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ABSTRACT

The use of Explainable Artificial Intelligence (XAI) models becomes increasingly important for making decisions
in smart healthcare environments. It is to make sure that decisions are based on trustworthy algorithms and that
healthcare workers understand the decisions made by these algorithms. These models can potentially enhance
interpretability and explainability in decision-making processes that rely on artificial intelligence. Nevertheless, the
intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.
This research presents an advanced investigation of XAI models to classify cancer images. It describes the different
levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them
in healthcare applications. In addition, this study proposes a novel framework for cancer image classification that
incorporates XAI models with deep learning and advanced medical imaging techniques. The proposed model
integrates several techniques, including end-to-end explainable evaluation, rule-based explanation, and user-
adaptive explanation. The proposed XAI reaches 97.72% accuracy, 90.72% precision, 93.72% recall, 96.72% F1-
score, 9.55% FDR, 9.66% FOR, and 91.18% DOR. It will discuss the potential applications of the proposed XAI
models in the smart healthcare environment. It will help ensure trust and accountability in AI-based decisions,
which is essential for achieving a safe and reliable smart healthcare environment.

KEYWORDS
Explainable artificial intelligence; artificial intelligence; XAI; healthcare; cancer; image classification

1 Introduction

Cancer is a dreadful disease that affects the lives of many people each year. It is a condition that
can be difficult to detect and diagnose, which is why many advancements are being made in the area
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of cancer detection [1]. Modern cancer detection techniques have allowed for better diagnosis and
tracking of certain types of cancer, often at earlier stages [2]. Imaging technology is a powerful tool in
the field of healthcare that allows doctors to see inside the body and identify potential health issues.
This technique involves various imaging devices, such as Magnetic Resonance Imaging (MRI) and
Computed Tomography (CT) scanners, which produce detailed images of organs and tissues. These
images can be employed to detect abnormalities, such as tumors, and help doctors make accurate
diagnoses. Other imaging techniques, such as Positron Emission Tomography (PET) scans, ultrasound
scans, and X-rays, are also commonly utilized to detect changes in the body and determine specific
types of cancer. Overall, imaging technology plays a crucial role in the early detection and treatment
of diseases, allowing for better patient outcomes and improved overall health [3]. Another modern
technique is biopsy, a procedure where a sample of the suspicious tissue is taken and analyzed under
a microscope. It allows for the accurate diagnosis and determination of the type of cancer in the body.
Blood tests are also common in modern cancer detection [4]. These tests search for elevated markers
or protein levels, which can indicate cancer in the body. However, they cannot be used to diagnose
the disease accurately. Whole-body scans employ advanced imaging and detection technologies to
meticulously search for indications of cancer cells throughout the body, making them the most precise
method for cancer diagnosis. Molecular and genetic testing aims to identify specific genetic alterations
linked to particular forms of cancer. Modern cancer detection techniques have greatly improved the
chances of survival for those with cancer, as they can help medical professionals detect and diagnose
cancer earlier. However, it is essential to remember that the technology is still in its early stages and
should be combined with other methods to have the most accurate diagnosis possible [5].

1.1 Importance of Cancer Detection
The importance of cancer detection in smart healthcare cannot be understated. Early detection

is vital to successful cancer treatment and can help save lives. When cancer detection is done in a
timely and effective manner, it can significantly reduce the risk of a patient’s death from cancer.
Smart healthcare enables cancer detection much earlier than traditional methods, allowing patients
to start treatments as soon as possible and receive the best chance for a full recovery [6]. CT scans
and MRIs provide incredibly detailed images of the body, allowing physicians to detect any potential
cancer growth and even check to see if the cancer has spread. Genetic tests also aid in early cancer
detection as they detect genetic abnormalities that can otherwise go undetected, helping a patient
receive treatments earlier in the process. Smart healthcare can also help improve post-treatment care for
cancer patients [7]. Smart healthcare systems can keep track of patient vital signs, capture and analyze
patient data, and connect patients with the right doctors. With continued monitoring after treatment,
smart healthcare can reduce the risk of cancer recurrence. In addition, because of the increased
accessibility to diagnostic tests, calculations, and overall healthcare management, these systems can
better support doctors in detecting subtle changes in patient health that could be early signs of cancer
[8]. Smart healthcare is revolutionizing the way cancer is detected and managed. Smart healthcare
systems help significantly reduce the mortality rate from cancer by optimizing the early detection of
cancer and improving post-treatment care. The earlier cancer is detected, the better chance a patient
has of fighting and surviving the disease; smart healthcare has made this possible.

1.2 Image Processing in Cancer Detection
Image processing plays a vital role in smart healthcare, particularly in detecting and diagnosing

cancer. The powerful image processing techniques enable medical professionals to detect the precise
location of tumors in the body and better characterize them in terms of size, shape, and density. It
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can help inform decisions around the most appropriate treatment plan. Advanced image processing
techniques can also provide invaluable insights into the effectiveness of treatment [9]. For example,
analyzing images over time can help to indicate the responsiveness of cancerous cells to targeted
therapies and to determine when it is necessary to switch to a different course of treatment. Access
to precise images and data points makes it possible to determine how effective treatments have been
over time [10]. Finally, image processing facilitates the automation of some of the decision-making
processes surrounding cancer detection and the setting of diagnosis parameters. It reduces the potential
for human error, which can be crucial when assessing potentially life-threatening conditions. Medical
professionals can be sure to make informed decisions about treatments and expectations by allowing
machines to access and analyze previously collected images and data points [11]. Altogether, image
processing is an essential tool for the smart healthcare of the future and will be essential for the
successful detection and diagnosis of cancer. The technology offers invaluable support for medical
professionals and removes some of the potential for human error and uncertainty.

1.3 Understanding the Decisions and Predictions of Machine Learning Models
Machine learning models are used in cancer detection to analyze data and identify patterns

indicative of cancer. These models utilize algorithms to make decisions and predictions based on the
input features, such as patient characteristics and test results. The model first undergoes a training
phase, learning from a large dataset of cancer and non-cancer cases. After this training, the model
can make predictions on new cases by comparing the input features to the patterns it learned. The
decisions and predictions made by the model can help medical professionals identify potential cancer
cases earlier and improve treatment outcomes [12]. Fig. 1 illustrates the architectural design of the
machine learning model in cancer detection.
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Figure 1: Construction of machine learning model for cancer detection

Input X refers to the data and information that is collected for a specific problem. The construc-
tion approach involves designing and developing a system or model to solve the problem. Knowledge
X represents the expertise and understanding of the problem domain employed to inform the model
approach. The model approach refers to the techniques and methods applied to create and train a
model that can accurately solve the problem [13]. Model junction is where input X, construction
approach, and knowledge X combine to build and optimize the model. Output Y is the desired result
or prediction generated by the model. AI-Based Explainers are tools or algorithms that use artificial
intelligence to analyze and interpret the model’s results, providing insightful explanations for the
predictions made by the model. These explanators help to bridge the gap between technical model
outputs and human understanding, making AI more accessible and transparent [14].

1.4 Explainable Artificial Intelligence in Cancer Classification
It is a nascent subfield within machine learning and artificial intelligence (AI) that centers on

advancing algorithms and models capable of offering comprehensible and practical elucidations
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regarding the underlying mechanisms of AI systems. It is increasingly important as AI models and
algorithms become increasingly complex and challenging to interpret. The Explainable Artificial
Intelligence (XAI) model for cancer image classification is one such system [15]. The XAI model for
cancer image classification is designed to provide an AI-guided approach to more accurately detect
cancer in medical images. Fig. 2 shows the XAI for cancer classification [16].

Figure 2: XAI for cancer classification

The proposed model employs a hybrid approach, incorporating convolutional neural networks,
decision trees, transfer learning, and various other machine learning approaches to ascertain the
existence and magnitude of a specific type of cancer [17]. The objective is to develop an AI system
capable of delivering a significantly more comprehensive elucidation of an image, specifically about the
presence or absence of cancer inside it. The system takes in medical images and produces an output of
probabilities of each different based on predetermined protocols [18]. It helps to reduce the ambiguity
of human interpretation while providing an acceptable level of accuracy. The goal is to provide an
explainable AI system with a more reliable and accurate cancer diagnosis than traditional methods
[19]. The system provides an accurate and explainable interpretation of the image and any potential
positive/negative areas of the image. It allows clinicians to make decisions faster and more efficiently.
In addition, this enhanced accuracy in cancer detection can help prevent misdiagnosis and decrease
mortality rates [20]. The primary contribution of this study encompasses the following aspects:

• Increased Transparency: The proposed framework provides a transparent mechanism for
understanding and interpreting the decisions made by AI models. This is especially important
in the context of cancer image classification, where an AI model’s decisions can significantly
impact patient outcomes.

• Interpretable Feature Importance: It can identify and highlight the most important features or
regions in an image that contribute to the final classification outcome. This helps clinicians and
researchers better understand the characteristics and patterns in cancer images that lead to a
specific diagnosis.

• Detection of Bias: It can detect bias in the training data and identify potential sources of bias in
the AI model’s decision-making process. This is critical in ensuring that the model is not making
biased or unfair decisions that could negatively impact specific patient populations.
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• Model Explainability: The proposed framework can explain the decisions made by AI models,
making them more interpretable and explainable to clinicians and patients. This can help build
trust and acceptance of AI technology in the medical field.

• Improvement of Model Performance: Identifying and visualizing the key features and patterns
in cancer images can assist in model optimization and improvement. This leads to more accurate
and reliable classification results, which are crucial in cancer diagnosis.

2 Related Works

The XAI model utilized for cancer picture classification represents a noteworthy advancement
within artificial intelligence. The utilization of this technology has promise in enhancing the precision
and dependability of cancer detection through the analysis of medical images, potentially contributing
to the amelioration of survival rates. Clinicians and medical practitioners can gain more trust in the
results and better understand why certain decisions were made by explaining how an AI system reached
its conclusions. It can lead to greater adoption of AI in clinical settings, which will be beneficial in
improving diagnosis accuracy and outcomes.

Hassan et al. [21] examined the categorization of prostate cancer based on ultrasound and
MRI pictures. They employed a deep learning-based XAI technique to automatically segment and
categorize tumors in prostate ultrasound and MRI images. The deep learning model was trained
to effectively identify and classify malignant spots in the images, enhancing treatment decisions by
furnishing clinicians with more specific information. O’sullivan et al. [22] discussed an XAI as a
field of research that seeks to make machine learning algorithms more interpretable, allowing for
improved analysis of diagnostic procedures. It is vital for complex, invasive procedures such as medical
imaging or digital pathology. XAI involves using algorithms that can explain why the classifier
came to a particular conclusion, such as what attributes of the image were employed to identify a
tumor or other diagnosis. XAI bridges the gap between automated image analysis and the manual
navigation of intricate diagnostic procedures by furnishing the analyst with an added layer of detail.
Knapič et al. [23] examined the concept of XAI to enhance human decision support within the
medical field. This approach to AI technology aimed to increase transparency in the decision-making
process. XAI solutions were formulated and designed with a foundation rooted in the fundamental
principles of explainability, interpretability, and trustworthiness. The primary objective of their work
was to enhance human decision-making processes by providing comprehensive explanations of the
methodology employed by an AI-based medical decision-support system to generate its outcomes.
Explanation systems play a crucial role in enhancing medical practitioners’ comprehension of the
rationales underlying the decisions made by the system. This fosters the development of trust and
confidence in the judgments and conclusions rendered by the system. XAI solutions also provide tools
that enable easy adjustment of parameters to make them better adapted for individual circumstances,
increasing the system’s flexibility for practitioners. Sarp et al. [24] discussed an XAI as a novel
approach to machine learning and decision-making that seeks to provide insights into the operations
and decisions made by AI systems. In particular, it was recognized as an essential tool for chronic
wound classification, as understanding the decisions of AI systems is critical in cases of high-stakes
medical decision-making. XAI provides crucial explanations regarding why the AI system reached a
particular outcome, including what data were important, what other factors can be considered, and
how the system filtered and manipulated the data before concluding. Clinicians can extrapolate from
the current dataset to make sound decisions by accessing the XAI system’s interpretations in future
cases. van der Velden et al. [25] examined the concept of XAI in the context of deep learning-based
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medical image analysis. XAI refers to a form of AI technology that enhances medical professionals’
comprehension of the decision-making processes employed by AI systems. The medical AI system
describes its decision-making process utilizing various traits and data points to justify its evaluations.
In addition, it validates that the artificial intelligence system is making evaluations within accepted
bounds. XAI possesses the capacity to serve as a beneficial instrument for medical professionals,
offering a profound understanding of the decision-making processes of medical AI systems. It can
clarify critical inquiries, including identifying the most significant features inside a given model.

Alonso et al. [26] discussed a bibliometric analysis of the XAI research field to evaluate the
quantity and quality of research conducted in a particular field. It utilizes tools such as citation
analysis, impact factor, and content/concept analysis to gain insights into the topics and methods
being used within a field. This type of analysis can help understand the state of the field and help
guide decision-making about future research investments. In addition, it can help identify areas of
research that need more investigation, areas that are not being explored, or even highlight trends that
could portend the direction of future research. Dağlarli [27] has discussed an XAI approach using
algorithms that can explain to users why decisions are being made. Such approaches are invaluable
for allowing users to understand the decisions made by AI algorithms and trust their results. Deep
meta-learning models are AI algorithms that learn hierarchically from data to develop a model they
can apply to other data. These models are helpful for tasks such as learning to play video games, where
they can learn to adapt and make predictions. Muddamsetty et al. [28] investigated the evaluation of
expert-level assessments for XAI techniques within the medical field. This evaluation entails examining
the accuracy, consistency, and effectiveness of the AI system’s outcomes regarding the evaluations of
medical experts. It also assesses how well the AI system’s explanations can help the medical expert
better understand the patient’s condition. Finally, it evaluates whether the AI system is compliant
with the relevant regulatory or legal requirements in the domain, such as applicable disclosure and
consent requirements. Holder et al. [29] provided a comprehensive analysis of XAI, a burgeoning area
of study aimed at enhancing the transparency and comprehensibility of AI systems for human users.
XAI is a research area dedicated to advancing AI systems that can interact with people by offering
comprehensive explanations for their actions and judgments. XAI facilitates enhanced comprehension
of an AI system’s decision-making process, fostering increased confidence and reliance in said system.
XAI demonstrated significant potential in sectors characterized by high stakes, such as the medical
field. As a novice cyber analyst within this field, the implementation of XAI will provide the capability
to indicate to medical professionals and patients the underlying rationale behind a specific therapy
recommendation made by an AI system. Enhancing trust in the AI system can positively impact the
reliability and personalization of medical decision-making. In their study, Kakogeorgiou et al. [30] have
examined the evaluation of XAI techniques for multi-label deep learning classification tasks in the field
of remote sensing, which necessitates the examination of prediction accuracy and the comprehension
of system functioning to establish its reliability. XAI techniques, such as Local Interpretable Model-
agnostic Explanations (LIME) and Instance-Based Explanations (IBE), can be employed to indicate
the decision-making process of a deep learning model when applied to remote sensing data, thereby
facilitating a deeper comprehension of the underlying mechanisms at play. The explanations above
can then be employed to determine regions that necessitate enhancement and assess the model’s
performance with greater precision.

Based on Bento et al. [31], XAI is a kind of AI technology that enables robots to communicate their
choices to people comprehensibly. It tries to bridge the gap between the black-box nature of neural
networks and traditional decision trees. It can improve deep learning performance by identifying
relevant features, attributing importance levels to them, and discovering patterns that humans do
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not easily see. In this way, XAI can optimize and improve a deep learning model to better meet
the requirements of a given task. Hauser et al. [32] discussed an XAI as a form of AI specifically
designed to explain its actions and decisions. XAI can help improve the understanding of skin cancer
diagnosis by providing more insight into why decisions were made. With an XAI model, a doctor
or healthcare provider can better understand what factors lead to a specific diagnosis. XAI can also
help guide the diagnosis process, allowing for a more informed decision-making process. The goal
is for XAI to increase accuracy and reduce misdiagnosis while explaining what drove the decisions
to help increase trust in the process. Vilone et al. [33] examined the issue of explainability being of
paramount importance in developing AI systems, given that the decision-making processes driven
by AI can frequently exhibit complexity and opacity. The concept of explainability pertains to the
degree to which AI can offer substantial justifications for its decisions. The evaluation methodologies
employed for explainable AI are designed to assess the effectiveness and dependability of an AI system
in delivering explanations that are comprehensible to humans in its decision-making processes. These
can encompass the evaluation of the accuracy of explanations, along with conducting user tests to
assess the effectiveness of an AI system in communicating explanations to users. Nazir et al. [34]
explored the application of XAI techniques in biomedical imaging. Specifically, they explore using
deep neural networks to analyze medical pictures and derive meaningful insights for decision-
making. XAI methodologies employ visual explanations and other interpretable models to show deep
learning systems’ behavior and decision-making processes. The comprehension of the decision-making
processes employed by computers in the context of biomedical imaging is of paramount significance
within the area. This understanding facilitates enhanced diagnostic capabilities and informed medical
treatment decisions for healthcare practitioners. In addition, utilizing XAI approaches enhances
the precision and dependability of these decision-making processes. This is primarily due to the
incorporation of XAI, which facilitates the interpretation of the output and enables a more compre-
hensive understanding of the decision-making mechanisms. Örnek et al. [35] examined the concept
of XAI, a category of techniques within the field of AI that seek to enhance the interpretability of
machine learning models and decision-making processes. Class Activation Maps (CAMs) are a type
of XAI approach employed to interpret image classification models. CAMs achieve this by selectively
emphasizing significant regions within an image that have played a crucial role in the model’s decision-
making process. In neonatal medical thermal imaging, class activation maps (CAMs) are employed to
detect and highlight significant areas within the image. This aids the model in accurately categorizing
the image according to its specific kind. Visualizing the picture regions utilized by the model for
categorization enables medical practitioners to enhance their comprehension of the model’s decision-
making process.

Cilli et al. [36] provided a discussion on the topic of XAI as a specific sort of AI technology utilized
to identify instances of wildfires in natural environments. XAI uses supervised machine learning
methods to analyze various types of environmental data, including satellite photography, weather data,
and topography information. Based on the provided data, XAI demonstrates a high level of accuracy
in detecting and precisely determining the location of wildfire outbreaks by identifying abnormalities
within the data. The significance of this technology is growing in its ability to effectively mitigate fire
hazards in many settings among the challenges posed by climate change. Zhang et al. [37] provided a
comprehensive discussion on XAI, an emerging domain within the field of AI research. XAI pertains
to developing AI algorithms and systems that can render decisions and offer explanations in the
context of medical diagnoses or surgical procedures. XAI is employed to get insights into machines’
decision-making processes and establish transparency in the interaction between medical professionals
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and AI systems. This can potentially facilitate the elucidation of medical practitioners’ decision-
making processes during patient diagnosis and provide insights into optimal surgical techniques for
specific procedures. XAI can also offer auditing capabilities for medical judgments, assisting physicians
in comprehending the underlying rationale behind AI-generated findings. Nigar et al. [38] examined a
specific form of artificial intelligence that possesses the ability to provide explanations for its decision-
making processes. The methodology employed in this study involves using deep-learning models to
identify and categorize skin lesions. The model after that provides an explication of its decision-
making process, facilitating enhanced comprehension among medical practitioners and enabling them
to make more judicious decisions. This methodology can potentially enhance the precision of skin
lesion detection by detecting uncommon lesions that conventional methods might fail to detect.
Diagnosing spinal diseases is a significant burden for doctors, as highlighted by Dindorf et al. [39].
Deep learning models are utilized to develop pathology-independent classifiers to classify aberrant
and normal postures of the spine. XAI tools are then employed to comprehensively comprehend
the classification procedure. XAI techniques facilitate the acquisition of knowledge by physicians
regarding the decision-making process of deep learning models, enabling them to comprehend the
rationale behind specific results. In addition, XAI techniques provide the means to scrutinize potential
inaccuracies that may arise throughout the prediction process. Mehta et al. [40] presented a scholarly
examination of a technology-centric strategy for detecting and reducing hate speech on digital
platforms. The system employs natural language processing and machine learning techniques to
identify and evaluate instances of offensive language within social media content. Explainable AI
is employed to indicate the identification of hate speech by elucidating the rationale for flagging
specific words or phrases. Enhancing transparency and accountability aids in facilitating the hate
speech detection and mitigation process.

Vilone et al. [41] discussed the output formats used for classifying explainable AI-based methods.
Natural language explanations provide descriptions of the reasoning behind model predictions,
allowing users to understand why the decision was made. Visualizations are graphical representations
of the model’s outputs that highlight the various components of the model. Causality explanations
are explanations that primarily focus on the causality of the model, as opposed to the characteristics
of the data. The mechanism explanations reveal the “inner workings” of the model by outlining the
algorithms and techniques used to build it. Geetha et al. [42] discussed a technique to accurately sense,
identify, and classify structural cracks in concrete structures. This technique is based on deep Convo-
lutional Neural Networks (CNNs) combined with XAI for automated detection and categorizing of
structural cracks and their severity. The 1D convolutional neural network is trained on the solution-
based approach using extracted features of the cracks’ images and their angles. After training, the deep
convolutional neural network is used for crack classification, and the XAI technique is employed to
explain the model’s decisions. It enables engineers to gain knowledge of the functioning of the deep
learning model. It helps them to understand the identification process and the predictions made by
the model. Loetsch et al. [43] discussed an approach that leverages machine learning and artificial
intelligence techniques to understand chronic pain’s complex, multi-dimensional phenotype. It utilizes
interpretable models to capture the underlying patterns among various phenotypic characteristics and
to identify meaningful clusters within a given data set. Medical researchers and clinicians can better
diagnose and treat painful conditions by understanding the relationships between pain phenotypes.
This approach can be employed to uncover potential drug targets and better understand pain’s
molecular and physiological mechanisms. Clancey et al. [44] discussed some methods and standards
for research on XAI to guide scientists and engineers when designing, developing, and evaluating
XAI systems. They guide how to design systems that have explainability as one of their core design
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objectives, how to monitor and evaluate progress and performance, and how to create an XAI product
that is safe and acceptable to end users. Standards include guidelines, reference architectures, and
best practices for implementing XAI systems. These methods and standards aim to ensure that XAI
systems are explainable, reliable, and safe. Ghnemat et al. [45] discussed an approach to using AI in the
medical imaging field. They used deep neural networks capable of learning high-level representations
for various image analysis tasks in medical imaging to obtain higher classification accuracy. XAI aids
in understanding the system’s inner workings and provides insight into the decisions made by the
system, which is especially desirable from a clinical perspective. In addition, XAI offers interpretability,
which is crucial in the medical domain, where explanations for decisions are provided. Table 1 shows
the comprehensive analysis of related works.

Table 1: Comprehensive analysis

Author Year Strength Weakness

Hassan et al. [21] 2022 The inclusion of an explainable AI
component enables clinicians to
acquire a deeper understanding of
the fundamental characteristics and
decision-making processes
employed by the model.

It could be employed to
identify the progression of
a disease.

O’sullivan et al. [22] 2022 It provides transparency with regard
to AI decision-making processes,
enabling medical practitioners to
verify and refine patient-centric
interventions.

It may be difficult to
implement due to the
complexion of AI
technology and algorithms.

Knapič et al. [23] 2021 It can provide insight into how input
data varies and impacts the
prediction or outcome of the AI
algorithm.

The explainable
simulations are often more
complex and slower to
compute than traditional
AI operations.

Sarp et al. [24] 2021 It allows for faster diagnosis of
wound-related symptoms, which can
lead to quicker and more accurate
treatment decisions.

It may lead to doctors
relying too much on the
technology and less on
their judgment, which can
lead to incorrect diagnoses
or treatments.

Van der
Velden et al. [25]

2022 This facilitates enhanced
comprehension of the
decision-making process employed
by deep learning models, enabling
the detection and rectification of
errors or biases.

This could violate patient
privacy laws and lead to
legal repercussions.

(Continued)
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Table 1 (continued)

Author Year Strength Weakness

Alonso et al. [26] 2018 The analysis can offer a significant
understanding of the present
condition of the study domain of
Explainable AI, encompassing
growing patterns and prominent
contributors.

It cannot provide a
detailed analysis of current
Explainable AI research,
such as interpretability
methods used and research
conclusions.

Dağlarli [27] 2020 XAI methods provide insights into
the system’s decision, which is
unperceivable in other learning
paradigms.

Utilizing XAI and deep
meta-learning models
necessitates substantial
quantities of data and
robust computational
resources to deliver precise
explanations.

Muddamsetty et al. [28] 2021 Expert-level evaluations can provide
a more accurate assessment of trust
in XAI methods for medical use.

Expert-level evaluations
can be costly and
time-consuming to
implement.

Holder et al. [29] 2021 It gives the human analyst more
capacity to identify potential
malicious content due to the AI’s
ability to process multiple inputs
quickly.

Potential for bias and
errors due to XAI’s
inability to correctly
interpret and make sense of
complex data sets.

Kakogeorgiou et al. [30] 2021 The utilization of this approach can
facilitate a more comprehensive
comprehension of the fundamental
process governing the model’s
performance in tasks involving the
classification of multiple labels.

Explaining the
performance of intricate,
deep learning models,
particularly in the context
of remote sensing data, can
provide challenges.

Bento et al. [31] 2021 XAI provides more interpretable
deep learning models to help
identify weaknesses more accurately.

XAI can be
computationally expensive
and require huge amounts
of data to work correctly.

Hauser et al. [32] 2022 Explainable AI can help improve the
accuracy of skin cancer recognition
by providing a transparent
understanding of the
decision-making process.

Explainable AI can be
more computationally
expensive than traditional
AI approaches.

Vilone et al. [33] 2021 They can help to ensure
transparency and accountability
between AI-based decisions and
human users.

They can be challenging to
evaluate correctly,
potentially leading to bias.

(Continued)
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Table 1 (continued)

Author Year Strength Weakness

Nazir et al. [34] 2023 Deep neural networks effectively
extract features from biomedical
images and provide explainable AI
results.

Deep neural networks can
be computationally
expensive and require
substantial training data.

Örnek et al. [35] 2021 It can provide a non-expert with a
graphical representation and
explanation for the model’s decision.

Additional resources are
required to acquire
knowledge related to
medical thermal images.

Cilli et al. [36] 2022 XAI can detect wildfire occurrences
with more accuracy and precision
than non-explainable models by
reasoning the cause and effect of the
data.

XAI is generally more
expensive and complex to
set up than traditional AI
models, which can make it
less accessible to
businesses.

Zhang et al. [37] 2022 It allows for a transparent look into
the decision-making process to
facilitate patient understanding.

It can be challenging to
automate the
interpretation of complex
decision-making processes.

Nigar et al. [38] 2022 The deep learning methodology,
which incorporates explainable
artificial intelligence, demonstrates
the ability to make precise
predictions with high accuracy.

Training such models may
take longer and require
more computing power
due to the complexity of
deep learning networks.

Dindorf et al. [39] 2021 This technique can help clinicians
assess postural health without
needing pathology-specific criteria.

The cost of implementing
the required technology
and data storage
infrastructure may be
expensive.

Mehta et al. [40] 2022 XAI can provide insight into why
specific hate speech is detected,
allowing for better decision-making
concerning how to address it.

XAI methods are still
computationally expensive
and can be challenging to
implement in production
systems.

Vilone et al. [41] 2021 It allows for greater accuracy of
results through differentiated output
formats.

It can be difficult to apply
in practice due to the large
number of classification
groups.

(Continued)
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Table 1 (continued)

Author Year Strength Weakness

Geetha et al. [42] 2022 This technology enables expedited
and precise detection of fissures in
concrete, enhancing operational
efficiency.

The financial implications
associated with
implementing this
technology are
considerably greater than
those of conventional
inspection methods.

Loetsch et al. [43] 2021 A more thorough inspection of
products, materials, and
components, as well as a faster
identification of faults.

Developing, setting up,
and using the technology
can incur additional time
and resources.

Clancey et al. [44] 2021 It reveals potential applications of
AI-driven technologies and
solutions to existing problems.

The discussion of applying
these approaches and
standards to future use
cases is lacking in
specificity.

Ghnemat et al. [45] 2023 XAI provides the ability to interpret
the results of medical imaging
classifications, increasing the trust
and accountability in the system.

XAI can be a complex and
time-consuming task,
which may limit its use in
time-sensitive acute
situations.

Deep learning algorithms have demonstrated encouraging outcomes in identifying and catego-
rizing diverse cancer forms. The models included in this study have undergone training using datasets
comprising several photos classified as malignant or benign. These models demonstrate high accuracy
in classifying cells into various forms of cancer using convolutional neural networks and deep learning
methods. However, the current performance of deep learning models for cancer classifications remains
constrained. Their ability to effectively detect and classify all types of cancer may be limited. With the
accumulation of supplementary data and the advancement of research in this domain, the precision
of deep learning models is expected to be enhanced. Table 2 below presents the performance of other
existing models.

Table 2: Performance of existing models

Author Year Model Accuracy

Hassan et al. [21] 2022 Deep learning 95.28%
O’sullivan et al. [22] 2022 Image analysis 93.26%
Knapič et al. [23] 2021 Human decision support system 88.65%
Sarp et al. [24] 2021 Chronic wound classification 89.71%
Van der Velden et al. [25] 2022 Deep learning 92.57%

(Continued)
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Table 2 (continued)

Author Year Model Accuracy

Alonso et al. [26] 2018 Biblio-metric analysis 91.68%
Dağlarli et al. [27] 2020 Deep meta-learning models 84.36%
Muddamsetty et al. [28] 2021 Expert level analysis 92.35%
Holder et al. [29] 2021 Junior cyber analyst 85.69%
Kakogeorgiou et al. [30] 2021 Deep learning classification 90.33%
Bento et al. [31] 2021 Deep learning 84.69%
Hauser et al. [32] 2022 Skin cancer recognition 82.36%
Vilone et al. [33] 2021 Evaluation approach 81.61%
Nazir et al. [34] 2023 Deep neural networks 88.54%
Örnek et al. [35] 2021 Class activation maps 92.65%
Cilli et al. [36] 2022 Deep learning 80.66%
Zhang et al. [37] 2022 Deep learning 90.48%
Nigar et al. [38] 2022 Deep learning 92.65%
Dindorf et al. [39] 2021 Pathology-independent classifier 91.11%
Mehta et al. [40] 2022 Deep learning 90.58%
Vilone et al. [41] 2021 Deep learning 92.55%
Geetha et al. [42] 2022 Deep learning 88.54%
Loetsch et al. [43] 2021 Deep learning 84.56%
Clancey et al. [44] 2021 Deep learning 86.65%
Ghnemat et al. [45] 2023 Deep learning 92.68%

2.1 Research Motivation
• Lack of data regarding biological sequencing of cancer samples, e.g., mutations and gene

expression, and lack of experimentally validated image classification models.

• Inaccurate annotation in image datasets and inadequate understanding of the complexity of
cancer image features and the relationship to classification outcomes.

• Lack of generalizable and transferrable representations and methods for cancer image classi-
fication and insufficient data augmentation techniques for accurate image classification and
segmentation.

• Poor understanding of effectively deploying deep learning approaches for cancer image classi-
fication and lack of adequate evaluation data sets with clinically relevant annotations.

• Poor benchmarking methodologies for comparison of image classification algorithms and lack
of modern interpretability techniques for cancer image classification models.

2.2 Research Contribution
• Increased Accuracy of Diagnoses: XAI models can increase the accuracy of cancer image

classification by providing detailed explanations of the model’s decisions and recommendations,
which can help reduce the burden on medical professionals.
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• Improved Patient Experience: XAI models can improve patient experience by providing detailed
explanations specific to their diagnoses. It can help patients understand their diagnosis and
treatment plan better.

• The transparency of AI decision-making is facilitated by XAI models, which offer insights
into the rationale and mechanisms behind the decisions made by AI systems. This capability
enhances transparency and accountability in AI decision-making processes.

• Enhanced Interoperability of Systems: XAI models have the potential to enhance interoper-
ability between AI systems and medical experts by offering comprehensive explanations of the
decision-making process of the AI system, which can be readily understood and interpreted by
medical practitioners.

• Augmented Understanding for Healthcare Professionals: XAI models can offer an augmented
understanding of the decision-making process within AI systems, hence providing valuable
insights that can assist healthcare professionals in making more informed and improved
judgments.

3 Proposed Model

An input image is a digital representation of a visual scene captured by a camera or generated
by a computer. It is a two-dimensional array of pixels, where each pixel represents a specific color
or intensity. The size and resolution of the input image play an essential role in the performance of
computer vision systems. Image resize is the process of changing the size or resolution of an image
while preserving its visual content. This technique is commonly employed to adapt images to different
display or processing requirements. In computer vision, image resizing is particularly important for
efficient processing and extracting features from large datasets. Efficient NETB0 is a convolutional
neural network architecture designed for efficient image classification. It uses a combination of depth-
wise and point-wise convolutions to reduce the number of parameters, resulting in a lighter and
faster model compared to traditional architectures. This makes it suitable for tasks where real-time
processing is crucial, such as object detection and recognition. ResNet-50 is a popular Residual Neural
Network (ResNet) architecture variant designed to overcome the vanishing gradient problem in deep
learning. It utilizes skipping connections and residual blocks to train deep neural networks efficiently.
This architecture has been widely used in various computer vision tasks, including image classification
and object detection. Fig. 3 shows the block diagram of the proposed model.

Dense NET-201 is a deep learning architecture that uses densely connected convolutional layers
to facilitate feature extraction. It connects each layer to every other layer in a feed-forward fashion,
creating more complex features and improving accuracy. This architecture has shown promising results
in tasks such as image classification and object recognition. ResNet-18 is another variant of the
Residual Neural Network architecture designed for efficient training and classification of images.
It consists of 18 convolutional layers with fewer parameters than deeper architectures like ResNet-
50. This makes it suitable for tasks requiring a lighter and faster model without compromising
performance. The support vector machine (SVM) classifier is a popular machine learning algorithm
for classification tasks. It works by finding the optimal hyperplane to separate different classes in
a dataset. In image classification, SVM classifiers are often employed to classify features extracted
from images. They can handle high-dimensional data and are robust to outliers, making them suitable
for complex image recognition tasks. Classification is categorizing or labeling data into different
classes or categories. In computer vision, classification is employed to identify the content of an
input image and assign it to a specific class or category. Different classification models, such as deep
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learning architectures or traditional machine learning algorithms, can be used for this task, depending
on the specific requirements and data characteristics. Accurate classification is essential in various
applications, such as object and pattern recognition, face detection, and medical diagnosis.

Input Image Image Resize

Efficient NETB0

Res NET-50

Dense NET-201

Res NET-18

SVM Classifier Classification 

Figure 3: Proposed block diagram

3.1 Dataset Description
The cancer classification dataset was separated as follows:

• No. of samples: 6423

• Training: 80% (5139 samples)

• Testing: 20% (1284 samples)

3.2 Pre-Processing
The pre-processing stage in cancer image classification involves numerous steps. Firstly, the data

is retrieved and cleaned to remove any underlying noise or artifacts from the digital images.
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It helps to ensure that the AI system can obtain a pure representation of the data and interpret it
accurately.
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After that, the images are transformed into subsequent lower dimensions for further classification
purposes. An example in this case can be the RGB to Gray transformation, which is often used for
tumor segmentation.
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The input images are then resized to a constant size or cropped to remove any unwanted
background. Following that, the images are normalized to ensure that the AI system can differentiate
between subtle differences in color intensity. Finally, the images are augmented, creating synthetic
versions of the existing images to increase the data size. It helps to make the model robust against
over-fitting. The AI system can effectively and accurately classify the cancerous cells in the images by
implementing these pre-processing steps.

3.3 Feature Extraction
Feature extraction, commonly known as feature engineering, constitutes a fundamental stage in

developing an XAI framework for categorizing cancer images. The procedure above entails extracting
pertinent information from individual images to facilitate the detection and classification of cancer
using an artificial intelligence model.
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Many algorithms are employed to extract specific characteristics from images during feature
extraction. These algorithms include edge detection, color segmentation, contour extraction, and
morph metrics. These techniques enable extracting features such as shapes, structures, and colors from
the images.
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The extracted features are then combined to form feature vectors used to train the machine-
learning model. For example, the feature vectors can be employed to train an SVM to recognize
different types of tumors. Feeding the feature vectors into the model allows it to distinguish between
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similar-looking tumors based on their visual characteristics. Thus, an XAI model for cancer image
classification can explain its decisions through the extracted features.

3.4 Segmentation
The segmentation stage of an XAI model in cancer image classification is responsible for localizing

the tumor or tumor-affected area in the image and describing the lesion characteristics.
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It is achieved by employing computer vision techniques such as image segmentation and object
recognition.
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This stage will involve identifying the regions of interest in the image that are likely to contain
cancerous lesions and separating them from other regions in the image that contain healthy tissue.
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This separation is then used as an input to the classifier stage and as a feature to explain the
classification result. Specifically, the segmentation stage will provide a more detailed feature vector of
the region of interest that is used by the classifier for more accurate predictions. This feature vector
may include information about the texture of the region, the shape, and the size of the region. Once
these features are extracted, they can be utilized to explain the classification results of the classification
stage.

3.5 Detection
The detection stage of the explainable AI model in cancer image classification involves automat-

ically segmenting images to detect, identify, and localize cancerous regions or tumors. This process
requires computer vision techniques and deep learning models, which can extract useful features from
the images and accurately identify cancerous regions.

h = f e − 1 => f e = h + 1 => e = logg (h + 1) (19)

As, f → 0 => logf (h + 1) → 0 => h + 1 → 1 => h → 0 (20)
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In this process, the model can be trained to identify patterns in the data, such as changes in texture
or color, which can be employed to detect the presence of cancer.

g′′ (e) = f e logg f (22)

ln (f ) = ln (ge) (23)

ln (f ) = e ∗ ln (g) (24)

Once the tumors are detected, they can be localized and classified using image segmentation
techniques.
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Substituting Eq. (22) in Eqs. (26), (27) can be derived

df
de

= ge ∗ ln (g) (27)

Finally, the model can be employed to generate explainable AI results, such as highlighting which
part of which image is cancerous and providing a summary of the classifications and results.

3.6 Classification
The classification stage of XAI in cancer image classification is a process that uses a trained

machine-learning model to assign a class label to an image based on its characteristics. This classifica-
tion is based on the features extracted from the image and then classified according to their relevance
to the analyzed cancer type.
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In some cases, XAI models also perform feature selection, meaning they select only a subset of
the available features for the classification.
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During the classification process, the model builds a prediction based on the extracted features to
determine the most likely class label for the image. The variables such as size, shape, and texture can
be employed to refine the model’s classification further.
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CMES, 2024, vol.141, no.1 419
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Finally, an evaluation metric measures the model’s performance and provides an overall score.
This metric will typically comprise accuracy, precision, recall, and other accuracy metrics.

3.7 Proposed Algorithm
XAI algorithms in cancer image classification can help doctors improve diagnostic accuracy by

providing a reasoning path and insight into why certain decisions are made. XAI algorithms analyze
patterns to identify and classify cancerous cells in images. As part of the classification process, XAI
algorithms can explain why a cell is classified as benign or malignant. The proposed flow diagram is
shown in Fig. 4.

Figure 4: Proposed flow diagram
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It helps medical professionals gain further insight into the features that indicate if cancer is
present and to adjust classification accordingly. Additionally, XAI algorithms are employed to assess
the credibility of the classification in the context of the input image. With its interpretability and
transparency capabilities, XAI can be utilized to explain the processes through which an image is
classified and how the model’s accuracy can be improved.

• The first step is to collect and label cancer images for training and testing, including detailed
annotations for each image. It can be done manually or using automated algorithms to detect
cancer regions.

• The subsequent phase involves the development of a deep learning model, an artificial intelli-
gence algorithm capable of categorizing photos based on annotated data. The model undergoes
training using annotated data, enabling it to perform cancer picture classification subsequently.

• The user’s text lacks academic language and structure. Once the training of the model is
completed, the use of the XAI algorithm becomes feasible to discern the significant components
of the image that play a role in influencing the choice made by the model. The regions above,
referred to as feature maps, offer valuable insights into the image’s primary features that hold
significance for classification.

• The user’s text does not contain any information to rewrite. The XAI algorithm ultimately
generates explanations that indicate the rationale behind a specific decision made by the model.
The analysis can illustrate how the image’s characteristics align with the model’s choice, offering
a more comprehensive comprehension of the underlying process.

Incorporating convolution layers in XAI models for cancer picture classification enhances inter-
pretability by facilitating the identification and extraction of task-relevant characteristics. The opera-
tional mechanism of the suggested model is illustrated in Fig. 5.

Figure 5: Functional working of the proposed model

Unlike normal convolutional neural networks, XAI models typically contain multiple convolu-
tional layers to identify complex patterns from the images.
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g−e = E∑
f

g−f
(36)

The convolution layers apply a set of learnable filters to the input image, which helps identify
distinct features of the image. For example, a convolution layer can be employed to identify the
presence of cancerous cells by looking for specific characteristics in the image, such as certain shapes
or colors.

F = E∑
f

g−f
(37)

E = E0 ∗ g−ft (38)

where, t = Tp; E = E0

2
.

The performance of the convolution layer-2 in the proposed model is crucial because it provides
insight into how the model can identify and classify cancer images. This layer plays a vital role in
extracting features from the input images, which the model then uses to make predictions. Analyzing
this layer’s performance can help better understand the key features and patterns the model uses
to distinguish between cancerous and non-cancerous cells. This information is essential to build
transparency and trust in the model and to identify any biases or weaknesses that may be present in
the classification process. Ultimately, a strong and accurate performance from the convolution layer-2
is crucial for a reliable and explainable model for cancer image classification. The primary function of
a pooling layer is to downsampling the input image by reducing its spatial dimensions while retaining
the most relevant features. This is achieved through a process called pooling, where the layer takes
the maximum or average value from a specific region of the input image. The pooling layer helps to
reduce the number of parameters in the network, making it more efficient. In addition, the model can
focus on the essential details of the image while ignoring any irrelevant or noisy elements by selecting
the most critical features. This allows the model to have a more comprehensive understanding of the
images and make more accurate predictions.

After extracting these features from the image, they can subsequently be employed to classify the
image as either including malignant cells or not.

g′′ (e) = ee ∗ 1
ln f

(39)

In addition, by examining the outcomes derived from the convolution layer, it becomes feasible
to acquire a deeper understanding of the specific characteristics inside the image that were utilized to
facilitate the classification process. Therefore, this enhances the comprehensibility and interpretability
of the model.
E0

2
= E0 ∗ g−ft (40)

2 = g−f Tp (41)

The primary function of the first convolutional layer in an XAI model designed for cancer picture
classification is to extract relevant information from the input image. The model benefits from its
ability to detect edges, lines, and shapes, enhancing its capacity to accurately perceive the shape
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and structure of cancer cells depicted in the image. Enhancing the precision of the cancer picture
categorization task is facilitated.

loge 2 = fTp (42)

E = F ∗ α (43)

In addition, the first convolution layer aids in diminishing the volume of input data that the model
must handle, hence mitigating the processing resources demanded by the model. Consequently, the
model’s total performance is enhanced.

E = 4
3

πH3 ∗ α (44)

The performance of convolution layer-2 for the XAI model for cancer image classification is
significant in understanding how the model classifies cancer images. By looking at the layer’s output,
we can gather insights as to why the model makes its decisions.
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The convolution layer-2 is responsible for automatically extracting features from the input image,
where each feature is a combination of pixels that are “activated” by the convolution filter. This layer
can be considered a feature detector that looks for edges, lines, or textures within the cancer cells.

fa = {f1, f2, f3......, fn} (47)

gb = {g1, g2, g3......, gn} (48)

Looking at the output from layer-2 can gain insights into what features the model considers
essential for classifying the cancer cell. This layer can be fine-tuned to increase the accuracy and
robustness of the model’s classification accuracy.

Q = fa + gb (49)

Q = {f1, f2, f3......, fn} + {g1, g2, g3......, gn} (50)

Qn =
∞∑

n=1

fa(n−1) + gb(n−1) (51)

The weights associated with the convolution filters can be adjusted depending on the features
in the input image to which the model should pay more attention. Doing so can enable the model
to extract the necessary features from the image more accurately, allowing for a more accurate
classification of cancer cells.

g (e) = e1 (f ) ∗ e2 (f ) (52)

g (h) = h1 (g) ∗ h2 (g) (53)

The convolution layer-3 of the XAI model for cancer image classification performs the role of
feature extraction by mining data for patterns and extracting features from the images. It takes the raw
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images as inputs and performs convolution operations to detect edges, shapes, and other meaningful
patterns.
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The results of the convolution operations are then passed through an activation function, which
determines the importance of certain features compared to others. This layer also helps reduce the
images’ dimensionalities while retaining relevant information. Hence, the model can focus on essential
details in the image and ignore irrelevant features. It enables the model to make better and more
accurate predictions about the cancer images.
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The inclusion of a pooling layer is a crucial element in the categorization of cancer images. The
purpose of this technique is to minimize the number of variables involved in the calculation process,
achieved by reducing the spatial dimensions inside the model. Utilizing the pooling layer enables the
model to effectively reduce the parameters required for representing equivalent information while
maintaining high-performance accuracy.
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It reduces the complexity of the model, making it easier to explain. Additionally, the pooling
layer allows the model to identify scale-invariant patterns in the high-level feature maps, which helps
differentiate between cancerous and non-cancerous cells.

g (G1|G2) = g (G2|G1) ∗ g (G1)

g (G2)
(61)

Reducing the spatial dimensions of the model makes it easier for the XAI model to identify and
explain why the cancerous and non-cancerous cells are different. Furthermore, the pooling layer can
be employed to reduce the overfitting of the model, making it more robust and reliable.
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The performance of the Softmax layer for the XAI model for cancer image classification refers to
the model’s overall accuracy in accurately classifying images into cancer or non-cancer classes.
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The final layer of a Convolutional Neural Network (CNN) model is often the Softmax layer.
Its purpose is to provide a probability distribution across the output classes. This is achieved by
calculating the normalized exponential of the scores obtained from the preceding layer. The Softmax
layer subsequently predicts by identifying the class with the highest probability.
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The performance of the Softmax layer is even more critical because it considers the prediction
accuracy and gives additional insights into how the model works.

r12 = r1 − r2 (65)

f12 = f1 − f2 (66)

g12 = g1 − g2 (67)

It is done by extracting the activations of each neuron and visualizing the output in terms of what
classes it is most and least likely to classify the input image. It helps identify regions in the image that
contribute the most to the output. Therefore, the performance of the Softmax layer for the XAI model
for cancer image classification is significant because it helps provide additional insights into how the
model works and is used to predict the class of the input image.

3.8 Integration Techniques
The proposed XAI framework integrates different techniques to facilitate explainability in AI

models. These techniques include end-to-end explainable evaluation, rule-based explanation, and user-
adaptive explanation.

3.8.1 End-to-End Explainable Evaluation

The end-to-end explainable evaluation technique evaluates the AI model’s performance and gen-
erates explanations at different stages of the model’s decision-making process. This includes assessing
the input data, the model’s internal representations, and the final predictions. The explanations are
generated using different methods such as feature importance, saliency maps, and local interpretability
techniques. The end-to-end explainable evaluation module is implemented using a combination
of various libraries and algorithms such as SHAP (Shapley Additive exPlanations), LIME (Local
Interpretable Model-Agnostic Explanations), and Integrated Gradients.

3.8.2 Rule-Based Explanation

The rule-based explanation technique generates explanations by extracting the rules the AI model
uses to make decisions. These rules can be generated using Sequential Covering Rule-based Learning
algorithms, Association Rule Mining, or Decision Trees. The rule-based explanations provide a
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transparent representation of the model’s decision-making process and can be easily understood by
non-technical users. The rule-based explanation module uses open-source libraries such as Explainable
Boosting Machine (EBM) or RuleFit.

3.8.3 User-Adaptive Explanation

The user-adaptive explanation technique tailors the explanations to each user’s specific needs and
preferences. This is achieved by integrating user feedback into the explanation generation process. The
user feedback can include explicit user preferences or implicit feedback from the user’s interactions
with the AI model. The user-adaptive explanation module is implemented using collaborative filtering,
reinforcement learning, or Bayesian optimization techniques.

The XAIM framework also includes a feedback loop that continuously updates the explanations
based on new data and user feedback. This ensures that the explanations remain up-to-date and
relevant. Additionally, the XAIM framework provides a user interface that allows it to interact with
the explanations, provide feedback, and customize them according to their needs.

4 Results

The proposed XAI model was compared to the existing deep learning-based medical image
analysis (DLMIA), deep meta-learning models (DMLM), multi-label deep learning classification
(MDLC), and Deep Learning Based Medical Imaging Classification (DLMIC).

4.1 Computation of Accuracy
The accuracy of an explainable AI algorithm for cancer image classification is determined by

measuring the degree of agreement between its predictions and the actual labels of the cancer images. It
is typically performed by comparing the classification results of the AI algorithm to a gold standard or
ground truth label associated with the images. Image classification accuracy is determined by dividing
the count of accurately categorized photos by the total count of images in the dataset. The accuracy
will be expressed as a percentage, with higher values indicating better performance. Table 3 shows the
computation of accuracy.

Table 3: Computation of accuracy (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 49.48 54.59 73.62 86.10 97.93
200 48.19 53.84 69.00 82.70 97.83
300 48.44 53.87 69.00 83.06 97.76
400 48.57 54.69 69.47 84.25 97.72
500 48.49 54.78 69.67 84.12 97.68
600 48.50 54.91 69.93 84.10 97.65
700 48.85 55.33 70.56 84.53 97.63

Fig. 6 illustrates the comparison of accuracy. In the context of computational methods, the
currently available DLMIA obtained 48.57%, DMLM obtained 54.69%, MDLC reached 69.47%, and
DLMIC reached 84.25% accuracy. The proposed XAIM reached 97.72% accuracy.
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Figure 6: Accuracy

4.2 Computation of Precision
Precision is an essential measure of accuracy for XAI algorithms in cancer image classification.

The calculation involves determining the proportion of correctly identified cancer images (true
positive, TP) with the overall number of anticipated positive classifications (true positive plus false
positive, TP + FP). Accuracy is a metric that quantifies the model’s capacity to precisely categorize
cancer images as positive or negative. By quantifying the precision of the XAI model, it is possible to
assess its ability to detect cancerous conditions in photos accurately. The computation of precision is
presented in Table 4.

Table 4: Computation of precision (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 48.62 53.53 70.29 82.78 90.94
200 48.12 53.53 69.20 82.52 90.83
300 47.37 52.70 68.06 81.95 90.77
400 47.37 53.43 68.42 83.09 90.72
500 48.42 54.54 69.95 84.11 90.68
600 48.70 54.94 70.59 84.35 90.65
700 47.98 54.37 70.01 83.70 90.63

Fig. 7 illustrates the comparison of precision. In the context of computational techniques, the
currently available Deep Learning for Medical Image Analysis (DLMIA) obtained 47.37%, DMLM
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obtained 53.43%, MDLC reached 68.42% and DLMIC reached 83.09% precision. The proposed
XAIM reached 90.72% precision.

Figure 7: Precision

4.3 Computation of Recall
The recall for explainable AI algorithms in cancer picture classification refers to the ratio of

correctly identified actual positive cases to the total number of actual positive instances. The term “it”
can also be characterized as the quotient obtained by dividing the count of true positives (instances
correctly classified as positive) by the sum of all positive cases (true positives plus false negatives). The
recall rate of explainable AI algorithms in the context of cancer picture classification is commonly
determined by utilizing a collection of annotated or labeled images. The process entails identifying and
documenting all the regions within each image that exhibit positive indications of malignancy, as well
as the equivalent regions that exhibit negative indications. Once the annotation process is finalized, the
recall rate can be determined by dividing the number of true positives detected in the photos by the total
count of all positive cases. This computation enables the evaluation of the AI algorithm’s performance
in accurately detecting all affirmative cases. The computation of recall is listed in Table 5.

Table 5: Computation of recall (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 56.91 45.00 84.80 81.62 93.94
200 58.57 50.86 77.96 87.80 93.83

(Continued)
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Table 5 (continued)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

300 59.02 49.72 76.67 89.29 93.77
400 54.33 50.86 74.53 92.53 93.72
500 53.94 51.74 76.10 91.81 93.68
600 54.10 52.94 77.72 91.68 93.65
700 54.84 54.59 79.52 92.95 93.63

Fig. 8 illustrates the contrast of recall. In the context of computational methods, the currently
available Deep Learning for Medical Image Analysis (DLMIA) obtained 54.33%, DMLM obtained
50.86%, MDLC reached 74.53% and DLMIC reached 92.53% recall. The proposed XAIM reached
93.72% recall.

Figure 8: Recall

4.4 Computation of F1-Score
The F1-score in cancer picture classification for an XAI method is computed as the harmonic

mean of precision and recall, representing a combined evaluation of two distinct metrics. Precision is a
metric that quantifies the algorithm’s capacity to correctly classify photos into their respective classes
with high accuracy. On the other hand, recall evaluates the algorithm’s effectiveness in successfully
identifying all pertinent images. This statistic provides a more comprehensive assessment of the
algorithm’s performance by considering both the successfully categorized cases and the misclassified
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examples. The calculation of the F1-score involves determining the precision and recall values of the
XAI algorithm, followed by computing the harmonic mean of these values to obtain the final score.
The F1-score is obtained by calculating the precision and recall scores, summing their reciprocals, and
dividing the result by two. The F1-score serves as a valuable statistic in assessing the efficacy of an
XAI algorithm in the classification of cancer images. Considering the algorithm’s precision and recall
provides a more comprehensive evaluation of its overall performance. Table 6 lists the calculation of
the F1-score.

Table 6: Computation of F1-score (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 52.97 49.46 69.55 82.20 96.94
200 53.68 52.22 69.76 85.24 96.83
300 53.61 51.24 68.50 85.78 96.77
400 51.00 52.16 67.31 88.08 96.72
500 51.27 53.16 68.89 88.14 96.68
600 51.49 53.95 70.14 88.18 96.65
700 51.55 54.48 71.05 88.59 96.63

Fig. 9 presents a visual representation of the comparison of F1-scores. In computational tech-
niques, the currently available Deep Learning for Medical Image Analysis (DLMIA) obtained 51.00%,
DMLM obtained 52.16%, MDLC reached 67.31% and DLMIC reached 88.08% F1-score. The
proposed XAIM reached 96.72% F1-score.

Figure 9: F1-score
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4.5 Computation of False Discovery Rate
The False Discovery Rate (FDR) is a metric to evaluate the efficacy of explainable AI algorithms

in categorizing cancer images. This metric aims to quantify the occurrence of false positive errors
generated by the AI system while categorizing photos as either malignant or non-cancerous. The
calculation of the False Discovery Rate (FDR) involves dividing the count of False Positives (FP)
by the sum of the false positives and True Positives (TP).

FDR = FP/(FP + TP) (68)

A high False Discovery Rate (FDR) indicates a diminished level of accuracy in the AI sys-
tem’s ability to correctly classify malignant images as cancerous and non-cancerous images as non-
cancerous. A decrease in False Discovery Rates (FDRs) indicates enhanced precision in AI algorithms
for correctly classifying malignant pictures as cancerous. Table 7 presents the calculation of the False
Discovery Rate.

Table 7: Computation of false discovery rate (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 25.78 19.23 22.88 25.41 14.02
200 24.11 18.10 19.95 24.15 11.55
300 22.16 17.75 18.41 22.26 10.75
400 20.17 15.80 16.38 21.06 9.55
500 17.59 15.03 15.48 29.50 8.91
600 15.60 14.65 13.51 17.75 7.65
700 13.58 13.52 12.04 16.82 6.63

Fig. 10 illustrates the comparative analysis of the False Discovery Rate. In computational meth-
ods, the currently available DLMIA obtained 20.17%, DMLM obtained 15.80%, MDLC reached
16.38%, and DLMIC reached 21.06% False Discovery Rate. The proposed XAIM achieved a 9.55%
False Discovery Rate.

4.6 Computation of False Omission Rate
False Omission Rate (FOR) is a performance measure for explainable AI algorithms in cancer

image classification. It is a metric to assess how successful an AI algorithm is at correctly classifying
cancer images. It is calculated by taking the percentage of missed cancer image classification cases
out of the total number of cancer image examples. The FOR typically ranges between 0 and 1, with
0 indicating perfect accuracy and 1 indicating that all cases are misclassified. A higher FOR indicates
poor performance. Table 8 shows the computation of the False Omission Rate.

Fig. 11 illustrates the contrast of the False Omission Rate. In the context of computational
techniques, the currently available Deep Learning for Medical Image Analysis (DLMIA) obtained
20.79%, DMLM achieved 20.41%, MDLC reached 16.22% and DLMIC reached 21.38% False
Omission Rate. The proposed XAIM reached a 9.66% False Omission Rate.
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Figure 10: False discovery rate

Table 8: Computation of false omission rate (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 24.19 25.30 21.63 26.05 12.85
200 22.56 23.56 20.05 24.63 11.56
300 22.08 21.22 17.85 23.37 10.55
400 20.79 20.41 16.22 21.38 9.66
500 18.68 18.12 15.08 18.91 9.29
600 17.19 16.19 12.88 17.47 7.65
700 15.38 14.46 11.73 15.75 7.28

4.7 Computation of Diagnosis Odd Ratio
The Diagnostic Odd Ratio (DOR) measures how accurately an XAI algorithm can classify cancer

images compared to human experts. DOR measures the odds that a misclassification is made by the
algorithm when compared to a gold standard. This measure is meant to assess the accuracy of AI
algorithms in comparison to the accuracy of a human expert. The AI algorithm is compared to the
gold standard (human expert) by producing two sets of diagnoses (positive and negative) to compute
the Diagnostic Odd Ratio (DOR). The ratio of correct positive predictions by the AI is divided by
the rate of correct negative predictions made by the AI concerning the gold standard. The DOR can
be defined as the ratio of the likelihood of an accurate positive prediction made by the AI to the
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probability of a correct negative prediction. The formula utilized for the diagnostic odds ratio (DOR)
computation is as follows:

DOR = (TP/FN) / (FP/TN) (69)

where TP is true positives (correct positive predictions by AI), FN is false negatives (missed positive
predictions by AI), FP is false positives (incorrect positive predictions by AI), and TN is true negatives
(correct negative predictions by AI). Researchers can assess the accuracy of an AI algorithm in
comparison to a gold standard by computing the DOR. A higher DOR indicates a higher accuracy.
Table 9 shows the computation of the Diagnostic Odd Ratio.

Figure 11: False omission rate

Table 9: Computation of diagnostic odd ratio (in %)

No. of samples DLMIA DMLM MDLC DLMIC XAIM

100 54.08 61.20 71.47 85.04 94.85
200 52.59 59.23 69.05 82.84 92.86
300 51.79 58.10 68.64 82.04 91.66
400 49.46 56.89 67.04 81.37 91.18
500 48.45 56.52 64.72 79.94 89.75
600 47.81 54.99 63.47 78.85 88.59
700 47.15 54.49 60.74 78.37 87.82
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Fig. 12 illustrates the comparison of the Diagnostic Odd Ratio. In computational techniques, the
currently available Deep Learning for Medical Image Analysis (DLMIA) obtained 49.46%, DMLM
achieved 56.89%, MDLC reached 67.04% and DLMIC reached 81.37% Diagnostic Odd Ratio. The
proposed XAIM reached 91.18% Diagnostic Odd Ratio.

Figure 12: Diagnostic odd ratio

5 Discussion

XAI is a specific branch of AI developed to help healthcare professionals comprehend the
fundamental reasoning behind AI-driven decision support systems. The potential of XAI to enhance
healthcare decision support systems can yield enhanced patient outcomes, increased accuracy in
diagnoses, and the facilitation of more ethical decision-making processes.

5.1 Convergence of Performance
The convergence of performance for explainable AI algorithms in cancer imagery classification is

the improvement of accuracy and predictive power as these algorithms are tested against an increasing
amount of data. In such AI-based applications, the goal is to bring all data into a common format and
represent it understandably to create valuable knowledge that can be used in an automated form. As
AI algorithms are constantly fed more data, they can train and adjust to learn more accurately. When
the number of features available for AI algorithms is increased, they can detect finer nuances within
the data, enabling them to produce a more precise classification. Table 10 shows the convergence of
performance.
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Table 10: Convergence of performance (in %)

Parameters DLMIA DMLM MDLC DLMIC XAIM

Accuracy (A) 48.57 54.69 69.47 84.25 97.72
Precision (P) 47.37 53.43 68.42 83.09 90.72
Recall (R) 54.33 50.86 74.53 92.53 93.72
F1-score (F1) 51.00 52.16 67.31 88.08 96.72
False discovery rate (FDR) 20.17 15.80 16.38 21.06 9.55
False omission rate (FOR) 20.79 20.41 16.22 21.38 9.66
Diagnostic odd ratios (DOR) 49.46 56.89 67.04 81.37 91.18

Fig. 13 illustrates the convergence of performance, while Fig. 14 depicts the convergence of
performance specifically for the proposed XAIM. In terms of comparison, the XAIM model achieved
an accuracy of 97.72%, precision of 90.72%, recall of 93.72%, F1-score of 96.72%, false discovery rate
(FDR) of 9.55%, false omission rate (FOR) of 9.66%, and diagnostic odds ratio (DOR) of 91.18%. XAI
refers to a specific domain within AI that concentrates on developing AI systems capable of exhibiting
transparency in their internal mechanisms and providing correct explanations for their decision-
making processes. The significance of this matter is particularly pronounced within the realm of
medical image analysis, particularly in the domain of cancer picture categorization. As an illustration,
contemporary deep learning algorithms employed in cancer picture classification have demonstrated
the ability to accurately identify lesions with significant precision. However, they have not adequately
explained the rationale behind designating a specific image as malignant. XAI algorithms can deduce a
collection of interpretable characteristics that have significance in picture recognition. As a result, these
algorithms can clarify the classification outcome, facilitating medical professionals in comprehending
the underlying rationale behind the model’s decision-making process.

5.2 BLA Analysis
XAI-assisted systems can provide information on cancer progression, helping physicians identify

the right moment to change the course of action. It can help researchers design better clinical trials by
providing objective evaluation and predictions.

Benefits:

• XAI can make it easier to understand the cancer image classification decisions made by the
algorithm.

• A clinician can more easily understand the predictions generated by the algorithm by offering
deeper insights into the factors and features the algorithm considers.

• The insights offered by XAI can also be utilized to improve the algorithm’s accuracy by further
optimizing its parameters and variables.

Limitations:

• XAI algorithms can be slightly complex, making them difficult to interpret.

• It cannot be easy to draw accurate conclusions from the algorithms’ insights due to the inherent
uncertainties of the data and algorithms.

• The algorithm must be tested carefully before being used in a real-world context.
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Figure 13: Convergence of performance

Figure 14: Convergence of performance of proposed XAIM
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Applications:

• Explainable Artificial Intelligence can be used in cancer image classification to help detect
cancer earlier and more accurately.

• XAI can potentially augment clinical decision-making by providing doctors with more pro-
found insights into the predictions generated by the algorithm.

• In addition, the algorithm’s accuracy can be enhanced by optimizing its parameters and
variables.

• Clinicians may be able to detect cancer sooner and provide better treatment options.

Interpretable decisions in cancer detection refer to the ability of a decision-making model to
explain the reasoning behind its predictions clearly and understandably. This is important for medical
personnel as it helps them understand the factors and variables that influence the model’s decisions
and assess its trustworthiness and reliability. The following are some ways in which the proposed model
can provide interpretable decisions to medical personnel in cancer detection:

• Feature importance: The model can list the most important features or variables contributing
to its predictions. This will enable medical personnel to understand which factors are most
significant in predicting cancer and to evaluate the biological and clinical relevance of these
factors.

• Visual explanations: The model can generate visual representations to highlight the regions or
features in the input data most important for a particular prediction. This will help medical
personnel visualize the model’s decision-making process and identify patterns contributing to
the prediction.

• Diagnostic accuracy: The model can be evaluated for its diagnostic accuracy, sensitivity, and
specificity. These measures can help medical personnel to understand the model’s performance
in correctly identifying cancer cases and to assess its reliability in making decisions.

The development and implementation of the proposed model for healthcare is a collective effort
that requires the involvement of all stakeholders. It faces various challenges, including technical com-
putational demands, data privacy concerns, and scalability in diverse healthcare settings. Addressing
these challenges will require further research, collaboration, and regulatory considerations.

• Technical Computational Demands: Developing the proposed model for healthcare appli-
cations may require significant computational resources, as it often involves using complex
algorithms and techniques. The processing and analysis of large datasets can also be time-
consuming and computationally intensive. This can pose a challenge for implementation in real-
world healthcare settings, which often need more resources and capacity for data processing.

• Data Privacy Concerns: Healthcare data is susceptible and subject to strict privacy regulations.
This model, which often relies on large amounts of patient data, may raise concerns about
privacy and data protection. However, explainable AI techniques can help mitigate these
concerns by providing transparency and accountability in decision-making.

• Scalability in Diverse Healthcare Settings: While healthcare systems and settings vary widely
in terms of resources, infrastructure, and data availability, the proposed model for healthcare is
designed to be adaptable. It can be customized to healthcare contexts, ensuring its feasibility and
effectiveness. This requires a careful consideration of diverse data sources and the development
of transferable models.
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5.3 Ethical Considerations
The proposed XAI model has been applied in clinical settings through various studies and trials

to investigate its impact on decision-making. For instance, in a study looking at the use of XAI in
predicting heart failure patients’ readmission risk, the model was found to improve decision-making
significantly and was well-received by clinicians. Another analysis focusing on XAI in breast cancer
diagnosis found that the model outperformed traditional methods and provided explanations for its
predictions, leading to more informed and confident decision-making.

Ethical considerations related to using proposed XAI in cancer image classification and broader
healthcare applications include algorithmic bias, data security, and patient consent. Algorithmic bias
is the potential for machine learning algorithms to replicate or amplify existing societal biases, leading
to discriminatory or unfair outcomes for individuals or groups. In healthcare, this can result in
inequitable treatment or diagnosis for specific populations, especially those from underrepresented
or marginalized communities. This could worsen health disparities and exacerbate existing social
inequalities. One potential solution to address algorithmic bias in XAI is to ensure representative
and diverse training data that accurately reflects the demographics of the population being served.
This can also be achieved through ongoing monitoring and auditing algorithm performance for
biases or discrimination. In addition, healthcare professionals must be involved in developing and
evaluating XAI systems to ensure clinical relevance and equity. Data security is another important
ethical consideration when using XAI in healthcare. XAI systems rely on sensitive patient data,
including personal health information, medical images, and diagnosis outcomes. This data must be
carefully and ethically collected, stored, and protected to ensure patient privacy and confidentiality. It
is essential to have comprehensive data governance policies to prevent data breaches and unauthorized
access to patient information. In addition, patient consent is critical for the ethical use of XAI in
healthcare. Patients must be fully informed and give explicit consent for their data to be used in
XAI systems. This includes transparency about the purpose of data usage, the collected data types,
and any potential risks or benefits. Patients should also have the right to withdraw their consent at
any time. In addition to these specific ethical considerations, there are broader concerns surrounding
the deployment of XAI in healthcare. These include potential workforce displacement of healthcare
professionals, data ownership and monetization, and the impact on doctor-patient relationships. It
is essential to closely monitor and address these issues to ensure the responsible and ethical use of
XAI in healthcare. The use of XAI in cancer image classification and broader healthcare applications
holds great potential to improve patient outcomes and advance medical research. However, ethical
considerations regarding algorithmic bias, data security, and patient consent must be addressed to
ensure equitable and responsible use. Ongoing collaboration between healthcare professionals, data
scientists, and ethicists is necessary to navigate these complex ethical implications and ensure the moral
development and deployment of XAI in healthcare.

The development and deployment of XAI models require collaboration among computer scien-
tists, medical professionals, and ethicists due to their interdisciplinary nature. Integrating XAI into
healthcare systems can significantly improve patient outcomes, increase the efficiency of healthcare
processes, and reduce costs. However, deploying these models also brings ethical concerns, such as the
potential for biased decisions and lack of transparency. Therefore, a collaborative effort is necessary
to ensure that XAI models are accurate and practical but also ethical and accountable. One of the
main reasons collaboration among computer scientists, medical professionals, and ethicists is crucial
in developing XAI models is the complexity of the healthcare domain. Healthcare data is multifaceted
and requires a deep understanding of medical practices, terminology, and standards. In addition,
healthcare services involve sensitive and personal information, making it essential to consider ethical
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principles and privacy concerns when designing and implementing XAI models. This requires input
from medical professionals and ethicists with the relevant expertise who can guide the potential impact
on patients and possibly legal and ethical implications.

6 Conclusion

XAI is gradually increasing its relevance in the medical field, especially in cancer detection.
In this regard, it is employed to aid human experts in understanding the findings of AI-powered
technologies. The platform offers decision-support technologies that aid clinicians in comprehending
intricate patterns and supplying substantiated data, facilitating more informed decision-making in
diagnosing and treating cancer patients. In addition, it has the potential to enhance image analysis
by offering evidence-based predictions to radiologists, enhancing their accuracy and precision. The
proposed XAIM reached 97.72% accuracy, 90.72% precision, 93.72% recall, 96.72% F1-score, 9.55%
FDR, 9.66% FOR and 91.18% DOR. The explainable AI algorithms in cancer image classification
are that they help medical professionals make better decisions by providing a clear and transparent
explanation of the thought process that led to a classification. The explanations consist of an overview
of the classification results and essential characteristics utilized to make the decision. The explanations
can help medical professionals to understand why and how specific diagnoses were made, allowing
medical professionals to make more informed decisions.

7 Future Scope

Explainable Artificial Intelligence algorithms have the potential to revolutionize cancer image
classification by allowing oncologists to diagnose and treat patients. In the future, AI algorithms can
identify and analyze tumors better and more accurately. It will enable oncologists to be better equipped
to make informed decisions for treatments that are personalized and tailored to each patient. AI
algorithms can be employed to monitor cancer progression and assist in early cancer diagnosis. AI
algorithms can also be utilized to predict the course of treatment with greater accuracy by identifying
the most suitable treatments for any given patient based on the predictive analysis. The AI algorithms
can be further enhanced by implementing deep learning models to enhance accuracy and reduce the
time of diagnosis. It can be employed to analyze and compare the effectiveness of different treatments
over time. Explainable AI algorithms can be utilized to ensure the safety and ethical use of data when
using AI for cancer image classification.
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