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ABSTRACT

In the real world, one of the most common problems in project management is the unpredictability of resources and
timelines. An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended
fuzzy approach, often known as neutrosophic logic. Our rigorous proposed model has led to the creation of an
advanced technique for computing the triangular single-valued neutrosophic number. This innovative approach
evaluates the inherent uncertainty in project durations of the planning phase, which enhances the potential
significance of the decision-making process in the project. Our proposed method, for the first time in the
neutrosophic set literature, not only solves existing problems but also introduces a new set of problems not yet
explored in previous research. A comparative study using Python programming was conducted to examine the
effectiveness of responsive and adaptive planning, as well as their differences from other existing models such as the
classical critical path problem and the fuzzy critical path problem. The study highlights the use of neutrosophic logic
in handling complex projects by illustrating an innovative dynamic programming framework that is robust and
flexible, according to the derived results, and sets the stage for future discussions on its scalability and application
across different industries.
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Classical critical path problem; fuzzy critical path problem; uncertainty; neutrosophic; triangular single-valued
neutrosophic number; neutrosophic critical path problem; python programming language

1 Introduction

Planning multiple tasks to develop and execute the project within the allotted time frame is an
essential part of project management [1]. Time restrictions are a common source of failure while
working manually in many industries. Project managers use scheduling tools like Gantt charts and
network planning to address such issues. Previous researchers were involved in the study of Gantt
charts due to their less complex nature. Furthermore, large-scale and more complicated project
execution has emerged since 1950, leading to the development of project management models, i.e.,
network analysis.

Network analysis deals with the coordination of project scheduling and the identification of
task interdependencies to design and analyze [2]. This analytical framework employs two primary
methodologies: the CPM (Critical Path Method) and the PERT (Program Evaluation and Review
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Technique). Kelly and Walker created CPM [3], which provides definitive project execution sched-
ules in a chronological pattern based on deterministic time estimation [4]. PERT was created by
Malcolm et al. [5] and is also called the backward research method [6] because it has a three-time
estimation that takes the account of uncertainty [7]. Our study examines the critical path problem
(CPP) using the CPM approach, which is a common method in project management, to distinguish
between critical and non-critical tasks. This makes it easier to solve problems and avoid delays.
CPP improves the project’s efficiency by helping to determine the minimum feasible time for task
completion [8]. Utilizing CPP involves a multitude of operational metrics, including the calculation
of the maximum time allowance, the earliest and latest initiation, and the corresponding completion
time [9]. Traditional CPP practices dictate that fixed-time estimations represent this project activity.
However, predicting future events in the real world is difficult due to the inherent unpredictability of
dynamic project environments [10].

An anthology of researchers demonstrated the classical critical path problem (CCPP) study in
project scheduling across a variety of domains. However, improving project management and control
in the CCPP faces challenges in anticipating and estimating parameters involving uncertainty to
calculate time deviations. In such a scenario, Zadeh introduced the concept of fuzzy logic to address
the limitations of classical set theory while dealing with the study of vagueness and uncertainty in
real-world situations [11]. Following up on Zadeh’s theory, Atanassov [12] introduced the legerdemain
concept of intuitionistic fuzzy sets (IFS) in 1986, involving both membership and non-membership
functions. To advance the study of uncertainty, researchers developed triangular fuzzy numbers
(TrFN) [13] and trapezoidal fuzzy numbers (TFN) [14] to represent uncertainty. More fuzzy numbers
have been made, like octagonal [15], heptagonal [16], and hendecagonal [17]. This shows that the
research has gone beyond the initial forms. Researchers further conducted the study to extend
zadeh’s pioneering work in fuzzy logic to a variety of practical applications. In one of these efforts,
Mehlawat et al. [18] used IFS to study multi-criteria decision-making (MCDM) for critical path
selection. An advanced methodology to implement fuzzy methods to handle the challenges of project
management. Another study by Revathi et al. [17] showed how flexible and useful fuzzy critical path
problems (FCPP) in managing agricultural projects. It uses a variety of fuzzy parameters, such as
trapezoidal, heptagonal, and hendecagonal fuzzy numbers, to accurately handle the complexity of
agricultural data. Senussi et al. [19] also used the TFN parametric form to account for uncertainty in
planning projects that will make important contributions to the field. Ganesan et al. [20] analyzed
another notable study of inter-valued parameters in operational networks. Further, many studies
have implemented fuzzy environments in different optimization techniques such as supply chain
[21], transportation [22] and so on. Although fuzzy logic has improved, it cannot fully capture real-
world uncertainty. There are still unresolved issues while solving CCPP and FCPP under uncertain
circumstances. This shift is being driven to address the research gaps leading to neutrosophic logic.

To adopt such parameters, Smarandache [23] introduced the neutrosophic set (NS) in 1998
with three integrands: truthiness, indeterminacy, and falsity, unlike the general fuzzy and IFS. With
the daily progress of research, Wang et al. [24] proposed a single-valued neutrosophic set (SVNS)
that solves complex problems by involving the study of uncertain parameters. Investigations by
Chakraborty et al. [25,26] examined different categories of trapezoidal and triangular neutrosophic
numbers. Fernandez et al. [27] and Abdel-Basset et al. [28] looked into the method using a single-
valued trapezoidal neutrosophic number (SVTNN); this technique employs neutrosophic PERT
(NPERT) to effectively navigate unpredictable settings via network analysis. Based on these find-
ings, Nagalakshmi et al. [29] compared the study of NS and FCPP. This comparative research
shows that neutrosophic sets can provide greater versatility in risk assessment. Another work by
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Priyadharsini et al. [30] evaluated triangular NPERT analysis for estimating project time and costs. A
lot of researchers are studying NS under different optimization methods, such as the shortest path [31],
minimum spanning tree [32], MCDM [33], linear programming problem [34], and so on. In addition
to their theoretical and practical uses, ongoing research also uses computer implementations of these
advanced ideas. These have greatly improved tools, such as the NCMPy package for managing neutro-
sophic cognitive maps [35] and the open-source python neutrosophic package [36], which are based on
this theoretical base. The main study is about how to solve CPP in a neutrosophic environment using
the python programming language. This will enhance the effectiveness and efficiency of computing
environments by enabling the effective application of neutrosophic understanding.

The following is a list of the key research contributions to the development of the CPP objective:

• According to recent literature, CPP solves complex problems by including uncertainty study.

• To represent uncertainty, our proposed model uses CPP in a neutrosophic environment (NCPP).
It uses a single-valued triangular neutrosophic number (TrSVNN) to represent the uncertainty
and ambiguity that come with project timelines. Furthermore, the initiation also addresses a
new set of problems with varying uncertainty parameters.

• The task involves implementing a score function that aims to quantify the accuracy of project
analysis.

• Developed the proposed methodology in python, a computational programming language, to
elucidate the nuances of neutrosophic logic.

• Implementing a comparative analysis that reveals neutrosophic logic’s superior capabilities over
classical and fuzzy in demonstrating its enhanced effectiveness while dealing with uncertainty
and complexity.

1.1 Study Novelty
In recent years, there has been an increasing focus within the academic community on developing

the study of the neutrosophic field to discover innovative applications in varied domains. Despite the
progress in understanding and applying TrSVNN, a multitude of unresolved theories and challenges
continue to persist. The primary objective of this research article is to shed light on the concepts of the
neutrosophic domain and offer a novel viewpoint on its possible applications. Our novelty includes:

• Developed a novel approach while employing TrSVNN, an effective and simple model for
handling uncertain information.

• The literature utilizes a scoring approach under neutrosophic study as a further extension
of FCPP.

• A comparative study analysis is conducted on our proposed model to that of previous existing
FCPP and CCPP models.

• An innovation to this study is the use of python for computational execution, which aids in
better quality decision-making.

1.2 Structure of the Paper
The structure of the article unfolds as follows: Section 2 defines the prelims useful for the

development of the document. Section 3 gives the methodology about the existing classical and
neutrosophic environment, where the discussion of classical critical path is derived in Subsection 3.1
and introduces the proposed devlopment of neutrosophic formulation on the working principle of
CPP mentioned in Subsection 3.2 and the proposed algorithmn is breifly discussed in Subsection 3.3.
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Further, Section 4 solves numerical example study that provides existing CCPP in Section 4.1 and
solves existing literature in Section 4.2, further the new set of problem of NCPP using three different
cases was implemented in Subsection 4.3 and lastly conclusion.

2 Preliminary

The paper includes a background on the fundamental concepts of FS, NS, TrSVNN is as follows:
Definition 2.1. Fuzzy Set [11]: A set ṽ, generally obtained as ṽ = {(θ , μṽ (θ)) : θ ∈ ν, μṽ (θ) ∈ [0, 1]},

represented by the ordered pair (θ , μṽ (θ)), where θ be the member of set ṽ and 0 ≤ μṽ (θ) ≤ 1.
Definition 2.2. Neutrosophic Set (NS) [23]: A set ṽns is the universal domain of a set ν, symbolically

stated as θ is known to be a neutrosophic set (NS), if ṽns =
{〈

θ ; [δ̃vns (θ) , ϕṽns (θ) , γ̃vns (θ)]
〉 ...θ ∈ ν

}
, where

δ̃vns (θ) , ϕṽns (θ) , γ̃vns (θ) : ν →]−0, 1+ [ symbolizes the truth δ̃vns (θ), indeterminacy ϕṽns (θ), and falsity
γ̃vns (θ) in the decision making, that satisfies the condition: −0 ≤ δ̃vns (θ) + ϕṽns (θ) + γ̃vns (θ) ≤ 3+.

Definition 2.3. Triangular Single-Valued Neutrosophic Number (TrSVNN) [25]: TrSVNN is defined
as wN = 〈

(h1, q1, t1) ; dN
e , eN

e , f N
e

〉
having truth, indeterminacy, and falsity membership functions, defines

as dN
e , eN

e , f N
e ∈ [0, 1].

TN
e (θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dN

e

(θ − h1)

q1 − h1

h1 ≤ θ < q1

dN
e θ = q1

dN
e

(t1 − θ)

t1 − q1

q1 < θ ≤ t1

0 Otherwise

IN
e (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q1 − θ + eN
e (θ − h1)

q1 − h1

h1 ≤ θ < q1

eN
e θ = q1

θ − q1 + eN
e (t1 − θ)

t1 − q1

q1 < θ ≤ t1

1 Otherwise

FN
e (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q1 − θ + f N
e (θ − h1)

q1 − h1

h1 ≤ θ < q1

f N
e θ = q1

θ − q1 + f N
e (t1 − θ)

t1 − q1

q1 < θ ≤ t1

1 Otherwise

In special case, when eN
e = 0, f N

e = 0 then it reduces the fuzzy number
〈
(h1, q1, t1) ; dN

e

〉
.

Definition 2.4. Comparison between two SVTNN [37]: Consider two SVTNN as eN
1 and jN

1 ;

where eN
1 and jN

1 are defined respectively as follows: eN
1 =

〈
(h1, q1, t1, s1) ; dN

e1
, eN

e1
, f N

e1

〉
and jN

1 =〈
(h2, q2, t2, s2) ; dN

j1
, eN

j1
, f N

j1

〉
.

1. E ′(eN
1 ) < E ′(jN

1 ), where eN
1 is smaller than jN

1 and symbolized as eN
1 < jN

1 ;

2. If E ′(eN
1 ) = E ′(jN

1 ), such that
(a) A′(eN

1 ) < A′(jN
1 ), where eN

1 is smaller than jN
1 and symbolized as eN

1 < jN
1 ;

(b) A′(eN
1 ) = A′(jN

1 ),
i C ′(eN

1 ) < C ′(jN
1 ), where eN

1 is smaller than jN
1 and symbolized as eN

1 < jN
1 ;

3. E ′(eN
1 ) > E ′(jN

1 ), where eN
1 is greater than jN

1 and symbolized as eN
1 > jN

1 .

where eN
P = 〈(

hp, qp, tp, sp

)
; dN

p , eN
p , f N

p

〉
, where (p = 1, 2).

1. Score function is defined as: E ′(eN
P ) =

(
hp + 2qp + 2tp + sp

)
6

∗
(
2 + dN

p − eN
p − f N

p

)
3



CMES, 2024, vol.140, no.3 2961

2. Accuracy function is defined as: A′(eN
P ) = (hp + 2qp + 2tp + sp)

6
∗ (

dN
p − eN

p

)
3. Certainty function is defined as: C ′(eN

P ) = (hp + 2qp + 2tp + sp)

6
∗ (

dN
p

)
Note: If the SVTNN eN

P = 〈(
hp, qp, tp, sp

)
; dN

p , eN
p , f N

p

〉
is symmetric, then qp = tp is convertible to

TrSVNN.
Definition 2.5. Arithmetic operations between two (TrSVNN) [38]: Let eN and jN be the two TrSVNN

represented as eN = 〈
(h1, q1, t1) ; dN

e , eN
e , f N

e

〉
, jN = 〈

(h2, q2, t2) ; dN
j , eN

j , f N
j

〉
.

• Addition: eN ⊕ jN = 〈
(h1 + h2, q1 + q2, t1 + t2) ; min

(
dN

e , dN
j

)
, max

(
eN

e , eN
j

)
, max

(
f N

e , f N
j

)〉
• Subtraction: eN � jN = 〈

(h1 − h2, q1 − q2, t1 − t2) ; min
(
dN

e , dN
j

)
, max

(
eN

e , eN
j

)
, max

(
f N

e , f N
j

)〉
Definition 2.6. Binary operations between two (TrSVNN): Let eN and jN be the two TrSVNN

represented as eN = 〈
(h1, q1, t1) ; dN

e , eN
e , f N

e

〉
, jN = 〈

(h2, q2, t2) ; dN
j , eN

j , f N
j

〉
be two TrSVNN, then using

the score function defined from Definition 2.4 is as follows:

eN + jN = 〈
(h1 + h2, q1 + q2, t1 + t2) ; min

(
dN

e , dN
j

)
, max

(
eN

e , eN
j

)
, max

(
f N

e , f N
j

)〉
E ′ (eN + jN

) =
(

(h1 + h2) + 4 (q1 + q2) + (t1 + t2)

6

)

∗
(

2 + min
(
dN

e , dN
j

) − max
(
eN

e , eN
j

) − max
(
f N

e , f N
j

)
3

)

2.1 List of Abbreviation Used throughout This Paper
• CPP represents “critical path problem”.

• TrFN represents “triangular fuzzy number”.

• TFN represents “trapezoidal fuzzy numbers”.

• TrIFS represents “triangular intuitionistic fuzzy sets”.

• CCPP represents “classical critical path problem”.

• NS represents “neutrosophic set”.

• TrSVNN represents “single-valued triangular neutrosophic number”.

• SVTNN represents “single-valued trapezoidal neutrosophic number”.

• CP represents “critical path”.

• NPP represents “neutrosophic non-critical possible paths”.

• NCPP represents “neutrosophic critical path problem”.

• NCPL represents “neutrosophic critical path length”.

• NCP represents “neutrosophic critical path”.

• CCPL represents “critical crisp path length”.

• FCPP represents “fuzzy critical path problems”.

• FCP represents “fuzzy critical path”.

• FCPL represents “fuzzy critical path length”.
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3 Methodology

The exploration to delve the study of existing CCPP and the proposed NCPP is discussed above
to enhance the decision-making framework in addressing the uncertainty in project scheduling.

3.1 Existing Critical Path Network Problem Formulation under Classical Environment
The CCPP implements a dynamic programming in the network, a cyclic-directed graph G =

(V , A). In this graph, V is the set of vertices with numbers from 1 (source) to m (destination), and
A is the set of directed edges. The project initialization starts with zero, indicating that there is no
accumulated duration at the beginning.

f (m) = 0

f (k) = max
k<δ

{Ckδ + f (δ)| < k, δ >∈ A} (3.1)

The weight Ckδ of the directed edge from one vertex k to another vertex δ is represented by the
duration. f (k) quantifies the length of the longest critical path commencing at vertex k and concluding
at vertex m.

3.2 Proposed Critical Path Network Problem Formulation under Neutrosophic Environment
The NCPP and edge weights Ckδ in the network are treated as indeterminate, reflecting the inherent

ambiguity of the data. Each edge weight Ckδ is defined within the acceptable range forming an interval,
with lower

(
Fkδ1

)
and upper bound

(
Fkδ2

)
, by maintaining the indeterminate nature of project activity

durations by satisfying the conditions 0 ≤ Fkδ1 < Ckδ and, 0 < Fkδ2. The suitable edge weight within
the range

[
Ckδ − Fkδ1, Ckδ + Fkδ2

]
for Ckδ leads to the construction of such selected intervals form a

specific type of neutrosophic number, termed to be TrSVNN
(

CN∗
kδ

)
, which is defined by the triplet

corresponding to its truth
(
dN

p

)
, indeterminacy

(
eN

p

)
, and falsity

(
f N

p

)
been depicted in Fig. 1 as follows:

CN∗
kδ

= (
Ckδ − Fkδ1, Ckδ, Ckδ + Fkδ2; dN

p , eN
p , f N

p

)
; where 0 < Fkδ1 < Ckδ, 0 < Fkδ2 (3.2)

Figure 1: Triangular single-valued neutrosophic of CN∗
kδ

The interval within edge weights
[
Ckδ − Fkδ1, Ckδ + Fkδ2

]
is considered as neutrosophic framework,

where Fkδ = Fkδ2 − Fkδ1 derives its variation of the upper and lower bound. This alignment concept
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is derived from the Definition 2.4. The neutrosophic edge weights CN∗
kδ

can be calculated using the
formula:

E ′ (CN∗
kδ

) = Ckδ − Fkδ1 + 4Ckδ + Ckδ + Fkδ2

6
×

(
2 + dN

p − eN
p − f N

p

3

)
(3.3)

Refining this expression yields:

E ′ (CN∗
kδ

) = 6Ckδ + (
Fkδ2 − Fkδ1

)
6

×
(

2 + dN
p − eN

p − f N
p

3

)
E ′ (CN∗

kδ

) = Ckδ +
(

Fkδ2 − Fkδ1

6

)
×

(
2 + dN

p − eN
p − f N

p

3

)
(3.4)

E ′ (CN∗
kδ

) =
(

Ckδ + Fkδ

6

)
×

(
2 + dN

p − eN
p − f N

p

3

)
> 0 (3.5)

If Fkδ1 = Fkδ2 from Eq. (3.4), it simplifies the neutrosophic edge weight E ′
(

CN∗
kδ

)
= Ckδ is obtained

to a classical sense. Where E ′ (CN∗
kδ

) =
(

Ckδ + Fkδ

6

)
×

(
2 + dN

p − eN
p − f N

p

3

)
be the neutrosophic estimate

of the edge weight, reflecting the transition from the potential range of values to a classical measure.
Considering the finite number of paths between the two nodes within the network can be deducted
from the existence of numerous neutrosophic paths from any node k to node m. Thus, for a path
Q = 〈

k, k1, k2.., kr(k), m
〉

leading to the sequence of the node pairs 〈k, k1〉 , 〈k1, k2〉 , ..,
〈
kr(k), m

〉 ∈ A for,
f (k) = Ckk1

+ Ck1k2
+ ..... + Ckr(k)m. Accordingly, the aggregate critical path length f (k) from vertex k

to vertex m is expressed as follows:

f (k) = Ckk1
+ Ck1k2

+ · · · + Ckr(k)m ≥ Ckw1
+ Cw1w2

+ · · · + CwQ(w)m (3.6)

where equality holds at least one pathway since f (k) represents the maximum path length for all
possible routes Q = 〈

k, w1, w2, .., wQ(w), m
〉

from vertex k to vertex m. Thus,

f (k) = max
{

Ckw1
+ Cw1w2

+ .. + CwQ(w) ,m/Q = 〈
k, w1, w2, ..., wQ(w), m

〉}
Transitioning neutrosophic on both sides of the equation, the modified Eq. (3.6) evolves to:

CN∗
kk1

⊕ CN∗
k1k2

⊕ .. ⊕ CN∗
kr(k)

m ≥ CN∗
kw1

⊕ CN∗
w1w2

⊕ ... ⊕ CN∗
wQ(w)m

(3.7)

Before proceeding with the further step, the implementation of the score function (E ′) defined
from Definition 2.4 for the path length Ckw1

, Cw1w2
, CwQ(w)m into crisp is as follows:

E ′
(

CN∗
kk1

⊕ CN∗
k1k2

⊕ .. ⊕ CN∗
kr(k)

m

)
≥ E ′

(
CN∗

kw1
⊕ CN∗

w1w2
⊕ ... ⊕ CN∗

wQ(w)m

)
CN

kk1
+ CN

k1k2
+ .. + CN

kr(k)
m ≥ CN

kw1
+ CN

w1w2
+ ... + CN

wQ(w)m
(3.8)

Let [f (k)]N be the length of the neutrosophic critical path, where at least one equality holds from

the possible paths from vertex k to vertex m in the network G = (V , A) with
{

CN∗
kδ

/< k, δ > ∈ A
}

.

From Eq. (3.8), where f (k) = Ckk1
+ Ck1k2

+ ..... + Ckr(k)m calculates from vertex k and vertex δ within
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the network m.

[f (k)]N = CN
kk1

+ CN
k1k2

+ ... + CN
kr(k)m

[f (δ)]N = CN
δδ1

+ CN
δ1δ2

+ ... + CN
δr(δ)m (3.9)

The reformulation of Eq. (3.1) is as follows: for any vertex k in the graph, the length of any path
from k to m implies; f (k) ≥ Ckδ + f (δ), ∀k < δ, (k, δ) ∈ A represents the critical path where at least
one equal sign holds for all possible paths, which can be mathematically represented as:

Ckk1
+ Ck1k2

+ ... + C
kr(k)

m ≥ Ckδ + Cδδ1
+ Cδ1δ2

+ ... + C
δr(δ)

m, ∀k < δ, (k, δ) ∈ A (3.10)

Updating and applying neutrosophic on both sides of the Eq. (3.10) allows us to compare the
aggregated neutrosophic weights as follows:

CN∗
kk1

⊕ CN∗
k1k2

⊕ ... ⊕ CN∗
kr(k)

m ≥ CN∗
kδ

⊕ CN∗
δδ1

⊕ CN∗
δ1δ2

⊕ ... ⊕ CN∗
δr(δ)m ∀k < δ, (k, δ) ∈ A (3.11)

Ensuring the preservation of at least one instance of equality from Definition 2.4 and Eq. (3.5)
refined within the edge connections from vertex k to m is as follows:

CN

kk1
+ CN

k1k2
+ ... + CN

kr(k)
m ≥ CN

kδ
+ CN

δδ1
+ CN

δ1δ2
+ .. + CN

δr(δ)m ∀k < δ, (k, δ) ∈ A (3.12)

Consequently, from the Eqs. (3.5), (3.10), and (3.12), the decision maker (DM) choose appropriate
bounds: Fkk1

, Fk1 k2
, .., Fkr(k)m, Fkδ

, F
δδ1

, .., F
δr(δ)m to satisfy:

Fkk1
+ Fk1 k2

+ .. + Fkr(k)m ≥ Fkδ
+ F

δδ1
+ .. + F

δr(δ)m ∀k < δ/< k, δ > ∈ A (3.13)

The dynamic programming problem recursion for the neutrosophic critical path problem from the
Eqs. (3.9), and (3.12) is thus formalized as:

[f (k)]N = max
k<δ

{(
CN∗

kδ
+ [f (δ)]N

)
/〈k, δ〉 ∈ A

}
f (m)N = 〈(0, 0, 0); 1, 0, 0〉 (3.14)

Encapsulate Eq. (3.14), where [f (k)]N designates the length of the critical path from node k to node
m in the neutrosophic sense. In this scenario, if the edges are equivalent to Fkδ2 = Fkδ1, then obtained
CN∗

kδ
= Ckδ effectively transforms the neutrosophic to classical sense.

3.3 Proposed Algorithm for Solving TrSVNN NCPP

Algorithm 1: A novel approach for finding the CPP under TrSVNN environment
Step 1: Begin the project network with the directed graph G(V ,A).
Step 2: For each activity in the network, represented as an edge with weight Ckδ:

a. Recognize the inherent ambiguity of activity duration and treat Ckδ as indeterminate in
existing CCPP.

b. Define the acceptable range for Ckδ forming an interval with lower bound Fkδ1 and upper bound
Fkδ2, ensuring: 0 ≤ Fkδ1 < Ckδ and 0 < Fkδ2.

(Continued)
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Algorithm 1 (continued)

Step 3: Select the suitable edge weight for Ckδ within the range [Ckδ − Fkδ1, Ckδ, Ckδ + Fkδ2].
Step 4: Construct the TrSVNN

(
CN∗

kδ

)
for the activity with triplet values corresponding to truth dN

p ,
indeterminacy eN

p , and falsity f N
p .

Step 5: For each activity edge Ckδ define three distinct cases to determine the pathway of TrSVNN
bounds:

(
Fkδ1 < Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
, and

(
Fkδ1 < Fkδ2

) (
Fkδ1 > Fkδ2

) (
Fkδ1 = Fkδ2

)
Step 6: Implement dynamic programming for NCPP:

a. Initialize f (m)N = 〈(0, 0, 0); 1, 0, 0〉 for the terminal node m, indicating the project completion
without uncertainty.

b. Utilize the addition operator defined in Definition 2.5 to calculate the neutrosophic value for
each edge (k, δ) as CN∗

kδ
.

c. For each node k, update: f (k)N = maxk<δ{CN∗
kδ

+ f (δ)N} for all paths to determine the
neutrosophic CPP.
Step 7: For node k with multiple predecessors δ, use the score function defined in the Definition 2.4.
Step 8: Utilization from step 2 to step 7; tracing back from the terminal node m, to the destination node.
The path defines neutrosophic critical path and non-critical paths, which incorporate all identified
uncertainties and variations in the durations.
Step 9: End

4 Numerical Example

The numerical analysis shows a network structure defined in Fig. 2 from [39], where nodes 1 to 5
are project activities. Initial activity durations are based on the existing CCPP. The proposed algorith-
mic method transmits the initial activity durations to the TrSVNN context. Decision-makers utilize the
interval for each activity and choose appropriate values corresponding to truth, indeterminacy, and
falsity

(
dN

p , eN
p , f N

p

)
. The network connectivity is shown by linkages like (1, 2),(1, 3),..,(4, 5)that map

activity interactions. This technique accurately represents real-world project scheduling uncertainty
and unpredictability.

Figure 2: Project network

4.1 Existing Classical Critical Path Problem (CCPP)
Example 4.1. In CCPP [39], assuming the edge weights of the network (ref Fig. 2) are as follows:

C12 = 5, C13 = 10, C14 = 3, C24 = 4, C34 = 2, C45 = 8. Our aim is to implement the CCPP model to
find the critical path for the given network (Fig. 2).
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Solution: The working model from Eq. (3.1) is calculated, and the CP of the classical case from
node 1 to node 5 is 1 → 3 → 4 → 5, within the total duration of CCPL is 20 days. The
estimation utilizes a deterministic CCPP approach that ignores uncertainty about activity duration.
The neutrosophic technique, which integrates uncertainty and variability into the critical path analysis,
is introduced in the next subsection.

4.2 Comparing with the Existing Method
In the upcoming study, the representation of TrSVNN is considered to encapsulate the uncertainty

and imprecision of project activity’s time durations using the same network diagram of Fig. 2. In
Example 4.2,

(
dN

p , eN
p , f N

p

)
are constantly employed a uniform approach of (1, 0, 0) in evaluating the

possible duration of activities with three distinct cases, i.e., Case-I:
(
Fkδ1 < Fkδ2

)
, Case-II:

(
Fkδ1 > Fkδ2

)
and hybrid approach of Case-III:

(
Fkδ1 < Fkδ2

)
,
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 = Fkδ2

)
based on the relationship

between Fkδ1 and Fkδ2, which are critical parameters in our neutrosophic model.
Example 4.2.1. Case-I: If the DM chooses the condition as Fkδ1 < Fkδ2.

Solution: Step 1 defines the project network (ref Fig. 2). Using the algorithmic steps from 2 to 5,
the DM chooses the appropriate lower and upper bounds as follows: F 121 = 1, F 122 = 2, F131 = 3,
F 132 = 4, F 141 = 2, F 142 = 4, F 241 = 1, F 242 = 2, F 341 = 1, F 342 = 2, F 451 = 3, F 452 = 4 to satisfy the
condition from Eq. (3.2) is determined in Table 1 as follows:

Table 1: Case-I Fkδ1 < Fkδ2 (ref Fig. 2)

Activity Immediate predecessor Fkδ1 < Fkδ2

CN∗
12 — 〈(4, 5, 7); 1, 0, 0〉

CN∗
13 — 〈(7, 10, 14); 1, 0, 0〉

CN∗
14 — 〈(1, 3, 7); 1, 0, 0〉

CN∗
24 CN∗

12 〈(3, 4, 6); 1, 0, 0〉
CN∗

34 CN∗
13 〈(1, 2, 4); 1, 0, 0〉

CN∗
45 CN∗

14 , CN∗
24 , CN∗

34 〈(5, 8, 12); 1, 0, 0〉

From Steps 6 to 8, the case-I
(
Fkδ1 < Fkδ2

)
calculates arithmetic operations from terminal node

m by intializing with f (m)N = 〈(0, 0, 0); 1, 0, 0〉 that defines the optimal assumption. Further, the
designed computation of the project network perform neutrosophic arithmetic operation and results
are generated from python programming depicted in Figs. 3a–3c.

Finally, the NCPL is 〈(13, 20, 30) ; 1, 0, 0〉 being the maximum time taken from node 1 to node 5
having its NCP is 1 → 3 → 4 → 5 as mentioned in Fig. 3a. Using Definition 2.4, the completion of the
project calculates the Suggested CCPL (SCCPL) is 20.50 days and other NPP are being identified in
Fig. 3b with 11.50 days having the NCP of 1 → 4 → 5 and NCPL 〈(6, 11, 19) ; 1, 0, 0〉 and Fig. 3c with
17.50 days by having the NCP as 1 → 2 → 4 → 5 and respective NCPL of 〈(12, 17, 25) ; 1, 0, 0〉 unveils
alternate project activity sequencing that could mitigate risks and improve project responsiveness to
changing situations.

Example 4.2.2. Case-II: If the DM chooses the condition as Fkδ1 > Fkδ2.

Solution: Similary, by implementing our proposed algorithmn in Subsection 3.3, the bounds are
structured as: F 121 = 4, F 122 = 1, F 131 = 6, F 132 = 5, F 141 = 2, F 142 = 1, F 241 = 2, F 242 = 1, F 341 = 2,
F 342 = 1, F 451 = 4, F 452 = 2 to satisfy the condition from Eq. (3.2) determined in Table 2 as follows:
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Figure 3: Case-I
(
Fkδ1 < Fkδ2

)
Table 2: Case-II Fkδ1 > Fkδ2 (ref Fig. 2)

Activity Immediate predecessor Fkδ1 > Fkδ2

CN∗
12 — 〈(1, 5, 6); 1, 0, 0〉

CN∗
13 — 〈(4, 10, 15); 1, 0, 0〉

CN∗
14 — 〈(1, 3, 4); 1, 0, 0〉

CN∗
24 CN∗

12 〈(2, 4, 5); 1, 0, 0〉
CN∗

34 CN∗
13 〈(0, 2, 3); 1, 0, 0〉

CN∗
45 CN∗

14 , CN∗
24 , CN∗

34 〈(4, 8, 10); 1, 0, 0〉

In contrast, case-II
(
Fkδ1 > Fkδ2

)
is considered to incorporate a more conservative and risk-averse

approach, which means incorporating a higher degree of uncertainty yields to shorter duration, and
the results are depicted in Figs. 4a–4c.

Figure 4: Case-II
(
Fkδ1 > Fkδ2

)
Based on the condition

(
Fkδ1 > Fkδ2

)
. The obtained NCPL is < (8, 20, 28); 1, 0, 0 > and the NCP of

1-3-4-5 yields a project completion time of SCCPL with 19.33 days, as observed in Fig. 4a. Alternative
NPP-1 and NPP-2 have been explored in Figs. 4b and 4c, respectively, similar to case I of Example
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4.2.1. However, there is a change in the NCCPL, having 10.50 days and 16.00 days, and their respective
NCPLs are < (5, 11, 14); 1, 0, 0 > and < (7, 17, 21); 1, 0, 0) >.

Example 4.2.3. Case-III: If the DM chooses the hybrid approach condition as
(
Fkδ1 > Fkδ2

)
,(

Fkδ1 < Fkδ2

)
,
(
Fkδ1 = Fkδ2

)
Solution: Similarly, implementing the algorithmic approach from steps 1 to 9, the obtained lower

and upper bounds as: F 121 = 1, F 122 = 2, F 131 = 4, F 132 = 3, F 141 = 1, F 142 = 1, F 241 = 3, F 242 = 2,
F 341 = 1, F 342 = 2, F 451 = 5, F 452 = 3 to satisfy the Eq. (3.2) is determined in Table 3 as follows:

Table 3: Case-III
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
,
(
Fkδ1 = Fkδ2

)
(ref Fig. 2)

Activity Immediate predecessor Fkδ1 > Fkδ2, Fkδ1 < Fkδ2, Fkδ1 = Fkδ2

CN∗
12 — 〈(4, 5, 7); 1, 0, 0〉

CN∗
13 — 〈(6, 10, 13); 1, 0, 0〉

CN∗
14 — 〈(2, 3, 4); 1, 0, 0〉

CN∗
24 CN∗

12 〈(1, 4, 6); 1, 0, 0〉
CN∗

34 CN∗
13 〈(1, 2, 4); 1, 0, 0〉

CN∗
45 CN∗

14 , CN∗
24 , CN∗

34 〈(3, 8, 11); 1, 0, 0〉

Upon the analysis using three hybrid case-III
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
and,

(
Fkδ1 = Fkδ2

)
by

satisfying the Eq. (3.2), this integrated approach performs a balanced view of precise, conservative,
and optimum estimations, and the results are defined in Figs. 5a–5c.

Figure 5: Case-III
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
,
(
Fkδ1 = Fkδ2

)
For case-III, the NCPL is < (10, 20, 28); 1, 0, 0 > from the NCP of 1 → 3 → 4 → 5, with the

obtained completion time of SCCPL being 19.67 days from Fig. 5a. The NPP-1 and NPP-2 are derived
similarly to Examples 4.1 and 4.2 but with slight changes in the completion times of SCCPL, which are
10.67 days and 16.67 days, along with the NCPL as < (5, 11, 15); 1, 0, 0 > and < (8, 17, 24); 1, 0, 0 >

defined in Figs. 5b and 5c. The CP and NPP from the three distinct cases are depicted in Fig. 6.

Synthesizing the neutrosophic decision-making parameter involving three distinct cases to illus-
trate the complexity of project uncertainty and equivalence. The condition

(
Fkδ1 < Fkδ2

)
suggests

an underestimation of activity durations, generally leading to optimistic project timelines. while(
Fkδ1 > Fkδ2

)
indicating an overestimation, suggesting risk aversion. The hybrid approach combines
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three conditions
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
and

(
Fkδ1 = Fkδ2

)
, includes both conservative and opti-

mistic estimates alongside precise forecasts, offering a well-rounded view that might deliver the
practical unpredictable project settings. Notably, convergence proves the neutrosophic approach
compatibility and liability over the initial study of CCPP and FCPP. The analysis is detailed in Table 4
covering the discussion of obtained CCPL from the existing literature of FCPP [40], by calculating
CCPL, FCP, FCPL and, our proposed method in neutrosophic environment for Example 4.2. Further,
the discussion of NCP and NPP of Example 4.2 is referred in Table 5 and the study representation of
classical, fuzzy, and neutrosophic findings with visualization is provided in Fig. 7.

Figure 6: CP and NPP

Table 4: Results and discussion

Decision making
parameters

Fkδ1 = Fkδ2 Example 4.2.1,
Case-I,
Fkδ1 < Fkδ2

Example 4.2.2,
Case-II,
Fkδ1 > Fkδ2

Example 4.2.3,
Case-III,
Fkδ1 = Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 > Fkδ2

Edge weights CN∗
kδ

= Ckδ CN∗
kδ

< Ckδ CN∗
kδ

> Ckδ CN∗
kδ

= Ckδ , CN∗
kδ

< Ckδ ,

CN∗
kδ

> Ckδ

CCPL 20 — — —
Elizabeth et al. [40] — CCPL: 20.50 CCPL: 19.33 CCPL: 19.67

FCPL: (13, 20, 30) FCPL: (8, 20, 28) FCPL: (10, 20, 28)

FCP: 1 → 3 → 4 → 5 FCP: 1 → 3 → 4 → 5 FCP: 1 → 3 → 4 → 5
Our proposed method — SCCPL: 20.50 SCCPL: 19.33 SCCPL: 19.67

NCPL:
〈(13, 20, 30); 1, 0, 0〉

NCPL: 〈(8, 20, 28); 1, 0, 0〉 NCPL: 〈(10, 20, 28); 1, 0, 0〉

NCP: 1 → 3 → 4 → 5 NCP: 1 → 3 → 4 → 5 NCP: 1 → 3 → 4 → 5

Table 5: Network possible results

Possible
network paths

CCPL Neutrosophic environment

Fkδ1 = Fkδ2 Example 4.2.1 Case-I
Fkδ1 < Fkδ2

Example 4.2.2 Case-II
Fkδ1 > Fkδ2

Example 4.2.3 Case-III
Fkδ1 = Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 > Fkδ2

1 → 3 → 4 → 5 20 SCCPL: 20.50
NCPL: 〈(13, 20, 30); 1, 0, 0〉

SCCPL: 19.33
NCPL: 〈(8, 20, 28); 1, 0, 0〉

SCCPL: 19.67
NCPL: 〈(10, 20, 28); 1, 0, 0〉

1 → 4 → 5 11 SCCPL: 11.50
NCPL: 〈(6, 11, 19); 1, 0, 0〉

SCCPL: 10.50
NCPL: 〈(5, 11, 14); 1, 0, 0〉

SCCPL: 10.67
NCPL: 〈(5, 11, 15); 1, 0, 0〉

(Continued)
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Table 5 (continued)
Possible
network paths

CCPL Neutrosophic environment

Fkδ1 = Fkδ2 Example 4.2.1 Case-I
Fkδ1 < Fkδ2

Example 4.2.2 Case-II
Fkδ1 > Fkδ2

Example 4.2.3 Case-III
Fkδ1 = Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 > Fkδ2

1 → 2 → 4 → 5 17 SCCPL: 17.50
NCPL: 〈(12, 17, 15); 1, 0, 0〉

SCCPL: 16
NCPL: 〈(7, 17, 21); 1, 0, 0〉

SCCPL: 16.67
NCPL: 〈(8, 17, 24); 1, 0, 0〉

Figure 7: Comparison of classical, fuzzy, and neutrosophic (ref Table 4)

4.3 Analysis of Neutrosophic Path Lengths Under Varied Degrees
Example 4.3. Within this framework, the study now advances by exploring neutrosophic with var-

ied degrees of uncertainty. From the previous Example 4.2, the study outlines TrSVN with
(
dN

p , eN
p , f N

p

)
parameters as (1, 0, 0) to the network for analyzing its behavior. The subsequent new problem,
presented in Example 4.2, extends the investigation to incorporate variations in the

(
dN

p , eN
p , f N

p

)
parameters that are presented in Table 6, for evaluating the network’s responsiveness to dynamic
changes within the environment.
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Table 6: TrSVNN conditions under different perspectives of
(
dN

p , eN
p , f N

p

)
(ref Fig. 2)

Activity Immediate
predecessor

Fkδ1 < Fkδ2 Fkδ1 > Fkδ2 Fkδ1 > Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 = Fkδ2

CN∗
12 — 〈(4, 5, 7); 0.83, 0.2, 0.14〉 〈(1, 5, 6); 0.83, 0.2, 0.14〉 〈(4, 5, 7); 0.83, 0.2, 0.14〉

CN∗
13 — 〈(7, 10, 14); 0.92, 0.11, 0.02〉 〈(4, 10, 15); 0.92, 0.11, 0.02〉 〈(6, 10, 13); 0.92, 0.11, 0.02〉

CN∗
14 — 〈(1, 3, 7); 0.68, 0.13, 0.25〉 〈(1, 3, 4); 0.68, 0.13, 0.25〉 〈(2, 3, 4); 0.68, 0.13, 0.25〉

CN∗
24 CN∗

12 〈(3, 4, 6); 0.62, 0.21, 0.34〉 〈(2, 4, 5); 0.62, 0.21, 0.34〉 〈(1, 4, 6); 0.62, 0.21, 0.34〉
CN∗

34 CN∗
13 〈(1, 2, 4); 0.85, 0.16, 0.15〉 〈(0, 2, 3); 0.85, 0.16, 0.15〉 〈(1, 2, 4); 0.85, 0.16, 0.15〉

CN∗
45 CN∗

14 , CN∗
24 , CN∗

34 〈(5, 8, 12); 0.91, 0.02, 0.06〉 〈(4, 8, 10); 0.91, 0.02, 0.06〉 〈(3, 8, 11); 0.91, 0.02, 0.06〉

Solution: From Table 6, the proposed algorithm from steps 1 to 9 evaluates the result out-
comes of NCPP. It illustrates different neutrosophic conditions by varying uncertainty parameters;
the obtained SCCPL is 17.36 days, when illustrated the condition Fkδ1 < Fkδ2 having NCPL of
〈(13, 20, 30) ; 0.85, 0.16, 0.15〉, when Fkδ1 > Fkδ2 having 〈(8, 20, 28) ; 0.85, 0.16, 0.15〉 of 16.37 days,
and the condition for the hybrid approach of Fkδ1 > Fkδ2,Fkδ1 < Fkδ2, Fkδ1 = Fkδ2 having NCPL
〈(10, 20, 28) ; 0.85, 0.16, 0.15〉 having 16.65 days, where the NCP remains same for three distinct cases
as 1 → 3 → 4 → 5. The study exhibits a marked improvement over the traditional CCPP approach,
which estimates a static 20 days, because FCPP cannot be resolved within the neutrosophic context,
as highlighted in Table 7, and the discussion of other possible paths is provided in Table 8.

Table 7: Results and discussion

Decision making
parameters

Fkδ1 = Fkδ2 Case-I
Fkδ1 < Fkδ2

Case-II
Fkδ1 > Fkδ2

Case-III
Fkδ1 = Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 > Fkδ2

Edge weights CN∗
kδ

= Ckδ CN∗
kδ

< Ckδ CN∗
kδ

> Ckδ CN∗
kδ

> Ckδ , CN∗
kδ

< Ckδ ,

CN∗
kδ

= Ckδ

CCPL 20 — — —
Elizabeth et al. [40] — — — —
Our proposed method — SCCPL: 17.36

NCPL:
〈(13, 20, 30); 0.85, 0.16, 0.15〉
NCP: 1 → 3 → 4 → 5

SCCPL: 16.37
NCPL:
〈(8, 20, 28); 0.85, 0.16, 0.15〉
NCP: 1 → 3 → 4 → 5

SCCPL: 16.65
NCPL: 〈(10, 20, 28);
0.85, 0.16, 0.15〉
NCP: 1 → 3 → 4 → 5

The comparison between Example 4.2 and Example 4.3 involving the study results having the
same NCP as 1 → 3 → 4 → 5 using three different cases with their respective duration time is
illustrated in Fig. 8, even though FCPP is part of the discussion but does not solve our proposed
neutrosophic model and further for brief overview of NCP, logical comparisons are detailed in Table 9.
A more robust adaptability and precision of NCPP in project management under varying conditions of
uncertainty underscores the potential to enhance better decision-making by incorporating a broader
range of probabilistic outcomes, which ultimately leads to robust planning and execution strategies.
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Table 8: Network possible results

Possible network
paths

CCPL Neutrosophic environment

Fkδ1 = Fkδ2 Case-I
Fkδ1 < Fkδ2

Case-II
Fkδ1 > Fkδ2

Case-III
Fkδ1 = Fkδ2, Fkδ1 < Fkδ2,
Fkδ1 > Fkδ2

1 → 3 → 4 → 5 20 SCCPL: 17.36
NCPL: 〈(13, 20, 30);
0.85, 0.16, 0.15〉

SCCPL: 16.37
NCPL: 〈(8, 20, 28);
0.85, 0.16, 0.15〉

SCCPL: 16.65
NCPL: 〈(10, 20, 28);
0.85, 0.16, 0.15〉

1 → 4 → 5 11 SCCPL: 8.82
NCPL: 〈(6, 11, 19);
0.68, 0.13, 0.25〉

SCCPL: 8.05
〈(5, 11, 14); 0.68,
0.13, 0.25〉

SCCPL: 8.18
NCPL: 〈(5, 11, 15); 0.68,
0.13, 0.25〉

1 → 2 → 4 → 5 17 SCCPL: 12.08
NCPL: 〈(12, 17, 25); 0.62,
0.21, 0.34〉

SCCPL: 11.04
NCPL: 〈(7, 17, 21); 0.62,
0.21, 0.34〉

SCCPL: 11.50
NCPL: 〈(8, 17, 24); 0.62,
0.21, 0.34〉

Figure 8: Comparison of neutrosophic with varying conditions against existing models (ref Tables 7
and 4)

A comparison of NCPP with both conventional CCPP and FCCPP was the primary emphasis of
Examples 4.2 and 4.3. More conventional systems tend to simplify or ignore the inherent uncertainties
in project management activities; the main goal was to evaluate NCPP’s ability to accommodate and
dynamically adapt to these uncertainties.
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Table 9: Logical comparison of total completion under different cases

Examples Comparison of completion duration

Case-I
(Example 4.2.1)

Classical duration: 20 days ≺ Fuzzy duration: 20.50 days ≈ Our proposed
duration: 20.50 days

Case-II
(Example 4.2.2)

Classical duration: 20 days � Fuzzy duration: 19.33 days ≈ Our proposed
duration: 19.33 days

Case-III
(Example 4.2.3)

Classical duration: 20 days � Fuzzy duration: 19.67 days ≈ Our proposed
duration: 19.67 days

Example 4.3 Case-I
Classical: Not applicable,
Fuzzy: Not applicable,
Our proposed: 17.36 days

Case-II
Classical: Not applicable,
Fuzzy: Not applicable,
Our proposed: 16.37 days

Case-III
Classical: Not applicable,
Fuzzy: Not applicable,
Our proposed: 16.65 days

5 Conclusion

Our study proposes a structured NCPP model that integrates into project management networks.
This dynamic method’s adaptive algorithm updates project uncertainty dynamically. By leveraging
the capabilities of TrSVNN, the NCPP facilitates a refined measurement of uncertainty that plays
a crucial role in the field of complex projects. Using NCPP in three different situations gives a
more varied result while keeping the same NCP as 1 → 3 → 4 → 5. This results in an SCCPL
duration time of 20.50 days for condition

(
Fkδ1 < Fkδ2

)
with NCPL 〈(13, 20, 30) ; 1, 0, 0〉, 19.33 days

for condition
(
Fkδ1 > Fkδ2

)
having NCPL as 〈(8, 20, 28) ; 1, 0, 0〉, and 19.67 for the three integrated

situations of
(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
, and

(
Fkδ1 = Fkδ2

)
having NCPL as 〈(10, 20, 28) ; 1, 0, 0〉, while

keeping the uniform approach in Example 4.2. Later, the study refines to varied deviations; the
obtained SCCPL is 17.36, having NCPL as 〈(13, 20, 30) ; 0.85, 0.16, 0.15〉, and SCCPL is 16.37 for
condition

(
Fkδ1 > Fkδ2

)
and 16.65 for hybrid approach

(
Fkδ1 > Fkδ2

)
,
(
Fkδ1 < Fkδ2

)
,
(
Fkδ1 = Fkδ2

)
, having

NCPL as 〈(8, 20, 28) ; 0.85, 0.16, 0.15〉 and 〈(10, 20, 28) ; 0.85, 0.16, 0.15〉 with varying conditions in
Example 4.3. The results emphasize the study’s presentation that NCPP has superior analysis that
outperforms and effectively compares existing methodologies such as CCPP and FCPP for enhancing
project uncertainty management. Employing an innovative methodology and utilizing Python for
computational implementation significantly enhances the field of research. The current body of
research on the application of CPP to various real-world scenarios is limited, suggesting a potential
lack of research in this area. In the future, the investigation of using CPP may vary widely by studying
different unpredictable circumstances.
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