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ABSTRACT

The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global
scale. Network slicing is crucial in delivering services for different, demanding vertical applications in this context.
Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to
ensure packets reach their intended destinations. However, the existing IP (Internet Protocol) over a multi-domain
network faces challenges in enforcing network slicing due to minimal collaboration and information sharing
among network operators. Conventional inter-domain routing methods, like Border Gateway Protocol (BGP),
cannot make routing decisions based on performance, which frequently results in traffic flowing across congested
paths that are never optimal. To address these issues, we propose CoopAI-Route, a multi-agent cooperative deep
reinforcement learning (DRL) system utilizing hierarchical software-defined networks (SDN). This framework
enforces network slicing in multi-domain networks and cooperative communication with various administrators
to find performance-based routes in intra- and inter-domain. CoopAI-Route employs the Distributed Global
Topology (DGT) algorithm to define inter-domain Quality of Service (QoS) paths. CoopAI-Route uses a DRL
agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure
optimal end-to-end routes adapted to the specific requirements of network slicing applications. Our evaluation
demonstrates CoopAI-Route’s commendable performance in scalability, link failure handling, and adaptability to
evolving topologies compared to state-of-the-art methods.
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1 Introduction

The introduction of sixth-generation (6G) mobile network technology aims at surpassing the
performance capabilities of fifth-generation (5G) networks [1], which cannot meet the requirements
for a more intelligent network, ultra-low latency, extremely high network communication speed,
and support for a vast number of diverse connected applications. Next-generation networks provide
end-users with seamless internet connectivity and accommodate a growing number of connected
devices. Ensuring Quality of Service (QoS) is crucial due to this increased connectivity. The promising
technology of network slicing [2] assists network operators in creating virtualized and isolated network
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slices tailored to the specific needs of different applications and use cases. This concept involves
dividing a physical network into multiple virtual networks with dedicated resources and capabilities.
Extensive research has focused on optimizing network functions, with intelligent scheduling and end-
to-end (E2E) optimization critical for 6G. This optimization includes allocating resources to different
network slices and efficient traffic routing between them. The primary objective of routing is to
maximize network efficiency by selecting optimal routes whenever possible. The routing problem
involves determining how network traffic should be routed based on its source and destination [3].

Traditional routers rely on routing protocols to forward packets to the next hop. However, the
increasing demand for network traffic and the dynamic nature of networks pose significant challenges.
Traditional schemes often suffer from poor network performance due to bottlenecks, congestion,
and resource waste. With the growing complexity of networks, scalable and efficient routing becomes
increasingly crucial. Software Defined Networking (SDN) separates the control (deciding the route)
from the data plane (data transmission), allowing for a software-based controller to manage traffic
flow more dynamically. This makes networks more flexible and programmable. Network function
virtualization (NFV) virtualizes the tasks performed by network equipment. Traditionally, these
functions (firewalls, load balancers) ran on dedicated hardware. NFV moves these functions to
software applications that can run on standard servers. This makes them more agile, scalable, and
cost-effective.

SDN and NFV are expected to play significant roles in implementing beyond 5G networks.
Segment routing offers a straightforward and scalable approach to routing and reduces overhead
associated with traditional routing protocols. Leveraging SDN and NFV helps segment routing to
accomplish highly efficient and flexible network deployments in next-generation networks. This simple
and scalable routing approach supports the diverse requirements of 6G networks, including high-
bandwidth applications, low-latency services, and seamless mobility. Autonomous systems (AS) are
networks that operate under a single administrative domain, such as an internet service provider or
a large enterprise network. In multi-AS networks, network slicing enables the creation of E2E virtual
networks that span multiple ASs, allowing for fine-grained control over network resources and perfor-
mance. In multi-domain [4] scenarios with multiple autonomous systems, segment routing finds use in
the establishment of E2E paths that traverse multiple domains, ensuring network scalability, reliability,
and performance. Segment routing [5] involves forwarding packets along predefined paths encoded in
the packet header, which can be computed by the source node or a centralized controller. However,
segment routing in multi-domain scenarios presents challenges that include ensuring interoperability
between different ASs, managing path computation and optimization complexity, and ensuring the
security and privacy of network traffic.

Recently, many works have used reinforcement learning (RL) to solve the network routing
problem. RL is a machine learning technique in which an agent learns to navigate an environment
by taking action and receiving feedback. Unlike supervised learning, RL does not require labeled
data. Instead, the agent interacts with the environment through trial and error. It receives rewards or
penalties based on its actions, allowing it to gradually develop a policy for making optimal choices in
pursuit of a long-term goal. This makes RL suitable for tasks where an agent needs to learn through
exploration and adapt its behavior based on experience.

The IP/Multiprotocol Label Switching (MPLS)-over multi-domain network architecture faces
significant limitations in enforcing network slicing. The inherent challenge lies in the impracticality
of this architecture in facilitating effective collaboration among network operators. Conventional
inter-domain routing algorithms, as illustrated by Border Gateway Protocol (BGP), cannot make
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routing decisions based on performance metrics. Consequently, traffic often traverses congested paths,
leading to suboptimal network performance. Addressing these issues, we introduce CoopAI-Route, a
pioneering multi-agent cooperative Deep Reinforcement Learning (DRL) system that enforces QoS-
based routing for network slicing in multi-domain networks. This collaborative framework employs
hierarchical SDN to compute domain-level paths and efficiently route incoming flows across diverse
domains. A key component of CoopAI-Route is the Distributed Global Topology (DGT) algorithm,
which empowers domain-level path computation elements to discern inter-domain QoS paths. We
employ a DRL agent to ensure optimal E2E routes regarding delay and bandwidth. The agent utilizes
a message-passing neural network (MPNN) with a multi-agent twin-delayed deep deterministic policy
gradient approach, maximizing overall network utilization. This work addresses the challenges in
multi-domain QoS-based SDN segment routing and aims to ensure the computation of paths between
intra-domain and inter-domain routing. The main contributions of this paper can be summarised as
follows:

• CoopAI-Route is a multi-agent cooperative DRL system that enforces network slicing in
multi-domain networks and cooperative communication with various administrators to find
performance-based routes in intra- and inter-domains.

• CoopAI-Route uses a DRL agent with an MPNN-TD3 method to assure optimal E2E routes
adapted to the specific requirements of network slicing applications.

• The CoopAI-Route framework utilizes hierarchical SDN for computing domain-level paths
and efficient routing across diverse domains. The DGT algorithm is crucial for determining
inter-domain QoS paths.

• An extensive evaluation and comparison of CoopAI-Route with baseline schemes using real
network topologies has been conducted. The experimental results have shown that CoopAI-
Route surpasses the baseline schemes in several aspects, reducing the network slice traffic route
request rejection rate, minimizing E2E network delay, and enhancing the overall network utility.

Table 1 provides the abbreviations used in this paper. The remaining sections of the paper are
organized as follows: Section 2 provides a detailed overview of the existing literature and related
research. It discusses the previous approaches and solutions proposed for multi-domain routing
optimization, highlighting their strengths and limitations. Section 3 deals with system design and
problem formulation. Section 4 delves into the details of the multi-domain deep reinforcement learning
agent employed in CoopAI-Route. The integration of MPNN and TD3 in the DRL framework is also
explained. The performance evaluation of CoopAI-Route is presented in Section 5. The results and
analysis of the experiments are discussed in detail. The paper concludes with a summary of the findings
and contributions. Indications of future research and potential improvements to the proposed system
are outlined in Section 6.

Table 1: Abbrevation

Abbreviation Full text

IP Internet protocol
BGP Border gateway protocol
DRL Deep reinforcement learning
SDN Software defined networks

(Continued)
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Table 1 (continued)

Abbreviation Full text

DGT Distribute global topology
QoS Quality of service
6G Sixth generation
5G Fifth generation
NFV Network function virtualization
AS Autonomous system
MPLS Multiprotocol label switching
MPNN Message passing neural network
TD3 Twin-delayed deep deterministic policy gradient
DDQN Double deep Q-network
DQN Deep Q-network
GRU Gated recurrent unit
FCNN Fully connected neural network
MARL Multi-agent reinforcement learning
RL Reinforcement learning
RM Route manager
PCE Path computation element
uRLLC ultra reliable low latency communications
mMTC Massive machine type connection
eMBB Enhanced mobile broadband
QoE Quality of experience
CCDF Complementary cumulative distribution function
GNN Graph neural network
DDPG Deep deterministic policy gradient
SGD Stochastic gradient descent
GB Giga bytes
RAM Random access memory
SAP Shortest available path
LB Load Balance
E2E End-to-end
BO Bayesian optimization
DeepRMSA DRL framework for routing, modulation and

spectrum assignment

2 Related Work

SDN is used for the efficient management of networks efficiently. The related work in this area
can be categorized into single-domain SDN routing and multi-domain SDN routing.

2.1 Single-Domain SDN Routing
Dynamic routing has been implemented in single-domain SDN networks. The collection of usage

information and computation of routes with a practical Ryu controller, E2E delay, and bandwidth
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constraints have been done to validate the SDN architecture described by the authors of [4]. Delay-
sensitive and data traffic classes can benefit from the dynamic multi-path routing strategy with priority-
based scheduling introduced by [6]. The authors [7] developed a method for routing and reserving
resources that adapt to video quality demands. This system reroutes traffic if QoS falls below a
threshold, ensuring smooth video playback and a better user experience on networks without built-in
quality guarantees. The optimizing throughput in a software-defined data center can be done with an
energy-aware routing technique that uses segment routing to keep link residual capacity and utilization
high [8]. Several researchers have successfully utilized DRL to optimize SDN routing. The author [9]
introduced the algorithm, which utilizes DRL to estimate link congestion and minimize network jitters
and packet loss. The authors [10] developed a DRL-based SDN routing algorithm that learns optimal
link weights by analyzing the relationship between traffic distribution and SDN switch load. They
incorporated an M/M/1/K queue-based approach to improve robustness and economy in training time.

The authors [11] have proposed the scale deep route optimization method for addressing con-
vergence and interference issues in large networks. Designation of certain nodes as driver nodes and
dynamic adjustments in link weights based on traffic changes at these nodes help enhance routing
performance and mitigate the impact of topology changes. The authors [12] focused on QoS optimiza-
tion in heterogeneous networks, considering network delay and load balance as objective functions.
Utilization of the DDQN algorithm, load balancing, and routing efficiency in heterogeneous networks
were improved. DQN and network traffic state prediction was proposed by [13] to enhance network
efficiency in dynamic environments. Incorporating a GRU prediction algorithm has helped improve
the perceptual capabilities of DRL, enabling real-time intelligent routing decisions. However, all the
approaches mentioned above rely on an individual SDN controller, which becomes overwhelmed as the
network size increases and different types of data flows enter the network. To overcome this limitation,
a distributed architecture is necessary. This approach allows for dividing large-scale networks into
manageable subdomains, surpassing the scalability constraints of single-controller SDN management.

2.2 Multi-Domain SDN Routing
SDN and multi-domain collaboration help discover multi-paths via BGP alerts and cross-domain

cooperative analysis. The authors [14] established a technique for transferring flows between domains
that takes advantage of both. To eliminate security flaws caused by disclosing irrelevant configuration
information throughout E2E QoS transmission, the authors [15] have suggested a message-sharing
architecture with a path allocation algorithm for trustworthy inter-domain QoS data exchange. A QoS
strategy that considers delay and bandwidth and an innovative collaborative multi-domain routing
design was proposed by [16] for maximizing total network usage.

Several research studies [17] indicate MARL application to multi-domain SDN routing. The
authors [18] developed a multi-agent RL load algorithm for dealing with the problem of local
overload in SDN controllers. This algorithm selects migration techniques based on reinforcement
learning to find the globally optimal solution that minimizes the cost of excessive load and migration.
While the DRL and SDN intelligent routing method proposed in [19] effectively adapts to variable
traffic using metrics like bandwidth, latency, and loss, it fails to consider the impact of future traffic
trends on network performance. However, this approach does not account for the future traffic trend
and its impact on network performance. Other approaches, such as collaborative flow management
framework [20], Q-routing hop weight adjustment [21], distributed cooperative DRL technique for
vehicular network controller allocation [22], and controller load dynamic balance method [13] have
also been proposed for improvement in routing performance in various scenarios.
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In summary, single-domain SDN routing optimizes routing decisions within a single network. In
contrast, multi-domain SDN routing extends the application of DRL techniques to optimize routing
decisions across multiple interconnected networks or domains. Both approaches aim to improve
network performance by considering various factors and objectives, enabling intelligent routing
decisions based on network state information, traffic patterns, and QoS requirements. Despite each
approach’s strengths and limitations, such as scalability issues, future traffic prediction, controller
cooperation, and network state consistency, none of the existing work focuses on network slice-based
optimal routing. This study addresses this gap by considering network slicing-based QoS for E2E paths
in both intra-domain and inter-domain segment routing.

3 CoopAI-Route System Design

This research focuses on resolving the challenge of enforcing network slicing across different
administrative domains. It introduces cooperative communication strategies to identify the domain-
level PCE proficiently and tackles the issue of accommodating dynamic network updates within
the inter-domain routing path. The architectural framework is specifically crafted to facilitate the
seamless integration of QoS-based routing path provisioning into the multi-domain scenario, thereby
addressing the complexities of network slicing in a dynamic environment.

3.1 CoopAI-Route Architecture
Fig. 1 illustrates the system architecture, named CoopAI-Route. The architecture includes a

data plane and a hierarchical control plane. The E2E network spans several different domains.
Segment routing emerges as a key technology for improving traffic engineering and intelligence for
the next generation. Segment routing splits the entire path from source to destination into segments
and facilitates traffic forwarding within these segments to reach the destination. The data plane
encompasses multiple segment routing domains within the network-sliced area, each with an ingress
node and an egress node. Each segment routing domain is connected to an RM, which consists of an
SDN controller and a DRL agent. The RM manages the topology and traffic-related information.

The SDN controller handles the intra-domain topology, providing a comprehensive overview of
the segment routing domain. It manages traffic monitoring, flow statistics, and flow rule construction,
communicating the intra-domain status to the DRL agent. Operating within the hierarchical control
plane, the DRL agent selects the best path using traffic engineering QoS characteristics such as
bandwidth, delay, availability, and traffic load. It utilizes the global information from the SDN
controller and the DGT construction module to determine the best inter-domain path. The agents
in different domains communicate and exchange abstracted information to construct the distributed
global topology and obtain the domain-level path. The domain-level path identifies the list of domains
participating in routing. Extract the inter-domain path list and the inter-domain graph provided for
QoS score computation. State parameters for the DRL agent are obtained to facilitate decision-
making by combining intra-domain and inter-domain paths. A TD3 algorithm, which is an actor-
critic network-based DRL algorithm utilizing MPNN, has been used in this work. The actor and
critic networks are trained as MPNN to extract the graph input features. These features help predict
the current status of the QoS score. After the agent has made intelligent decisions about intra-
domain and inter-domain paths, the SDN flow rule generation procedure inserts these rules into
the underlying nodes. This facilitates the implementation of the determined routing paths within the
network infrastructure.
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Figure 1: CoopAI-Route architecture

The environment provides feedback, allowing for the construction of two levels of rewards: a local
reward (LR) based on the action and a cooperatively shared global reward with neighbors to optimize
the action. The participating domains are identified to facilitate the decision process for providing
the network-sliced E2E routing path. The SDN controllers collect topology information and traffic
engineering characteristics from the data plane elements within each segment routing domain. The
SDN controllers send intra-domain state information to the agent, which constructs the distributed
global topology and determines the best intra-domain and inter-domain paths to serve the request. The
SDN controllers create and push flow rules to the data plane nodes. The SDN controller continues to
collect state information and feedback for the reward calculation.

CoopAI-Route enforces route selection for network slice applications in multi-domain networks
through SDN. Multi-domain SDN is already deployed in real-world networks, and DRL has been
incorporated to further optimize routing decisions. Traditionally, E2E routing necessitated increased
adoption of multi-domain SDN, highlighting the need for cooperation between domain operators.
However, competition within the industry creates resistance to sharing sensitive network data.
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DRL agent offers a promising solution by facilitating communication within each domain’s
SDN controller. These agents exchange controlled information, focusing on high-level summaries
and desired outcomes like maintaining specific QoS levels. This collaboration allows DRL agents to
work together to achieve network-slicing objectives across domains without compromising security.
This approach using DRL in multi-domain SDN presents a powerful method for optimizing network
slicing, paving the way for more efficient and collaborative network deployments.

Algorithm 1: Distributed Global Topology Algorithm
Input: Topology Graph
Output: Domain level Path

1: for each domain i ∈ [1, N] do
2: LL′

i ← �

3: Discover all the links that connect ingress to the egress node of the domain i store them in LL′
i

4: Get Traffic load Ti and li link capacity
5: wi ←average link capacity of LL′

6: for Each neighbor domain j of Domain i do
7: LL′

i,j ← �

8: LL′
i,j ← Get all links from Domain i to Domain j

9: Get Traffic load Tij and lij link capacity
10: w′

i,j ← average link capacity of aggregate link LL′
i,j � Inter domain link

11: end for
12: Abstract Gi(Ni, Li) and add a wi to them
13: Combine aggregated node and aggregate link
14: end for
15: Aggregate all domain nodes and links to get the distributed global topology
16: for each domain i ∈ [1, N] do
17: Find average link capacity of all links in the domain
18: Combine nodes as single node denoted as N ′

i

19: end for
20: Get the Aggregate Global topology
21: Find Shortest Path from the topology based on the w′

i and w′
ij � Domain Level PCE

3.2 Domain Level Path Computation
In a system with multiple domains, each domain represents a cluster of data plane devices within

an autonomous system. For modelling each domain, a graph Gi = {(Ni, Li), L′
i} is employed, where

Gi denotes the graph of the ith domain, Ni represents nodes, and Li represents intra-domain links.
Additionally, L′

i accounts for inter-domain links connecting one domain to another. When traffic
originates in the source domain and needs to reach the destination domain, a segment path is appended
to the traffic headers at each domain’s ingress node. This segment path guides the traffic through the
domains towards the destination. Identifying each domain’s ingress and egress nodes determines the
subsequent segments for the specific traffic. These segments are added to the headers to ensure that
the traffic follows the desired path towards its destination. The SDN controller dynamically retrieves
QoS characteristics from the data plane elements within each domain to determine the best QoS
path for forwarding the traffic to its destination, thus influencing routing decisions. Each segment
routing domain SDN identifies the topology Gi. The topology information is shared with the DGT
algorithm to identify the list of domains in the domain-level PCE. Ingress and egress nodes for each
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domain are identified, and all possible routes to and from the egress node are mapped out. These
routes are combined to form a single entity for the ingress and egress nodes. The list of inter-domain
links communicating with neighboring domain j and information on bandwidth capacity and link
utilization are obtained. The intra-domain average link capacity denoted as wi, is calculated using
Eq. (1), and the average link capacity of all inter-domain links wi,j between the present domain i and
the neighboring domain j is accumulated (Eq. (2)).

wi =
∑
k∈e

Tk

lk

. (1)

wij =
∑
k∈e′

Tk

lk

. (2)

In Eq. (1), where e is the total number of links that connect ingress to the egress node in the domain
i, Tk is the current traffic load of each link in the domain i, and lk is the link capacity of each link that
connects ingress and egress nodes in the domain i. Eq. (2), e’ refers to the number of links that connect
domain i to domain j.

The Algorithm 1 finds the list of domains that participate in the routing process. The E2E topology
graph is given to the input. Finally, the domain-level path is an abstracted path that connects a list of
domains in the routing process as output. The process starts with domain i, in that LL′

i initializes with
the empty set. In that intra-domain, find all the links that connect from the ingress and egress nodes.
Get the traffic load and link capacity of each link. The Eq. (1) gets the one link capacity between the
ingress and egress pair in the current domain. Because ingress and egress nodes have more than one
path. We choose one link capacity from each ingress end egress node to find the abstracted path for
the ingress and egress. Likewise, get all the ingress pair values in domain i. Lines 6–10 explain the
inter-domain link. Finally, abstracted ingress and egress nodes with weighted link capacity for each
domain and subsequent domain are identified. At the end of the loop line 14, all abstracted nodes and
links form the aggregated E2E topology. The topology contains a single node for each domain. Within
the domain, the abstracted links embedded with weights are aggregated from all domains, forming an
abstracted global topology. The algorithm then identifies the shortest path from the source domain
to the destination domain, resulting in an efficient link capacity path connecting the source to the
destination domain, denoted as ρ. The output of the algorithm is the routing path at the domain level.

The DGT algorithm tackles delays in retrieving precise QoS details by balancing efficiency and
accuracy, particularly for domain-level routing decisions. By averaging QoS values, it reduces the
impact of outliers and network fluctuations. Even with delays in fetching individual path values,
domain averages offer a more stable estimate. This domain-centric approach proves valuable, especially
for large networks.

In the context of DGT, the process of domain-level path computation involves three key steps, as
illustrated in Figs. 2 and 3. Firstly, the physical topology is extracted, comprising four domains (RM1,
RM2, RM3, and RM4). Within each domain, nodes are denoted as Nij, where i represents the domain
and j denotes the node within that domain. Physical links, both intra-domain (Lmn) and inter-domain
(L′

i) connect nodes, with each L′
i. In this step, special emphasis is placed on highlighting the ingress

and egress nodes. The second step involves abstracting intra-domain links. Links within each domain
are consolidated into single links connecting ingress and egress nodes (e.g., N13 to N15), simplifying
the network representation. Finally, domain information is combined in the third step. Nodes within
each domain (e.g., N13, N15, and N17) are amalgamated into a single representative node (N ′

i ). Inter-
domain links are averaged, as expressed in Eq. (1) (L′

i). The outcome is a streamlined global topology
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that merges all domain-specific information. The resulting topology facilitates the determination of
the shortest path, identified as the domain-level QoS path (ρ). This path represents the optimal inter-
domain route, considering the participating domains and providing a comprehensive overview of the
network’s connectivity and efficiency.

Figure 2: Distributed global topology construction (A)

Figure 3: Distributed global topology construction (B)



CMES, 2024, vol.140, no.3 2459

3.3 QoS Score Computation of Intra and Inter Domain
This section covers the computation of the QoS score for intra- and inter-domain paths connecting

the ρ. The SDN collects topology information for Domain i, represented as Graph Gi. The QoS score
is determined based on the network slice’s focus, considering link delay, packet loss, and available
bandwidth. For instance, within the framework of 5G applications comprising three distinct network
slices (uRLLC, mMTC, and eMBB), each slice imposes unique QoS requirements, such as ultra-low
latency, extensive machine connectivity, and unparalleled availability demands. A proposed formula
for QoS and QoE-driven routing path selection within the segment routing framework aims to address
the intricacies of both intra- and inter-domain routing, aligning with the evolving needs of advanced
networks. The formula is expressed as:

QoS score = qw1 × f (Latency) + qw2 × g(Packet loss) (3)

+ qw3 × h(Available Bandwidth) + qw4 × i(Path diversity).

Here, qwi represents non-negative weights, signifying the relative significance of individual fac-
tors, adapted according to specific application requirements and network priorities. The functions
f (Latency), g(Packet Loss), h(Available Bandwidth), and i(Path Diversity) map corresponding values
to a score between 0 and 1, with higher values indicating superior performance. Delving into the
components:

• Latency is accentuated through a logarithmic function f (Latency) = − log
(

Latency
threshold

)
,

underscoring the impact of minimal delays. Latency and threshold values are fixed based on
the application’s need.

• Packet Loss prioritizes networks with minimal loss, utilizing a CCDF g(Packet Loss) = 1 −
CCDF(Packet Loss). CCDF term gives you the probability of packet loss exceeding the input
value (i.e., higher loss). The result is the remaining probability where the packet loss is not
greater than the input value. This translates to the probability of successful packet delivery.

• Available bandwidth considers both capacity and utilization through a normalized function

h(Available Bandwidth) = Available Bandwidth − Minimum Bandwidth
Maximum Bandwidth − Minimum Bandwidth

. The minimum band-

width is considered as the lower bound of the bandwidth value. The application has minimum
bandwidth criteria to satisfy the basic function.

• Path Diversity promotes diverse paths to mitigate single points of failure i(Path Diversity) =
1

Number of Shared Links
. The number of shared links counts the links that connect primary or

secondary paths from source to destination. Within the domain of path diversity, a fundamental
objective is to achieve minimal shared links, ideally reaching a state of zero shared links between
the primary and secondary paths. This principle of minimizing shared links fosters enhanced
fault tolerance. In an outage impacting the primary path, the complete absence of shared links
guarantees that the secondary path remains unaffected, ensuring uninterrupted operation.

Integration with segment routing involves encoding path information, including QoS/QoE scores,
using segment routing labels. Routers leverage these scores for informed path selection based on appli-
cation requirements. Inter-domain routing protocols facilitate seamless information exchange for path
selection across domains. Additional considerations recommend fine-tuning weights (qwi) through
simulations and real-world deployments to optimize for specific use cases. Dynamic adjustments
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based on real-time network conditions enable adaptive QoS/QoE management. Evaluation against
existing approaches emphasizes the need to balance optimality with computational complexity in this
comprehensive approach. The QoS score for each network slice traffic route request is computed.
After computing the QoS score for each link, the graph information is provided to the DRL agent to
determine intra and inter-domain paths. The inter-domain path connects the current domain to the
next domain, and the optimal policy guides selecting the best QoS path based on the network slice’s
QoS requirements.

4 Inter-Domain Service Provisioning with Multi-Agent and Cooperative DRL

This section provides a detailed explanation of the multi-agent DRL model employed by CoopAI-
Route.

4.1 Background of DRL
DRL has gained popularity as a powerful approach for solving complex decision-making prob-

lems. DRL seamlessly integrates RL with advanced deep learning techniques. This integration proves
particularly impactful when addressing challenges characterized by high-dimensional state spaces. In
a Markov decision process, the learning process is modeled using four tuples S, A, R, P, where S
represents the state space, A represents the action space, R represents the rewards, and P represents
the probabilities of state transitions. The goal of the learning agent is to achieve the optimal policy
that determines the best actions to take in states with the highest rewards. Distributed learning [23]
techniques accelerate multi-agent training by focusing on discrete states and narrow action areas.

Most MARL solutions employ distributed agents to achieve reliable decentralized execution
while incorporating cooperation mechanisms among the agents [24]. CoopAI-Route collaboration is
essential for both intra-domain and inter-domains. Traditionally, inter-domain routing in networks
relied on the BGP to exchange routing information among AS. In the context of SDN, envision each
AS as an independent agent within a comprehensive network graph. Each agent seeks to optimize its
traffic flow and performance by identifying the fastest or most cost-effective routes for inter-domain
traffic. GNN have succeeded in various domains where data is naturally represented as graphs. In
computer networks, GNNs offer advantages over more traditional neural network topologies due to
their ability to capture the graph-based nature of network structures.

The MPNN is a common type of GNN. It involves a message-passing step in which graph
nodes communicate with their neighbors. New hidden states are calculated by each node using the
information received from its neighbors via a message function. Employing MPNNs, agents engage
in message-passing rounds to exchange information on network congestion, link costs, and available
paths. This enables a holistic understanding of the network state, allowing agents to make informed
routing decisions considering their traffic and the potential impact on other AS.

4.2 Modeling Multi-Agent Inter-Domain Routing Path Provisioning
In SDN routing using MPNN with DRL, the state, action, and reward elements work together to

guide the MPNN-TD3 agent toward finding optimal intra- and inter-domain routing paths. Each route
manager utilizes a DRL agent to select the intra-domain path and the inter-domain connection leading
to the next domain in the route (ρ). A state has been created for every DRL agent that incorporates
data about the current and subsequent domains. The reward function is formulated with information
about the current domain and results from the previous domain. Therefore, each agent has specified
state, action, and reward functions.



CMES, 2024, vol.140, no.3 2461

4.2.1 State Parameters

At time t, each domain agent j receives the state Sj
t derived from topological observations. This

state data includes the current intra-domain path features and inter-domain links that connect to the
next domain, obtained from Algorithm 1. The state Sj

t representing the current network landscape is
the information the MPNN-TD3 agent uses to make decisions. MPNN takes a graph as an input. The
graph consists of weighted intra-domain network topology. The weight consists of a list of demands
explained in state parameters.

• Network topology: Information about nodes (switches) and edges (links) in the network,
including their QoS scores.

• QoS Score calculated using Eq. (3) using latency, packet loss, available bandwidth, and path
diversity. The network topology information is obtained from the SDN controller with the
embedded QoS score explained in Section 3.3.

• Link features: Additional information about the betweenness of the links.

• The number of paths that can traverse a specific link, as indicated by the link betweenness
originating from graph theory, indicates the link’s importance. This metric greatly accelerates
the learning process of the DRL agent through a reduction in the time spent searching for
optimal hyperparameter values. Each pair of nodes in the topology has k possible paths, with a
count of the number of paths that use each connection to get the link betweenness. Therefore,
the betweenness of a link represents the fraction of the total paths that utilize that specific
connection.

• Traffic demands: Current and requested traffic bandwidth between different source-destination
pairs within and across domains and the total number of path segments in the intra-domain.

• Traffic demands are the current and requested traffic bandwidth, along with the number of
segments in the path, aiming to minimize the possibility of rejecting network slice traffic route
requests due to network congestion, aligning with the long-term goal of optimal network
resource consumption. Additionally, monitor the path segments count as it directly contributes
to additional resource waste, requiring extra bandwidth for segment listings in the packet
header.

The SDN controller monitors the data-plane switches and routers. SDN collects information
about latency, packet loss, and available bandwidth dynamically and periodically. The state parameters
represent the weighted graph for the current domain and the following connecting link to the next
domain in the domain-level path. The weight consists of values: the QoS Score, Link betweenness,
Current traffic load, expected traffic load, and number of path segments. All these state parameters
are constructed using an SDN controller.

4.2.2 Action Space

Action space explains the DRL agent representing routing operations. The action set of the current
domain is defined by two variables, pi and gl. pi represents the intra-domain paths, while gl represents
the inter-domain link. where i ∈ e, l ∈ e′. The action set contains the k set of intra-domain routes that
connect to ingress to the egress node and the list of inter-domain links connecting to the next domain.
The action set is k × pi, k × gl. If there are less number of paths than k, then set padded with zeros.
An extensive number of intra-domain routing permutations for each source-destination node pair
characterizes the high-dimensional action space of large-scale real-world networks. The DRL agent
experiences difficulty estimating the q-values of all conceivable alternative actions. The dimensionality
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of the action space needs an appropriate designation for dealing with the issue. The action space
requires topology independence to facilitate generalization to different network topologies. In other
words, the k shortest path should represent actions in the training and evaluation topologies. The
ability of the agent to learn and generalize gets inhibited by variation in action space (for example, if
there are several paths between a source and destination node pair).

4.2.3 Reward Calculation

The reward defines the feedback signal the DRL algorithm uses to guide the MPNN-TD3 agent
toward learning optimal routing strategies. The DRL algorithm uses the reward signal to evaluate the
agent’s actions and update its policy, reinforcing successful decisions and discouraging those leading
to undesirable outcomes. This work explores two levels of rewards: local and global. LR is typically
based on desirable network outcomes, such as:

• Throughput: maximizing the total amount of traffic successfully delivered.

LRth =
{

val1 if all traffic is successfully delivered,
−val1 otherwise. (4)

• Fairness: ensuring balanced traffic distribution and resource utilization across paths and
domains.

LRf =
{

val2 if intra-domain resources are successfully balanced,
−val2 otherwise. (5)

Consider two variables, val1 and val2, each generated within the range of [1,3]. These values
represent a dynamic range between 1 and 3, providing flexibility for the variables to assume various
values within this specified interval. However, a simple examination of inadequacies in providing a
path can be conducted for an accurate evaluation. Success, measured in terms of all traffic delivered
and resources balanced in the current domain, is evaluated based on two metrics for Eqs. (4) & (5):

1) the ratio of the largest QoS score link in the list of link candidates in St+1
j to that in St

j , and

2) the availability of the largest QoS score link along the path in states St+1
j and St

j with the
lowest bandwidth utilization. The success or failure of the path being provisioned in the current and
subsequent domains should be reflected in the LR for the action, with a positive reward if the path can
be provisioned in the domain and a negative reward otherwise. The shared global reward, denoted as
GRcg, is a cumulative measure that reflects the success or failure of path provisioning across all agents
in the network.

• Congestion avoidance: minimizing congestion on E2E paths

GRc =
{

val3 if at is successful,
−val3 otherwise. (6)

GRcg =
∑
i∈N

GRi
c where N is the number of agent (7)

rt
j = GRcg + LRf + LRth. (8)
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The global reward includes factors such as congestion avoidance, as defined by GRc in Eq. (6).
Val3 is generated within the range of [1,3], representing a dynamic value that can take on different
numerical values within this specified interval. By summing up individual global rewards across agents
(GRi

c for each agent i), the shared global reward captures the collective impact of agent actions on
minimizing congestion on E2E paths (Eq. (7)). The collaborative nature of the cumulative reward in
Eq. (8) encourages DRL agents to collectively work towards optimizing network slice performance and
resource utilization. By aligning individual agent objectives with the cumulative reward, the framework
incentivizes agents to make decisions that benefit their local objectives and contribute to the network’s
overall efficiency. This integration of cumulative rewards facilitates a more comprehensive evaluation
of actions, promoting cooperation among agents in pursuing optimal routing strategies and enhanced
network performance.

Therefore, DRL agents are incentivized to increase the available link capacity for incoming
queries, thus minimizing the possibility of temporary request rejections.

Our approach emphasizes collaboration through a two-tiered information-sharing system within
the existing communication channels. SDN controllers securely share essential routing information
for designated processes. To further enhance information exchange while protecting privacy, consider
anonymizing specific details. Additionally, multi-agent DRL agents already communicate to share
rewards and coordinate actions. We can leverage this existing channel for inter-domain collaboration.
Instead of simply sharing raw rewards, agents could share rewards with context, including anonymized
traffic information or high-level network performance metrics. This allows agents to learn from each
other’s experiences without compromising sensitive data. Furthermore, we can explore the possibility
of agents collaborating on a joint policy for inter-domain routing, involving information sharing about
local network conditions and collaborative optimization of routing decisions across domains.

4.3 Design of DRL Agent
The TD3 with MPNN was utilized to construct each DRL agent employed by the Route Manager.

The objective was to maximize both the long-term reward and policy selection. MPNN abstracts the
input graph properties to facilitate the transmission of hidden state data between nodes through an
iterative message-passing process. State information properties, such as QoS score, betweenness, and
traffic demands, are incorporated into the hidden state and represented using one-hot encoding. Fig. 4
illustrates the MPNN process. The input to the MPNN consists of features extracted from the graph.
During the message-passing step, messages are sent to adjacent node k to obtain the link features
denoted as n(k). The hidden state features are then extracted using the messages through the message
function m(.). Finally, all links from the ingress to the egress node are aggregated and denoted as Mt

k

in Eq. (9).

Mt+1
k =

∑
i∈N(k)

m(ht
k, ht

i). (9)

The new hidden state is derived using the GRU update function u(.) mentioned in Eq. (4). After a
few steps, the hidden states are aggregated to determine the Q values using the readout function R(.),
as shown in Eq. (10).

ht+1
k = u(ht

k, Mt+1
k ). (10)

Q(s, a, θ) = R

(∑
k∈E

hk

)
. (11)
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Figure 4: MPNN flow diagram

Fig. 5 illustrates the overall structure of the path selection approach based on TD3-MPNN

Figure 5: Cooperative message passing multi-agent MPNN-TD3 with cumulative reward

More specifically, the training of DRL agent j requires identifying the best course of action. The
algorithm incorporates three networks: an actor network π�(s) and two critic networks, Qθ1

(s, a),
Qθ2

(s, a). Additionally, there are matching target networks represented as π�(s)′, Qθ ′
1
(s′, a′), and

Qθ ′
2
(s′, a′). The actor and learning parameters of the critic networks are denoted by θ and π , whereas

the target actor and critic network parameters are denoted by θ ′ and π ′.

The addition of noise was added to the actions computed by the actor network, as described
in Eqs. (12) and (13). This was done to explore states of a wide range in the environment. The core
purpose of noise in TD3 is not to explore all k paths exhaustively. Instead, it encourages exploration
within a continuous range of action values that might indirectly lead to different paths from the set
of k. This exploration helps the agent discover potentially better paths within the k options or even
uncover new possibilities not initially considered. By interacting with the environment and exploring
different actions (including those influenced by noise), the agent learns the underlying policy that maps
states to the most rewarding paths from the dynamic set of k. Over time, the agent becomes adept at
selecting the optimal path from the current k based on the observed state.
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TD3 [25] employs a Gaussian noise distribution, improving the information stored in the replay
buffer B.

a = π�(s) + e. (12)

a′ = π�(s)′ + e. (13)

The Bellman equation is applied to determine a target value, Qtarget as shown in Eq. (14). The
Bellman equation uses just the smaller of the two outputs (Q′

1, Q′
2) from the target critic networks to

avoid overestimating the Q-value. The action a′ is clipped based on the upper and lower noise limits.

Qtarget = r + γ min
i=1,2

Qθ ′
i
(s′, clip(a′)). (14)

The parameters are revised by reducing the loss values in Eq. (15), which represents the expected
difference between the target value Qtarget and the other two Q-values, given that they are obtained from
replay buffer B.

θi = argmin(1/N)
∑

(Qtarget − Qθi(st, at))
2. (15)

To prevent overestimation, the target network parameters are not changed in synchronization
with the actor and critic networks. The target network’s parameters are not adjusted with the actor
and critic networks to avoid this. These weights are updated with a delay of a configurable number of
time steps (2 in this study), controlled by the hyper-parameter ζ . The target network parameters are
updated using Eqs. (16) and (17).

θ ′ = ζθi + (1 − ζ )θ ′
i . (16)

φ ′
i = ζφi + (1 − ζ )φ ′. (17)

Multi-domain networks can leverage a powerful combination of MPNN-TD3. MPNNs are adept
at modeling network topologies and TD3, an efficient reinforcement learning algorithm, for traffic
routing. The network state is depicted as a weighted graph, where nodes represent routers, edges
represent connections, and weights represent factors affecting traffic flow. MPNNs process this graph
to understand the network structure and its impact on routing. Each domain trains its own MPNN-
TD3 model using its specific domain graph. This allows agents to learn optimal routing strategies that
consider the entire network.

RL in this approach adopts MPNNs within the TD3 framework to address complex network
states. Standard TD3 is enhanced by replacing the actor and critic networks with MPNNs. The actor
MPNN transforms the state from a vector to a graph, where nodes represent state elements and edges
represent relationships between them. The MPNN iteratively performs message passing between nodes
to capture these dependencies. The processed state representation is then used to output the routing
action. Similarly, the critic MPNN operates on the graph, using message passing to understand how
actions impact the state and future rewards. Based on this understanding, the critic MPNN predicts
the Q-value.

Implementing MPNNs in TD3 requires careful attention to several factors: the design of message
passing and update functions within the MPNN, a suitable graph structure to represent the network
state effectively, and potentially tuning hyperparameters for optimal training.
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This combined approach offers several advantages. TD3’s off-policy nature allows for efficient
learning. MPNNs capture network dependencies, enabling informed routing decisions. This decen-
tralized approach with local training scales well to large networks. However, balancing exploration
and exploitation becomes more crucial due to the increased complexity. Designing a global reward
function that incentivizes optimal network-wide behavior is essential.

4.4 Training Procedure
The procedures of the MPNN-TD3 algorithm (Algorithm 2) are explained in this section, focusing

on training a DRL model, particularly an MPNN, for predicting routing in a graph. A random setting
initializes three networks: a critic network Qθ1

, another critic network Qθ1
, and an actor-network π�.

These networks are initialized similarly to the three target networks, emphasizing the replication of
properties from source networks to target networks, denoted as θ ′

1 = θ1, θ ′
2 = θ2, and φ ′ = φ. The replay

buffer B is set up to collect data from previous trials. The domain-level path for each network slice
traffic route request is obtained using Algorithm 1 (described in Section 3), specifying domains in lines
6–14. MPNN parameters in each domain are initialized using a recursive message-passing method,
a fundamental structure for facilitating communication between graph nodes. After t iterations of
message passing, each node i (i ∈ N(v)) receives the hidden state hti from its neighbor node j (j ∈ N(v))
and applies the message function m to it. The aggregation function then sets up the link.

Each node’s new hidden state ht+1v is computed using the update function and the collected
messages as inputs. Finally, the readout function captures characteristics of the entire graph or specific
nodes with the current state st. An action at is derived from the existing policy with noise, determining
the route within the domain and combining it with an external link. After observing the state st+1, a
current reward rt is obtained.

Algorithm 2: MPNN-TD3 Algorithm
Input: Input Graph
Output: Intra and inter-domain link

1: /∗ Initialisation phase ∗/
2: Initialise Actor network Qθ1, Qθ2 and πφ with random parameters θ1, θ2, ϕ

3: Target networks θ ′
1, θ

′
2, φ

′

4: θ ′
1 = θ1, θ ′

2 = θ2, and φ ′ = φ.
5: Replay buffer B
6: /∗ Network slice traffic route request ∗/
7: for each network slice traffic route request do
8: Calculate domain level k-path from Algorithm 1
9: for each domain j in Path do
10: Calculate QoS score using Eq. (3)
11: Initialise hidden state for MPNN
12: Get State st from Environment ε

13: Get aggregate sum value for Nodes and links using Eq. (9)
14: Get updated hidden state values using Eq. (10)
15: Calculated Q-Values using Eq. (11)
16: Take action with Noise using Eq. (12)
17: Get the intra-domain path
18: Combine intra-domain with inter-domain link

(Continued)
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Algorithm 2 (continued)
19: end for
20: Get cumulative reward rt

21: Get new state st+1

22: Buffer B ← (st, at, rt, st+1)

23: Get N tuples from buffer B
24: Obtain at+1 according to using Eq. (13)
25: Obtain Qtarget according to Eq. (14)
26: Update critics θi by Eq. (15)
27: if f mod m then
28: Update φ by ∇φJ(φ) = (1/N)

∑ ∇atQθ1
(st, sa)|a = πφ(s)∇φπφ(s)

29: Update Actor, target networks parameters by Eqs. (16) and 17
30: end if
31: end for

The training begins with the tuple (st, at, rt, st+1), where data is randomly sampled from B in
relatively large batches. The Q-target value is calculated using Eq. (14). The update process of the
critic network is described by Eq. (15). With TD3, updates to the actor network are delayed until
a predetermined number of steps (m). At this point, the actor network is upgraded using a policy
gradient. Finally, the actor and target networks are updated using the soft update method, as shown
in Eqs. (16) and (17). This comprehensive framework combines MPNNs with the TD-3 algorithm
to train a reinforcement learning model to predict routing decisions on graph-structured data. This
ensures efficient communication between graph nodes and effective decision-making based on the
learned policies. Adjustments can be made to tailor the model to specific routing problems and graph
characteristics. MPNN-TD3 algorithm, each agent selects the intra-domain and inter-domain paths
from the action space mentioned in Section 4.2.2. These actions are sent to the SDN controller to be
converted into flow rules. The SDN controller, having the network topology, maps the output action
paths. All intermediate nodes, from ingress to egress nodes, are identified. The interface details for
each node are fetched from the topology module. The flow rules construction module generates flow
rules for each node, which are sent to the switches via the southbound interface.

5 Performance Evaluations

To evaluate the system, extensive simulations were conducted to analyze CoopAI-Route from
multiple perspectives, ensuring a thorough evaluation of its performance. Our evaluation focuses on
an inter- and intra-domain traffic engineering scenario, comparing its performance against state-of-
the-art works. This evaluation encompasses the topologies of various sets and traffic levels, providing
a comprehensive assessment of CoopAI-Route’s capabilities.

There are many works related to QoS-aware routing. In the 5G and 6G era, applications are
required for dedicated resources to run their application to provide a smooth experience to the users.
The coopAI-Route framework addresses the need for application in the network slice to enforce the
optimal route. The QoS score computation significantly impacts the optimal path selection in the
CoopAI-Route framework. The QoS score calculation parameters are set based on the application
characteristics such as low latency, high bandwidth, and high availability. These characteristics-based
routing ensure the optimal path specific to the network slice. The challenging part of the work is to
choose an E2E application-specific QoS-aware routing path for the multi-domain environment.
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5.1 Experimental Setup
The SDN controller managed the hierarchical control plane, while the data plane encompassed

traffic-forwarding switches within the segment routing domain. Segment routing was a robust routing
mechanism within SDN, providing flexibility and scalability. A simulation using Ryu and Mininet was
set up to evaluate segment routing effectiveness in handling diverse network slice traffic requirements
across multiple domains. The process involved defining the network structure, configuring SDN
controllers, creating a virtual environment within Mininet, and conducting thorough testing and
analysis.

SDN controllers were set up using Ryu, with multiple Ryu instances (one per domain) deployed
for centralized control. SR functionality was configured on each Ryu instance with domain-specific
policies and segment lists. The Mininet simulation featured a virtual network that mirrored the multi-
domain SDN setup with switches and hosts. OpenFlow switches in Mininet were configured and
connected to corresponding Ryu instances. Specific switch ports were mapped to different network
slices based on their requirements, and Mininet tools like iperf were used to generate traffic flows.
The implementation of RM using Python, along with the OpenAI Gym framework and TensorFlow,
integrated DRL components.

Table 2 provides the key parameters employed during the training of the MPNN-TD3 algorithm.
The algorithm used SGD as the optimizer for MPNN, with a learning rate of 10−4 and a momentum
of 0.9. A batch size of 32 samples was utilized for forward propagation. The message-passing steps
were set to 7, reflecting the complexity and depth of the algorithm. The learning rate was determined
through a systematic approach to hyperparameter tuning. BO uses a statistical model to select
promising hyperparameter combinations intelligently. However, even BO involves training the model
multiple times. Early stopping can be integrated to address this. It monitors validation set performance
during training and stops training if performance stagnates, preventing overfitting. This combination
of BO and early stopping efficiently explores the hyperparameter space while minimizing wasted
training and boosting model reliability. L2 regularization and dropout with a coefficient of 0.1 were
applied to the readout function to enhance the model’s robustness and generalization capability.
These regularization techniques helped prevent overfitting and contributed to the model’s ability to
generalize well to unseen data. The discount rate, a crucial parameter in reinforcement learning, was
set at 0.95, influencing the algorithm’s consideration of future rewards during training. The CoopAI-
Route framework leverages a multi-agent DRL system with the TD3 algorithm. As mentioned in
Table 3, each agent requires substantial computational resources to function effectively. An individual
agent necessitates 16 GB of RAM, 4 GB of GPU, and 10 GB of disk space. The RAM and GPU
handle the complex calculations involved in learning and decision-making, while the disk space stores
the agent’s model and training data.

Table 2: Parameters of MPNN and TD3

Model Parameter Value

MPNN Message passing steps 7
Batch size 32
Optimizer SGD
Learning rate 10−4

Momentum 0.9

(Continued)
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Table 2 (continued)

Model Parameter Value

Epsilon 1.0
Discount factor 0.95

TD3 Noise 0.05
Decay rate 0.998

Table 3: Resource requirements for components

Component Resource requirement Description

Agent ∗ 16 GB RAM Resources per agent for the
∗ 4 GB GPU multi-agent DRL system.
∗ 10 GB Disk Space

SDN Controller ∗ CPU: Multi-core processor
(e.g., 4 cores or more)

Basic capacities for the
SDN controller.

∗ RAM: 16 GB or more
∗ Disk Space: 100 GB or more

To orchestrate this multi-agent system, CoopAI-Route incorporates an SDN controller. The SDN
controller is the central hub for managing and configuring network devices. It necessitates a multi-core
processor (ideally four cores or more) to manage communication with numerous agents and network
devices. Additionally, the SDN controller requires a minimum of 16 GB of RAM to run the SDN
software and maintain routing tables. Finally, 100 GB or more of disk space is recommended to store
network configurations and logs.

The experimentation was conducted on a server with an Intel Xeon E5-2650 processor, 128 GB of
RAM, and four GTX 1080ti graphics processing unit cards. Additional considerations included scal-
ability, appropriate Mininet configurations for the desired network parameters, and the development
of automation scripts or frameworks to streamline the testing process.

5.1.1 Training Topology

The number of SDN domains represented distinct network providers or administrative divisions
in the initial network design phase. The simulations were run on a vast multi-domain setup to
demonstrate the scalability of CoopAI-Route in multi-agent operations. The multi-domain SDN, as
cited in [24], consisted of 158 intra-domain links, 44 inter-domain links, and 61 nodes. The starting and
ending nodes for traffic flows were randomly selected from the 9 domains (Fig. 6). Traffic requests
are likely generated based on the Table 4 range for bandwidth, delay, and packet loss (Di units)
corresponding to application categories (High Bandwidth, Low Latency, High Availability). Each
request might specify its category instead of exact Di values. CoopAI-Route translates these categories
into Di unit requirements for network slicing. While the Di unit ranges are known from the table, the
specific values are assigned to each request.
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Figure 6: Multi-domain SDN network

Table 4: Applications parameters

Application Bandwidth Delay Packet loss (count)

High bandwidth 10–60 Mbps 5–12 ms 50–100
Low latency 10–30 Mbps 2–6 ms 50–100
High availability 10–30 Mbps 5–12 ms 0–20

Different traffic datasets simulating video streaming, web applications, and file transfer were
generated using Iperf. We varied bandwidth (e.g., 1 Mbps to 1 Gbps), delay (e.g., 10 to 100 ms), and
packet loss (e.g., 0% to 5%) to create a comprehensive range of network slice routing path requests. This
approach allows CoopAIRoute to learn and adapt to diverse network conditions, addressing the high
availability, ultra-low latency, and ultra-high bandwidth requirements of 5G applications. While our
current testing focused on a simulated environment, we plan to evaluate CoopAIRoute’s performance
in a pilot production deployment in the future.
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5.2 Performance Evaluation
The performance evaluation of multi-domain SDN with network slice enforcement involved

assessing various aspects to ensure optimal functionality. Our evaluation addresses key metrics for
a well-functioning network, aligning well with our priorities. It assesses throughput, ensuring efficient
data transfer and E2E latency, which is critical for real-time applications. Scalability guarantees the
network can grow as needed, while link failure handling and adaptability to evolving topologies ensure
smooth operation even with changes in network structure or connection disruptions. This evaluation
aimed to address intra and inter-domain paths, emphasizing the reduction of network slice traffic route
rejection rates and enhancing QoS in a multi-domain environment.

1. Traffic Demand-Based Network Slice Rejection Rate: To gauge the system’s efficiency, we
evaluated the rejection rate based on traffic demand for network slices. This criterion provided
insights into how well the network accommodated varying traffic levels, highlighting areas for
improvement and optimization.

2. Traffic Load-Based Network Slice Rejection Rate: Examining the rejection rate under different
traffic loads was crucial for understanding system performance under varying network condi-
tions. By considering the rejection rate of traffic load, we could optimize resource allocation
and enhance the system’s ability to handle fluctuations in demand.

3. E2E delay for various network slice traffic route requests: E2E delay was a critical metric for
assessing the responsiveness of the network. Evaluating this parameter for different network
slice traffic route requests allowed us to identify potential bottlenecks, optimize routing
algorithms, and improve communication efficiency.

4. Throughput: The overall throughput across the entire network slice, considering all domains
and the data flow between them. This evaluation should reflect the ability of the network slice
to deliver data efficiently from the source to the destination.

5. Packet loss: Packet loss in terms of multi-domain routing in network slicing are essential for
ensuring the reliability and quality of service within the network slice. This criterion highlights
the effectiveness of multi-domain routing mechanisms in minimizing packet loss during data
transfer between disparate parts of the network slice.

6. Link Utilization: Efficient use of network links was fundamental to maximizing network per-
formance. Evaluating link utilization helped identify underutilized or congested links, enabling
proactive adjustments to improve overall network efficiency and reduce the rejection rate.

7. Scalability: Assessing the system’s scalability was essential for accommodating growing
demands. By evaluating scalability, we could identify potential limitations and implement
solutions to ensure the network could handle increased traffic and a growing number of
network slice traffic route requests.

8. Dynamic Link Failure: Understanding how the system responded to dynamic link failures
was crucial for ensuring network reliability. This evaluation criterion focused on the network’s
ability to adapt to unforeseen circumstances, minimize downtime, and maintain a low rejection
rate in the face of link failures.

A comparison with SAP [26], LB [26], and DeepRMSA [27] was made to assess the efficiency of
CoopAI-Route. Fig. 1 provides a visual representation of the functional concept of CoopAI-Route,
utilized by the benchmarks for cross-domain provisioning. In CoopAI-Route, the RMs always selected
inter-domain links that consumed the least bandwidth to reach the next domain. DeepRMSA, on
the other hand, used a DRL agent in each domain to make decisions on intra-domain provisioning
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techniques and selected inter-domain links with the lowest utilization for subsequent domains. With
the action space in DeepRMSA predicated on intra-domain pathways and the utilization of their links,
DRL agents in various domains could not communicate with one another or collaborate on inter-
domain provisioning. The evaluation of QoS involved analyzing latency and packet loss for each slice
to determine compliance with their respective requirements.

5.3 Training Performance of CoopAI-Route
To start with, CoopAI-Route’s training procedures were examined so that every DRL agent

could optimize their long-term profits. It is important to note that CoopAI-Route’s training could
be done both online and offline. The DRL agents’ learnable parameters were initialized at random
during offline training and then optimized to ensure the readiness of each RM’s DRL agent for
online operation and training. As a result, completion of the offline training before deploying the
DRL agents was needed for the multi-domain SDN. During the online training phase, CoopAI-Route
employed its DRL agents to set up inter-domain paths, recording the provisioning results as additional
training samples. The training samples were used to fine-tune the DRL agents’ parameters to ensure
their functioning in the multi-domain SDN network. The amount of time each DRL agent needs for
offline training is listed in Table 5. The offline training for all agents took less time than usual, except
those responsible for Domains 5 and 6, situated in the middle of the nine-domain SDN and with a
comparatively high number of nodes.

Table 5: Training average running time of CoopAI-Route (s)

D1 D2 D3 D4 D5 D6 D7 D8 D9

2587 2350 2384 2459 3479 3421 2632 3012 2793

5.4 Traffic Demand-Based Network Slice Traffic Route Rejection Rate
The paper focused on reducing network slice traffic route request rejection rate as the primary

indicator for comparing different inter-domain path provisioning strategies. This is because, in a multi-
domain SDN, each rejected route request directly impacts the RM revenues. It also has a strong
correlation with a variety of other measures.

Network slice application considerations include high availability, low latency, and high band-
width. The bandwidth, delay, and packet loss requirements for each network slice were specified using
Di units for traffic demand categories (D1, D2, and D3) from Table 4. Random source-destination node
pairs were chosen for traffic demand generation. The distribution of traffic demands was uniform,
posing a challenge for the DRL agent in anticipating future demand without using prediction systems.
Traffic flows between sources and destinations were meticulously designed, ensuring comprehensive
coverage across multiple slices and domains. CoopAI-Route received 1000, 2000, 3000, 4000, and 5000
slice traffic route requests. The test was conducted for both per-slice performance and a mixed scenario
of all applications. The mixed network slice demand comprised 40% for low latency, 30% for high
availability, and 30% for high bandwidth slice traffic route requests. Fig. 7 shows the mixed slice traffic
route request rejection rate. Figs. 8–10 show the slice-specific traffic route request rejection rates. The
figures depict the increase in rejection rate during training with an increase in the number of traffic
route requests. They also prove that CoopAI-Route achieved its advertised performance levels under
different traffic QoS requirements. The high availability application had a maximum rejection rate
of up to 20%, which is slightly higher than the other two applications (15%). The rejection rate of
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the LB and SAP algorithms remained constant throughout the application, as expected. In contrast,
the rejection rate of the DRL-based techniques decreased as more episodes were processed. CoopAI-
Route’s rejection rate converged significantly more quickly than that of DeepRMSA. CoopAI-Route’s
rejection rate achieved an 8%, 20%, and 21% reduction in rejection rate relative to DeepRMSA,
SAP, and LB, respectively. Figs. 7–10 demonstrate CoopAI-Route’s ability to be effective even when
considering its offline training phase.

Figure 7: Network slice traffic route request rejection rate based on the number of route requests
arrived

Figure 8: High availability slice traffic route request rejection rate based on the number of route
requests arrived

Figure 9: Low latency slice traffic route request rejection rate based on the number of route requests
arrived
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Figure 10: High bandwidth slice traffic route request rejection rate based on the number of route
requests arrived

5.5 Traffic Load-Based Network Slice Rejection Rate
The test conducted three network slice applications, and mixed application traffic ensured the

consistency of addressing the network slice route request. In that experiment, 3000 network slice traffic
route requests were considered for slice-specific applications and mixed traffic. Mixed network slice
traffic route requests were further considered, distributed as 40% for high availability, 30% for low
latency, and 30% for high bandwidth slices.

Simulations were conducted with varying traffic volumes: 10, 20, 30, 40, and 50 Mbps. The test
initially involved sending constant traffic to the system with 10 Mbps of data through the links.
Afterward, the network slice traffic route request was generated to evaluate the network slice traffic
route request rejection rate. These experiments were done for 10, 20, 30, 40, and 50 Mbps.

Figs. 11–14 show the achievement of the lowest rejection rate across different traffic volumes by
CoopAI-Route. Specifically, at a 10 Mbps traffic load, CoopAI-Route was observed to reduce the
rejection rate by a maximum of 26% compared to SAP and an average of 24% compared to LB. Fig. 11
also demonstrates the performance of DeepRMSA as worse than CoopAI-Route, providing evidence
of the beneficial nature of promoting cooperation among DRL agents.

Figure 11: Network slice traffic route request rejection rate based on the various traffic loads
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Figure 12: Network slice traffic route request rejection rate based on the various traffic loads

Figure 13: Network slice traffic route request rejection rate based on the various traffic loads

Figure 14: Network slice traffic route request rejection rate based on the various traffic loads

Applications with high bandwidth requirements experienced a slightly higher rejection rate than
others. This is because the system already has a high traffic volume, making it difficult to place new
requests. Compared to all other state-of-the-art methods, CoopAI-Route has a low rejection rate. It
is important to note that CoopAI-Route only shared limited intra-domain information among DRL
agents. This strikes a good balance between path provisioning performance and domain privacy. Thus,
considerations like topology and traffic load influenced the decision of which method to use for inter-
domain service provisioning in each domain. Since the network’s state changed over time, doing so
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was complicated. Deterministic algorithms alone were unable to address this challenge. Using DRL,
CoopAI-Route effectively addressed this complex problem while minimizing the rejection rate.

5.6 Effectiveness of Link Utilization
The performance of link utilization was directly proportional to a lower rejection rate in the

network slice traffic QoS demand. In this study, 1000, 2000, 3000, 4000, and 5000 network slice traffic
route requests were sent to different methods to analyze link bandwidth utilization. Minimal link usage
represented the total traffic distribution throughout the network, explaining CoopAI-Route’s attempt
to optimize the load-balancing aspect of the network. Improved load balancing led to lower maximum
link utilization. Fig. 15 shows CoopAI-Route effectively reducing the maximum link utilization com-
pared to the other three approaches. Employing the standard deviation of link utilization in CoopAI-
Route contributed to achieving balanced link utilization throughout the network. The significant
impact of CoopAI-Route was observed in the substantial reduction in maximum link utilization in
a topology with numerous nodes and links.

Figure 15: Number of network slice traffic route request and their link Utilization

5.7 Performance on E2E Latency
The E2E delay was caused by both link features and link capacity. It could be calculated using the

following equation, widely accepted in the field [28], which incorporated link capacity:

ω =
∑
e∈E

le

ce − le

. (18)

The performance of E2E latency is considered for both application slices and mixed slices. Each
application slice routes traffic requests of various sizes (1000, 2000, 3000, 4000, and 5000) tested in
this experiment. The mixed traffic comprises 40%, 30%, and 30% of high availability, low-latency, and
high bandwidth slice application route requests, respectively. Figs. 16–19 show the latency results. The
x-axis represents the number of route requests, and the y-axis represents the latency in milliseconds.
Across all figures, SAP and LB exhibit the highest E2E latency compared to DeepRMSA and CoopAI-
Route. While CoopAI-Route’s primary focus was not solely minimizing E2E delay, it still achieved
good performance in this aspect. This is because CoopAI-Route considers various factors in its
decision-making process. Experimental data on the multi-domain topology demonstrates CoopAI-
Route’s outperformance over LB, SAP, and DeepRMSA in reducing E2E delay. This observation is
evident from the results presented in Fig. 16. The reduced link load achieved by CoopAI-Route leads
to a proportional decrease in E2E delay within the network architecture. For instance, compared to
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SAP, LB, and DeepRMSA, CoopAI-Route achieved an average reduction in E2E delay of 55.02%,
51.08%, and 46%, respectively. These findings were consistent for the training topology, which had the
most nodes and edges.

Figure 16: Network slice traffic route rejection rate based on the E2E latency

Figure 17: Network slice traffic route rejection rate based on the E2E latency

Figure 18: Network slice traffic route rejection rate based on the E2E latency
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Figure 19: Network slice traffic route rejection rate based on the E2E latency

5.8 Evaluation Focus on Throughput
The performance of throughput is considered for both application slices and mixed slices. Each

application slice routes traffic requests of various sizes (1000, 2000, 3000, 4000, and 5000) tested in
this experiment. The mixed traffic comprises 40%, 30%, and 30% of high availability, low-latency, and
high bandwidth slice application route requests, respectively. Fig. 20 illustrates the superior throughput
performance of CoopAI-Route compared to other routing systems. Throughput refers to the number
of requests a system can handle per unit time. Here, we evaluate different routing systems under varying
numbers of path requests. Higher throughput values indicate better performance in efficiently handling
these requests. The results demonstrate that CoopAI-Route consistently outperforms or matches the
throughput of other systems across all tested request levels. For example, with 1000 path requests,
CoopAI-Route achieves a throughput of 603 Mbps, significantly exceeding DeepRMSA’s throughput
of 502 Mbps. The advantage of CoopAI-Route becomes even more pronounced with increasing load.
At 5000 path requests, the throughput of SAP is approximately 67.6% lower than CoopAI-Route’s.
Similarly, LB lags behind by about 62.4%. While DeepRMSA performs better than SAP and LB, its
throughput still falls behind CoopAI-Route by around 33.8%.

Figure 20: Average throughput based on the number of path requests

These results highlight a significant performance advantage of CoopAI-Route over other tested
routing systems. This suggests that CoopAI-Route is likely more scalable and better optimized for
handling high volumes of path requests. In other words, CoopAI-Route can efficiently manage routing
tasks even under heavy loads, making it a promising solution for demanding routing scenarios.
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5.9 Evaluation Focus on Packet Loss
The performance of packet loss is considered for both application slices and mixed slices. Each

application slice routes traffic requests of various sizes (1000, 2000, 3000, 4000, and 5000) tested in this
experiment. The mixed traffic comprises 40%, 30%, and 30% of high availability, low-latency, and high
bandwidth slice application route requests, respectively. Fig. 21 illustrates packet loss performance
across various routing systems: SAP, LB, DeepRMSA, and CoopAI-Route. The experiment evaluated
these systems under increasing numbers of path requests, simulating network traffic loads. Packet loss
signifies the percentage of data packets failing to reach their intended destination. As path requests rise
(indicating higher network load), packet loss generally decreases for all routing systems. This suggests
that under increased load, the systems might become more adept at delivering packets efficiently.

Figure 21: Packet loss based on the number of path requests

Notably, CoopAI-Route exhibits consistently lower packet loss compared to other systems across
all traffic loads tested. For instance, with 1000 path requests, other state-of-the-art systems experience
significantly higher packet loss: 37.5% for DeepRMSA, 41.0% for LB, and 42.0% for SAP. The
advantage of CoopAI-Route becomes even more increased as path requests increase. By 5000 path
requests, all other routing systems tested show considerably higher packet loss compared to CoopAI-
Route. These findings indicate that CoopAI-Route offers superior reliability in packet delivery. It
maintains lower packet loss percentages even under heavy network loads compared to traditional
routing systems. This enhanced reliability is critical for guaranteeing data integrity and ensuring
smooth communication within a network.

5.10 Evaluations on Scalability
Evaluated the scalability of CoopAI-Route in simulations with 10, 15, and 20 domains, each

containing 10 nodes. Table 6 shows the performance results. By examining rejection rates more closely,
can quantify the performance advantage of CoopAI-Route compared to other methods. The table
shows the difference in the number of rejected path requests between CoopAI-Route and each of the
other protocols, under both 2000 and 5000 traffic route request conditions.

Under normal traffic with 2000 path requests, CoopAI-Route outperforms SAP by 23% to 26%,
LB by 13% to 24%, and DeepRMSA by 12% to 14%. This advantage becomes even more pronounced
under 5000 path requests. Here, CoopAI-Route surpasses SAP by 33% to 37%, LB by 30% to 32%, and
DeepRMSA maintains a similar difference of 22% to 22%. CoopAI-Route consistently demonstrates
a lower rejection rate compared to other state-of-the-art mechanisms, particularly under high-traffic
route requests. This translates to a significant improvement in efficiently handling path requests within
these network configurations.
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Table 6: Scalability performance on various topologies

No. of
domains

No. of path
request

Rejection rate (%)

SAP LB DeepRMSA CoopAI-
Route

10-Domain
2000 35 25 24 12
5000 51 48 40 18

15-Domain
2000 39 37 26 13
5000 54 49 41 19

20-Domain
2000 41 38 29 15
5000 58 53 43 21

CoopAI-Route appears to be a strong contender based on rejection rates. To demonstrate
its adaptability and scalability, additional real-world topology simulations were conducted using a
multi-domain SDN (shown in Fig. 22). Despite this topology comprising only three domains, each
domain was significantly larger on average compared to the nine domains in Fig. 6. CoopAI-Route
implemented cross-domain provisioning in this three-domain SDN with only minor tweaks. Fig. 23
shows the training rejection rate as the number of route requests increased (assuming a constant traffic
load of 10 Mb/s).

Figure 22: 3-Domain real-world test topology (Geant2)
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Figure 23: 3-Domain network slice traffic route request rejection rate based on the number of path
requests

The results confirmed that CoopAI-Route outperformed the heuristics in terms of a lower rejec-
tion rate. Comparison between the results in Figs. 7 and 23 revealed that the training of CoopAI-Route
in multi-domain SDNs remained consistent despite employing different topologies. This demonstrates
the robustness and scalability of CoopAI-Route’s distributed online training system. Results for the
rejection rate in the three-domain SDN provided in Fig. 23 followed the same pattern as that seen in
Fig. 7. Table 7 shows the average time each algorithm took to return a path between domains.

Table 7: Running time (ms)

Algorithm SAP LB DeepRMSA CoopAI-Route

3 domain 2.51 3.36 6.48 8.32
9 domain 6.31 7.24 9.56 10.41

Since offline training is required before deploying any DRL model, the focus was on online
operation and training time, disregarding the runtime of offline training. The findings in Table 7
indicate that CoopAI-Route processed each inter-domain request in milliseconds.

CoopAI-Route exhibited a slight increase in execution time as the number of domains increased.
The execution time of deterministic heuristics (LB and SAP) often doubled when the number of SDN
domains increased to nine. This indicates that CoopAI-Route is well-suited for dynamic provisioning,
showcasing its scalability on large topologies.

One of the key challenges in large-scale routing systems is communication and synchronization
overhead. Traditional systems often require all agents to communicate and coordinate with each
other to determine the optimal route. This constant data exchange can significantly slow down the
system, especially in complex networks with many agents. CoopAI-Route tackles this challenge by
introducing the DGT algorithm. DGT acts as an intelligent filter, intelligently selecting specific
domains (groups of agents) to participate in the routing process. This strategic selection significantly
reduces the overall number of agents involved in communication. The communication within each
domain primarily relies on DRL. DRL allows agents within a domain to collaborate and learn from
each other, effectively finding the best route within their designated area. This focused collaboration
further reduces communication overhead and potentially leads to faster route calculations.
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However, CoopAI-Route with DGT does not compromise global efficiency. By cleverly coordinat-
ing the results from each domain, the system can still achieve an optimal routing solution for the entire
network. This balance between reduced communication and maintaining global efficiency makes
CoopAI-Route so scalable. Unlike traditional systems that struggle with communication overload
as the network grows, CoopAI-Route with DGT can effectively handle complex routing tasks even
in large and distributed networks. CoopAI-Route distinguished itself from competing models by
demonstrating efficient execution times and minimal growth in execution time with an increase in the
number of domains. These characteristics further highlight its suitability for dynamic provisioning.
The results provided strong evidence of CoopAI-Route’s scalability on large topologies.

CoopAI-Route’s Scalability and Adaptation for Evolving Networks

Table 6 summarizes performance metrics for different network sizes (number of domains). The
discussion of DGT underlines CoopAI-Route’s potential to handle large-scale networks. Traditional
routing systems can become overloaded with communication as the network expands. CoopAI-
Route’s DGT algorithm tackles this issue by strategically selecting specific groups of agents (domains)
to participate in routing. This significantly reduces the number of communicating agents, making
CoopAI-Route well-suited for complex routing tasks in large networks. DRL is employed within
each domain. Agents within a domain collaborate and learn from each other to discover optimal
routes within their designated area. This focused collaboration further minimizes communication
overhead and potentially leads to faster route calculations, contributing to efficient routing in large-
scale networks.

Adaptation Mechanisms for Evolving Topologies

CoopAI-Route appears to utilize a three-pronged approach for adaptation:

• GNN: Continuously analyzes the network graph (including devices and connections) to detect
changes in topology, such as new nodes or fluctuations in bandwidth.

• SDN-Based Network Updates: SDN serves as the bridge between CoopAI-Route and the phys-
ical network. The SDN controller periodically retrieves information from network switches,
feeding real-time data into CoopAI-Route to update the GNN’s understanding of the network
state.

• DRL for Rapid Change Identification: Analyzes network updates received from the SDN
controller (including link status and congestion levels) to identify significant deviations from
the baseline network state learned by the GNN, signaling rapid network changes.

This approach suggests potential advantages for CoopAI-Route’s resilience.

5.11 Performance on Dynamic Link Failure
To evaluate CoopAI-Route’s flexibility to changes in the underlying network architecture sce-

narios including frequent network link failures were simulated. Real-world networks experience
topological changes over time, such as link failures [28]. Up to ten link failures were explored
across a variety of circumstances. The objective of CoopAI-Route was to find alternative routing
configurations that improve throughput and reduce the load on the remaining links. Experiments
were conducted where n (from 1 to 10) links in the Geant2 topology were removed randomly. The
rejection rate (bandwidth allocation) of the CoopAI-Route agent was compared with that of the
competing techniques. Average connection failures (x-axis) and rejection rate (y-axis) are shown in
Fig. 24. CoopAI-Route maintained performance above the baseline even with simultaneous breaks in
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two connections. This demonstrated the adaptability of the proposed CoopAI-Route architecture, as
it could effectively handle multiple link failures and still deliver satisfactory performance.

Figure 24: Network slice traffic route request rejection rate based on the dynamic link failure

This GNN likely continuously analyzes the network graph, which includes information about
devices (nodes) and their connections (relationships). By constantly processing this data, the GNN
could potentially detect changes in the network state, such as:

• Fluctuations in link weight (indicating bandwidth changes)

• Addition or removal of nodes

• Changes in link status (up/down)

SDN serves as the communication bridge between CoopAI-Route and the physical network.
The SDN controller periodically retrieves information from network switches, including link status,
available bandwidth, and congestion levels. This real-time data is fed into CoopAI-Route, allowing it
to update its understanding of the current network state.

5.12 Discussion
The study proposes a CoopAI-Route system for managing network slices and evaluates its effec-

tiveness through multiple benchmarks. The system prioritizes efficient traffic handling by considering
traffic demand and load to minimize rejection rates. It also measures responsiveness through E2E delay
analysis, allowing for bottleneck identification and routing optimization within slices. Link utilization
is evaluated to avoid congestion and underutilized resources and ensure efficient resource allocation.
Furthermore, the system’s scalability is assessed for future traffic growth and network slice requests.
Finally, the system’s response to dynamic link failures is analyzed to minimize downtime and maintain
low rejection rates even during unexpected events. Overall, this evaluation approach demonstrates the
system’s effectiveness in managing network slices and optimizing their performance under various
conditions.

CoopAI-Route with MPNN-TD3 addresses the challenge of performing well in unforeseen
scenarios through its design elements. The DGT algorithm allows CoopAI-Route to conquer diverse
network topologies by dividing the network into manageable domains. Within each domain, agents
collaborate and learn routing strategies specific to their local traffic patterns and network graphs.
Adapting to local conditions empowers CoopAI-Route to function effectively across different network
configurations.
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Furthermore, MPNN-TD3 forms the core of CoopAI-Route’s DRL prowess. These models
are adept at handling graph-structured data, perfectly aligning with transportation networks where
locations (nodes) connect via routes (edges). Regardless of the underlying network topology, MPNNs
can effectively learn the intricate patterns and relationships within the network. To ensure optimization
for the global good, CoopAI-Route incorporates TD3. TD3 focuses on maximizing a global reward
function, which translates to finding the optimal route for the entire network in the routing context.
This overarching objective ensures that even though agents learn within their designated domains, they
ultimately work towards a solution that benefits the entire system, irrespective of the specific traffic
patterns present.

To convincingly demonstrate CoopAI-Route’s ability to handle diverse network environments,
we should showcase its performance on various network topologies and traffic patterns. Running
CoopAI-Route on simulated networks with different topologies and traffic patterns would provide
valuable insights. Real-world deployment could improve the system’s ability to generalize and handle
traffic patterns, such as peak and regular hours traffic.

The most difficult part of the work is that multi-agent DRL offers a promising approach for man-
aging complex multi-domain SDN networks, but it faces hurdles. Coordinating and communicating
across different domains remains intricate, and the reliance on message passing creates vulnerability to
network disruptions. However, these agents’ ability to learn and adapt allows them to discover optimal
paths that deliver the necessary QoS for various network slice applications. Combining SDN with DRL
achieves domain-level privacy, a significant improvement over traditional systems. However, security
in multi-domain communication remains an area for further exploration. Moving forward, the focus
should be on enhancing communication security through measures like encryption, authentication,
and redundancy. This will ensure reliable information exchange and ultimately lead to a more robust
and efficient network management system. This remains a key focus for future research.

6 Conclusion

This research article introduces CoopAI-Route, a framework for scalable network management
across many SDN domains that utilize cooperative DRL agents to provide network slice-based inter-
and intra-domain path services. CoopAI-Route employs DRL agents at the domain level to maximize
the QoS provided between different domains. PCE is implemented to establish the best path to traverse
domains for every given network slice traffic route request. The decentralized nature of the DRL
agents enables them to make independent decisions while sharing limited information. The MPNN-
TD3 approach has been developed to enhance scalability and generalizability.

CoopAI-Route leverages the capabilities of the GNN to analyze the network environment
in a multi-domain SDN and select the optimal path to minimize the network slice traffic route
request rejection rate. Extensive simulation scenarios demonstrated that CoopAI-Route outperforms
existing algorithms for inter-domain provisioning. Additionally, the distributed training approach
implemented in this work has proved successful.

One of the key strengths of CoopAI-Route is its generalization capability. Modeling networks as
graphs and employing GNN keeps the system involved in analyzing network data and enables the
interaction of distributed agents with their neighbors based on the underlying graph structure. This
assists CoopAI-Route in adapting to and performing well in diverse network environments, making it
a versatile solution for inter-domain and intra-domain path services.
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