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ABSTRACT

In underground engineering, the detection of structural cracks on tunnel surfaces stands as a pivotal task in
ensuring the health and reliability of tunnel structures. However, the dim and dusty environment inherent to under-
ground engineering poses considerable challenges to crack segmentation. This paper proposes a crack segmentation
algorithm termed as Focused Detection for Subsurface Cracks YOLOv8 (FDSC-YOLOv8) specifically designed
for underground engineering structural surfaces. Firstly, to improve the extraction of multi-layer convolutional
features, the fixed convolutional module is replaced with a deformable convolutional module. Secondly, the model’s
receptive field is enhanced by introducing a multi-branch convolutional module, improving the extraction of
shallow features for small targets. Next, the Dynamic Snake Convolution module is incorporated to enhance the
extraction capability for slender and weak cracks. Finally, the Convolutional Block Attention Module (CBAM)
module is employed to achieve better target determination. The FDSC-YOLOv8s algorithm’s mAP50 and mAP50-
95 reach 96.5% and 66.4%, according to the testing data.
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1 Introduction

The evaluation of underground engineering structural surfaces plays a crucial role in maintaining
tunnels’ structural health and reliability. During tunnel construction, the disruption of surrounding
rock stress equilibrium caused by excavation [1] often leads to the formation of cracks on structural
surfaces. Without timely intervention measures for maintenance, the severity of these cracks can
escalate, resulting in significant tunnel deformation and collapse accidents, leading to casualties,
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economic losses, and project delays [2,3]. As a result, identifying nearby rock fissures and quickly
gaining a knowledge of their characteristics are crucial for guaranteeing building site safety.

Since computer technology has advanced, deep learning methods for extracting crack information
have gained a lot of interest. Crack identification can be thought of as a fundamental case of line
recognition in the field of computer vision since cracks typically display linear or curved structures
[4–6]. In general, there are two main groups of algorithms for detecting cracks: the first one is based
on conventional picture processing techniques [7] while the other one is based on deep learning
techniques. The creation of different filters, like edge detectors, which are totally dependent on the
intrinsic properties of optical pictures, is essentially what the classic image processing approaches are
all about [8]. In spite of the considerable research conducted on these approaches, their drawbacks
are also obvious. Limited by the basic principle of these traditional image processing techniques, it
is often difficult to identify irregular targets against intricate backgrounds environments and poor
lighting conditions [9]. In other words, the robustness of the traditional image processing techniques is
not satisfactory. Deep learning techniques are currently being used extensively in computer vision
[10–12], mainly because they have advantages in recognition speed and accuracy compared to
traditional target recognition algorithms. Although there are some deep learning-based techniques for
detecting cracks in subterranean structures, they are still not very successful and need to be improved.

Within the field of automated crack detection, early studies proposed various methods.
Zhao et al. [13] improved the traditional Canny algorithm to enhance the effectiveness of edge
detection in road images. Li et al. [14] proposed a deep fusion strategy that combines cyclic residual
convolution and context encoder networks to detect cracks, but this method has a relatively high
requirement for image brightness. Talab et al. [15] applied the Sobel operator to filter and denoise
concrete images, followed by Otsu threshold segmentation for crack edge detection. Although the
Sobel operator has certain practicality in the detection of cracks on concrete surfaces, its potential
issue lies in the thickening of crack edges, which in turn affects the accuracy of crack recognition.
Furthermore, these traditional image processing algorithms are susceptible to disturbances such
as lighting variations, stains, and debris, which can hinder the effectiveness and precision of crack
detection.

The two main types are one-stage and two-stage methods in deep learning algorithms [16]. The
creation of candidate regions containing geographic information about the target is a prerequisite for
Two-Stage algorithms, which is the main distinction between the two. In recent years, several studies
have proposed CNN-based methods for pavement disease detection. For example, a novel method for
measuring and identifying road discomfort based on CNN technology was proposed by Sha et al. [17].
This method utilizes a CNN model to successfully achieve intelligent monitoring of road conditions,
identify different types of road distresses, and provide accurate measurements of their dimensions and
locations. Similarly, Wang [18] studied the use of the Faster R-CNN algorithm for automatic concrete
crack identification. She extracts crack features using the Zeiler&Fergus Net (ZFNet) network and
then detects cracks in cement concrete pavements using Faster R-CNN, enabling real-time crack
localization from coarse to fine. All things considered, these CNN-based techniques have a lot of
potential for effective and precise pavement disease diagnosis.

In terms of real-time performance and detection speed, one-stage algorithms have a considerable
advantage over two-stage algorithms. Xie et al. [19] proposed an improved YOLOv5 model that
incorporates multi-scale and multi-level information fusion, along with a multi-scale channel attention
module. This model achieved a detection accuracy of 60.24% for small targets on UAVs, with a
detection time of only 16 ms. To ensure the model’s adaptability to multi-size targets and detection



CMES, 2024, vol.140, no.3 3037

accuracy, Lei et al. [20] suggested an updated YOLO v3 model technique for rural land object
identification and categorization. A unique convolutional neural network named MYOLOv3-Tiny
was proposed by Xu et al. [21] for the real-time detection of rail fasteners, and it achieved a 99.32%
detection accuracy. Chen et al. [22] developed a defect detector based on YOLOv3 for the inspection of
surface-mounted LED chips. In their approach, they introduced DenseNet as the backbone network,
replacing the original Darknet-53.

These aforementioned studies provide effective models for target detection in many situations.
However, they are almost designed for overground applications such as pavement and bridges. The
environment in the underground space is much more complex than the ground. For example, the
images of cracks captured in underground space are usually affected by poor lightness, heavy dust,
and high humidity. Therefore, the models for crack detection in underground space should be specially
designed to fit these factors.

The challenges for crack segmentation in the underground engineer are manyfold. One the one
hand, significant obstacles and constraints for related research activities are brought about by the
current lack of publicly available datasets specifically designed to address structural surface cracks
in subsurface engineering. On the other hand, in the captured images, the cracks are usually slender
lines or curves, occupying only a relatively small area in the image, and thus are prone to the problem
of information loss during feature extraction. Additionally, the cracks usually have irregular shapes
and sizes and are interfered by light, noise, and other factors. Taking into account the aforementioned
challenges, this paper presents an enhanced model for crack segmentation in underground engineering,
which capitalizes on the strengths of the YOLOv8s model [23]. The architecture of this model has
been carefully designed based on the unique features of underground cracks, leading to a notable
improvement in identification accuracy. The following are this paper’s primary contributions:

1. This study establishes a dataset for crack segmentation in underground engineering, gathering
rich and authentic tunnel scene data, thereby providing a benchmark for evaluating algorithm
performance.

2. The presented model introduces the fusion method of YOLOv8 and Dynamic Snake Convo-
lution (DSConv) in the field of crack segmentation, so that the model is more suitable to the slender
morphology, and the crack segmentation capability is effectively improved.

3. To improve crack segmentation, the paper use the multi-branch convolutional module Receptive
Field Module (RFB) to enhance feature extraction and replace fixed convolutional modules with
Deformable Convolution for better capturing crack complexities. Additionally, it integrate a Convo-
lutional Block Attention Module (CBAM) module to improve focus and accuracy on crack regions.

2 Crack Segmentation Model
2.1 Baseline

YOLOv8, the latest iteration of the YOLO network family, introduces numerous advancements
and innovations that build upon the success of previous YOLO versions, ultimately enhancing its
overall performance and adaptability [24]. Illustrated in Fig. 1a, the network architecture of YOLOv8
is comprised of three distinct components: the Backbone, Neck, and Head.



3038 CMES, 2024, vol.140, no.3

SPPF

Conv,k=3,s=2

C2f,n=3

Conv,k=3,s=2

C2f,n=6

Conv,k=3,s=2

C2f,n=6

Conv,k=3,s=2

C2f,n=3

Conv,k=3,s=2

C2f,n=3

Upsample

Upsample

Conv,k=3,s=2

C2f,n=3

C2f,n=3

Conv,k=3,s=2

C2f,n=3 Detect

Detect

Detect

Input

SPPF

Conv,k=3,s=2

C2f_DCNv2

Conv,k=3,s=2

C2f_DCNv2

Conv,k=3,s=2

C2f_DCNv2

Conv,k=3,s=2

C2f_DCNv2

Conv,k=3,s=2

C2f_DCNv2

Upsample

Upsample

Conv,k=3,s=2

C2f_DCNv2

C2f_DCNv2

CBAM

BasicRFB

CBAM

CBAM

DySnakeConv

BasicRFB

CBAM

Conv,k=3,s=2

C2f_DCNv2

DySnakeConv

BasicRFB

CBAM

Detect

Detect

Detect

Concat

Concat

Concat

Concat

Concat

Concat

Concat

Concat

(a) (b)

Input

Figure 1: (a) The architecture of YOLOv8; (b) The architecture of Focused Detection for Subsurface
Cracks YOLOv8

2.2 Improve with YOLOv8
Existing target segmentation algorithms are effective for crack segmentation but still have

drawbacks in the underground engineer. For better segmentation of cracks, this study have improved
the YOLO algorithm and termed it Focused Detection for Subsurface Cracks YOLOv8 (FDSC-
YOLOv8), which can extract cracks quickly and accurately, and the details of the algorithm are
described below.

In the FDSC-YOLOv8 model, the standard convolution in Convolution to FulyConnected (C2f)
is replaced by Deformable Convnets v2 (DCNv2) on the original Backbone to form C2f-DCNv2,
which can better capture the deformation of the cracks. The RFB is introduced in the Head part to
add a BasicRFB layer, which enhances the model sensing field. To bolster the crack feature extraction
capabilities, the DySnakeConv layer is constructed using the DSConv. Lastly, the CBAM module is
integrated into the YOLOv8s to prioritize crucial features. The enhanced model’s structure is depicted
in Fig. 1b.

2.2.1 Modifying the Backbone Network

The intricacies of crack segmentation tasks necessitate heightened sensitivity to target deforma-
tions and intricate details. Conventional convolution operations may lack the requisite flexibility to
effectively handle such scenarios, resulting in a reduction in target localization accuracy [25]. Hence,
we opt to incorporate Deformable Convnets v2 (DCNv2) [26] to augment the backbone network of
YOLOv8.
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Deformable convolution s a type of convolution operation that dynamically adjusts the shape
of the kernel by learning offset for the center position within the receptive field. In comparison
to conventional fixed convolution kernels, deformable convolution exhibits enhanced adaptability,
proving more adept at accommodating the deformations intricate structures of the target.

In DCNv2, the following is the calculation formula for the output eigenvalue F(x):

F (x) =
N∑

n=1

ωn · y (x + xn + Δxn) · Δmn (1)

where �xn and �mn stand for the modulation scalar and learnable offset, respectively, for the k-th site.
Compared to DCNv1, DCNv2 introduces not only the offset of each sampling point but also a weight
coefficient �mk to discern whether the introduced region is of interest to us.

The incorporation of deformable convolution into the backbone network of YOLOv8 is pursued
to enhance the model’s recognition of crack targets. In particular, the C2f module of YOLOv8 has
undergone a modification where the traditional convolution has been substituted with DCNv2,
resulting in the creation of the C2f-DCNv2 module. This operation not only introduces stronger
nonlinear modeling capabilities to the model but also helps to better capture the changing shape and
detailed information of cracks, as shown in the structural diagram in Fig. 2.

Figure 2: The architecture of C2f-DCNv2

2.2.2 Improved Neck Convolution Block

Following the aforementioned enhancements, there has been a notable improvement in segmen-
tation accuracy. Nevertheless, challenges persist, particularly in dealing with small targets and low-
resolution issues within crack segmentation. To address these issues, the adoption of the Receptive
Field Block (RFB) module [27] into the Neck network has been selected. This strategic addition aims
to amplify the extraction capabilities for small targets, thereby enhancing the model’s discernment of
crack targets.

RFB is a dedicated module crafted to broaden the receptive field and enhance feature expression
capabilities. Comprising multiple parallel branches [28], each adept at capturing feature information
at various scales, this structural design empowers the model with a more exhaustive comprehension of
the input image. This capability proves especially vital in tasks like crack segmentation, where dealing
with a diverse array of morphological changes is imperative. The detailed structure of the RFB module
is in Fig. 3.
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Figure 3: The architecture of RFB. (a) RFB; (b) RFB-s

The integration of the RFB module into the Neck section of YOLOv8 is chosen to extend
the receptive field range for feature extraction. The introduction of an RFB module into the
Neck enhances the model’s capacity to capture contextual information about crack targets, thereby
improving overall detection performance. Additionally, this paper have incorporated the receptive
field module into the Head section of YOLOv8. This strategic inclusion aims to further enhance
the perception of crack targets during the detection phase, ensuring more accurate localization and
segmentation of cracks.

2.2.3 Improved Head Convolution Block

To further enhance the perception of complex shaped cracks and improve segmentation accuracy,
Dynamic Snake Convolution (DSConv) [29] will be introduced into the Head layer of YOLOv8.
During the detection phase, DSConv modifies the convolutional kernel’s shape flexibly, improving
the model’s adaptability to target deformation and complicated structures. This is accomplished
during the detection phase by dynamically modifying the convolution kernel’s form. This addition
is geared towards comprehensive optimization of the crack segmentation model, aiming to improve
its adaptability and accuracy across various crack shapes. The DSConv module primarily tackles the
difficulty in capturing subtle local structural details and dealing with intricate global morphological
variations. The structural diagram of the module is illustrated in Fig. 4.

The convolution kernel in DSConv is linearized in both the x and y directions. The following is
the change along the x-axis:

Pi±k =
⎧⎨
⎩

(xi+k, yi+k) =
(

xi + k, yi + ∑i+k

i Δy
)

(xi−k, yi−k) = (
xi − k, yi + ∑i

i−k Δy
) (2)

The following is the change along the y-axis:

Pj±k =
⎧⎨
⎩

(
xj+k, yj+k

) =
(

xj + ∑j+k

j Δx, yj + k
)

(
xj−k, yj−k

) = (
xj + ∑j

j−k Δx, yj − k
) (3)



CMES, 2024, vol.140, no.3 3041

Figure 4: The architecture of DSConv

Among them, Pi±k = (xi±k, yi±k) represents the specific position of each grid, k = {0, 1, 2, 3, 4}
represents the horizontal separation from the grid center, Δ = {λ |λ ∈ [−1, 1]} is the accumulated
offset amount.

Given that cracks typically exhibit characteristics similar to tubular structures, such as being
elongated, irregular, and twisted. This paper introduces the novel application of DSConv to the field of
crack segmentation. A pioneering step, the primary enhancement involves integrating DySnakeConv
layers after each convolutional layer in the Head network of YOLOv8. This strategic addition aims
to align better with the direction of cracks, thereby augmenting the model’s perception of cracks.
This adaptation contributes to a more profound understanding and segmentation of crack regions,
ultimately improving the performance of crack segmentation, particularly for slender and twisted
crack structures. The structure is delineated in Fig. 5. This innovative design is poised to bring
heightened adaptability and accuracy to the crack segmentation model.

Figure 5: The architecture of DySnakeConv

2.2.4 Add CBAM Attention Mechanism

This article integrates the CBAM [30] module to improve the perception of fracture regions,
building on the previously reported improvements and improving feature expression capabilities. As a
result, the model can focus more on target attributes, improving the targets’ segmentation accuracy.

CBAM represents a prominent attention mechanism devised to dynamically modulate the feature
responses of each layer within the network. The Spatial Attention Module (SAM) and the Channel
Attention Module (CAM) are its two attention modules. The structural diagram of CBAM is
elucidated in Fig. 6. The SAM module in CBAM extracts the maximum and average feature values for
each spatial position in the feature map using two different strategies. To be more precise, this module
performs these two pooling techniques separately to every channel in the feature map. This produces
two distinct matrices that enhance the model’s capacity for detection and feature representation.
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Figure 6: The architecture of CBAM

Feature map F first goes through global average pooling and global maximum pooling following
CAM processing. The weights of CAM will then be computed from these pooled findings using multi-
layer perceptrons. Subsequently, in order to standardize and normalize these weights, the Sigmoid
function was used to normalize them. Finally, these normalized attention weights will be applied to
the original input feature map one by one according to the channel. In particular, each channel’s
weight is multiplied by the appropriate feature map channel throughout the computation process,
which improves attention and efficiently filters features.

3 Experiments
3.1 Dataset

The data used in this study comes from the DeepCrack [31]. There are 527 photos in the original
dataset sample, with a resolution of 544 by 384 pixels. Data augmentation methods are used on the
obtained images to enhence the possibility of network overfitting and increase the model’s ability to
generalize. These techniques effectively expand the dataset to 3162 images by introducing random
noise, panning, rotation, mirroring, and other transformations. Considering the complex environment,
many noise points, and harsh environment in the tunnel, Gaussian noise and average blur are added to
better adapt to the actual tunnel environment. To further improve the stability of the data, Gaussian
noise, average blur, pan, rotate, and flip are applied to the original photos. Fig. 7 displays the improved
data images.

An 8:2 ratio is used to divide the enlarged dataset into wo categories. In particular, there are 633
images were utilized for validation and 2529 photographs were used for training. The crack images
are annotated using the Labelme software, which concurrently generates corresponding label files.
The outcomes of this image labeling process are depicted in Fig. 8.

In this study, a specialized tunnel crack image test set was constructed to evaluate algorithm
performance, implementing a series of measures to ensure its effectiveness. Firstly, we collected a range
of images from different regions and under various conditions to ensure the representativeness and
diversity of the test set, thus simulating various scenarios encountered in actual engineering projects.
Secondly, the collected images underwent meticulous screening to guarantee the quality and accuracy
of the test set. Moreover, in order to enrich the dataset and improve its adaptability, data augmentation
techniques were employed on the images, including but not limited to rotation, translation, and scaling,
thereby expanding the coverage of the test set to encompass a wide range of crack morphologies and
environmental variations.
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Figure 7: Image of the dataset after data enhancement

Figure 8: Results of labelme labeling

Through these measures, the study ensured the representativeness, diversity, and generalization
capability of the test set, enabling a more accurate evaluation of crack segmentation algorithm
performance. The main advantage of this approach lies in considering not only algorithm perfor-
mance under specific conditions but also its evaluation under broader circumstances, providing a
more comprehensive understanding of algorithm robustness and generalization capability. With this
evaluation method, the paper can reliably determine the applicability and reliability of the algorithm in
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practical engineering applications, thereby providing a reliable benchmark and reference for research
on underground engineering crack segmentation algorithms.

3.2 Environment and Parameters
A 50 epoch early terminating patience parameter was used to track training progress during the

300 epoch training phase. The operating system and deep learning framework used in the experimental
setup are Ubuntu 20.04.5 Long Term Support (LTS) and Pytorch, respectively. Table 1 lists all of the
hardware and software combinations.

Table 1: Experimental environment equipment and software configuration

Name Version

CPU Intel(R) Core(TM) i5-10400 CPU @ 2.90 GHz
GPU NVIDIA GeForce RTX 3090
Python 3.8.0
YOLO v8.0.203
Pytoch 1.12.1

3.3 Evaluation Metrics
The segmentation performance of the suggested method is assessed using the following metrics.

The following are the formulas:

Precision = TP
TP + FP

Recall = TP
TP + FN

(4)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

AP =
∑

Precision
N (TotalImages)

mAP =
∑

AP
N (classes)

where TP signifies a true positive, indicating a positive sample that has been accurately detected. FP,
on the other hand, stands for a false positive, referring to a negative sample mistakenly identified
as positive. TN represents a true negative, which means a negative sample that has been correctly
identified as such. Lastly, FN denotes a false negative, where a positive sample is erroneously labeled
as negative. The F1-score serves as a statistical measure utilized to assess the accuracy of a test. It
encapsulates both precision and recall by computing their harmonic mean, thereby offering a unified
metric that accounts. AP stands for the average precision of a category, i.e., it speaks to the proportion
of all photographs that have this kind of target present, calculated as the average accuracy over all
images in the test dataset for this category. mAP stands for the ratio of the average precision of all the
categories.
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3.4 Experimental Results and Analysis
3.4.1 Ablation Experiments

This paper used ablation experiments on RFB, DCNv2, DSConv, and CBAM modules to confirm
the efficacy of the enhancements. To evaluate how the changes have affected performance, this paper
perform ablation using YOLOv8s as a benchmark. Table 2 presents the findings.

Table 2: The table of FDSC-YOLOv8s model for ablation experiments

Baseline RFB DCNv2 DSConv CBAM Precision Recall mAP50 mAP50-95

YOLOv8s – – – – 0.952 0.900 0.942 0.623
YOLOv8s √ – – – 0.979 0.925 0.958 0.655
YOLOv8s – √ – – 0.973 0.914 0.954 0.642
YOLOv8s – – √ – 0.978 0.923 0.961 0.651
YOLOv8s – – – √ 0.966 0.896 0.944 0.634
Presented model √ √ √ √ 0.977 0.934 0.965 0.664

The YOLOv8 algorithm, with the addition of the RFB, DCNv2, DySnake, and CBAM modules,
has demonstrated improvements in Precision, Recall, mAP50, mAP50-95, and other three indicators.
Compared to the YOLOv8 algorithm, FDSC-YOLOv8 method, which incorporates RFB, DCNv2,
DySnake, and CBAM, has an increase of 2.3% in mAP50 and 3.8% in mAP50-95. The data have
demonstrated that the modules of the proposed method all have an improvement effect on the model,
and the effect of using them together is better than the effect of using them alone, which shows that
new model outperforms the original YOLOv8s model on the crack segmentation task.

3.4.2 Comparison Experiment

To conduct an objective evaluation of the FDSC-YOLOv8’s superiority, the performance is
compared and examined with the one-stage detector YOLOv5 and YOLOv7 models. To ensure fairness
in the experimental outcomes, the same dataset was utilized under consistent hardware device. Table 3
presents the related experimental findings.

Table 3: The table of the FDSC-YOLOv8s model for comparison experiments

Name Precision Recall mAP50 mAP50-95 F1-score FPS

YOLOv5s-seg 0.935 0.876 0.936 0.552 0.904 297
YOLOv7-seg 0.971 0.913 0.952 0.609 0.941 235
YOLOv8s-seg 0.952 0.900 0.942 0.623 0.925 285
Presented model 0.977 0.934 0.965 0.664 0.955 272

Compared with the YOLOv5s seg algorithm, Precision has increased by 4.2%, Recall has increased
by 5.8%, mAP50 has increased by 2.9%, mAP50-95 has increased by 11.2%, and F1 value has increased
by 5.1%; Compared to the YOLOv7 seg algorithm, the presented method has increased the Recall
value by 2.1%, mAP50 by 1.3%, mAP50-95 by 5.5%, and F1-score by 1.4%. The enhanced YOLOv8
algorithm has improved Precision by 2.5%, Recall value by 3.4%, mAP50 by 2.3%, mAP50-95 by 4.1%,
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and F1 value by 3% when compared to the YOLOv8s-seg method. In addition, although FPS is lower
than YOLOv5, its accuracy value is much higher than it. This ensures that FDSC-YOLOv8 remains
effective while maintaining consistent performance. The data demonstrates that the FDSC-YOLOv8
outperforms earlier segmentation models in crack segmentation tasks, suggesting that the suggested
strategy has a considerable improvement effect in crack segmentation.

3.4.3 The Analysis of the Experiment

The loss curve and mAP curve of the FDSC-YOLOv8 crack segmentation model are shown in
Fig. 9. From the data results, the loss value gradually decreases and gradually stabilizes, particularly
in the latter stages of the training process. The loss value is almost unchanged.

Figure 9: The results of FDSC-YOLOv8. (a) The loss curve of FDSC-YOLOv8. (b) The mAP curve
of FDSC-YOLOv8

To further confirm the real-world effectiveness of the upgraded mode, verification was conducted
using actual engineering images collected before and after the improvements. In this study, it was found
that the improved model can identify cracks with widths as low as a few pixels, as shown in Fig. 10.
This further demonstrates the superiority of the model in crack identification.

Numerous tests have decisively shown that the improved YOLOv8 performs better in crack
segmentation tasks, confirming its increased ability to capture the structure and morphology of cracks.
This achievement holds significant importance in addressing the challenges posed by the diversity and
complexity of cracks.
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Figure 10: The results before and after improvement. (a) The results before improvement; (b) The
results after improvement

4 Conclusion

The FDSC-YOLOv8 algorithm developed in this study demonstrates improved performance
in the identification and segmentation of cracks in underground engineering. By integrating RFB,
DCNv2, and CBAM attention mechanisms, along with the incorporation of the DSConv network
tailored for slender and twisted structures, FDSC-YOLOv8 significantly improves the precision and
detail detection capability for crack features. This improved recognition capacity delivers superior
performance with mAP50 and mAP50-95 scores of 96.5% and 66.4%, and lowers misidentification
in challenging construction sites, such as those with high levels of noise and cable interference. These
achievements highlight the crucial value of the FDSC-YOLOv8 algorithm in enhancing the safety
of underground engineering, particularly by early identification and localization of tiny cracks to
effectively prevent potential structural issues, thereby reducing the risk of accidents and maintenance
costs. Future research will focus on further optimization of algorithm parameters and testing in a
broader range of underground engineering scenarios to ensure widespread practical application of the
presented technology, offering enhanced safety guarantees in the field of underground engineering.
Through such efforts, the FDSC-YOLOv8s will not only serve as a powerful tool for crack identifica-
tion but also play a key role in advancing the safety of underground engineering.
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