 ⊕ x2, 0, x0, x1)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x4, x0 ⊕ x1 ⊕ x2 ⊕ x4, x2 ⊕
x3, x2, x0 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3 ⊕ x4, x0 ⊕ x1 ⊕
x4, x3, x2, x0 ⊕ x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x3, x1 ⊕x3 ⊕x4, x4, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0 ⊕x2 ⊕x3, x1, x2 ⊕x3, x0 ⊕
x1 ⊕ x3, 0)

return (x0, x1, x2, x3, 0)

input: (x0, x1, x2, x3, 0)

output: (y0, y2, y3, y4, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2, x3, 0)

(x0, x1, x2, x3, x4) ← (x2⊕x3, x0⊕x1, 0, x1⊕x3, x0⊕
x1 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x1, x0 ⊕ x1, 0, x3, x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3, x0 ⊕ x1 ⊕ x2 ⊕ x3, x0 ⊕
x2 ⊕ x4, x0 ⊕ x2, x1 ⊕ x2)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x1⊕x4, x2⊕x4, x4, x3, x0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x4, x1 ⊕ x2 ⊕ x3, x2, x3, x0 ⊕
x3 ⊕ x4)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x3⊕x4, x1, x3, x2, x0⊕x3)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x3 ⊕x4, x1 ⊕x3, x0 ⊕x4, x3, 0)

(x0, x1, x2, x3, x4) ← (x0, x1, x2 ⊕ x0x1, x3, x4)

(x0, x1, x2, x3, x4) ← (x0⊕x1⊕x3, x0⊕x2⊕x3, x1⊕
x3, x2, 0)

return (x0, x1, x2, x3, 0)
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