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ABSTRACT

The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the
influence of gravitational and thermal forces in the presence of nanoparticles is formulated. Five different types
of nanoparticle samples are accounted for in this current study, namely gold Au, silver Ag, molybdenum disulfide
MoS2, aluminum oxide Al2O3, and silicon dioxide SiO2. Blood, a micropolar fluid, serves as the common base
fluid. An exact closed-form solution for this problem is derived for the first time in the literature. The results
are particularly validated against those for the Newtonian fluid and show excellent agreement. It was found that
increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and
momentum boundary layers. A quantitative decay in the Nusselt number for a micropolar fluid, as compared to
a Newtonian one for all the tested nanoparticles, is anticipated. Gold and silver nanoparticles (i) intensify in the
flow parameter as the concentration of nanoparticles increases (ii) yield a higher thermal transfer rate, whereas
molybdenum disulfide, aluminum oxide, and silicon dioxide exhibit a converse attitude for both Newtonian and
micropolar fluids. The reduction in film thickness for fluid comprising gold particles, as compared to the rest of
the nanoparticles, is remarkable.

KEYWORDS
Thin film flow; micropolar fluid; nanoparticles; molybdenum disulfide; inclined substrate

Nomenclature
Dimensional Quantities

Cp Thermal Capacity
(
JK−1

)
g Acceleration due to gravity

(
ms−2

)
h Thickness of the film (m)

j0 Gyration parameter
(
m2
)

k Thermal conductivity (Wm−1K−1)
p̃ Hydrodynamic pressure

(
kgm−1s−2

)
S̃ Axial component of spin vector

(
s−1
)
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T Temperature (K)

ũ Horizontal component of velocity of fluid
(
ms−1

)
ṽ Vertical component of velocity of fluid

(
ms−1

)
x̃ Abscissa (m)

ỹ Ordinate (m)

K1 Viscosity parameter
Nu Nusselt number
p Hydrodynamic pressure
Q Discharge of fluid
Re Reynolds number
S Axial component of spin vector
u Horizontal component of velocity of fluid
v Vertical component of velocity of fluid
x Abscissa
y Ordinate

Greek Symbols

α1 Dimensionless flow parameter
β̃0 Dimensionless spin boundary parameter
β1 Dimensionless thermal parameter
β2 Dimensionless thermal parameter coefficient
β3 Dimensionless viscous dissipation parameter
χ Vorticity Viscosity coefficient

(
kgm−1s−1

)
φ Dimensionless Volume fraction
γ Spin gradient coefficient

(
kgms−1

)
μ Viscosity coefficient

(
kgm−1s−1

)
θ Dimensionless temperature
θc Angle of inclination of substrate
ρ Density

(
kgm−3

)
Subscripts

f Fluid
s Nanoparticles
nf Nanofluid

1 Introduction
1.1 Thin Film Flow and Its Significance

Modern Touch of a Classical Flow Problem: Thin films of liquid are pervasive and ubiquitous
across both the natural and human-made worlds. Thin film flow describes the spreading of a liquid
over a solid substrate (static or dynamic) with a free surface, typically air or gas, at the interface. The
flow is primarily driven by external forces, such as a translating or rotating substrate, surface tension,
or gravitational force [1,2]. To further explore this, consider examples from nature and technology,
including rainwater dribbling down a windowpane, blood coursing through tiny blood vessels, tears
trickling down a cheek, suspensions oozing over substrates, and lubricant oil coating rotating ball
bearings or other spinning objects [3–6]. Studying thin film flow has wide-ranging applications, aiding
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understanding of phenomena such as spin-coating, gravure printing, absorption columns, mudslides,
dry processes, cooling of microelectronics devices, production of glass/wire, wettability, flow over
roads/roofs, solar cells, film evaporation, food industry processes, and heat exchangers [7–11].

One application of thin film flow studies is the analysis of complex liquid flows over intricate
substrates. For example, it can be utilized to model the surface-tension-driven flow of incompressible
fluids, such as the lining of the lungs [12,13]. The complexity of these flows arises from two main
factors:

• Substrate geometry: This can include flexible substrates like leaves [5] or the intricate lining of
the lungs [13], as well as other examples like magma streams or tears on a face [14,15].

• Liquid properties: Beyond simple Newtonian fluids like pure water, the flow can involve liquids
containing mud, non-Newtonian fluids, or even fluids with nanoparticles [16–20]. This study
focuses specifically on micropolar fluids, which have complex molecular structures and include
examples like blood, liquid crystals, and colloidal suspensions [21,22]. A deeper exploration of
the fascinating properties of micropolar fluids will follow.

Currently, many literature sources exist on both theoretical and experimental studies of thin film
flow for Newtonian and non-Newtonian fluids.

1.2 Literature Survey for Newtonian Fluid
The story of thin film flow began in 1916 with the work of Nusselt [23], who presented math-

ematical equations describing its dynamics. He derived the governing equation for thermal transfer
coefficients in condensate thin films, assuming they primarily resist heat transfer. Subsequently, a
significant contribution was made in 1974 by Tamir et al. [24], who extended Nusselt’s work by
accounting for a constant surface resistance.

While a full historical account is beyond the scope of this discussion due to its substantial length,
several noteworthy contributions have explored various aspects of thin film flow:

• Kondic et al. [25] examined thin film liquid on an inclined plane, concluding that the inclination
angle significantly alters the wetting behavior.

• O’Brien et al. [26] built upon this work by detailing the implementation of the thin film
lubrication approximation and presenting practical examples.

• Wang et al. [27] investigated the influence of channel shape on condensation in thin films within
horizontal microchannels.

• Al-Jarrah et al. [28] described the process of film thickness development in microchannels.

• Gatapova et al. [29] analyzed the thermal effects of thin liquid film flow in a channel heated
from below.

• Lin et al. [30] reported the dominant role of convective thermal transfer at high Reynolds
numbers.

Applications and Experimental Verification: The applications of thin film flow extend beyond
theoretical studies. For instance, Mazloomi et al. [31] utilized the lattice-Boltzmann method to
investigate thin film flow with thermal sources for surface coating, while Slade [32] explored rivulet
formation in thin liquid films. Experimental validation also plays a crucial role in understanding thin
film flow. Several studies have focused on this aspect, including:

• Ju et al. [33] performed experiments to probe the droplet impinging on thin film flows and
highlighted the characteristics of droplet evolution.
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• Charogiannis et al. [34] conducted experiments on thin film flows over inclined glass planes
driven by gravity, studying the relationship between the Nusselt number and Reynolds number.

• Wang et al. [35] investigated the thermal influence on thin films under a thermal source
environment.

• Budakli [36] experimentally examined thin film flow generated from turbulent gas flow on
heated inclined channel walls or under gravitational force.

• Markides et al. [37] conducted experiments to understand the effects of conjugate thermal
transfer in thin film flow over electrically heated inclined substrates.

Micropolar Fluids with Nanoparticles: It is well known that nanoparticles in liquids can enhance
thermal transfer rates and facilitate other valuable industrial phenomena, such as the instant cooling
of electronic chips or rapid water heating in geysers and heat exchangers. Notably, reference [10] was
the first to theoretically analyze the hydrodynamic and thermal effects of thin film flow in water
containing seven different nanoparticles, even developing a closed-form solution for fluid velocity
and temperature.

Contribution and Scope: Inspired by the work in [10], this study extends its analysis to explore
other fluid types, such as micropolar fluids, which are relevant to blood, colloidal suspensions, and
epoxies. It derives a closed-form solution for the thin film flow of a micropolar fluid containing five
different nanoparticles over a thermally heated inclined plane.

1.3 Literature Survey for Non-Newtonian Fluid
In various industries, fluids such as tomato ketchup, honey, blood, colloidal suspensions, and

mercury, along with other industrial fluids, do not behave ideally like water. These liquids are
categorized as non-Newtonian fluids and require distinct models and constitutive equations to
describe their flow behavior. The study of the thin film flow of such non-Newtonian fluids has yielded
valuable insights [38–42]. To further explore it, let us examine some recent contributions from 2021 to
2023.

Recent Highlights (2021–2023):

• 2021:
© Reference [43]: This study compared two methods, homotopy perturbation Elzaki trans-

form and Elzaki decomposition, for analyzing the thin film flow of a third-grade fluid
down an inclined plane, favoring the former for its efficacy.

© Reference [44]: Research on Oldroyd-B ferrofluid containing nanoparticles (Cobalt Fer-
rite) employed the Runge-Kutta method for a numerical solution.

• 2022:
© Reference [45]: Thin film flow of a Williamson fluid was numerically investigated using

a homotopy-based scheme with Fractional Calculus, considering bio-convection and
microorganism diffusivity.

© Reference [46]: This study explored the thin film flow of a Casson nanofluid.

© Reference [47]: This study analyzed viscoplastic Bingham fluid’s thin film flow behavior.

© Reference [48]: Johnson-Segalmann fluid was the focus of this study on thin film flow.

• 2023:
© Reference [49]: A third-grade fluid’s thin film flow characteristics were investigated.

© Reference [50]: Johnson-Segalmann fluid was tackled in this study on thin film flow.
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© Reference [51]: Second-grade fluid’s thin film flow behavior was analyzed.

© Reference [52]: Maxwell nanofluid’s thin film flow was explored.

© Reference [53]: This study focused on Casson nanofluid, further advancing the understand-
ing of thin film flow behavior.

Looking Forward: These examples highlight the active research landscape in non-Newtonian thin
film flows. As this field continues to evolve, it offers immense potential for advancements in diverse
areas such as bioengineering, microfluidics, and coating technologies.

1.4 Current Study and Micropolar Fluid
As discussed earlier, this study focuses on exploring the hydro- and thermo-dynamical effects of

thin film flow in micropolar fluids containing nanoparticles. These fluids hold significant techno-
scientific value and exist not only in the laboratory but also in the natural world. Blood, which
represents the micropolar nature with its cellular and platelet components, is noted in [54,55]. Colloidal
suspensions and liquid crystals, characterized by the presence of colloids, are also part of this category
[56]. Rigid-rod epoxies, with their rod-like molecular structure and polymeric suspensions, further
expand the diverse scope of micropolar fluids [22,57].

Micropolar fluids are distinguished from Newtonian and non-Newtonian fluids through their
ability to sustain body couple and couple stress in addition to conventional body force and Cauchy
stress. The Cauchy stress tensor in a micropolar fluid arises from the microscopic, needle-like particles
it contains. While Newtonian fluids require only three degrees of freedom for analysis, micropolar
fluids necessitate six, reflecting their more complex internal structure.

The literature on the thin film flow of micropolar fluids remains surprisingly sparse. A notable
study from Yusuf et al. in 2021 [58] investigated this phenomenon over a static inclined porous
substrate, primarily focusing on entropy analysis and employing numerical tools based on the dif-
ferential transformation method. While this study is noteworthy, it leaves several intriguing questions
unanswered, thus hindering a comprehensive understanding of micropolar fluid behavior in real-world
situations.

Unanswered Questions and the Research Focus: These unaddressed questions become the driving
force for the present research. For instance, how will the fluid respond to a heater within or near the
substrate? What happens when the substrate becomes dynamic, moving at a uniform or non-uniform
speed? What impact do different nanoparticles, incorporated as additive colloids, have on the flow
dynamics? These and many more questions will guide this research, promising valuable insights into
the world of micropolar fluids.

The Power of Nanoparticles: Nanoparticles play a vital role in shaping the landscape of modern
technology [59–62]. Gold (Au) and silver (Ag) nanoparticles are extensively used in separation science,
facilitating efficient separation processes [63–65]. Solutions of gold nanoparticles even reduce thermal
resistance by 13% compared to pure water. These nanoparticles also hold vast potential in cancer
treatment, where their heat-generating capability aids in photodynamic therapy.

Molybdenum disulfide MoS2 shines in the field of electronics and logic devices due to its tunable
semi-conductive properties. It also serves as a solid lubricant additive in greases and gear oils,
enhancing their performance by reducing friction and wear, lowering operating temperatures, and
increasing load-carrying capacity. Additionally, MoS2 helps dampen vibration and noise, leading
to reduced energy consumption. Its antioxidant and anti-corrosion properties further contribute to
extending the life of lubricants [66–68].
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Aluminum oxide (Al2O3) nanoparticles are prominent in the medical field as antibacterial agents
owing to their low toxicity towards eukaryotic cells [69]. Silicon dioxide (SiO2) nanoparticles, on the
other hand, improve combustion efficiency and reduce emissions in dual-fuel engines. SiO2-based
nanofluids, particularly those in methanol, can increase peak heat release rate and peak pressure by
up to 4.3% and 8.6%, respectively, while also enhancing brake-specific fuel consumption and brake
thermal efficiency under high loads [70,71].

The Current Study: This study explores the thin film flow of a micropolar fluid (base fluid)
containing five distinct types of nanoparticles. This flow occurs over an inclined substrate moving with
a uniform speed (U) under the influence of gravity. Section 2 meticulously formulates the governing
equations for this scenario. Section 3 then tackles the derivation of a closed-form exact solution for the
corresponding boundary value problem. Section 4 shows the obtained results and provides insightful
commentary on their implications. Finally, Section 5 wraps up the study by summarizing the essential
findings and their significance.

2 Mathematical Formulation and Analysis of the Physical Problem

The governing equations for a steady flow of an incompressible, two-dimensional nano-
micropolar fluid model [10,22,56] in the presence of viscous dissipation and in the absence of Joule
heating and electromagnetic influences can be written as follows:

∂ ũ
∂x̃

+ ∂ ṽ
∂ ỹ

= 0 (1)

ũ
∂ ũ
∂x̃

+ ṽ
∂ ũ
∂ ỹ

= −g sin θc − 1
ρnf
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∂x̃

+
(
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)
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[
∂2ũ
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+ ∂2ũ
∂ ỹ2

]
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ρnf

∂S̃
∂ ỹ

(2)

ũ
∂ ṽ
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+ ṽ
∂ ṽ
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ũ
∂S̃
∂x̃

+ ṽ
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)2
]

(5)

where
(
ũ, ṽ
)

represents dimensional velocity components along
(
x̃, ỹ
)

directions; p̃ is the dimensional
pressure; S̃ is axial component of the dimensional micro-rotation (spin) vector; jo is the micro-inertia or
gyration parameter; γ is the spin-gradient coefficient. The density, thermal conductivity, and viscosity
coefficient of liquid comprising nanoparticles are correlated as follows:

ρnf = (1 − ϕ) ρf + ϕρs (6a)

knf = kf

ks + 2kf − 2ϕ
(
kf − ks

)
ks + 2kf + ϕ

(
kf − ks

) (6b)

and μnf = (1 − ϕ)
−2.5

μf (6c)

where ϕ is the volume fraction or concentration of nanoparticles, whereas the subscripts f and s
represent fluid and nanoparticle, respectively; χ is the vortex viscosity coefficient such that χ + 2μ ≥ 0
where χ ≥ 0 [56]. It is important to note that χ will be zero for a Newtonian fluid.
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The above equations can be written in dimensionless form as follows:
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= 0 (7)
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by balancing (u, v) = (ũ, ṽ)/U , (x, y) = (x̃, ỹ)/h, p = p̃/U 2ρnf , S = hS̃/U and θ = (T − T0)/�T . Here
�T is the temperature difference between the temperature of ambient flow and that of the wall T0; ∇2

is the two-dimensional Laplacian operator.

Re = Uhρnf(
μnf + χ

) , γ1 = h2ρnf(
μnf + χ

)
U

, K1 = χ(
μnf + χ

) , k2 = χh2

γ
, and k3 = j0hUρnf

γ
(12)

This study considers the nano-micropolar liquid flowing over an inclined substrate with an angle
of inclination, as shown in Fig. 1.

Figure 1: Flow configuration

The flow is generated by a pulling roller that is sliding along the x-axis with a constant fluid speed
U . Additionally, it is assumed that the thickness (h) of the liquid film is less than the boundary layer
thickness. Furthermore, the shear stress exerted by the air on the air-liquid interface is neglected, which
will facilitate mathematical calculations. However, due to the influence of gravity (g), the thickness
of the liquid representing the air-liquid interface may not remain uniform, and reverse flow may
occur. These effects are considered infinitesimal influences on the ambient flow by compensating for
the pulling speed of the liquid-carrier film [10]. The liquid considered has specific characteristics: its
molecules are either rod- or dumbbell-shaped, exhibiting microrotation and couple stress in addition to
usual stress. Such a liquid is typically referred to as a Cosserat or micropolar fluid [56]. Nanoparticles
are added to the base liquid, the micropolar liquid, to enhance the thermal transfer rate. Five different
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types of nanoparticles are used as a test sample. It is assumed that the nanoparticles remain stable
during fluid flow. The thermodynamical properties of these elements/compounds are presented in
Table 1. Moreover, it is assumed that the liquid film, adhering to the x-axis, is uniformly heated and
maintains a temperature of T0 at all times and points of the film. The thermal flux at the air-liquid
interface is assumed to be zero [10].

Table 1: Physical properties of nanoparticles and base fluids at 20◦C [10,72,73]

Fluid/Nanoparticles Cp (J/Kg. K) k (J/m.sec.K) ρ (Kg/m3)

Water 4179 0.613 997.1
Blood 3617 0.49 1060
Gold Au 129 318 19300
Silver Ag 235 429 10500
Molybdenum disulfide MoS2 397.21 100 5060
Aluminum oxide Al2O3 765 40 3970
Silicon dioxide SiO2 703 1.38 2200

Based on the aforementioned assumptions, Eqs. (8)–(11) deform, ensuring that Eq. (7) is satisfied
as follows:
d2u
dy2

+ K1

dS
dy

= α1 (13)

Re
dp
dy

= γ1 cos θc (14)

d2S
dy2

− 2K2S = K2

du
dy

, (15)

and
∂2θ

∂y2
= β1u − β3

(
du
dy

)2

(16)

where α1 = γ1 sin θc, (17a)

and β1 = β2

∂θ

∂x
= constant. (17b)

Furthermore, the boundary conditions can be written as follows:

u = 1, θ = 0, S = β0

(
du
dy

)
y=0

= β̃0 at y = 0 (18a)

du
dy

= 0,
∂θ

∂y
= 0, S = 0 at y = 1 (18b)

u = 1, θ = 0, S = β0

(
du
dy

)
y=0

= β̃0 at y = 0 (18c)

du
dy

= 0,
∂θ

∂y
= 0, S = 0 at y = 1 (18d)
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3 Analytical Solution of the Problem

The aforementioned BVP in Eqs. (13)–(17) contains linear coupled ODE. Hence, it can be
integrated exactly using standard methods. The solution for the fluid speed u (y), spin S (y), and
temperature θ (y) are summarized as follows:

u (y) = 1 − K1A2
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[
y2

2
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In this scenario, the expression for thermal flux is as follows:

d
dy
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where

A2 =
(
−β̃0 + α1/2 − K1

)
/
(
e2λ1 − 1

)
; A3 = 2α1/ (2 − K1) ; λ1 = √(2 − K1) K2. (23)

If K1 = 0 and β3 = 0, then Eqs. (19)–(21) can be reduced to the speed, temperature, and thermal
flux for the Newtonian fluid [10].
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4 Results and Discussion

This section is devoted to presenting some dominant results both in tabular and pictorial forms
and commenting on them. The results are based on the exact closed-form solution, Eqs. (19)–(21), of
the physical problem under consideration.

4.1 Fluid Speed
In order to validate the calculations herein, Fig. 2b is set for fluid speed if K1 = 0 in Eq. (19)

particularly for the Newtonian fluid. This figure agrees well with Fig. 2b of [10]. This satisfaction
provided motivation to study the fluid speed for K1 �= 0, micropolar fluid, which is shown in Fig. 2a
for different values of flow parameter α1.

Figure 2: Fluid-speed profiles for: (a) micropolar fluid; (b) Newtonian fluid for different values of α1

when K1 = 0.5 with no-spin boundary condition; β̃0 = 0; (c) stagnation point study of the speed of
fluid; (d) separation point study of speed of fluid

As the flow is generated by moving upward the inclined substrate over it, the fluid is flowing,
and the probability of reverse flow downward naturally is dominant. This fact is reflected in Fig. 2a
as a negation of speed substrate-rider fluid. This reversal of fluid dominates with the rise in the flow
parameter α1. This phenomenon aligns with the physical situation because α1is linearly proportional
to the angle of inclination θc of substrate by virtue of Eq. (17a). However, the critical points at which
the reverse flow takes place rely on various factors, in which one of the factors is flow parameter α1.
The range of flow parameter is α1 ∈ [0, 2) for which rider fluid-film moves with the moving substrate
for both the Newtonian fluid (K1 = 0) as well as the micropolar fluid (K1 �= 0). Nevertheless, the
speed of reverse flow increases for the micropolar fluid, which is not surprising because the effects of
micropolarity are enhanced, as shown in Figs. 2a and 2b. The threshold value α1 = 2 is common for
both the Newtonian fluid (K1 = 0) and the micropolar fluid (K1 �= 0) at which the reverse flow initiates
caused by the gravitational force, provided that a no-spin boundary condition β̃0 = 0 is imposed. When
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a spin boundary condition β̃0 �= 0 is encountered, then the threshold value of α1 varies such that α1 = 1
if β̃0 = 0.6, as shown in Fig. 3. Additionally, the following facts for the flow attitude are also observed
based on Eq. (18) generally and particularly in Table 2.

0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y

)y(u

1
=0, 1, 2, 3, 4, 5, 6

0 0.2 0.4 0.6 0.8 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

y

u(
y)

1
=0, 1, 2, 3, 4, 5, 6

(a) (b)

Figure 3: The effect of spin boundary condition on the fluid speed for micropolar fluid for different
values of α1 when K1 = 1.5 if spin coefficient: (a) β̃0 = 0.1; (b) β̃0 = 0.6

Table 2: Derived expressions for fluid speed, discharge, temperature, and thermal flux at the bound-
aries of the substrate

K1 β3 β̃0 u (1) u′ (0) Q θ (1) θ ′ (0)

�= 0 �= 0 �= 0 u1

−α1

−K1β̃0
1 + K1β̃0 (1 − Coth [λ1] λ1)

λ2
1

T1 + β̃0T2

(K1 − 2)
2

F1 + β̃0F3

(K1 − 2)
2

+ α1

(
2λ2

1 + K1 (3 − 3Coth [λ1] λ1)
)

3 (−2 + K1) λ2
1

�= 0 �= 0 = 0 u2 −α1 1 + α1

(
2λ2

1 + K1 (3 − 3Coth [λ1] λ1)
)

3 (−2 + K1) λ2
1

T1

(K1 − 2)
2

F1

(K1 − 2)
2

�= 0 = 0 �= 0 u1

−α1

−K1β̃0
1 + K1β̃0 (1 − Coth [λ1] λ1)

λ2
1

T3 + β̃0T4

(K1 − 2)
2

F2 + β̃0F4

K1 − 2

+ α1

(
2λ2

1 + K1 (3 − 3Coth [λ1] λ1)
)

3 (−2 + K1) λ2
1

�= 0 = 0 = 0 u1 −α1 1 + α1

(
2λ2

1 + K1 (3 − 3Coth [λ1] λ1)
)

3 (−2 + K1) λ2
1

T3

(K1 − 2)
2

F2

K1 − 2

= 0 �= 0 �= 0 1 − α1

2
−α1 1 − α1

3

−β1

2
+ 5α1β1

24

− 1
12

α2
1β3

−β1

+α1β1

3
−1

3
α2

1β3

(Continued)
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Table 2 (continued)

K1 β3 β̃0 u (1) u′ (0) Q θ (1) θ ′ (0)

= 0 �= 0 = 0 1 − α1

2
−α1 1 − α1

3

−β1

2
+ 5α1β1

24

− 1
12

α2
1β3

−β1

+α1β1

3
−1

3
α2

1β3

= 0 = 0 �= 0 1 − α1

2
−α1 1 − α1

3
−β1

2
+5α1β1

24

−β1

+α1β1

3

= 0 = 0 = 0 1 − α1

2
−α1 1 − α1

3
−β1

2
+5α1β1

24

−β1

+α1β1

3

where

u1 = u2 + K1β̃0

λ1 (eλ1 + 1)
(24)

u2 = 1 + α1

K1 − 2
+ K1α1 (eλ1 − 1)

λ1 (eλ1 + 1) (K1 − 2)
(25)

T1 = β1

[
2 + 2K1 − K2

1

2
+ 5

6
α1 − 5K1α1

]
+ α1β3

Sinh2 (λ1)

[
−α1Sinh2 (λ1)

3
+ K2

1 α1

4

]
(26)

+ 3K1α1 [K1 − 2]
4

+ 4α2
1β3K1e2λ1

λ3
1

[1 − Cosh (λ1) − Coth (λ1) + Cosh (λ1) Coth (λ1)]

+ α1β1K1

λ2
1

[
−1

2
− Coth (λ1)

2
+ 2

Sinh (λ1)
+ K1

4
+ K1Coth (λ1)

4
− K1

Sinh (λ1)

]

+2α2
1β3K1e2λ1

λ2
1

[Sinh (λ1) − Cosh (λ1)] + α1β1K1

λ1

[
3
2

+ Coth (λ1)

2
− 3K1

4
− K1Coth (λ1)

4

]

T2 = K2
1 α1β3

[
−1 + K1

2
+ β̃0 − K1β̃0 + K2

1 β̃0

]
+ 3β1K1

λ3
1

[
1 − K1 + K2

1

4

]
− α1β3K1 [K1 − 2]

λ1

− K2
1 β̃0β3

2λ1

[
4 − 4K1 + K2

1

]

+ 8α1β3K1e2λ1

2λ3
1

[K1 − 2] [−1 + Cosh (λ1) + Coth (λ1) − Cosh (λ1) Coth (λ1)]
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+ β1K1

4λ2
1

[
4 − 4K1 + K2

1

] [
1 + Coth (λ1) − 4

Sinh (λ1)

]

− 2α1β3K1e2λ1

λ2
1

[(K1 + 2) Sinh (λ1) − (K1 − 2) Cosh (λ1)]

+ β1K1

λ1

[
−3 − Coth (λ1) + 3K1 + K1Coth (λ1) − 3

4
K2

1 − K2
1 Coth (λ1)

4

]
(27)

T3 = β1

[
2 + 2K1 − K2

1

2
+ 5

6
α1 − 5K1α1

]
+ 3α1β1K1

4λ3
1

[K1 − 2]

+ α1β1K1

λ1

[
3
2

+ Coth (λ1)

2
− 3K1

4
− K1Coth (λ1)

4

]

+ α1β1K1

λ2
1

[
−1

2
− Coth (λ1)

2
+ 2

Sinh (λ1)
+ K1

4
+ K1Coth (λ1)

4
− K1

Sinh (λ1)

]
(28)

T4 = 3β1K1

λ3
1

[
1 − K1 + K2

1

4

]
+ β1K1

4λ2
1

[
4 − 4K1 + K2

1

] [
1 + Coth (λ1) − 4

Sinh (λ1)

]

+ β1K1

λ1

[
−3 − Coth (λ1) + 3K1 + K1Coth (λ1) − 3

4
K2

1 − K2
1 Coth (λ1)

4

]

+ β1K1

λ1

[
−3 − Coth (λ1) + 3K1 + K1Coth (λ1) − 3

4
K2

1 − K2
1 Coth (λ1)

4

]
(29)

F1 = β1

[
−4 + 4K1 − K2

1 + 4
3
α1 − 2

3
K1α1

]
+ α2

1β3

[
−4

3
+ K2

1 (1 − Sinh (2λ1))

2Sinh2 (λ1)

]

+ α1β1K1

λ1

[2 − K1]

− 2α2
1β3K1Cosh (λ1)

λ1

[1 + Coth (λ1)] + α1β1K1Tanh (λ1)

λ2
1

[K1 − 2] + 2α2
1β3K1eλ1

λ2
1

(30)

F2 = β1

{
2 − K1 − 2

3
α1 + K1α1

λ2
1

[
−λ1 + Tanh

(
λ1

2

)]}
(31)

F3 = α1β3K2
1

Sinh2 (λ1)
[1 − Sinh (2λ1)] [K1 − 2] +

[
−β1K1

λ2
1

+ β1K1Tanh
(

λ1
2

)
λ2

1

] [
4 − 4K1 + K2

1

]

− 2α2
1β3K1Cosh (λ1)

λ1

[1 + Coth (λ1)] + β̃0

2β3K2
1

Sinh2 (λ1)

[
4 − 4K1 + K2

1

]
[1 − Sinh (2λ1)]

+ β̃0

2β3K2
1

Sinh2 (λ1)

[
4 − 4K1 + K2

1

]
[1 − Sinh (2λ1)] (32)

F4 = K1α1β1

λ2
1

[
−λ1 + Tanh

(
λ1

2

)]
[K1 − 2] (33)
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(i) For the Newtonian fluid (K1 = 0), Eq. (19) reduces to

u = 1 + α1

(
0.5y2 − y

)
, (34)

It coincides with [10], as attempted for the Newtonian fluid. Further if angle of inclination is zero
that implies α1 = 0 then Eqs. (19) and (34) yield

u =
⎧⎨
⎩

1 if β̃0 = 0

1 − β̃0K1

λ1 (e2λ1 − 1)
[e2λ1−λ1y + eλ1y − e2λ1 − 1] if β̃0 �= 0

(35)

where λ1 = √
(2 − K1) K2. It can be concluded that umicropolar = uNewtonian = 1 if α1 = 0 with β̃0 = 0.

(ii) The fluid speed u decreases with the rise in the micropolarity K1 because of the increase in the
colloids of micropolar fluid.

(iii) The fluid speed u also decreases with the spin boundary condition parameter β̃0.

4.2 Spin/Microrotation
Since there are no aciculate particles that collide in the Newtonian fluid (K1 = 0), the spin S = 0

for it is as depicted in Fig. 4. The spin S lives with the micropolar fluid (K1 �= 0) merely, and it controls
the microrotation of aciculate particles as they collide about their centroids. Fig. 4 is plotted on the
basis of Eq. (20). It shows that the spin S depends upon the micropolarity parameter K1, the flow
parameter α1, and the spin boundary parameter β̃0. The dominancy of rise in the spin is observed in
the middle of the substrate because the spin of aciculate particles is linearly proportional to the velocity
gradient.
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Figure 4: Variation of spin or microrotation of aciculate particles for micropolar fluid for different
values of α1 when K1 = 1.5 if spin coefficient: (a) β̃0 = 0; and (b) β̃0 = 0.5

Fig. 5 indicates that the spin rises with the micropolarity parameter K1 for all values of the flow
parameter α1 and spin boundary parameter β̃0. Further, the spin is also enhanced with the spin
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boundary parameter β̃0. The increase in the spin is also observed as the flow parameter α1increases
for all values of the spin boundary parameter β̃0 and micropolarity parameter K1.
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Figure 5: Variation of spin for micropolar fluid for different values of K1 when a1 = 3 if spin coefficient:
(a) β̃0 = 0; and (b) β̃0 = 0.3

4.3 Temperature
According to Eq. (21), the temperature θ (y) majorly depends upon the flow parameter α1, the

micropolarity parameter K1, the viscous dissipation parameter β3, and the spin boundary parameter
β̃0 for the micropolar fluid. The variation of the temperature with respect to the aforementioned
parameters is depicted in Fig. 6. Fig. 6c is plotted for comparison purposes for the Newtonian fluid
(K1 = 0). The following can be derived when K1 = 0 is substituted in Eq. (21):

θ(y)

∣∣∣
(K1=0,β3=0)

=
[
−y + y2

2
+
(

1
3

y − 1
6

y3 + 1
24

y4

)
α1

]
β1 (36)

Eq. (36) and Fig. 6c both align with Eq. (12) and Fig. 3a of [10]. Figs. 6a and 6b are plotted
for micropolar fluid. These figures show that (i) the temperature increases across the channel as the
micropolarity increases, due to the collides in the fluid, the thermal flux rises; (ii) the temperature for
micropolar fluid is greater than the temperature for the Newtonian fluid consistently by the increase in
the kinetic energy of the aciculate particles in the micropolar fluid; (iii) the temperature θ increases with
spin boundary parameter β̃0 because spin boundary condition reduces the thermal transfer rate; (iv)
in contrast, the temperature θ decreases with flow parameter α1 for both micropolar and Newtonian

fluids as it is expected due to the rise in the gravitational force; (v) θ
∣∣

Micropolar
= θ

∣∣
Newtonian

= β1

[
y2

2
− y
]

for α1 = 0 with β̃0 = 0 = β3 for all points of the channel; (vi) If α1 = 0 with β̃0 �= 0, β3 �= 0 then the
expression for temperature for micropolar fluid will differ slightly as:
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4θ (y, α1 = 0) = −2 (y − 2)

{
2β1 − K2

1 β̃
2
0β3

sinh2 [λ1]

}
− 4yK1β̃0β1

λ1

− 2K2
1 β̃

2
0β3

(−1 + e2λ1)
2
λ1

{
1 + e4λ1 − e−2(y−2)λ1 − e2yλ1

}

+ 2 (coth [λ1] − 1) K1β̃0β1

λ3
1

{−1 + e2λ1 − e−(y−2)λ1 + eyλ1 − 2yλ1eλ1
}

+ 2 (coth [λ1] − 1) K1β̃0β1

2λ3
1

{
1 − 2y2λ2

1 + e2yλ1 (−1 + 2yλ1)
}

(37)
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Figure 6: Temperature profile for different values of a1 when K1 = 0.2, β3 = 0.0005 for: (a) micropolar
fluid, with zero spin boundary condition, β̃0 = 0; (b) micropolar fluid, with non-zero Spin boundary
condition, β̃0 = 0.5; (c) Newtonian fluid

The variation of temperature at the air-nano micropolar fluid interface is important techno-
scientifically. It is examined by focusing on variation of θ (1). Its influence on flow and thermal
parameters is presented in Table 3 quantitatively, while respective expressions are given in Table 2.

Table 3: Viscous dissipation β3 affects the temperature for different values of K1 and β̃0 when a1 = 3

β̃0 β3 K1 θ (1)

0 0 0.0 0.1250
0.5 0.7701
0.9 1.8442

0.001 0.0 0.1243
0.5 0.7673
0.9 1.8365

(Continued)
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Table 3 (continued)

β̃0 β3 K1 θ (1)

0.5 0 0.0 0.1250
0.5 0.6609
0.9 1.6228

0.001 0.0 0.1243
0.5 0.6585
0.9 1.6163

These tables show clearly the comparison between micropolar and Newtonian fluids. Table 3
depicts that the temperature θ (1) at air-liquid interface increases as the micropolarity effect K1 of
the micropolar fluid rises for all values of fluid and geometric parameters namely β3 and β̃0.

The thermal transfer rate is significant in engineering and technology. It is studied in terms of the
Nusselt number Nu, which is defined as [10]:

Nu = 2

∫ 1

0
udy∫ 1

0
uθdy

(
dθ

dy

)
y=0

(38)

If Eqs. (19)–(21) are substituted in Eq. (38), then one yields

Nu = R0R1

R2

(39)

where

R0 = 2
3

(
3 − A3 + 6eλ1A2K1 (−Sinh [λ1] + Cosh [λ1] λ1)

λ2
1

)
(40a)

R1 = 1
3λ2

1

⎛
⎝−3

(−1 − 2e2λ1 + e4λ1
)

A2
2K

2
1 β3λ

2
1 + ((−3 + A3) β1 − A2

3β3

)
λ2

1

+3A2K1

(
(−1 + eλ1) β1 (1 + eλ1 (−1 + λ1) + λ1)

+ 2e2λ1A3β3 (Sinh [λ1] − Cosh [λ1] λ1)

) ⎞
⎠ (40b)

R2 = 1

5040λ6
1

(−16
(
(105 + A3 (−84 + 17A3)) β1 + (21 − 8A3) A2

3β3

)
λ6

1

)
+ 840e3λ1A3

2K
3
1 β3λ

2
1

⎛
⎝24Sinh [λ1]

+λ1

(− 24Cosh [λ1] − 9Sinh [λ1] + 7Sinh [3λ1]
+ 4Cosh [λ1] λ1 (−3Cosh [2λ1] + 2λ1)

)⎞⎠

+ 7A2
2K2

1λ1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

20β1

(
77 + 63λ1 − 12λ3

1 + 36eλ1
(−4 + λ2

1

)+ 6e2λ1
(
30 − 3λ1 + λ3

1

)
+9e4λ1

(
7 − 9λ1 + 2λ3

1

)
7 + 4e3λ1 (−44 + 3λ1 (8 + 3λ1))

)

+3β3

⎛
⎜⎜⎜⎜⎝

40e2λ1λ3
1

(
3Sinh [2λ1] − 6Cosh [2λ1] λ1 + 4λ2

1

)

+A3

⎛
⎜⎜⎝−900eλ1

(−1 + e4λ1
)+ λ1

⎛
⎜⎜⎝

−15 + 15e3λ1

(
128 + Cosh [λ1]
+112Cosh [2λ1] + Sinh [λ1]

)
−30

(
1 − 8eλ1 + e4λ1 + 8e5λ1

)
λ1

+ 40
(
1 + e4λ1

)
λ3

1 − 64e2λ1λ4
1

⎞
⎟⎟⎠
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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+ 21A2K1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20β1λ
2
1

(
21 + 21λ1 − 8λ3

1 + 12eλ1
(−2 + λ2

1

)
+e2λ1

(
3 − 3λ1 + 2λ3

1

) )

+ 16A2
3β3

⎛
⎜⎜⎝

−15 (−1 + eλ1) (1 + eλ1) (2 + 5eλ1)

+λ1

⎛
⎝15 (2 + 5eλ1)

(
1 + e2λ1

)
+λ1

(
15 + 5λ1 − λ3

1 + 5e3λ1 (−3 + λ1) (1 + λ1)

−5eλ1 (−1 + λ1) (3 + λ1) − e2λ1
(
15 − 5λ1 + λ3

1

))
⎞
⎠
⎞
⎟⎟⎠

+ A3

⎛
⎜⎜⎝

240eλ1β3λ
2
1

(
3 + 3λ1 + λ2

1 − e2λ1 (3 + (−3 + λ1) λ1)
)

+β1

⎛
⎝450 + 435λ1 − 140λ3

1 + 64λ5
1

−20eλ1
(
24 − 12λ2

1 + 5λ4
1

)
−3e2λ1

(−10 + λ1

(
5 + 2λ1

(
5 − 5λ1 + 3λ3

1

)))
⎞
⎠
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)

A2 = β̃0 + 2A3

e2λ1 − 1
(42a)

A3 = 2α1

2 − K1

(42b)

The results related to the Nusselt number are shown quantitatively in Table 4 while qualitatively
in Fig. 7a. Through Table 4 and Fig. 7a, it is observed that Nu depends upon the flow parameter α1

significantly. It varies in three intervals or stages. Nu = 6 is an initial value when α1 = 0, which is in
agreement with the literature [72] for the Newtonian fluid (K1 = 0). It can be seen that the commencing
value of Nu = 6 for micropolar fluids for all values of K1 and shown in Fig. 7b. Its justification is
that: R0, R1, and R2 given as above equations, at α1 = 0 are identical for Newtonian and micropolar
fluids. Afterward, the Nusselt number rises till its amplitude (a couple of sample data are presented in
Table 4). This peak value of Nu varies with the micropolarity effects. In the second stage, Nu decays
strictly till a critical value of α1 This critical point varies with the micropolarity, as shown in Fig. 7.
Finally, the Nusselt number increases monotonically till α1 → ∞.

Table 4: Study of optimum/amplitude of the Nusselt number

β̃0 β3 K1 α1 (Nu)max

0 0 0.0 2.333 20
0.04 2.264 17.4118
0.08 2.184 15.1364

0.001 0.0 2.34 20.0001
0.04 2.269 17.4533
0.08 2.188 15.2271

0.5 0 0.0 2.333 20
0.04 2.269 18.0532
0.08 2.199 16.3111

0.001 0.0 2.34 20.0001
0.04 2.273 18.0805
0.08 2.2 16.3712
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Figure 7: Variation of the Nusselt number Nu with flow parameter α1 f β̃0 = 0.001 when: (a) without
viscous dissipation β3 = 0; (b) with viscous dissipation β3 = 0.2. Note that K1 = 0 represents the
Newtonian fluid

4.4 Influence of Nanoparticles
Let us define the following two important ratios to highlight the influences of nanoparticles [10]:

νr = μnf ρf

ρnf μf

and kr = knf

kf

. (43)

There are five different types of samples of nanoparticles in order to examine in this current
study, namely gold Au, silver Ag, molybdenum disulfide MoS2, aluminum oxide Al2O3, and silicon
dioxide SiO2 with a common base fluid in the blood, which is a micropolar fluid. The variation
of relative viscosity νr and relative thermal conductivity kr with respect to the concentration of
nanoparticles ϕ for both Newtonian and a micropolar fluids, respectively, are displayed in Figs. 8 and
9. Almost analogous trend is observed for both the fluids but a decrease in νr and an increase in kr are
significant for a micropolar fluid. Furthermore, the gold and silver nanoparticles intensify in the flow
parameter whereas the molybdenum disulfide, the aluminum oxide, and the silicon dioxide do decline
in contribution in the flow parameter with the increase in the concentration of nanoparticles because
νr relays on the kinematics viscosity of the medium for both the Newtonian and the micropolar fluids
as shown in Figs. 8a and 9a. Moreover, the enhancement in thermal transfer rate due to the presence
of nanoparticles is physically expected, as demonstrated in Figs. 8b and 9b for both micropolar and
Newtonian fluids. Notably, gold and silver achieve a higher transfer rate compared to molybdenum
disulfide, aluminum oxide, and silicon dioxide due to their thermal conductivity in both base fluids
(micropolar/Newtonian). Another significant observation concerns the influence of nanoparticles on
film thickness during flow on an inclined substrate, as the film thickness is inversely proportional to
the relative viscosity [10]. The reduction in film thickness in a nano-liquid containing gold particles,
as compared to other nanoparticles, is noticeable due to the higher density or kinematic viscosity.



2506 CMES, 2024, vol.140, no.3

Figure 8: Effects of the concentration of nanoparticles φ on: (a) flow parameter νr; (b) thermal
parameter Kr, for the Newtonian fluid (pure water) as a base fluid

Figure 9: Effects of the concentration of nanoparticles φ on: (a) flow parameter νr; (b) thermal
parameter Kr, for the micropolar fluid (blood) as a base fluid

The concentration of nanoparticles ϕ also affects the fluid speed and temperature. The fluid-
speed u versus the concentration of the nanoparticles ϕ at the middle of the channel is examined,
and sample results are displayed in Figs. 10a and 10b for Newtonian and micropolar fluids as base
liquids, respectively. Consistently, an almost similar trend is observed on umid for both fluids. However,
the quantitative decay of umid for a micropolar fluid is compared to a Newtonian one for all test
nanoparticles. The temperature at the middle of the channel θmid exhibits analogous behavior to umid,
as shown in Fig. 11.
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Figure 10: Midpoint channel effects of the concentration of nanoparticles φ on fluid speed u if β̃0 = 0.5
for the base fluid as: (a) the Micropolar fluid (blood); (b) the Newtonian fluid (water)
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base fluid as: (a) the Micropolar fluid (blood); (b) the Newtonian fluid (water)

5 Conclusion

In this study, the thin film flow of a micropolar fluid containing nanoparticles over an inclined
substrate under the influence of viscous dissipation and gravitational force was formulated and
examined theoretically. An exact solution to the formulated boundary value problem was derived for
the first time. The variation of physical quantities, fluid speed, temperature, and microrotation/spin
was analyzed based on the solution. The results are displayed in graphical and tabular form and
compared to existing results from the literature for the Newtonian fluid as a particular case of the
current study.



2508 CMES, 2024, vol.140, no.3

The results showed that the fluid velocity declines with increasing values of spin boundary
condition and micropolarity due to the increase in colloids in the micropolar medium. Additionally,
micropolarity with spin leads to an enhanced temperature field compared to a Newtonian fluid.
Furthermore, it is observed that the Nusselt number rises until it reaches an amplitude that varies
with micropolarity effects. Mid velocities eventually reveal a quantitative decay in a micropolar fluid
compared to a Newtonian one for all tested nanoparticles, with similar behavior in temperature at
the mid-channel. Gold and silver nanoparticles (i) intensify the flow parameters as the concentration
of nanoparticles increases (ii) yield a higher thermal transfer rate, whereas molybdenum disulfide,
aluminum oxide, and silicon dioxide exhibit the opposite behavior; this holds true for both Newtonian
and micropolar fluids. Moreover, a reduction in film thickness for nano-liquid-containing gold
particles, compared to other nanoparticles, is observed. Finally, it is important to state that this work
is new and original.
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