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ABSTRACT

Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to
effectively address complex and challenging optimization problems. This approach aims to leverage the strengths
of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more
versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a
hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the
Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be
referred to as BHJO. Through this fusion, the BHJO algorithm aims to leverage the strengths of each optimizer.
Before this hybridization, we thoroughly examined the exploration and exploitation capabilities of the BWO,
HBA, and JS metaheuristics, as well as their ability to strike a balance between exploration and exploitation. This
meticulous analysis allowed us to identify the pros and cons of each algorithm, enabling us to combine them in
a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance. In
addition, the BHJO algorithm incorporates Opposition-Based Learning (OBL) to harness the advantages offered
by this technique, leveraging its diverse exploration, accelerated convergence, and improved solution quality to
enhance the overall performance and effectiveness of the hybrid algorithm. Moreover, the performance of the BHJO
algorithm was evaluated across a range of both unconstrained and constrained optimization problems, providing
a comprehensive assessment of its efficacy and applicability in diverse problem domains. Similarly, the BHJO
algorithm was subjected to a comparative analysis with several renowned algorithms, where mean and standard
deviation values were utilized as evaluation metrics. This rigorous comparison aimed to assess the performance of
the BHJO algorithm about its counterparts, shedding light on its effectiveness and reliability in solving optimization
problems. Finally, the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc
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Dunn’s test. The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate
optimization problems, affirming its capability to deliver favorable outcomes in challenging scenarios.

KEYWORDS
Global optimization; hybridization of metaheuristics; beluga whale optimization; honey badger algorithm; jellyfish
search optimizer; chaotic maps; opposition-based learning

1 Introduction

Optimization is a fundamental problem-solving approach that aims to find the best possible
solution from a set of feasible configurations [1]. It plays a crucial role in various domains, including
engineering [2], economics [3], logistics [4], and data analysis [5]. The complexity of real-world
optimization problems often arises from large search spaces, non-linear relationships, and multiple
conflicting objectives [6].

To tackle such challenging optimization problems, researchers have developed a diverse range
of techniques, including metaheuristic algorithms [7]. Metaheuristics are high-level problem-solving
strategies that guide the search process by iteratively exploring and exploiting the search space to
find optimal or near-optimal solutions [8]. Unlike exact optimization methods that guarantee optimal
solutions but are limited to small-scale problems, metaheuristics are capable of handling large-scale
and complex optimization problems [8].

Metaheuristic algorithms draw inspiration from natural phenomena, social behaviors, and physi-
cal processes to create intelligent search strategies [9]. These algorithms iteratively improve a popula-
tion of candidate solutions by iteratively applying exploration and exploitation techniques. Explo-
ration involves searching new regions of the search space to discover potential solutions, while
exploitation focuses on refining and exploiting promising solutions to improve their quality [10].
A good balance between exploration and exploitation is essential for the success of metaheuristic
algorithms in solving optimization problems [11]. Exploration allows the algorithm to search widely
across the search space, uncovering diverse regions and potentially finding better solutions. It helps
prevent the algorithm from getting stuck in local optimums and promotes global exploration. On
the other hand, exploitation focuses on intensively exploiting the promising regions of the search
space, refining and improving the solutions to converge towards optimal or near-optimal solutions.
Balancing these two aspects ensures that the algorithm maintains a healthy exploration to discover
new regions while exploiting the discovered promising solutions effectively. A well-balanced approach
enables the algorithm to avoid premature convergence and thoroughly explore the search space to find
high-quality solutions [9].

Metaheuristic algorithms can be broadly categorized into two groups based on their search strat-
egy: population-based algorithms and individual-based algorithms [12]. Typically, population-based
algorithms maintain a population of candidate solutions and explore the search space collectively,
exchanging information between individuals to guide the search process. Examples of population-
based algorithms include genetic algorithms [13] and particle swarm optimization [14]. On the other
hand, individual-based algorithms, also known as trajectory-based algorithms, focus on improving a
single solution or trajectory by iteratively modifying it through exploration and exploitation. Examples
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of individual-based algorithms include simulated annealing [15] and tabu search [16]. These algorithms
often rely on a memory mechanism to keep track of previously visited regions and avoid getting
trapped in local optimums.

Metaheuristic algorithms have demonstrated their effectiveness and versatility in solving a wide
range of optimization problems in various fields. They have been successfully applied in areas
such as engineering design [17], scheduling [18], resource allocation [19], data mining [20], and
image processing and segmentation [21]. The ability of metaheuristic algorithms to handle complex,
non-linear, and multi-objective optimization problems makes them particularly useful in real-world
applications where traditional optimization techniques may fail to provide satisfactory results.

In this paper, we focus on the combination of three well-known metaheuristic algorithms, namely
the beluga whale optimization [22], the honey badger algorithm [23], and the jellyfish search optimizer
[24], to design a hybrid metaheuristic algorithm. We aim to leverage the strengths of these individual
algorithms and propose a novel hybrid approach that improves optimization performance. The main
contributions of this research work are:

1. After conducting an in-depth analysis of the three metaheuristics used to design the BHJO
algorithm, we have concluded that the Beluga Whale Optimization (BWO) and the Honey
Badger Algorithm (HBA) algorithms exhibit promising exploitation capabilities and stable
exploration phases, although their balance between exploration and exploitation is subopti-
mal. Conversely, the Jellyfish Search (JS) algorithm demonstrates commendable exploration
capacity and a well-balanced approach to exploration and exploitation, but its exploitation
capability remains weak.

2. We incorporated Opposition-Based Learning into the BHJO algorithm to enhance its explo-
ration capabilities and prevent it from getting trapped in local optimums.

3. We proposed a new balancing mechanism between exploration and exploitation, and it is very
promising.

The organization of the remaining sections in the paper can be summarized in the following
sentences. Section 2 reviews some recent metaheuristic algorithms and discusses their inspira-
tions, highlighting the advancements in the field. Section 3 focuses on the working principle
of the BHJO algorithm, providing a detailed explanation of its approach and highlighting its
key features. Section 4 presents the experimental study conducted to evaluate the performance
of the BHJO algorithm, including the methodology, benchmarks, and performance metrics employed.
The results are analyzed and discussed in detail. Finally, Section 5 concludes the paper by summarizing
the key findings, discussing their implications, and suggesting future directions for further research
and improvements in hybrid metaheuristic algorithms.

2 Related Work

In this section, we provide an overview of several popular metaheuristic algorithms that have
significantly contributed to the optimization field and have been published between 2020 and 2023.
These algorithms have been extensively studied and applied in various domains to tackle complex
optimization problems. The review focuses on highlighting the key features and principles of each
algorithm. While the list is not exhaustive, it encompasses some of the most widely recognized and
influential metaheuristics.

The Golden Eagle Optimizer (GEO) [25] is an optimization algorithm inspired by the hunting
behavior and characteristics of golden eagles. The Mountain Gazelle Optimizer (MGO) [26] takes
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cues from the social life and hierarchy of wild mountain gazelles. The Artificial Ecosystem-based
Optimization (AEO) [27] emulates the flow of energy in an ecosystem on the earth and mimics three
unique behaviors of living organisms: production, consumption, and decomposition. The Dandelion
Optimizer (DO) [28] reflects the process of dandelion seed long-distance flight relying on the wind:
the rising stage, the descending stage, and the landing stage. The Archerfish Hunting Optimizer
(AHO) [29] mimics the shooting and jumping behaviors of archerfish when hunting aerial insects. The
African Vultures Optimization Algorithm (AVOA) [30] models after the African vultures’ foraging and
navigation behaviors. The Artificial Gorilla Troops Optimizer (GTO) [31] follows in the footsteps of
the gorillas’ collective lifestyle. The Beluga Whale Optimization [22] is inspired by the behaviors of pair
swim, prey, and whale fall of Beluga whales. The Elephant Clan Optimization (ECO) [32] evokes the
most essential individual and collective behaviors of elephants, such as powerful memories and high
capabilities for learning. The Cheetah Optimizer (CO) [33] recreates the hunting strategies of cheetahs:
searching, sitting and waiting, and attacking. The Bear Smell Search Algorithm (BSSA) [34] imitates
both dynamic behaviors of bears: the sense of smell mechanism and the way bears move in search
of food. The Gaining-Sharing Knowledge-based (GSK) [35] algorithm mimics the process of gaining
and sharing knowledge during the human life span.

The Nutcracker Optimization Algorithm (NOA) [36] draws inspiration from two distinct behav-
iors of Clark’s nutcrackers: search for seeds and storage in appropriate caches, and search for the
hidden caches marked at different angles using markers. The Artificial Lizard Search Optimization
(ALSO) [37] adopts the dynamic foraging behavior of Agama lizards and their effective way of
capturing prey. The Red Deer Algorithm (RDA) [38] echoes the mating behavior of Scottish red
deer in breeding seasons. The Ebola Optimization Search Algorithm (EOSA) [39] replicates the
propagation mechanism of the Ebola virus disease. The Solar System Algorithm (SSA) [40] recreates
the orbiting behaviors of some objects found in the solar system: i.e., the sun, planets, moons, stars,
and black holes. The Siberian Tiger Optimization (STO) [41] imitates the natural behavior of the
Siberian tiger during hunting and fighting. The Coati Optimization Algorithm (COA) [42] models
the two natural behaviors of coatis: attacking and hunting iguanas and escaping from predators.
The Artificial Rabbits Optimization (ARO) [43] simulates the survival strategies of rabbits in nature,
including detour foraging and random hiding. The Red Piranha Optimization (RPO) [44] was inspired
by the cooperation and organized teamwork of the piranha fish when hunting or saving their eggs.
The Giza Pyramids Construction (GPC) [45] is based on the movements of the workers and pushing
the stone blocks on the ramp when building the pyramids. The Sea-Horse Optimizer (SHO) [46]
emulates the movement, predation, and breeding behaviors of sea horses in nature. The Aphid-Ant
Mutualism (AAM) [47] mirrors the unique relationship between aphids and ants’ species which is
called mutualism.

The White Shark Optimizer (WSO) [48] mimics the behaviors of great white sharks, including
their senses of hearing and smell, while navigating and foraging. The Circulatory System Based
Optimization (CSBO) [49] simulates the function of the body’s blood vessels with two distinctive
circuits: pulmonary and systemic circuits. The Reptile Search Algorithm (RSA) [50] replicates the
hunting behavior of Crocodiles: encircling, which is performed by high walking, and hunting, which is
performed by hunting coordination. The Blood Coagulation Algorithm (BCA) [51] draws inspiration
from the cooperative behavior of thrombocytes and their intelligent strategy of clot formation. The
Color Harmony Algorithm (CHA) [52] mirrors the search behavior by combining harmonic colors
based on their relative positions around the hue circle in the Munsell color system and harmonic
templates. The Leopard Seal Optimization (LSO) [53] adopts the hunting strategy of the leopard
seals. The Osprey Optimization Algorithm (OOA) [54] echoes the behavior of osprey in nature when
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hunting fish from the seas after detecting its position, then carries it to a suitable position to eat it. The
Green Anaconda Optimization (GAO) [55] is inspired by the mechanism of recognizing the position of
females by males during mating seasons and hunting strategies of green anacondas. The Subtraction-
Average-Based Optimizer (SABO) [56] takes inspiration from the use of the subtraction average of
searcher agents to update the position of population members in the search space. The Honey Badger
Algorithm [23] simulates the behaviour of a honey badger when digging and finding honey. The
Jellyfish Search [24] optimizer is motivated by the behavior of jellyfish in the ocean: following the
ocean current, motions inside a jellyfish swarm, and convergence into jellyfish bloom.

Table 1 provides a detailed analysis of the metaheuristic algorithms discussed previously. It eval-
uates these algorithms by counting the instances of three fundamental steps that typically constitute
metaheuristics: exploration, exploitation, and local minimum avoidance. This will allow readers to
identify potential weaknesses in a specific algorithm. For instance, algorithms lacking the local
minimum avoidance step can be located, suggesting a potential area for enhancement by incorporating
this crucial phase. The first to third columns of Table 1 present information about the algorithm,
and the fourth to sixth columns present the number of exploration, exploitation, and local minimum
avoidance phases within each algorithm.

Table 1: Comparative analysis of metaheuristic algorithms based on exploration, exploitation, and
local minimum avoidance

No. Name Abbreviation Exploration Exploitation Local minimum
avoidance

1 The artificial ecosystem-based
optimization [27]

AEO 4 2 0

2 The bear smell search [34] BSSA 2 2 0
3 The gaining-sharing

knowledge algorithm [35]
GSK 1 1 0

4 The red deer algorithm [38] RDA 2 2 1
5 The solar system

algorithm [40]
SSA 2 4 1

6 The color harmony
algorithm [52]

CHA 2 2 0

7 The golden eagle
optimizer [25]

GEO 1 1 1

8 The African vultures
optimization algorithm [30]

AVOA 2 4 0

9 The artificial lizard search
optimization [37]

ALSO 2 2 0

10 The Giza pyramids
construction [45]

GPC 1 1 0

11 The blood coagulation
algorithm [51]

BCA 1 1 0

12 The jellyfish search [24] JS 2 2 1
13 The dandelion optimizer [28] DO 2 2 1

(Continued)
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Table 1 (continued)

No. Name Abbreviation Exploration Exploitation Local minimum
avoidance

14 The Beluga whale
optimization [22]

BWO 1 1 1

15 The cheetah optimizer [33] CO 1 1 1
16 The Ebola optimization

search algorithm [39]
EOSA 1 1 1

17 The siberian tiger
optimization [41]

STO 2 2 0

18 The artificial rabbits
optimization [43]

ARO 1 1 0

19 The aphid-ant mutualism [47] AAM 3 3 1
20 The white shark optimizer [48] WSO 2 1 0
21 The circulatory system based

optimization [49]
CSBO 1 1 1

22 The reptile search
algorithm [50]

RSA 2 2 0

23 The honey badger
algorithm [23]

HBA 2 2 0

24 The nutcracker optimization
algorithm [36]

NOA 2 2 1

25 The coati optimization
algorithm [42]

COA 2 1 0

26 The red piranha
optimization [44]

RPO 1 2 0

27 The sea-horse optimizer [46] SHO 2 3 1
28 The leopard seal

optimization [53]
LSO 1 2 0

29 The osprey optimization
algorithm [54]

OOA 1 1 0

30 The green anaconda
optimization [55]

GAO 1 1 1

31 The subtraction-average-
based optimizer [56]

SABO 1 1 0

It is important to note that designing a new metaheuristic algorithm capable of effectively
balancing the exploration of the search space with the exploitation of promising solutions, while
also accurately determining the optimal times for each, is an extremely challenging task. Most
hybridization efforts in the literature are geared towards addressing this issue by creating new hybrid
algorithms that merge complementary strategies–for instance, combining a method with strong
exploration but weak exploitation with one that excels in exploitation but not in exploration [57].
Additionally, the temporal complexity of these hybrid algorithms must be carefully considered. Hastily
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or poorly constructed hybrid models can significantly impair the efficiency of hybrid optimizers,
underlining the necessity for meticulous development and evaluation.

It is worth emphasizing that the No-Free-Lunch (NFL) theorem [58] in optimization states that
when considering the performance of optimization algorithms across all possible problem instances,
no single algorithm can outperform all others on average. In other words, no universally superior
algorithm can solve every optimization problem efficiently. The NFL theorem has implications for
the field of metaheuristics and the existence of a large number of proposed algorithms. Since no
single algorithm can be universally superior, researchers propose different metaheuristic algorithms
to address specific problem characteristics and structures.

By developing a diverse set of metaheuristics, researchers aim to create algorithms that are tailored
to specific problem domains and can exploit problem-specific information effectively. Different
algorithms may have strengths and weaknesses that make them more suitable for particular problem
types or classes. Therefore, the existence of a large number of metaheuristics can be seen as a way to
cover a broad range of problem instances and improve the chances of finding a suitable algorithm for
a given problem. Furthermore, the NFL theorem emphasizes the importance of algorithm selection
and design for optimization problems. It suggests that the performance of an algorithm is intricately
tied to the problem it is applied to. Therefore, the development of new metaheuristics aims to explore
different search strategies, operators, or mechanisms that may be better suited for certain problem
types or offer improvements over existing algorithms.

In summary, the No-Free-Lunch theorem implies that there is no universally superior optimiza-
tion algorithm. This motivates the development of a large number of metaheuristic algorithms to
address specific problem characteristics and improve the chances of finding suitable algorithms for
various problem instances. The diversity of metaheuristics reflects the understanding that different
algorithms may excel in different problem domains, and the search for the best algorithm for a specific
problem requires careful consideration and experimentation.

3 Proposed Hybrid Algorithm

In this section, we provide a comprehensive explanation of the hybrid algorithm that we have
proposed. Section 3.1 presents the source of inspiration that guided the development of our algorithm.
Section 3.2 outlines the mathematical model underlying the BHJO algorithm. Finally, Section 3.3
presents the pseudo-code implementation of our algorithm along with a discussion of its time
complexity.

3.1 Source of Inspiration
To elucidate the working principle of the proposed hybrid algorithm, a comprehensive under-

standing of the algorithms utilized in its design is provided. Section 3.1.1 focuses on elucidating the
fundamental concept and workings of the BWO algorithm. Similarly, Section 3.1.2 delves into the
underlying principles and mechanisms of the HBA algorithm. Finally, Section 3.1.3 provides a detailed
account of the underlying idea behind the JS algorithm. By addressing the working principles of
these constituent algorithms, a holistic understanding of the hybrid algorithm’s operation is attained,
thereby facilitating its effective application and potential future enhancements.

3.1.1 Beluga Whale Optimization

Beluga whales are marine mammals that belong to the whale family. They inhabit the Arctic
and subarctic oceans and are characterized by their medium size. Beluga whales are known for their
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sociability, keen sensory perception, and distinct behaviors, including swimming with raised pectoral
fins, synchronized diving and surfacing, and the release of bubbles from their blowholes. They have an
omnivorous diet, consuming various prey such as fish and invertebrates, and often cooperate in groups
for hunting and feeding. However, they face threats from natural predators like orcas and polar bears,
as well as human activities. Additionally, when beluga whales die, their bodies sink to the ocean floor
(known as a whale fall), creating a food source for deep-sea organisms1. The mathematical formulation
of the exploration, the exploitation, and the concept of whale fall (i.e., local optimum avoidance) with
the BWO algorithm is depicted in Fig. 1 and will be further elucidated in the following sections.

Figure 1: Behaviour of beluga whales [22]

The various symbols utilized in the equations about the BWO algorithm can be elucidated as
follows:

• N: The population size.

• D: The dimensionality of the search space.

• LB: The lower bound of the search space.

• UB: The upper bound of the search space.

• Tmax: The maximum number of iterations.

• t: The current iteration.

• X t
i,j: The position of the ith agent on the jth dimension at the iteration t.

• X t
i : The position of the ith agent at the iteration t.

• ρ: A random number drawn from the range {1, . . . , D}.
• r: A random number drawn from the range {1, . . . , N}.
• r1, r2, r3, r4, r5, r6, r7, α, and B0: Random numbers drawn from the uniform distribution.

• X t
best: The best solution in the current population.

• υ and ν: Random numbers drawn from the Gaussian distribution.

• β: A constant number set to 1.5.

1Encyclopedia of Life: https://eol.org/, accessed on 05 April 2023.

https://eol.org/
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• �: The Gamma function.

• LF : The lÃ©vy flight.

1) Initialization Phase: Eq. (1) is employed to initialize the different agents within the initial
population of the BWO algorithm.

X 0
i, j = α (UB − LB) + LB , i ∈ {1, . . . , N} , j ∈ {1, . . . , D} (1)

2) Exploration Phase: The locations of search agents are determined by the paired swimming
behavior, where two beluga whales swim together in a synchronized or mirrored manner. This approach
allows search agents to explore the search space more efficiently and effectively, leading to the discovery
of new and potentially better solutions. The positions of the different agents are updated using Eq. (2).{

X t+1
i, j = X t

i, ρ
+ (

X t
r, 1 − X t

i, ρ

)
(1 + r1) sin(2πr2), j = 2k

X t+1
i, j = X t

i, ρ
+ (

X t
r, 1 − X t

i, ρ

)
(1 + r1) cos(2πr2), j = 2k + 1

(2)

3) Exploitation Phase: The search agents share information about their current positions and
consider the best solution, as well as other nearby solutions, when updating their locations. This
mechanism helps the agents efficiently move towards promising regions of the search space. The
exploitation phase also includes the lÃ©vy flight [59]. This strategy helps enhance search agents’
convergence towards the global solution of the search space. The positions of agents are updated using
Eq. (3).

X t+1
i = r3X t

best − r4X t
i + 2r4

(
1 − t

Tmax

)
LF

(
X t

r − X t
i

)
(3)

LF = 0.05

(
υ × σ

|ν| 1
β

)

σ =

⎛
⎜⎜⎝

� (1 + β) × sin
(

π × β

2

)

�

(
1 + β

2

)
× β × 2

β−1
2

⎞
⎟⎟⎠

1
β

4) Balance between Exploration and Exploitation: During the search process, the balance between
the exploration and exploitation phases is determined by a swapping factor, denoted as Bf , which is
calculated using Eq. (4). Therefore, if the value of Bf is greater than or equal to a specific threshold
(e.g., 0.5), the search space is explored using Eq. (2); otherwise, the search space is exploited using
Eq. (3).

Bf = B0

(
1 − t

2Tmax

)
(4)

5) Whale Fall: The whale fall phase represents the concept of beluga whales’ dying and becoming
a food source for other creatures. In the BWO algorithm, the whale fall phase serves as a random
operator to introduce diversity and prevent the search process from getting trapped in local optimums.
The mathematical model of this step is expressed through Eq. (5).

X t+1
i = r5X t

i − r6X t
r + r7Xstep (5)
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Xstep = (UB − LB) exp
(

−C2

t
Tmax

)

C2 = 2 × Wf × N

Wf = 0.1 − 0.05
t

Tmax

(6)

3.1.2 Honey Badger Algorithm

Honey badgers are captivating mammals renowned for their fearless and tenacious nature. They
inhabit semi-deserts and rainforests across Africa, Southwest Asia, and the Indian subcontinent. With
their distinct black and white fluffy fur, honey badgers typically measure between 60 to 77 centimeters
in length and weigh around 7 to 13 kilograms. Their survival primarily relies on two modes: the digging
mode and the honey mode. In the digging mode, honey badgers utilize their keen sense of smell to
locate prey and engage in digging to capture it. In the honey mode, they take advantage of birds to
identify beehives and obtain honey2. The mathematical formulation and associated concepts about
the HBA algorithm are elaborated upon in the following sections.

The different symbols utilized in the equations related to the HBA algorithm can be described as
follows:

• N: The population size.

• D: The dimensionality of the search space.

• LB: The lower bound of the search space.

• UB: The upper bound of the search space.

• Tmax: The maximum number of iterations.

• t: The current iteration.

• r1, r2, r3, r4, r5, r6, and r7: Random numbers drawn from the uniform distribution.

• Xprey: The global best position so far found.

• β: A constant number replicating the ability of a honey badger to get food.

• di: The distance between the ith honey badger and Xprey.

• F : A flag number that alters the search direction. It is used to avoid getting stuck in local
optimums.

• Ć: A constant number greater than or equal to 1.

1) Initialization Phase: Eq. (7) is employed to initialize the different agents within the first
population of the HBA algorithm.

X 0
i, j = r1 (UB − LB) + LB , i ∈ {1, . . . , N} , j ∈ {1, . . . , D} (7)

2) Smell Intensity: The intensity in the HBA algorithm is associated with the concentration
strength of the prey’s smell and its distance from a honey badger. The symbol Ii represents the smell
intensity of the prey in relation to the i th honey badger. This intensity is determined using the Inverse
Square Law [60], as illustrated in Fig. 2, and is defined by Eq. (8).

2Encyclopedia of Life: https://eol.org/, accessed on 05 April 2023.

https://eol.org/
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Ii = r2

S
4πd2

i

(8)

S = (
X t

i − X t
i+1

)2

di = Xprey − X t
i

Figure 2: The inverse square law (I is the smell intensity, S is the prey’s location, and r is a random
number drawn from the uniform distribution) [23]

3) Density Factor: The density factor α is a randomizer that ensures the smooth transition from
exploration to exploitation. Eq. (9) is used to compute α.

α = Ć × exp
( −t

Tmax

)
(9)

4) Exploration Phase: In nature, honey badgers dig like-cardioid shapes to surround and catch
prey. Fig. 3 shows the form of a two-dimensional shape that has a heart-shaped curve. The exploration
phase of the HBA algorithm is formulated using Eq. (10).

X t+1
i = (1 + FβIi)Xprey + Fr3αdi |cos (2πr4) (1 − cos (2πr5))| (10)

F =
{−1, r6 ≤ 0.5

1, r6 > 0.5

5) Exploitation Phase: The exploitation phase is depicted by honey badgers’ behaviors as they
approach beehives, when following honey-guide birds. It is mathematically represented by Eq. (11).

X t+1
i = Xprey + Fr7αdi (11)

3.1.3 Jellyfish Search Optimizer

Jellyfish, also known as medusae, are fascinating marine organisms that inhabit various depths
and temperatures of water worldwide. They display an array of shapes, sizes, and colors, owing to
their soft, translucent, and gelatinous composition. Typically, jellyfish possess a distinct bell-shaped
body, contributing to their unique appearance. The size and form of the bell can significantly differ
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among jellyfish species. Additionally, jellyfish have developed a multitude of adaptation mechanisms
to thrive in their oceanic environment. These mechanisms include specialized structures for hunting
prey, such as elongated tentacles equipped with stinging cells known as nematocysts. Jellyfish employ
two primary hunting strategies: passive swarming and active swarming. In the former, specific jellyfish
follow the movement of a school of organisms, while in the latter, individuals hunt alone. During
periods of non-hunting, jellyfish drift along with the ocean currents3. The behaviors of jellyfish are
illustrated in Fig. 4. The mathematical formulation of exploration and exploitation concepts about
the JS algorithm will be expounded upon in the following sections.

(Prey) Honey Badger

Figure 3: The digging behavior of honey badgers in nature to surround and catch prey [23]

Figure 4: The behaviours of jellyfish in the ocean [24]

The symbols employed in the equations about the JS algorithm can be explained as follows:

• N: The population size.

• D: The dimensionality of the search space.

3Encyclopedia of Life: https://eol.org/, accessed on 05 April 2023.

https://eol.org/
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• LB: The lower bound of the search space.

• UB: The upper bound of the search space.

• Tmax: The maximum number of iterations.

• t: The current iteration.

• X t
best: The local best solution so far found.

• β: A number replicating the distribution coefficient.

• r1, r2, r3, r4, and r5: Random numbers drawn from the uniform distribution.

• γ : A strictly positive number replicating the motion coefficient, and it is related to the length of
motion around jellyfish’s locations.

1) Initialization Phase: The initial population in the majority of metaheuristic algorithms is
generally initialized randomly. However, this approach presents two significant drawbacks: a slow
convergence and a tendency to get trapped in local optimums due to reduced population diversity.
To address these issues and enhance diversity within the initial population, the authors of the JS
algorithm conducted tests using various chaotic maps [61–63]. The findings revealed that the logistic
map [64] produces a more diverse initial population compared to random initialization, thereby
mitigating the problem of premature convergence [62,65]. Eq. (12) is utilized to initialize the different
individuals within the initial population of the JS algorithm. It is worth pointing out that the values
ϕ1, j are random numbers drawn from the uniform distribution and should satisfy the constraint:
ϕ1,j �∈ {0, 0.25, 0.5, 0.75, 1}.
X 0

i, j = ϕi, j (UB − LB) + LB , i ∈ {1, . . . , N} , j ∈ {1, . . . , D} (12)

ϕi+1, j = 4ϕi, j

(
1 − ϕi, j

)
2) Exploration Phase: Jellyfish utilize ocean currents to conserve energy and move efficiently. In the

JS algorithm, this behavior is reflected in the exploration of the search space and the generation of new
random candidate solutions. Consequently, the positions of individuals are updated using Eq. (13).

X t+1
i = X t

i + r1

(
X t

best − βr2M
)

(13)

M = 1
N

(
X t

1 + . . . + X t
N

)
3) Exploitation Phase: Jellyfish navigate within the swarm to search for food. In the JS algorithm,

this corresponds to the exploitation of the search space. There are two distinct behaviors observed: a
jellyfish either moves randomly in search of food independently or moves towards a better solution.
These mechanisms are referred to as passive motion and active motion, respectively [66,67].

1. Passive Motion: The different agents in a specific population update their locations using
Eq. (14).

X t+1
i = X t

i + γ r3(UB − LB) (14)

2. Active Motion: To simulate this kind of movement, we randomly select two locations p and
q. If the solution at the location p is better than q, then q moves towards p and vice versa.
Hence, the different agents within a given population update their locations using Eq. (15).
This exploitation mechanism has proven to be very efficient, according to the work reported
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in [68].

X t+1
i = X t

i + r4

−→
� (15)

−→
� =

{
X t

p − X t
q, f (X t

p) < f (X t
q)

X t
q − X t

p, f (X t
p) ≥ f (X t

q)

4) Time Control Mechanism: The JS algorithm incorporates a time control model that facilitates
the transition between exploration and exploitation phases, as well as between passive and active
motions. This time control mechanism is mathematically modeled by Eq. (16) and visually illustrated
in Fig. 5.

c(t) =
∣∣∣∣(2r5 − 1) ×

(
1 − t

Tmax

)∣∣∣∣ (16)

Figure 5: Time control mechanism used in the JS algorithm [24]

3.2 Mathematical Model of the BHJO Algorithm
By combining the previous algorithms, we aim to design a more robust and efficient hybrid meta-

heuristic algorithm that can leverage the advantages and strengths of each one. Hybrid nature-inspired
approaches involve combining different optimization algorithms to enhance their performance. There
are two manners of hybridization, namely high-level and low-level [69]. In the first type, the algorithms
to be hybridized are applied consecutively, whereas in the second type, the similar steps of each
algorithm are merged.

It is worth emphasizing that the exploration and exploitation abilities of the aforementioned
algorithms–namely, the Beluga Whale Optimization [22], the Honey Badger algorithm [23], and the
Jellyfish Search Optimizer [24]–are quite good. However, the results reported in [22–24] indicate the
following observations: (i) the exploitation of the BWO algorithm is better than its exploration; (ii)
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the exploitation of the HBA algorithm is better than its exploration; and iii) the exploration of the JS
algorithm is better than its exploitation.

We have adopted a low-level hybridization approach to design the BHJO algorithm. Specifically,
the exploration phases of the BWO, HBA, and JS algorithms are combined to form the exploration
component of the BHJO optimizer. On the other hand, the exploitation phases of the BWO and
HBA metaheuristics are utilized to design the exploitation component of the BHJO algorithm. The
key to success often lies in finding the right combination that effectively balances the trade-off
between exploration and exploitation. Exploration involves generating new solutions and discovering
promising regions, while exploitation aims to improve existing solutions and avoid local optimums.

3.2.1 Initialization Phase

To improve the diversity of the population, the logistic map has been used to generate chaotic
sequences [70]. This can enhance the global search ability of the BHJO algorithm by allowing it to
explore the search space more effectively. Eq. (12) is employed to create the first population of our
algorithm.

3.2.2 Exploration Phase

The exploration phase of the BHJO algorithm is composed of two strategies, namely the first
exploration strategy and the second exploration strategy. In the first strategy, we combine the
exploration of the HBA and the JS algorithms. In the second strategy, we use the exploration of the
BWO algorithm. To switch between the first and second strategies, we employ the following technique:
First, we assume a uniform random number; next, if this number is less than 0.5, we apply the first
strategy; otherwise, we apply the second strategy.

1) First Exploration Strategy: We utilize Eq. (17) to perform the first exploration strategy. This
equation is designed by merging Eqs. (10) and (13). The factor Bf is computed using Eq. (18).

X t+1
i = r1Xprey + FIi

−→
� diBf |cos (2πr2) (1 − cos (2πr3))| (17)

2) Second Exploration Strategy: We employ Eq. (2) to execute the second exploration strategy.

3.2.3 Exploitation Phase

The exploitation phase of the BHJO algorithm works with two strategies, namely first exploitation
strategy and the second exploitation strategy. In the first strategy, we employ the exploitation of the
BWO algorithm. In the second strategy, we use the exploitation of the HBA algorithm. To switch
between the first and second strategies, we use the following technique: First, we assume a uniform
random number; next, if this number is greater than 1 − Bf , we apply the first strategy; otherwise, we
apply the second strategy. The factor Bf is computed using Eq. (18).

1) First Exploitation Strategy: We use Eq. (3) to carry out the first exploitation strategy.

2) Second Exploitation Strategy: We apply Eq. (11) to realize the second exploitation strategy.

3.2.4 Balance between Exploration and Exploitation

In most metaheuristic algorithms, the optimizers explore and then exploit the search space.
This approach has several disadvantages. For instance, during the exploration phase, the algorithm
searches a wide range of solutions to identify promising areas in the search space, but it may fail to
find optimal or near-optimal solutions; or the exploitation phase, which focuses on intensifying the
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search in selected regions, can lead the algorithm to prematurely converge to a suboptimal solution,
without exploring other regions of the search space that may contain better solutions. Therefore, we
propose a novel search mechanism that allows for exploration across a wide range of solutions to
identify promising areas in the research domain; and simultaneously, it intensifies research in those
promising areas to ensure an effective balance between exploration and exploitation, ultimately leading
to the discovery of optimal or near-optimal solutions. Fig. 6 depicts the curve of balancing between
exploration and exploitation, which is defined by Eq. (18).

Bf =
∣∣∣∣(r1C − 1)

(
1 + m cos

(
2πf

t
Tmax

)
cos (2πft)

)∣∣∣∣ (18)

where C, f , and m are constant numbers set to 2, 5, and −3, respectively; and r1 is a uniform random
number.

Figure 6: The curve of balancing between exploration and exploitation phases in the BHJO algorithm

3.2.5 Local Optimum Avoidance

To enhance the BHJO algorithm’s capability to avoid getting stuck in local optimums, we utilize
Eq. (5).

3.2.6 Opposition-Based Learning

The Combined Opposition-Based Learning (COBL) [71] is a novel research strategy that inte-
grates two variants of opposition-based learning: Lens Opposition-Based Learning [72] and Random
Opposition-Based Learning [73]. This research strategy is renowned for its ability to accelerate the
convergence speed of metaheuristics by incorporating the concept of lens opposition, which entails
generating an opposite solution based on the lens formed between the current solution and the global
best solution. By integrating COBL into the BHJO algorithm, we can effectively mitigate the issues of
local optimums and premature convergence. COBL is given by Eq. (19). It is worth emphasizing that
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Eq. (19) is applied each time a candidate solution is created or updated.

X̆i =
⎧⎨
⎩

LB + UB − r1Xi, q < 0.5

LB + UB
2

+ LB + UB
2k

− Xi
k

, q ≥ 0.5
(19)

where q is a uniform random number and k is a scale factor set to 12000 according to [71].

3.3 Pseudo-Code and Time Complexity of the BHJO Algorithm
Algorithm 1 describes the different steps of the proposed BHJO algorithm. Theoretically, the

computational complexity of the BHJO algorithm is an important metric to assess its performance.
It includes three processes: fitness evaluation, initialization of the first population, and updating the
positions of search agents. First, the time complexity of the fitness evaluation is O(D) ∼ O(n). Second,
the time complexity of the initialization of the first population is O(max{N, N ×D}) ∼ O(n2). Finally,
the time complexity of the swarming behavior is O(Tmax × N × D) ∼ O(n3). From the previous
time complexities, we conclude that the time complexity of BHJO is O(n3). For further clarity, Fig. 7
provides the flowchart of the proposed algorithm.

Algorithm 1: The pseudo-code of the BHJO algorithm.
Input: Initialize the different parameters of the BHJO algorithm.
Input: Define the objective function to be minimized f (X).
/∗ Initialization of the first population ∗/
1 Initialize the first population

{
X 0

1 , . . . , X 0
N

}
using Eq. (12);

2 for i ← 1 to N do
3 Compute X̆ 0

i , the opposite solution of X 0
i , using Eq. (19);

4 X 0
i ← argmin

{
f

(
X 0

i

)
, f

(
X̆ 0

i

)}
;

5 Check the boundaries of the solution X 0
i ;

6 end
/∗ Swarming behavior of the BHJO algorithm ∗/

7 for t ← 1 to Tmax do
8 Compute Bf using Eq. (18);
9 for i ← 1 to N do

/∗ Exploration of the search space ∗/
10 if

(
Bf ≥ 0.5

)
then

/∗ First exploration strategy ∗/
11 if (rand(0, 1) < 0.5) then
12 Compute the position X t

i using Eq. (17);
13 end

/∗ Second exploration strategy ∗/
14 else
15 Compute the position X t

i using Eq. (2);
16 end
17 end

/∗ Exploitation of the search space ∗/
(Continued)
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Algorithm 1 (continued)
18 else

/∗ First exploitation strategy ∗/
19 if

(
rand(0, 1) >

(
1 − Bf

))
then

20 Compute the position X t
i using Eq. (3);

21 end
/∗ Second exploitation strategy ∗/

22 else
23 Compute the position X t

i using Eq. (11);
24 end
25 end
26 Compute X̆ t

i , the opposite solution of X t
i , using Eq. (19);

27 Compute X̆ t−1
i , the opposite solution of X t−1

i , using Eq. (19);

28 X t
i ← argmin

{
f
(
X t

i

)
, f

(
X̆ t

i

)
, f

(
X t−1

i

)
, f

(
X̆ t−1

i

)}
;

29 Check the boundaries of the solution X t
i ;

30 end
/∗ Local optimums avoidance ∗/

31 Compute W f using Eq. (6);
32 for i ← 1 to N do
33 if Bf ≤ Wf then
34 Compute the position X t

i using Eq. (5);
35 Compute X̆ t

i , the opposite solution of X t
i , using Eq. (19);

36 X t
i ← argmin

{
f
(
X t

i

)
, f

(
X̆ t

i

)}
;

37 Check the boundaries of the solution X t
i ;

38 end
39 end
40 end
Output the best solution;

4 Experimental Results and Discussion

In this section, we delve into the experimental study, which aims to evaluate the performance
of the BHJO algorithm on different fronts. Section 4.1 focuses on scrutinizing the BHJO algorithm’s
performance on benchmark test functions or Unconstrained Optimization Problems (UOPs), allowing
us to assess its effectiveness and efficiency in solving standard optimization problems. Moving on to
Section 4.2, our attention shifts to investigating the BHJO algorithm’s performance on engineering
design problems or Constrained Optimization Problems (COPs). This analysis enables us to gauge
its applicability and robustness in tackling real-world optimization challenges specific to the field of
engineering design. Through these comprehensive evaluations, we aim to gain insights into the BHJO
algorithm’s strengths, weaknesses, and potential areas of improvement.

The experiments were conducted using a computer system with the following hardware and
software configuration. The computer is equipped with an Intel(R) Core(TM) i7-9750H CPU running
at a base frequency of 2.60 GHz and a maximum turbo frequency of 4.50 GHz. The installed RAM
capacity is 16 GB, providing ample memory for running complex algorithms and processing large
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computational loads. The operating system used is Windows 11 Home, which provides a stable and
user-friendly environment for conducting the experiments. The experiments were implemented using
the MATLAB R2020b programming language, known for its extensive mathematical and scientific
computing capabilities. Furthermore, statistical analyses were conducted using IBM SPSS Statistics,
a widely used software package for analyzing and interpreting data, facilitating robust statistical
analysis.

Figure 7: The flowchart of the proposed BHJO algorithm
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4.1 Performance of the BHJO Algorithm on UOPs
To evaluate the effectiveness of the BHJO algorithm, a collection of 40 well-established benchmark

test functions from the existing literature is selected [74,75]. The set covers four types of functions:
unimodal, multimodal, hybrid, and composition functions. Tables 2–6 provide an overview of the
details of each function, including their mathematical expressions, dimensions, ranges, and global
optimums. Unimodal functions {F1, . . . , F7} have only one global optimum and are used to assess the
exploitation ability of optimization methods. On the other hand, multimodal functions {F8, . . . , F20}
possess several local optimums and are employed to evaluate the exploration ability of optimization
methods, specifically the avoidance of local optimums and the prevention of premature convergence.
Finally, the hybrid and composition functions {F21, . . . , F40} are known to be very challenging and
difficult. They have a large number of local optimums and are used to evaluate the well-balanced
trade-off between exploration and exploitation in metaheuristic algorithms.

Table 2: The description of unimodal functions

ID Mathematical expression Dimension Range Global optimum

F1 f (x) = ∑D

i=1 x2
i {30, 50, 100, 1000} [−100, 100] 0

F2 f (x) = (
∑D

i=1 x2
i )

2 {30, 50, 100, 1000} [−100, 100] 0
F3 f (x) = ∑D

i=1 |xi| + ∏D

i=1 |xi| {30, 50, 100, 1000} [−100, 100] 0
F4 f (x) = maxi{|xi|, 1 < i < n} {30, 50, 100, 1000} [−100, 100] 0
F5 f (x) = ∑D

i=1 ix2
i {30, 50, 100, 1000} [−100, 100] 0

F6 f (x) = ∑D−4

j=1 [(xi−1 − 10xi)
2 {30, 50, 100, 1000} [−4, 5] 0

+5(xi+1 − xi+2)
2

+(xi − xi + 1)4

+10(xi−1 − xi+2)
4]

F7 f (x) = ∑D

i=1 x10
i {30, 50, 100, 1000} [−100, 100] 0

Table 3: The description of multimodal functions

ID Mathematical expression Dimension Range Global optimum

F8 f (x) = 0.5+ sin2
(x2

1 − x2
2) − 0.5

[1 + 0.001(x2
1 + x2

2)]2
{30, 50, 100, 1000} [−500, 500] 0

F9 f (x) =
10D + ∑D

i=1[x
2
i − 10 cos(2πxi)]

{30, 50, 100, 1000} [−5.12, 5.12] 0

F10 f (x) =
−20 exp(−0.2

√
1
D

∑D

i=1 x2
i )

{30, 50, 100, 1000} [−32, 32] 0

− exp(
1
D

∑D

i=1 cos(2πxi)) + 20 +
exp(1)

(Continued)
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Table 3 (continued)

ID Mathematical expression Dimension Range Global optimum

F11 f (x) = 1+∑D

i=1

x2
i

4000
−∏

cos(
xi√

i
) {30, 50, 100, 1000} [−600, 600] 0

F12 f (x) = x2
1 + 106

∑D

i=2 x2
i {30, 50, 100, 1000} [−10, 10] 0

F13 f (x) =
0.1(sin(3πx1) + ∑n

i=1(xi − 1)2

{30, 50, 100, 1000} [−50, 50] 0

[1 + sin(3πxi+1)] + (xn − 1)2[1+
sin(2πxi)])+∑D

i=1 u(xi, 5, 100, 4)

u(xi, a, k, m) =
⎧⎨
⎩

k(xi − a)m, if xi > a
0, if − a ≤ xi ≤ a
k(−xi − a)m, xi < −a

Table 4: The description of fixed-multimodal functions

ID Mathematical expression Dimension Range Global optimum

F14 f (x) = 0.26(x2
1 + x2

2) − 0.48x1x2 2 [−10, 10] 0

F15 f (x) = −∑m

j=1(
∑4

i=1(xj − Cji)
2 + βi)

−1 4 [0, 10] 0

F16 f (x) = − 0.001
[0.0012 + (x1 − 0.4x2 − 0.1)2]

2 [−500, 500] −2000

− 0.001
[0.0012 + (2x1 + x2 − 1.5)2]

F17 f (x) = (2x3
1x2 − x3

2)
2 + (6x1 − x2

2 + x2) 2 [−500, 500] 0

F18 f (X) = ∑11

i=1[αi

x1(β
2
i + βix2)

β2
i

+βix3+x4]2 4 [−5, 5] 3

F19 f (x) = 100(x1 − x2
2)

2 + (1 − x1)
2 4 [−10, 10] 0

+90(x4 − x2
3)

2 + (1 − x3)
2

+10.1(x2 − 1)2 + (x4 − 1)2

+19.8(x2 − 1)(x4 − 1)

F20 f (x) = 0.5x2
1 + 0.5[1 − cos 2x1] + x2

2 2 [−500, 500] 0

m = 10

β = 1
10

(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)T

C =

⎛
⎜⎜⎝

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎞
⎟⎟⎠
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Table 5: The description of hybrid functions

ID ID in CEC Dimension Range Global optimum

F21 Hybrid function F17 (N = 4) (CEC2017) 10 [−100, 100] 1700
F22 Hybrid function F14 (N = 4) (CEC2017) 10 [−100, 100] 1400
F23 Hybrid function F20 (N = 6) (CEC2017) 10 [−100, 100] 2000
F24 Hybrid function F11 (N = 3) (CEC2017) 10 [−100, 100] 1100
F25 Hybrid function F6 (N = 3) (CEC 2020) 10 [−100, 100] 1700
F26 Hybrid function F8 (N = 5) (CEC2021) 10 [−100, 100] 2100
F27 Hybrid function F5 (N = 5) (CEC2021) 10 [−100, 100] 2100
F28 Hybrid function F6 (N = 5) (CEC2021) 10 [−100, 100] 2200
F29 Hybrid function F7 (N = 4) (CEC2020) 10 [−100, 100] 1600
F30 Hybrid function F19 (N = 6) (CEC2017) 10 [−100, 100] 1900

Table 6: The description of composition functions

ID ID in CEC Dimension Range Global optimum

F31 Composition function F20 (N = 3) (CEC 2017) 10 [−100, 100] 2100
F32 Composition function F28 (N = 3) (CEC 2017) 10 [−100, 100] 2900
F33 Composition function F23 (N = 4) (CEC 2017) 10 [−100, 100] 2200
F34 Composition function F24 (N = 4) (CEC 2017) 10 [−100, 100] 2300
F35 Composition function F8 (N = 3) (CEC 2020) 10 [−100, 100] 2300
F36 Composition function F9 (N = 4) (CEC 2020) 10 [−100, 100] 2200
F37 Composition function F10 (N = 5) (CEC 2020) 10 [−100, 100] 2500
F38 Composition function F12 (N = 6) (CEC 2021) 10 [−100, 100] 2700
F39 Composition function F11 (N = 5) (CEC 2021) 10 [−100, 100] 2600
F40 Composition function F12 (N = 6) (CEC 2021) 10 [−100, 100] 2700

To validate the performance of the BHJO algorithm, the obtained results are compared to seven
state-of-the-art optimization algorithms; namely, BWO [22], HBA [23], JS [24], WOA (Whale Opti-
mization Algorithm) [76], MFO (Moth-Flame Optimization) [77], PSO (Particle Swarm Optimization)
[14], and HHO (Harris Hawks Optimization) [78]. These algorithms are relatively new, but they have
shown outstanding performance when compared to many optimizers. The population size for all the
optimizers is set to 30. In addition, each algorithm was run 30 times to minimize the variance, and
each run was iterated 1000 iterations to ensure the validity of the law of large numbers. The parameter
settings for the algorithms utilized were obtained from their respective papers. These settings were
chosen based on the authors’ recommendations and empirical evaluations, ensuring consistency and
comparability with the existing literature. By adopting the parameter settings from the original papers,
we aimed to establish a reliable basis for evaluating and comparing the performance of our algorithm
against the established state-of-the-art methods. The values used in the BHJO algorithm are taken from
the three algorithms utilized for its conception. The decision to adopt specific parameter settings for
the BHJO algorithm was based on extensive testing. The parameters m, f , and C were varied across



CMES, 2024, vol.141, no.1 241

three values each–−3, −2, −1 for m; 4, 5, 6 for f ; and 1, 2, 3 for C–resulting in 27 unique combinations.
Analysis showed that the configuration presented in Table 7 optimally balanced exploration and
exploitation during the swarming process. Additionally, to maintain comparability with established
research, we adopted the Wf and Ć values directly from the seminal paper. Despite experimenting
with different population sizes–30, 50, and 100–it became evident that variations in population size
did not significantly impact the performance of the hybrid algorithm. Consequently, we selected a
population size of 30 for all optimizers, as this size is sufficient for the engineering design problems
detailed in Section 4.2 and represents nearly the median value considered in these cases. Due to space
constraints in this paper, not all experimental results could be included. By employing these specific
parameter settings, we aim to ensure fair and comprehensive comparisons among the algorithms in our
study, ultimately providing valuable insights into their performance and effectiveness. Table 7 provides
a detailed overview of these parameters and their respective values.

Table 7: Parameters’ values of the algorithms used for the comparative study

Algorithm Parameter Value

BHJO m −3
f 5
C 2
Wf 0.1 → 0.05
Ć 2

BWO Wf 0.1 → 0.05
HBA β 6

Ć 2
JS β 3

γ 0.1
PSO Inertia weight 0.9 → 0.2

Cognitive parameter 2
Social parameter 2

HHO Probability thresholds of escaping 0.5
Escaping energy 0.5

WOA Probability of encircling mechanism 0.5
Spiral factor 1

MFO Convergence constant −2 → −1
Spiral factor 1

Tables 8 to 18 report the mean and standard deviation (STD) values averaged over 30 runs for
each configuration consisting of an optimization algorithm and a test function. First, Tables 8 to 15
provide the aforementioned measurements for both unimodal and multimodal test functions across
varying dimensions, specifically for dimensions 30, 50, 100, and 1000. Then, Table 16 presents the
same statistical indicators for the fixed-dimension multimodal test functions across the corresponding
dimensions. Finally, Tables 17 and 18 show the same statistical metrics for the hybrid and composition
test functions. The standard deviation values will be utilized in various statistical tests aiming to
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uncover any discernible variations between the algorithms concerning their performance. In this
context, it is worth emphasizing that the smaller the standard deviation value, the closer to optimal
the solution obtained by the optimizer. The ideal scenario occurs when the standard deviation value
equals zero, indicating that the metaheuristic algorithm has successfully obtained the global optimum
when applied to the corresponding test function. Thus, the values highlighted in bold font represent
the best or optimal solutions.

Table 8: Mean and STD values obtained for unimodal test functions (D = 30)

ID BHJO BWO HBA JS PSO WOA HHO MFO
F1 AVG 0.00E+00 0.00E+00 1.48E−277 2.64E−39 2.47E−01 1.64E−150 3.05E−183 1.00E+03

STD 0.00E+00 0.00E+00 0.00E+00 6.46E−39 1.52E−01 6.92E−150 0.00E+00 3.051E+03
F2 AVG 0.00E+00 0.00E+00 0.00E+00 9.26E−78 1.23E−01 4.45E−299 0.00E+00 1.66E+07

STD 0.00E+00 0.00E+00 0.00E+00 5.56E−78 2.60E−01 0.00E+00 0.00E+00 3.79E+07
F3 AVG 0.00E+00 3.94E−260 4.68E−145 1.67E−19 4.90E+00 1.90E−101 7.06E−91 4.40E+02

STD 0.00E+00 0.00E+00 1.99E−144 3.00E−19 2.64E+01 1.00E−100 3.87E−90 2.35E+02
F4 AVG 0.00E+00 1.77E−252 1.83E−117 1.032E−15 1.49E+00 4.06E+01 1.00E−90 6.72E+01

STD 0.00E+00 0.00E+00 6.94E−117 7.82E−16 2.74E−01 3.05E+01 2.31E−90 6.87E+00
F5 AVG 0.00E+00 0.00E+00 9.28E−274 2.91E−38 2.64E+00 6.50E−151 3.05E−185 6.866E+04

STD 0.00E+00 0.00E+00 0.00E+00 8.14E−38 1.22E+00 3.01E−150 0.00E+00 8.19E+04
F6 AVG 2.36E−223 0.00E+00 4.61E−174 1.06E−06 7.17E+01 4.57E−07 8.34E−187 1.057E+03

STD 0.00E+00 0.00E+00 0.00E+00 2.62E−06 4.12E+01 1.64E−06 0.00E+00 1.38E+03
F7 AVG 0.00E+00 0.00E+00 0.00E+00 1.43E−163 2.56E+00 0.00E+00 0.00E+00 2.372E+04

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.75E+00 0.00E+00 0.00E+00 6.44E+04
Mean rank 3.29 3.29 3.29 3.79 6.86 4.36 3.29 7.86
Ranking 1 1 1 2 4 3 1 5

Table 9: Mean and STD values obtained for unimodal test functions (D = 50)

ID BHJO BWO HBA JS PSO WOA HHO MFO

F1 AVG 0.00E+00 0.00E+00 2.25E−263 2.43E−36 7.83E+00 2.46E−148 2.80E−189 4.03E+03
STD 0.00E+00 0.00E+00 0.00E+00 4.19E−36 2.71E+00 8.84E−148 0.00E+00 5.61E+03

F2 AVG 0.00E+00 0.00E+00 0.00E+00 2.551E−71 5.43E+01 1.65E−297 0.00E+00 1.09E+08
STD 0.00E+00 0.00E+00 0.00E+00 1.17E−70 3.15E+01 0.00E+00 0.00E+00 1.90E+08

F3 AVG 0.00E+00 8.52E−259 1.55E−137 3.32E−18 2.24E+02 9.69E−98 3.71E−94 6.61E+02
STD 0.00E+00 0.00E+00 5.49E−137 2.23E−18 1.61E+02 5.30E−97 1.82E-93 2.85E+02

F4 AVG 0.00E+00 1.22E−245 4.31E−105 7.48E−15 3.16E+00 5.50E+01 1.09E−93 8.34E+01
STD 0.00E+00 0.00E+00 6.94E−117 4.87E−15 3.67E−01 3.32E+01 5.29E−93 4.63E+00

F5 AVG 0.00E+00 0.00E+00 4.64E−259 2.74E−35 1.49E+02 8.35E−149 6.46E-179 2.49E+05
STD 0.00E+00 0.00E+00 0.00E+00 2.93E−35 5.62E+01 3.78E−148 0.00E+00 1.82E+05

F6 AVG 2.98E−261 0.00E+00 4.61E−174 3.81E−10 6.73E+02 2.76E−10 3.11E−179 4.23E+03
STD 0.00E+00 0.00E+00 0.00E+00 1.82E−09 1.38E+02 1.51E−09 0.00E+00 2.71E+03

F7 AVG 0.00E+00 0.00E+00 0.00E+00 2.84E−153 6.03E+03 0.00E+00 0.00E+00 2.39E+14
STD 0.00E+00 0.00E+00 0.00E+00 8.00E−153 8.91E+03 0.00E+00 0.00E+00 6.26E+14

Mean rank 3.29 3.29 3.29 3.79 6.86 4.36 3.29 7.86
Ranking 1 1 1 2 4 3 1 5
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Table 10: Mean and STD values obtained for unimodal test functions (D = 100)

ID BHJO BWO HBA JS PSO WOA HHO MFO
F1 AVG 0.00E+00 0.00E+00 2.68E−251 6.64E−34 1.03E+02 5.91E−143 2.80E−189 2.89E+04

STD 0.00E+00 0.00E+00 0.00E+00 8.56E−34 1.61E+01 3.23E−142 0.00E+00 1.20E+04
F2 AVG 0.00E+00 0.00E+00 0.00E+00 4.18E−67 1.03E+03 1.24E−292 0.00E+00 1.551E+09

STD 0.00E+00 0.00E+00 0.00E+00 1.05E−66 4.91E+03 0.00E+00 0.00E+00 1.41E+09
F3 AVG 0.00E+00 3.96E−258 2.27E−132 5.61E−17 3.74E+32 1.90E−99 5.49E−94 2.37E+03

STD 0.00E+00 0.00E+00 4.89E−132 3.33E−17 2.05E+33 8.50E−99 2.94E−93 4.42E+02
F4 AVG 0.00E+00 2.85E−245 4.68E−82 5.00E−14 9.54E+00 7.37E+01 1.28E−92 9.35E+01

STD 0.00E+00 0.00E+00 2.41E−81 2.67E−14 1.06E+00 2.43E+01 4.86E−92 2.05E+00
F5 AVG 0.00E+00 0.00E+00 9.84E−247 2.66E−32 5.08E+03 2.86E−147 6.46E−179 1.70E+06

STD 0.00E+00 0.00E+00 0.00E+00 3.16E−32 1.37E+03 1.21E−146 0.00E+00 8.16E+05
F6 AVG 3.63E−274 0.00E+00 1.31E−237 5.60E−14 1.10E+04 1.65E−28 3.11E−179 1.04E+04

STD 0.00E+00 0.00E+00 0.00E+00 3.07E−13 3.37E+03 8.50E−28 0.00E+00 5.64E+03
F7 AVG 0.00E+00 0.00E+00 0.00E+00 8.31E−143 1.08E+07 0.00E+00 0.00E+00 8.40E+19

STD 0.00E+00 0.00E+00 0.00E+00 4.33E−142 5.91E+06 0.00E+00 0.00E+00 2.54E+19
Mean rank 3.29 3.29 3.29 4.07 7.00 4.07 3.29 7.71
Ranking 1 1 1 2 3 2 1 4

Table 11: Mean and STD values obtained for unimodal test functions (D = 1000)

ID BHJO BWO HBA JS PSO WOA HHO MFO
F1 AVG 0.00E+00 0.00E+00 2.26E−229 1.83E−30 4.43E+04 5.77E−143 2.96E−182 2.62E+06

STD 0.00E+00 0.00E+00 0.00E+00 2.75E−30 1.68E+03 3.06E−142 0.00E+00 8.99E+04
F2 AVG 0.00E+00 0.00E+00 0.00E+00 5.17E−60 1.97E+09 1.51E−279 0.00E+00 2.66E+04

STD 0.00E+00 0.00E+00 0.00E+00 1.17E−59 1.82E+09 0.00E+00 0.00E+00 8.72E+04
F3 AVG 2.89E−256 7.16E−236 – – 1.00E+300 6.27E−04 1.34E−90 –

STD 0.00E+00 0.00E+00 – – 1.00E+300 3.57E−04 7.026E−90 –
F4 AVG 0.00E+00 0.00E+00 9.60E−228 3.01E−28 8.18E+06 4.51E−145 2.46E−177 5.01E+08

STD 0.00E+00 0.00E+00 0.00E+00 3.05E−28 2.44E+06 2.18E−143 0.00E+00 1.34E+07
F5 AVG 0.00E+00 0.00E+00 1.39E−222 5.94E−28 2.16E+07 6.88E−137 2.80E−171 1.17E+09

STD 0.00E+00 0.00E+00 0.00E+00 1.16E−27 1.09E+06 3.76E−136 0.00E+00 2.87E+07
F6 AVG 0.00E+00 0.00E+00 1.52E−228 6.31E−32 1.53E+06 3.79E−106 3.32E−184 6.70E+05

STD 0.00E+00 0.00E+00 0.00E+00 1.052E−31 1.84E+05 2.08E−105 0.00E+00 5.10E+04
F7 AVG 0.00E+00 0.00E+00 0.00E+00 6.05E−124 8.88E+14 0.00E+00 0.00E+00 5.29E+21

STD 0.00E+00 0.00E+00 0.00E+00 3.19E−123 1.76E+15 0.00E+00 0.00E+00 2.77E+20
Mean rank 3.29 3.29 3.86 3.86 7.43 3.57 3.29 7.43
Ranking 1 1 3 3 4 2 1 4

Table 12: Mean and STD values obtained for multimodal test functions (D = 30)

ID BHJO BWO HBA JS PSO WOA HHO MFO

F8 AVG 0.00E+00 0.00E+00 0.00E+00 1.12E+01 1.10E+01 6.48E−01 0.00E+00 6.896E+00
STD 0.00E+00 0.00E+00 0.00E+00 6.40E−01 6.56E−01 1.63E+00 0.00E+00 1.40E+00

F9 AVG 0.00E+00 0.00E+00 0.00E+00 1.37E+01 1.08E+02 0.00E+00 0.00E+00 1.57E+02
STD 0.00E+00 0.00E+00 0.00E+00 6.57E+00 2.98E+01 0.00E+00 0.00E+00 3.90E+01

F10 AVG 4.44E−16 4.44E−16 1.99E+00 5.06E−15 1.03E+00 4.11E−15 4.44E−16 1.630E+02

(Continued)
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Table 12 (continued)
ID BHJO BWO HBA JS PSO WOA HHO MFO

STD 0.00E+00 0.00E+00 6.07E+00 1.65E−15 5.65E−01 2.18E−15 0.00E+00 5.83E+00
F11 AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.64E−02 2.06E−03 0.00E+00 1.50E+02

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.53E−02 1.13E−02 0.00E+00 4.14E+01
F12 AVG 0.00E+00 0.00E+00 3.80E−279 1.75E−40 3.75E−01 2.02E−151 1.71E−180 1.66E+02

STD 0.00E+00 0.00E+00 0.00E+00 2.31E−40 2.42E−01 1.10E−150 0.00E+00 1.60E+02
F13 AVG 1.3498E−32 8.98E−25 1.18E−01 9.57E−03 1.05E−01 1.52E−01 2.02E−05 2.73E+07

STD 5.5674E−48 2.72E−24 1.66E−01 1.27E−02 6.74E−02 1.18E−01 2.88E−05 1.04E+08
Mean rank 2.75 2.75 4.5 4.08 6.33 4.92 3.00 4.67
Ranking 1 1 4 3 6 5 2 7

Table 13: Mean and STD values obtained for multimodal test functions (D = 50)

ID BHJO BWO HBA JS PSO WOA HHO MFO

F8 AVG 0.00E+00 0.00E+00 0.00E+00 2.03E+01 1.94E+01 4.62E−01 0.00E+00 1.30E+01
STD 0.00E+00 0.00E+00 0.00E+00 7.16E−01 9.36E−01 1.86E+00 0.00E+00 2.04E+00

F9 AVG 0.00E+00 0.00E+00 0.00E+00 1.16E+01 3.10E+02 3.78E−15 0.00E+00 3.187E+02
STD 0.00E+00 0.00E+00 0.00E+00 1.58E+01 5.98E+01 2.07E−14 0.00E+00 4.58E+01

F10 AVG 4.44E−16 4.44E−16 3.07E+00 6.48E−15 1.03E+00 2.69E−15 4.44E−16 1.90E+01
STD 0.00E+00 0.00E+00 6.07E+00 1.65E−15 3.34E−01 2.37E−15 0.00E+00 1.33E+00

F11 AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.73E−01 8.19E−03 0.00E+00 8.806E+01
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.03E−02 2.54E−02 0.00E+00 7.64E+01

F12 AVG 0.00E+00 0.00E+00 3.74E−264 2.72E−37 8.58E+00 8.13E−149 1.86E−175 1.890E+02
STD 0.00E+00 0.00E+00 0.00E+00 5.65E−37 3.88E+00 2.60E−148 0.00E+00 2.85E+02

F13 AVG 1.3498E−32 7.02E−25 1.29E+00 1.62E−02 2.09E+00 6.74E−01 2.17E−05 9.56E+07
STD 5.5674E−48 2.78E−24 5.86E−01 1.88E−02 7.50E−01 3.44E−01 2.505E−05 3.35E+08

Mean rank 2.67 2.67 4.25 4.08 6.83 4.92 2.92 7.67
Ranking 1 1 4 3 6 5 2 7

Table 14: Mean and STD values obtained for multimodal test functions (D = 100)

ID BHJO BWO HBA JS PSO WOA HHO MFO

F8 AVG 0.00E+00 0.00E+00 0.00E+00 4.37E+01 4.19E+01 1.04E−01 0.00E+00 3.27E+01
STD 0.00E+00 0.00E+00 0.00E+00 8.29E−01 1.07E−01 5.73E−01 0.00E+00 1.47E+00

F9 AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.06E+03 0.00E+00 0.00E+00 7.66E+02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E+02 0.00E+00 0.00E+00 7.02E+01

F10 AVG 4.44E−16 4.44E−16 6.62E−01 6.48E−15 5.38E+00 2.69E−15 4.44E−16 1.98E+01
STD 0.00E+00 0.00E+00 3.63E+00 1.6559E−15 3.338E−01 2.3756E−15 0.00E+00 2.134E−01

F11 AVG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.20E−01 0.00E+00 0.00E+00 2.606E+02
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.11E−02 0.00E+00 0.00E+00 1.01E+02

F12 AVG 0.00E+00 0.00E+00 9.70E−252 4.04E−35 1.06E+02 5.39E−148 1.86E−175 1.65E+03
STD 0.00E+00 0.00E+00 0.00E+00 4.82E−35 1.93E+01 2.66E−147 0.00E+00 6.74E+02

F13 AVG 1.3498E−32 4.30E−26 7.41E+00 1.86E−01 1.03E+02 1.59E+00 2.84E−05 3.70E+08
STD 5.5674E−48 1.46E−25 6.56E−01 7.84E−02 3.29E+01 8.06E−01 4.52E−05 3.45E+08

Mean rank 2.92 2.92 4.33 4.08 6.83 4.25 3.17 7.50
Ranking 1 1 5 3 6 4 2 7



CMES, 2024, vol.141, no.1 245

Table 15: Mean and STD values obtained for multimodal test functions (D = 1000)

ID BHJO BWO HBA JS PSO WOA HHO MFO
F8 AVG 0.00E+00 0.00E+00 0.00E+00 3.20E+02 4.60E+02 9.44E−01 0.00E+00 4.67E+02

STD 0.00E+00 0.00E+00 0.00E+00 1.11E+02 3.97E+04 5.17E+00 0.00E+00 3.42E+00
F9 AVG 0.00E+00 0.00E+00 0.00E+00 3.20E+02 1.62E+04 6.06E−14 0.00E+00 1.47E+04

STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.33E+02 3.32E−13 0.00E+00 1.89E+02
F10 AVG 4.44E−16 4.44E−16 2.65E+00 7.54E−15 1.61E+01 4.20E−15 4.44E−16 2.01E+01

STD 0.00E+00 0.00E+00 6.88E+00 0.00E+00 3.51E+02 2.45E−15 0.00E+00 1.96E−01
F11 AVG 0.00E+00 0.00E+00 0.00E+00 5.55E−17 3.044E+01 0.00E+00 0.00E+00 2.22E+04

STD 0.00E+00 0.00E+00 0.00E+00 5.64E−17 1.93E+00 0.00E+00 0.00E+00 5.33E+02
F12 AVG 0.00E+00 0.00E+00 1.60E−232 4.92E−32 2.38E+04 6.15E−146 1.25E−182 3.37E+04

STD 0.00E+00 0.00E+00 0.00E+00 8.51E−32 1.58E+03 3.21E−145 0.00E+00 5.29E+03
F13 AVG 5.51E−04 7.97E−26 9.91E+01 6.66E+00 1.52E+08 2.09E+01 1.27E−04 4.94E+10

STD 9.75E−04 2.18E−25 2.42E−01 1.97E+00 1.60E+07 5.10E+00 1.21E−04 1.52E+09
Mean rank 3.08 2.75 3.92 4.17 7.50 4.67 2.92 7.00
Ranking 3 1 4 5 8 6 2 7

Table 16: Mean and STD values obtained for fixed-dimension multimodal test functions

ID BHJO BWO HBA JS PSO WOA HHO MFO

F14 AVG 0.00E+00 0.00E+00 0.00E+00 3.36E−165 3.53E−31 0.00E+00 0.00E+00 1.14E−48
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.35E−30 0.00E+00 0.00E+00 6.23E−48

F15 AVG 3.37E−04 3.44E−04 3.36E−04 3.07E−04 9.16E−04 2.78E−04 9.79E−04 4.53E−04
STD 2.3359E−05 5.0034E−05 7.46E−04 9.30E−07 2.41E−04 2.78E−04 3.70E−04 1.03E−04

F16 AVG −2.00E+03 −1.55E+03 −1.00E+03 −9.98E+02 −1.00E+03 −1.99E+03 −1.00E+03 −1.87E+03
STD 1.43E−08 2.84E+02 1.15E−13 3.29E+00 3.58E−13 1.90E+01 0.00E+00 2.01E+02

F17 AVG 0.00E+00 5.83E−33 5.55E−15 2.51E−12 1.50E−10 6.44E−06 5.71E−11 5.93E−07
STD 0.00E+00 3.08E−32 1.16E−14 4.92E−12 5.09E−10 1.23E−05 3.00E−10 2.11E−06

F18 AVG 8.44E−04 3.37E−04 5.41E−03 3.15E−04 9.59E−04 7.17E−04 3.26E−04 1.65E−03
STD 3.5079E−04 4.40E−05 9.11E−03 4.17E−05 2.14E−04 4.01E−04 1.85E−05 3.56E−03

F19 AVG 8.8401E−18 1.26E−03 6.12E−01 2.02E−06 4.03E−02 1.20E+00 8.67E−05 1.12E+00
STD 2.6898E−17 1.081E−03 1.39E+00 6.70E−01 5.79E−02 1.66E+00 1.23E-04 1.17E−03

F20 AVG 0.00E+00 0.00E+00 0.00E+00 5.13E−244 1.49E−38 1.58E−215 4.13E−215 8.58E−212
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.20E−38 0.00E+00 0.00E+00 0.00E+00

Mean rank 3.21 3.93 5.29 3.86 4.57 6.14 3.57 5.43
Ranking 1 4 6 3 5 8 2 7

Table 17: Mean and STD values obtained for hybrid test functions

ID BHJO BWO HBA JS PSO WOA HHO MFO

F21 AVG 1.77E+03 1.80E+03 1.74E+03 1.72E+03 1.77E+03 1.81E+03 1.77E+03 1.79E+03
STD 7.70E+00 2.02E+01 2.61E+01 1.20E+01 4.74E+01 5.05E+01 3.48E+01 5.90E+01

F22 AVG 1.54E+03 1.64E+03 2.49E+03 1.45E+03 1.82E+03 2.38E+03 1.78E+03 5.60E+03
STD 3.92E+01 6.49E+01 4.99E+03 2.65E+01 7.76E+02 1.27E+03 5.89E+02 5.80E+03

F23 AVG 2.18E+03 2.20E+03 2.08E+03 2.02E+03 2.09E+03 2.16E+03 2.18E+03 2.08E+03
STD 4.15E+01 4.72E+01 8.01E+01 1.05E+01 6.22E+01 7.01E+01 6.94E+01 7.51E+02

F24 AVG 1.19E+03 1.78E+03 1.11E+03 1.11E+03 1.13E+03 1.20E+03 1.15E+03 1.26E+03
STD 4.79E+01 3.21E+02 1.18E+01 6.73E+00 2.54E+01 8.11E+01 3.44E+01 3.46E+02

(Continued)
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Table 17 (continued)
ID BHJO BWO HBA JS PSO WOA HHO MFO

F25 AVG 4.61E+01 5.35E+01 1.08E+02 1.13E+01 5.76E+01 1.36E+02 5.35E+01 1.28E+02
STD 5.40E+00 8.89E+00 1.23E+02 9.60E+00 7.77E+01 1.08E+02 6.06E+01 1.47E+02

F26 AVG 2.230E+03 2.23E+03 2.22E+03 2.82E+03 2.21E+03 2.22E+03 2.23E+03 2.22E+03
STD 1.59E+00 3.33E+00 2.82E+01 9.58E+00 1.68E+01 1.28E+01 1.76E+01 1.00E+01

F27 AVG 2.04E+03 2.09E+03 2.02E+03 2.02E+03 2.04E+03 2.05E+03 2.07E+03 2.04E+03
STD 8.40E+00 1.90E+01 8.01E+00 6.43E+00 3.27E+01 2.33E+01 3.60E+01 2.51E+01

F28 AVG 2.04E+03 2.09E+03 2.02E+03 2.01E+03 2.04E+03 2.05E+03 2.11E+03 2.04E+03
STD 6.82E+00 1.94E+01 1.09E+01 7.14E+00 3.21E+01 2.13E+01 5.68E+01 2.55E+01

F29 AVG 5.39E+03 1.13E+04 7.60E+02 1.26E+03 4.54E+03 2.98E+04 6.21E+03 5.71E+04
STD 3.07E+03 7.81E+03 3.17E+02 1.29E+03 4.98E+03 8.53E+04 5.26E+03 2.58E+04

F30 AVG 5.43E+03 1.02E+04 3.02E+03 1.93E+03 3.16E+03 3.69E+04 8.83E+03 1.61E+04
STD 3.91E+03 2.73E+03 5.67E+03 2.74E+01 1.80E+03 6.73E+03 6.72E+03 2.16E+04

Mean rank 2.30 3.70 4.60 1.70 4.90 6.10 5.60 7.10
Ranking 2 3 4 1 5 7 6 8

Table 18: Mean and STD values obtained for composition test functions

ID BHJO BWO HBA JS PSO WOA HHO MFO
F31 AVG 2.20E+03 2.25E+03 2.29E+03 2.25E+03 2.32E+03 2.32E+03 2.30E+03 2.32E+03

STD 3.04E+00 1.63E+01 5.03E+01 5.36E+01 5.49E+01 5.11E+01 7.19E+01 4.29E+01
F32 AVG 3.27E+03 3.54E+03 3.39E+03 3.16E+03 3.17E+03 3.42E+03 3.36E+03 3.34E+03

STD 3.36E+01 9.72E+01 2.24E+02 1.06E+02 5.40E+01 1.59E+02 1.11E+02 1.02E+03
F33 AVG 2.32E+03 2.56E+03 2.30E+03 2.29E+03 2.38E+03 2.35E+03 2.51E+03 2.31E+03

STD 6.47E+00 1.98E+02 1.19E+00 1.59E+01 2.86E+02 2.29E+02 4.71E+02 2.08E+02
F34 AVG 2.53E+03 2.69E+03 2.75E+03 2.66E+03 2.78E+03 2.77E+03 2.82E+03 2.76E+03

STD 1.12E+01 7.76E+01 2.67E+01 1.10E+02 9.60E+01 5.01E+01 4.39E+01 5.03E+01
F35 AVG 1.50E+02 1.50E+02 1.50E+02 1.20E+02 1.37E+02 1.50E+02 1.50E+02 1.24E+02

STD 5.32E−09 5.88E−09 3.03E−14 5.55E+01 3.13E+01 7.91E−10 3.26E−08 4.82E+01
F36 AVG 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02

STD 2.89E−14 2.89E−14 2.89E−14 4.25E−14 2.82E−12 3.98E−14 2.89E−14 1.58E−14
F37 AVG 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 2.50E+03 02.50E+03 2.50E+03

STD 2.04E−14 0.00E+00 0.00E+00 0.00E+00 2.79E−13 2.89E−14 2.30E−14 1.49E−14
F38 AVG 2.70E+03 2.701E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03 2.70E+03

STD 6.35E−01 3.18E+01 5.46E−01 6.02E−00 6.22E−01 7.73E−01 7.12E−01 8.52E+00
F39 AVG 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03 2.60E+03

STD 9.49E−05 9.49E−05 2.85E−04 2.30E−04 2.34E−04 1.45E−04 1.14E−04 2.02E−04
F40 AVG 1.78E+03 1.81E+03 1.74E+03 1.72E+03 1.75E+03 1.79E+03 1.78E+03 1.76E+03

STD 1.07E+01 1.85E+01 3.21E+01 1.070E+01 3.30E+01 4.87E+01 3.84E+01 3.65E+02
Mean rank 2.25 3.70 3.35 5.10 5.90 5.25 5.05 5.40
Ranking 1 3 2 5 8 6 4 7

Then, we performed eleven Friedman tests using the standard deviation values reported in Tables 8
to 18, with a significance level of 0.05. The p-values computed by the Friedman test are reported in
Table 19. It is important to note that if the p-value is equal to or less than 0.05, it is concluded that there
is a significant difference in performance between the algorithms of the comparative study. Conversely,
if the p-value is greater than 0.05, it indicates that all the algorithms exhibit similar performance.
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Upon observation, we find that all the p-values, except for experiment 9, are less than or equal to 0.05,
indicating a difference in performance among the algorithms. Therefore, we will proceed to conduct
the post-hoc Dunn’s test for these cases to analyze their performance more comprehensively.

Table 19: Hypothesis test summary

Experiment p-value Decision

1 Table 8 6.07E−7 The test reveals a difference in performance among the algorithms.
2 Table 9 6.07E−7 The test reveals a difference in performance among the algorithms.
3 Table 10 8.38E−7 The test reveals a difference in performance among the algorithms.
4 Table 11 3.14E−7 The test reveals a difference in performance among the algorithms.
5 Table 12 2.20E−4 The test reveals a difference in performance among the algorithms.
6 Table 13 6.20E−5 The test reveals a difference in performance among the algorithms.
7 Table 14 1.20E−4 The test reveals a difference in performance among the algorithms.
8 Table 15 7.40E−5 The test reveals a difference in performance among the algorithms.
9 Table 16 9.50E−2 The test does not reveal a difference in performance among the algorithms.
10 Table 17 1.00E−6 The test reveals a difference in performance among the algorithms.
11 Table 18 8.70E−3 The test reveals a difference in performance among the algorithms.

Upon examining the last and penultimate lines of Tables 8 to 18, presenting the mean ranks and the
rankings respectively, a distinct pattern emerges regarding the performance of the BHJO algorithm.
Notably, the BHJO algorithm achieves the highest score in the first position for a remarkable nine
out of the eleven cases studied. In addition, it secures the second position in one case and the third
position in another case. Specifically:

• First, the BHJO algorithm excels in cases dedicated to analyzing unimodal test functions,
consistently ranking first. This remarkable performance highlights its exceptional exploitation
capability, establishing it as the top-performing algorithm among those considered in the
comparative study.

• Furthermore, in the context of multimodal test functions, the BHJO algorithm secures the first
position in four out of five cases and the third position in one case. The case where the BHJO
algorithm ranks third will be further investigated in the post-hoc Dunn’s test.

• Finally, when confronted with hybrid test functions, the algorithm ranks second, and when
faced with composition test functions, it emerges as the frontrunner, securing the first position.
The case in which the BHJO algorithm attains a second-place ranking will undergo additional
investigation in the post-hoc Dunn’s test.

The post-hoc Dunn’s test, also known as Dunn’s multiple comparison tests, is a statistical test
used to compare multiple groups or conditions after performing a non-parametric test, such as the
Friedman test or the Kruskal-Wallis test. It allows for pairwise comparisons between the groups to
determine if there are significant differences between them. Dunn’s test utilizes rank-based methods
and applies appropriate adjustments for multiple comparisons, such as the Bonferroni correction or
the Holm-Bonferroni method. This test helps to identify specific group differences and provides further
insights into the significance of those differences. Tables 20 to 29 report the significance values that
have been adjusted by the Bonferroni correction for multiple tests. In this analysis, the significance of
differences between algorithms is indicated by the p-values, with bold font highlighting cases where
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the algorithm in the row demonstrates superior performance compared to that in the corresponding
column. On the other hand, p-values presented in normal font signify instances where both algorithms
exhibit similar performance.

Table 20: Results of Dunn’s test using STD values reported in Table 8

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
BWO – – 1.00E+00 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
HBA – – – 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
JS – – – – 5.30E−01 1.00E+00 – 5.00E−02
PSO – – – – – – – 1.00E+00
WOA – – – – 1.00E+00 – – 2.10E−01
HHO – – – 1.00E+00 1.80E−01 1.00E+00 – 1.00E−02
MFO – – – – – – – –

Table 21: Results of Dunn’s test using STD values reported in Table 9

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
BWO – – 1.00E+00 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
HBA – – – 1.00E+00 1.80E−01 1.00E+00 1.00E+00 1.00E−02
JS – – – – 5.30E−01 1.00E+00 – 5.00E−02
PSO – – – – – – – 1.00E+00
WOA – – – – 1.00E+00 – – 2.10E−01
HHO – – – 1.00E+00 1.80E−01 1.00E+00 – 1.00E−02
MFO – – – – – – – –

Table 22: Results of Dunn’s test using STD values reported in Table 10

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 1.30E−01 1.00E+00 1.00E+00 2.00E−02
BWO – – 1.00E+00 1.00E+00 1.30E−01 1.00E+00 1.00E+00 2.00E−02
HBA – – – 1.00E+00 1.30E−01 1.00E+00 1.00E+00 2.00E−02
JS – – – – 7.10E−01 1.00E+00 – 1.50E−01
PSO – – – – – – – 1.00E+00
WOA – – – – 7.10E−01 – – 1.50E−01
HHO – – – 1.00E+00 1.30E−01 1.00E+00 – 2.00E−02
MFO – – – – – – – –
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Table 23: Results of Dunn’s test using STD values reported in Table 11

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 4.00E−02 1.00E+00 1.00E+00 4.00E−02
BWO – – 1.00E+00 1.00E+00 4.00E−02 1.00E+00 1.00E+00 4.00E−02
HBA – – – 1.00E+00 1.80E−01 – – 1.80E−01
JS – – – – 1.80E−01 – – 1.80E−01
PSO – – – – – – – 1.00E+00
WOA – – 1.00E+00 1.00E+00 9.00E−02 – – 9.00E−02
HHO – – 1.00E+00 1.00E+00 4.00E−02 1.00E+00 – 4.00E−02
MFO – – – – – – – –

Table 24: Results of Dunn’s test using STD values reported in Table 12

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 3.20E−01 1.00E+00 1.00E+00 1.00E−02
BWO – – 1.00E+00 1.00E+00 3.20E−01 1.00E+00 1.00E+00 1.00E−02
HBA – – – – 1.00E+00 1.00E+00 – 7.00E−01
JS – – 1.00E+00 – 1.00E+00 1.00E+00 – 3.20E−01
PSO – – – – – – – 1.00E+00
WOA – – – – 1.00E+00 – – 1.00E+00
HHO – – 1.00E+00 1.00E+00 5.20E−01 1.00E+00 – 3.00E−02
MFO – – – – – – – –

Table 25: Results of Dunn’s test using STD values reported in Table 13

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 9.00E−02 1.00E+00 1.00E+00 1.00E−02
BWO – – 1.00E+00 1.00E+00 9.00E−02 1.00E+00 1.00E+00 1.00E−02
HBA – – – – 1.00E+00 1.00E+00 – 4.40E−01
JS – – 1.00E+00 – 1.00E+00 1.00E+00 – 3.20E−01
PSO – – – – – – – 1.00E+00
WOA – – – – 1.00E+00 – – 1.00E+00
HHO – – 1.00E+00 1.00E+00 1.60E−01 1.00E+00 – 2.00E−02
MFO – – – – – – – –
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Table 26: Results of Dunn’s test using STD values reported in Table 14

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 1.00E+00 1.60E−01 1.00E+00 1.00E+00 3.00E−02
BWO – – 1.00E+00 1.00E+00 1.60E−01 1.00E+00 1.00E+00 3.00E−02
HBA – – – – 1.00E+00 – – 7.00E−01
JS – – 1.00E+00 – 1.00E+00 1.00E+00 – 4.40E−01
PSO – – – – – – – 1.00E+00
WOA – – 1.00E+00 – 1.00E+00 – – 6.00E−01
HHO – – 1.00E+00 1.00E+00 2.70E−01 1.00E+00 – 6.00E−02
MFO – – – – – – – –

Table 27: Results of Dunn’s test using STD values reported in Table 15

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – – 1.00E+00 1.00E+00 5.00E−02 1.00E+00 – 1.60E−01
BWO 1.00E+00 – 1.00E+00 1.00E+00 2.00E−02 1.00E+00 1.00E+00 7.00E−02
HBA – – – 1.00E+00 3.20E−01 1.00E+00 – 8.20E−01
JS – – – – 5.20E−01 1.00E+00 – 1.00E+00
PSO – – – – – – – –
WOA – – – – 1.00E+00 – – 1.00E+00
HHO 1.00E+00 – 1.00E+00 1.00E+00 3.00E−02 1.00E+00 – 1.10E−01
MFO – – – – 1.00E+00 – – –

Table 28: Results of Dunn’s test using STD values reported in Table 17

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 – 4.90E−01 1.00E−02 7.00E−02 3.30E−04
BWO – – 1.00E+00 – 1.00E+00 8.00E−01 1.00E+00 5.00E−02
HBA – – – – 1.00E+00 1.00E+00 1.00E+00 6.30E−01
JS 1.00E+00 1.00E+00 2.30E−01 – 1.00E−01 0.00E+00 1.00E−02 2.31E−05
PSO – – – – – 1.00E+00 1.00E+00 1.00E+00
WOA – – – – – – – 1.00E+00
HHO – – – – – 1.00E+00 – 1.00E+00
MFO – – – – – – – –
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Table 29: Results of Dunn’s test using STD values reported in Table 18

BHJO BWO HBA JS PSO WOA HHO MFO

BHJO – 1.00E+00 1.00E+00 2.60E−01 2.00E−02 1.70E−01 3.00E−01 1.10E−01
BWO – – – 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
HBA – 1.00E+00 – 1.00E+00 5.60E−01 1.00E+00 1.00E+00 1.00E+00
JS – – – – 1.00E+00 1.00E+00 – 1.00E+00
PSO – – – – – – – –
WOA – – – – 1.00E+00 – – 1.00E+00
HHO – – – 1.00E+00 1.00E+00 1.00E+00 – 1.00E+00
MFO – – – – 1.00E+00 – – –

Now, let us consider the cases previously mentioned where the BHJO algorithm did not secure
the first rank. Referring to Table 15, it becomes evident that the BHJO algorithm occupies the third
position, trailing behind the BWO and HHO algorithms, respectively. In Table 27, the p-values are both
1, indicating that the BHJO, BWO, and HHO algorithms demonstrate similar performance. Shifting
our focus to Tables 17, the BHJO algorithm is seen as the second-best, following the JS algorithm.
Furthermore, Table 28 reveals a p-value of 1, suggesting comparable performance between the BHJO
and JS algorithms.

4.2 Performance of the BHJO Algorithm on COPs
This section focuses on evaluating the effectiveness of the BHJO algorithm in tackling a range

of 33 distinct engineering design problems [79]. The specific details and characteristics of these con-
strained optimization problems can be found in Tables 30–32. Furthermore, to assess the performance
of the BHJO algorithm, a comparative analysis is conducted against five optimization algorithms,
denoted as BWO [22], HBA [23], the Improved Unified Differential Evolution (IUDE) [80], the Matrix
Adaptation Evolution Strategy (ε MAgES) [81], and the Improved Success-History based Adaptive
Differential Evolution with Linear Population Size Reduction and ε-level control (iLSHADE ε) [82].
For each combination of algorithm and design problem, the experiments are repeated 25 times, and the
resulting statistical measures, including minimum, maximum, median, mean, and standard deviation
values, are documented. Tables 33–38 summarize these comprehensive statistical indicators, providing
valuable insights into the relative performance of the algorithms across the evaluated design problems.
In addition, we calculate three other performance metrics [79]:

1. The Feasibility Rate (FR), which represents the ratio of runs where at least one feasible solution
is achieved within the maximum function evaluations out of the total number of runs.

2. The Mean constraint Violation (MV), which is computed using Eq. (20).

MV =
∑M

i=1 max (gi (X) , 0) + ∑N

j=1 max
(∣∣hj (X)

∣∣ − 10−4, 0
)

M + N
(20)

3. The Success Rate (SR), which indicates the ratio of runs where an algorithm successfully
obtains a feasible solution X that satisfies the constrained f (X) − f (X ∗) ≤ 10−8 within the
maximum function evaluations out of all the runs performed.
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Table 30: Details of the industrial chemical processes. D, g, and h denote respectively the number
of decision variables, inequality constraints, and equality constraints. The last column (i.e., f (X ∗))
represents the best known optimal solution [79]

ID Name and attributes: [D, g, h ,f (X ∗)]

Pr01 Heat exchanger network design (case 1): [9,0,8,189.31162966]
Pr02 Heat exchanger network design (case 2): [11,0,9,7049.0369540]
Pr03 Optimal operation of alkylation unit: [7,14,0, −4529.1197395]
Pr04 Reactor network design: [6,1,4, −0.38826043623]
Pr05 Haverly’s pooling problem: [9,2,4, −400.00560000]
Pr06 Blending-pooling-separation problem: [38,0,32,1.8638304088]
Pr07 Propane, isobutane, n-butane nonsharp separation: [48,0,38,2.1158627569]

Table 31: Details of the process synthesis and design problems. D, g, and h denote respectively the
number of decision variables, inequality constraints and equality constraints. The last column (i.e.,
f (X ∗)) represents the best known optimal solution [79]

ID Name and attributes: [D, g, h, f (X ∗)]

Pr08 Process synthesis problem: [2,2,0,2.0000000000]
Pr09 Process synthesis and design problem: [3,1,1,2.5576545740]
Pr10 Process flow sheeting problem: [3,3,0,1.0765430833]
Pr11 Two-reactor problem: [7,4,4,99.238463653]
Pr08 Process synthesis problem: [7,9,0,2.9248305537]
Pr13 Process design problem: [5,3,0,26887.000000]
Pr14 Multi-product batch plant: [10,10,0,53638.942722]

Table 32: Details of the mechanical engineering problems. D, g, and h denote respectively the number
of decision variables, inequality constraints and equality constraints. The last column (i.e., f (X ∗))
represents the best known optimal solution [79]

ID Name and attributes: [D, g, h, f (X ∗)]

Pr15 Weight minimization of a speed reducer: [7,11,0,2.9944244658E+03]
Pr16 Optimal design of industrial refrigeration system: [14,15,0,3.2213000814E−02]
Pr17 Tension/Compression spring design (case 1: [3,3,0,1.2665232788E−02])
Pr18 Pressure vessel design: [4,4,0,5885.3327736]
Pr19 Welded beam design: [4,5,0,1.6702177263]
Pr20 Three-bar truss design problem: [2,3,0,263.89584338E]
Pr21 Multiple disk clutch brake design problem: [5,7,0,0.23524245790]
Pr22 Planetary gear train design optimization problem: [9,10,1,0.52576870748]
Pr23 Step-cone pulley problem: [5,8,3,16.069868725]

(Continued)
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Table 32 (continued)

ID Name and attributes: [D, g, h, f (X ∗)]

Pr24 Robot gripper problem: [7,7,0,2.5287918415]
Pr25 Hydro-static thrust bearing design problem: [4,7,0,1625.4428092]
Rr26 Four-stage gear box problem: [22,86,0,35.359231973]
Pr27 10-Bar truss design: [10,3,0,524.45076066]
Pr28 Rolling element bearing: [10,9,0,14614.135715]
Pr29 Gas transmission compressor design (GTCD): [4,1,0,2964895.4173]
Pr30 Tension/Compression spring design (case 2): [3,8,0,2.6138840583]
Pr31 Gear train design problem: [4,1,1,0.00]
Pr32 Himmelblau’s function: [5,6,0, −30665.538672]
Pr33 Topology optimization: [30,30,0,2.6393464970]

Table 33: Statistical results of the BHJO algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 189.0 189.0 189.0 189.0 0.158 59 112000.0 44
Pr02 7050.0 7050.0 7050.0 7050.0 0.535 98 6170.0 99
Pr03 −4530.0 −4530.0 −4530.0 −4530.0 0.501 68 4.69 23
Pr04 −0.377 −0.322 −0.329 −0.286 0.0668 40 0.811 72
Pr05 −400.0 −400.0 −400.0 −400.0 0.00296 100 −0.0928 96
Pr06 1.71 1.78 1.79 1.86 0.0937 99 1.45 5
Pr07 1.77 1.98 1.96 2.1 0.186 89 0.101 84
Pr08 2.0 2.0 2.0 2.0 0.0 100 0.276 100
Pr09 2.56 2.56 2.56 2.56 0.00112 100 0.629 100
Pr10 1.08 1.08 1.08 1.08 0.00208 100 −0.403 88
Pr11 99.2 99.2 99.2 99.2 0.025 100 2.05 79
Pr12 2.92 2.92 2.92 2.92 0.00288 100 −1.07 86
Pr13 26900.0 26900.0 26900.0 26900.0 7.31 100 −0.0142 100
Pr14 53700.0 56100.0 55800.0 58300.0 2500.0 100 −0.4 98
Pr15 2990.0 2990.0 2990.0 2990.0 2.91 100 −1.44 100
Pr16 0.0322 0.0322 0.0322 0.0322 5.8E−6 81 −0.422 94
Pr17 0.0127 0.0127 0.0127 0.0127 1.97E−5 100 0.4 100
Pr18 5900.0 5970.0 5970.0 6050.0 94.4 100 −1.67 90
Pr19 1.67 1.67 1.67 1.67 7.78E−5 100 0.737 100
Pr20 264.0 264.0 264.0 264.0 0.058 100 1.26 100
Pr21 0.235 0.235 0.235 0.235 1.54E−4 100 −3.13 100
Pr22 0.526 0.526 0.526 0.526 1.4E−4 100 −0.0339 81
Pr23 16.1 16.1 16.1 16.1 0.0202 100 −1.15 100
Pr24 2.53 2.53 2.53 2.54 0.00664 100 −0.566 100
Pr25 1630.0 1740.0 1740.0 1860.0 133.0 44 0.673 91
Pr26 35.6 41.1 40.7 45.3 6.11 76 1.52 73

(Continued)
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Table 33 (continued)

ID Best Median Mean Worst STD FR MV SR

Pr27 524.0 524.0 524.0 524.0 0.26 100 −0.276 98
Pr28 14600.0 14600.0 14600.0 14600.0 8.44 100 1.35 100
Pr29 2960000.0 2960000.0 2960000.0 2960000.0 2750.0 100 −0.844 100
Pr30 2.61 2.64 2.64 2.66 0.0267 98 0.781 91
Pr31 0.0 0.0 0.0 0.0 0.0 100 0.0692 100
Pr32 −30700.0 −30700.0 −30700.0 −30700.0 21.0 100 1.05 100
Pr33 2.64 2.64 2.64 2.64 3.81E−4 100 1.18 100

Table 34: Statistical results of the BWO algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 189.0 189.0 189.0 189.0 0.204 57 112000.0 83
Pr02 7050.0 7050.0 7050.0 7050.0 0.585 95 6170.0 98
Pr03 −4530.0 −4530.0 −4530.0 −4530.0 0.557 65 3.51 66
Pr04 −0.38 −0.358 −0.347 −0.295 0.051 36 −0.418 75
Pr05 −400.0 −400.0 −400.0 −400.0 0.00331 100 −0.097 93
Pr06 1.71 1.83 1.81 1.86 0.0707 65 1.44 47
Pr07 1.77 1.95 1.93 2.09 0.205 74 −0.126 83
Pr08 2.0 2.0 2.0 2.0 0.0 100 −1.58 100
Pr09 2.56 2.56 2.56 2.56 0.00135 100 0.425 100
Pr10 1.08 1.08 1.08 1.08 0.00199 100 0.326 94
Pr11 99.2 99.2 99.2 99.2 0.0215 100 −0.0299 57
Pr12 2.92 2.92 2.92 2.92 0.00214 100 0.551 51
Pr13 26900.0 26900.0 26900.0 26900.0 8.39 100 1.06 100
Pr14 53700.0 56100.0 56000.0 58300.0 2700.0 100 −0.453 63
Pr15 2990.0 2990.0 2990.0 2990.0 2.4 100 0.881 100
Pr16 0.0322 0.0322 0.0322 0.0322 7.73E−6 85 −0.096 81
Pr17 0.0127 0.0127 0.0127 0.0127 1.96E−5 100 −0.505 100
Pr18 5890.0 6000.0 5980.0 6060.0 111.0 100 −1.02 67
Pr19 1.67 1.67 1.67 1.67 1.31E−4 100 −1.25 100
Pr20 264.0 264.0 264.0 264.0 0.0481 100 −0.307 100
Pr21 0.235 0.235 0.235 0.235 1.31E−4 100 0.548 100
Pr22 0.526 0.526 0.526 0.526 1.39E−4 100 −0.798 99
Pr23 16.1 16.1 16.1 16.1 0.0186 100 −1.42 100
Pr24 2.53 2.53 2.53 2.54 0.00628 100 −0.736 100
Pr25 1650.0 1740.0 1740.0 1850.0 127.0 44 −1.32 79
Pr26 35.6 41.3 40.3 44.3 5.65 38 −0.627 96
Pr27 524.0 524.0 524.0 524.0 0.27 100 0.193 95
Pr28 14600.0 14600.0 14600.0 14600.0 6.77 100 0.106 100
Pr29 2960000.0 2960000.0 2960000.0 2960000.0 2770.0 100 0.481 100

(Continued)
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Table 34 (continued)

ID Best Median Mean Worst STD FR MV SR

RCy30 2.62 2.64 2.64 2.66 0.0284 93 0.566 81
Pr31 0.0 0.0 0.0 0.0 0.0 100 −1.26 100
Pr32 −30700.0 −30700.0 −30700.0 −30700.0 19.0 100 −1.87 100
Pr33 2.64 2.64 2.64 2.64 4.06E−4 100 −0.622 100

Table 35: Statistical results of the HBA algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 189.0 189.0 189.0 189.0 0.153 41 112000.0 53
Pr02 7050.0 7050.0 7050.0 7050.0 0.54 98 6170.0 97
Pr03 −4530.0 −4530.0 −4530.0 −4530.0 0.479 95 5.2 24
RCy04 −0.387 −0.343 −0.341 −0.289 0.0547 65 0.485 56
Pr05 −400.0 −400.0 −400.0 −400.0 0.00344 100 −2.23 99
Pr06 1.71 1.76 1.77 1.85 0.101 52 2.0 9
Pr07 1.79 1.97 1.94 2.11 0.198 20 −1.17 94
Pr08 2.0 2.0 2.0 2.0 0.0 100 1.42 100
Pr09 2.56 2.56 2.56 2.56 0.00122 100 −0.464 100
Pr10 1.08 1.08 1.08 1.08 0.00204 100 0.317 90
Pr11 99.2 99.2 99.2 99.2 0.0233 100 −1.67 84
Pr12 2.92 2.92 2.92 2.92 0.00269 100 −2.81 59
Pr13 26900.0 26900.0 26900.0 26900.0 7.39 100 −0.87 100
Pr14 53800.0 56000.0 56000.0 58500.0 2780.0 100 0.232 33
Pr15 2990.0 2990.0 2990.0 2990.0 2.5 100 0.605 100
Pr16 0.0322 0.0322 0.0322 0.0322 8.08E−6 92 1.85 89
Pr17 0.0127 0.0127 0.0127 0.0127 2.14E−5 100 −0.717 100
Pr18 5890.0 5970.0 5970.0 6050.0 92.4 100 0.508 79
Pr19 1.67 1.67 1.67 1.67 1.1E−4 100 0.55 100
Pr20 264.0 264.0 264.0 264.0 0.0549 100 0.421 100
Pr21 0.235 0.235 0.235 0.235 1.48E−4 100 −0.745 100
Pr22 0.526 0.526 0.526 0.526 1.46E−4 100 0.593 37
RCy23 16.1 16.1 16.1 16.1 0.0173 100 −1.26 100
Pr24 2.53 2.54 2.54 2.54 0.00684 100 −0.247 100
Pr25 1630.0 1760.0 1750.0 1850.0 143.0 93 −0.146 93
Pr26 35.5 40.7 40.0 44.8 5.51 58 0.757 3
Pr27 524.0 524.0 524.0 524.0 0.274 100 −1.09 96
Pr28 14600.0 14600.0 14600.0 14600.0 7.07 100 1.62 100
Pr29 2960000.0 2960000.0 2960000.0 2960000.0 2410.0 100 −0.323 100
RCy30 2.62 2.64 2.64 2.66 0.0233 97 0.762 50
Pr31 0.0 0.0 0.0 0.0 0.0 100 1.13 100

(Continued)
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Table 35 (continued)

ID Best Median Mean Worst STD FR MV SR

Pr32 −30700.0 −30700.0 −30700.0 −30700.0 17.3 100 −0.169 100
Pr33 2.64 2.64 2.64 2.64 3.76E−4 100 −0.469 100

Table 36: Statistical results of the IUDE algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 189.0 260.0 229.0 185.0 80.6 24 112000.0 4
Pr02 7050.0 7050.0 7150.0 5940.0 754.0 92 6170.0 92
Pr03 −4530.0 −143.0 −6250.0 −18300.0 6750.0 64 3.66 12
Pr04 −0.286 −0.592 −0.496 −1.0 0.182 0 0.079 0
Pr05 −400.0 −400.0 −351.0 −0.0083 132.0 100 0.0 80
Pr06 1.71 0.998 1.07 0.998 0.198 0 2.1 0
Pr07 1.76 1.34 1.4 0.998 0.382 0 0.282 0
Pr08 2.0 2.0 2.0 2.0 6.41E−17 100 0.0 100
Pr09 2.56 2.56 2.56 2.56 1.36E−15 100 0.0 100
Pr10 1.08 1.08 1.11 1.25 0.0708 100 0.0 88
Pr11 99.2 99.2 102.0 107.0 4.07 100 0.0 52
Pr12 2.92 2.95 3.0 4.21 0.254 100 0.0 16
Pr13 26900.0 26900.0 26900.0 26900.0 1.11E−11 100 0.0 100
Pr14 58500.0 66500.0 66000.0 73600.0 5140.0 100 0.0 0
Pr15 2990.0 2990.0 2990.0 2990.0 4.64E−13 100 0.0 100
Pr16 0.0322 0.0322 6.24 2.95 28.6 80 0.0128 80
Pr17 0.0127 0.0127 0.0127 0.0127 1.08E−5 100 0.0 100
Pr18 6060.0 6060.0 6060.0 6090.0 6.16 100 0.0 24
Pr19 1.67 1.67 1.67 1.67 1.2E−16 100 0.0 100
Pr20 264.0 264.0 264.0 264.0 0.0 100 0.0 100
Pr21 0.235 0.235 0.235 0.235 1.13E−16 100 0.0 100
Pr22 0.526 0.526 0.526 0.527 5.5E−4 100 0.0 36
Pr23 16.1 16.1 16.1 16.1 4.17E−15 100 0.0 100
Pr24 2.54 2.54 2.54 2.54 5.99E−14 100 0.0 100
Pr25 1860.0 260.0 1930.0 260.0 2370.0 40 9.01E−5 0
Pr26 45.4 49.1 62.1 45.5 29.3 12 0.135 0
Pr27 524.0 524.0 524.0 524.0 4.72E−4 100 0.0 88
Pr28 14600.0 14600.0 14600.0 14600.0 9.28E−12 100 0.0 100
Pr29 2960000.0 2960000.0 2960000.0 2960000.0 1.43E−9 100 0.0 100
Pr30 2.66 4.54 5.53 26.7 4.74 92 0.00181 44
Pr31 0.0 1.74E−18 4.55E−16 8.41E−15 1.68E−15 100 0.0 100
Pr32 −30700.0 −30700.0 −30700.0 −30700.0 3.71E−12 100 0.0 100
Pr33 2.64 2.64 2.64 2.64 1.41E−15 100 0.0 100
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Table 37: Statistical results of the εMAgES algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 189.0 492.0 455.0 437.0 223.0 84 1.47E−4 20
Pr02 7050.0 7800.0 7740.0 7480.0 750.0 96 3710.0 96
Pr03 −143.0 76.3 −160.0 495.0 888.0 92 0.0161 0
Pr04 −0.388 −0.375 −0.55 −1.0 0.286 72 0.035 24
Pr05 −400.0 −398.0 −363.0 −100.0 75.5 100 0.0 36
Pr06 2.09 1.83 1.59 1.2 0.339 0 0.0707 0
Pr07 2.0 1.71 1.8 2.01 0.174 0 0.0198 0
Pr08 2.0 2.0 1.99 1.29 0.152 96 0.00458 64
Pr09 2.56 2.56 2.55 1.93 0.27 92 0.0115 92
Pr10 1.08 1.08 1.08 1.25 0.0347 100 0.0 92
Pr11 107.0 99.2 106.0 115.0 6.88 0 0.022 0
Pr12 2.92 3.64 3.65 4.69 0.587 100 0.0 20
Pr13 26900.0 26900.0 26900.0 26900.0 1.11E−11 100 0.0 100
Pr14 53600.0 58500.0 58100.0 58500.0 1350.0 100 0.0 0
Pr15 2990.0 2990.0 2990.0 2990.0 4.64E−13 100 0.0 100
Pr16 0.0322 0.0322 0.0322 0.0322 2.78E−17 100 0.0 100
Pr17 0.0127 0.0127 0.0127 0.0137 2.16E−4 100 0.0 96
Pr18 6060.0 6410.0 7380.0 11900.0 1930.0 100 0.0 16
Pr19 1.67 1.67 1.69 1.85 0.0395 100 0.0 44
Pr20 264.0 264.0 265.0 274.0 2.88 100 0.0 88
Pr21 0.235 0.235 0.235 0.235 1.13E−16 100 0.0 100
Pr22 0.526 0.546 0.616 1.12 0.198 76 1.31 20
Pr23 16.1 16.1 16.1 16.1 1.78E−14 100 0.0 100
Pr24 2.54 2.54 2.54 2.55 8.81E−4 100 0.0 96
Pr25 1620.0 2260.0 2350.0 634.0 1410.0 88 1.84E−5 0
Pr26 82.3 21.3 33.8 7.26 36.1 8 0.377 0
Pr27 524.0 531.0 530.0 531.0 2.03 100 0.0 72
Pr28 14600.0 14600.0 14600.0 14600.0 9.28E−12 100 0.0 100
Pr29 2960000.0 2960000.0 2960000.0 2960000.0 1.43E−9 100 0.0 100
Pr30 2.66 3.11 2.21 0.0434 1.22 68 1040000.0 32
Pr31 0.0 0.0 0.0 0.0 0.0 100 0.0 100
Pr32 −30700.0 −30700.0 −30700.0 −30700.0 3.56E−12 100 0.0 100
Pr33 2.64 2.65 2.65 2.68 0.0126 100 0.0 44

Table 38: Statistical results of the iLSHADEε algorithm on the considered COPs

ID Best Median Mean Worst STD FR MV SR

Pr01 190.0 194.0 206.0 229.0 19.3 28 0.0136 4
Pr02 7050.0 7050.0 7050.0 7050.0 2.13E−11 100 0.0 100
Pr03 −4530.0 −143.0 −818.0 534.0 1910.0 100 0.0 20

(Continued)
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Table 38 (continued)

ID Best Median Mean Worst STD FR MV SR

Pr04 −0.375 −0.375 −0.375 −0.373 4.61E−4 100 0.0 0
Pr05 −400.0 −0.00806 −117.0 15.7 179.0 100 0.0 44
Pr06 1.72 1.24 1.27 1.11 0.163 0 3.94 0
Pr07 1.75 1.73 1.66 1.67 0.1 0 2.99 0
Pr08 2.0 2.0 2.0 2.0 0.0 100 0.0 100
Pr09 2.56 2.56 2.56 2.56 1.46E−7 100 0.0 100
Pr10 1.08 1.25 1.22 1.25 0.0648 100 0.0 88
Pr11 99.2 107.0 106.0 132.0 7.39 96 0.04 44
Pr12 2.92 2.92 2.92 2.92 8.14E−7 100 0.0 100
Pr13 26900.0 26900.0 26900.0 26900.0 1.11E−11 100 0.0 100
Pr14 53600.0 59200.0 59100.0 63600.0 1850.0 100 0.0 0
Pr15 2990.0 2990.0 2990.0 2990.0 4.64E−13 100 0.0 100
Pr16 0.0322 0.0323 0.382 2.95 0.967 88 0.116 72
Pr17 0.0127 0.0127 0.013 0.0178 0.00106 100 0.0 88
Pr18 6060.0 6110.0 8480.0 14900.0 3140.0 100 0.0 0
Pr19 1.67 1.67 1.67 1.67 7.59E−7 100 0.0 100
Pr20 264.0 264.0 264.0 264.0 0.0199 100 0.0 92
Pr21 0.235 0.235 0.235 0.235 1.13E−16 100 0.0 100
Pr22 0.526 0.526 0.527 0.531 0.00169 100 0.0 28
Pr23 16.1 16.1 16.1 16.1 8.62E−8 100 0.0 100
Pr24 2.54 2.54 2.54 2.55 0.00199 100 0.0 92
Pr25 1660.0 2090.0 1760.0 612.0 1280.0 76 2.54E−4 0
Pr26 35.4 36.3 36.3 37.3 0.659 100 0.0 24
Pr27 524.0 525.0 525.0 525.0 0.0714 100 0.0 0
Pr28 14600.0 14600.0 14600.0 14600.0 9.28E−12 100 0.0 100
RCy29 2960000.0 2960000.0 2970000.0 2970000.0 657.0 100 0.0 96
Pr30 6.9 2.87 6.26 20.5 6.32 20 0.795 0
Pr31 0.0 5.41E−18 5.56E−17 3.91E−16 1.17E−16 100 0.0 100
Pr32 −30700.0 −30700.0 −30700.0 −30700.0 3.64E−12 100 0.0 100
Pr33 2.64 2.64 2.64 2.64 8.11E−16 100 0.0 100

To assess and compare the performance of different optimizers on the set of 33 constrained
optimization problems, we employ a comprehensive Evaluation Metric (EM), which will be calculated
using Eq. (21). This equation incorporates a weighted sum of various key metrics, namely the best
value attained throughout all optimization runs, the feasibility rate, the mean constraint violation,
and the success rate. To emphasize the significance of each metric in the computation of EM, they are
multiplied by specific coefficients: c1, c2, c3, and c4, reflecting their relative importance. By employing
this multifaceted evaluation approach, we aim to gain a holistic understanding of the optimizers’
effectiveness in addressing the considered constrained optimization problems.

EM = c1 × Best + c2 × FR + c3 × MV + c4 × SR (21)
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To evaluate the significance of the obtained EM values and determine whether there exists a
notable difference in performance among the algorithms examined in this comparative study, we
subject the EM values to the Friedman test at a significance level of 0.05. The resulting p-value
is 7.42 · 10−11, indicating statistical evidence of performance discrepancies among the considered
algorithms. This finding signifies that at least one algorithm exhibits a distinct level of performance
compared to the others, warranting further investigation and analysis to identify the specific variations
in their optimization capabilities.

To conduct a more detailed analysis of the performance differences among the optimizers, we
further apply the post-hoc Dunn’s test to the EM values. The resulting mean ranks, as presented in
Table 39, provide valuable insights into the relative performance of each algorithm. Notably, the BHJO
algorithm achieved the highest rank, indicating that it exhibits the best overall performance compared
to the other optimizers under consideration. To delve deeper into the statistical significance of these
performance disparities, we present the corresponding p-values in Table 40, enabling a comprehensive
investigation and further exploration of the observed variations.

Table 39: Ranking of the optimizers considered for the comparative study

Optimizer BHJO BWO HBA IUDE εMAgES iLSHADEε

Mean rank 2.12 2.76 3.42 3.74 5.33 3.62
Ranking 1 2 3 5 6 4

Table 40: Results of Dunn’s test using the metric computed by Eq. (21)

BHJO BWO HBA IUDE εMAgES iLSHADEε

BHJO – 1.00E+00 7.00E−02 1.00E−02 4.61E−11 2.00E−02
BWO – – 1.00E+00 4.90E−01 3.36E−07 9.10E−01
HBA – – – 1.00E+00 5.10E−04 1.00E+00
IUDE – – – – 1.00E−02 –
εMAgES – – – – – –
iLSHADEε – – – 1.00E+00 0.00E+00 –

5 Conclusion and Future Directions

In conclusion, this research paper presented a hybrid algorithm, BHJO, which combines the
Beluga Whale Optimization, Honey Badger Algorithm, and Jellyfish Search optimizer. Through a
meticulous analysis of the exploration and exploitation capabilities of these metaheuristics, their
strengths, and weaknesses were identified and leveraged in the development of the BHJO optimizer.
In other words, after a thorough evaluation of the three metaheuristics foundational to the BHJO
algorithm, we have identified several strengths. The BWO and the HBA both show promising results
in terms of exploitation and maintaining stability during exploration phases. However, they could
benefit from an improved balance between these two aspects. On the other hand, the JS excels
in exploration, offering a commendable balance between exploration and exploitation, although it
does fall short in its exploitation capabilities. Collectively, these attributes contribute to the overall
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effectiveness of the BHJO algorithm, making each component valuable in its own right despite some
areas needing enhancement, and this is shown via the thorough experimental study. Additionally,
the incorporation of Opposition-Based Learning further enhanced the algorithm’s performance and
solution quality. Extensive evaluations on both unconstrained and constrained optimization problems
demonstrated the efficacy and versatility of the BHJO algorithm across diverse domains. Comparative
analyses against renowned algorithms confirmed the algorithm’s competitiveness. Furthermore, the
statistical analysis through the Friedman post hoc Dunn’s test revealed significant performance
differences, highlighting the superiority of the BHJO optimizer in solving complex optimization
problems. Overall, this research introduces a promising hybrid algorithm with immense potential
for addressing challenging optimization tasks and contributes to the advancement of metaheuristic
algorithms. In the interest of a balanced discussion, it is important to acknowledge some limitations
of the BHJO algorithm. Firstly, the algorithm includes multiple parameters that require meticulous
adjustment to reach optimal performance, a process that is both time-consuming and dependent on
extensive experimental or simulation efforts. Additionally, the BHJO algorithm is computationally
demanding, largely due to its integration of several heuristic strategies, each of which independently
consumes significant resources. Moreover, there is a risk of the algorithm becoming trapped in local
optima, as there are no definitive guarantees regarding the effectiveness of its swarming process. By
addressing these concerns, the effectiveness of the BHJO algorithm can be significantly enhanced,
leading to improved performance and reliability.

In the future, several directions can be pursued to further enhance the BHJO algorithm. For exam-
ple, exploring the integration of machine learning techniques, such as deep learning or reinforcement
learning, into the BHJO algorithm can provide opportunities for improved learning capabilities and
adaptive behavior. This future direction aims to advance the algorithm’s versatility, efficiency, and
applicability in solving a wider range of optimization problems.
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