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ABSTRACT

The International Skin Imaging Collaboration (ISIC) datasets are pivotal resources for researchers in machine
learning for medical image analysis, especially in skin cancer detection. These datasets contain tens of thousands
of dermoscopic photographs, each accompanied by gold-standard lesion diagnosis metadata. Annual challenges
associated with ISIC datasets have spurred significant advancements, with research papers reporting metrics
surpassing those of human experts. Skin cancers are categorized into melanoma and non-melanoma types, with
melanoma posing a greater threat due to its rapid potential for metastasis if left untreated. This paper aims to address
challenges in skin cancer detection via visual inspection and manual examination of skin lesion images, processes
historically known for their laboriousness. Despite notable advancements in machine learning and deep learning
models, persistent challenges remain, largely due to the intricate nature of skin lesion images. We review research on
convolutional neural networks (CNNs) in skin cancer classification and segmentation, identifying issues like data
duplication and augmentation problems. We explore the efficacy of Vision Transformers (ViTs) in overcoming
these challenges within ISIC dataset processing. ViTs leverage their capabilities to capture both global and local
relationships within images, reducing data duplication and enhancing model generalization. Additionally, ViTs
alleviate augmentation issues by effectively leveraging original data. Through a thorough examination of ViT-
based methodologies, we illustrate their pivotal role in enhancing ISIC image classification and segmentation.
This study offers valuable insights for researchers and practitioners looking to utilize ViTs for improved analysis
of dermatological images. Furthermore, this paper emphasizes the crucial role of mathematical and computational
modeling processes in advancing skin cancer detection methodologies, highlighting their significance in improving
algorithmic performance and interpretability.
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1 Introduction

As per the World Health Organization (WHO), cancer stands out as a leading cause of death
[1]. Statistical analyses reveal a concerning trend, with over two individuals succumbing to skin
cancer every hour in the United States alone. The incidence of various skin cancer types has
witnessed a rise over the past decade, with approximately 3 million non-melanoma skin cancer cases
and 132,000 melanoma skin cancer cases diagnosed globally each year [2]. The primary factors
contributing to skin cancer include UV radiation, genetic predisposition, unhealthy lifestyle choices,
and smoking. UV radiation is singled out as the predominant cause, and the swift depletion of ozone
layers exacerbates the issue by allowing more harmful UV radiation to reach the Earth’s surface.
Consequently, an upsurge in skin cancer cases is anticipated [3]. Early detection of skin cancer holds
immense importance, offering heightened chances of successful treatment and prevention of metastasis
to other organs. Dermoscopy, a noninvasive technique for examining pigmented skin lesions at the
surface level, proves valuable for early diagnosis. Despite this, early detection remains a formidable
task, even for seasoned dermatologists, owing to the diverse manifestations of skin cancer. Challenges
arise from deciphering whether a manifestation like swelling is benign or malignant. Furthermore,
the inconspicuous nature of small forms, such as moles, makes detection difficult with the naked eye.
Therefore, there is a pressing need for more precise and reliable detection methods.

As per data provided by the WSRF for the year 2020 [4], Australia exhibited the highest incidence
rate, recording an estimated 161,171 new cases. New Zealand reported 2801 cases, while Denmark,
Netherlands, Norway, Sweden, Switzerland, Germany, Slovenia, and Finland each had fewer than
10,000 new cases. Fig. 1 visually represents the global skin cancer index. Skin cancer affects both men
and women on a global scale, with men accounting for 173,844 new cases and women for 150,791
new cases. In terms of male incidence rates, Australia led with an estimated 9462 new cases, followed
by Germany with 17,260 cases. New Zealand, Denmark, Netherlands, Norway, Sweden, Slovenia,
Switzerland, and Finland each reported fewer than 5000 cases. For women, Slovenia reported the
highest incidence rate of melanoma skin cancer, with approximately 14,208 new cases, followed by
Norway with 3890 cases. New Zealand, Sweden, Switzerland, Denmark, Germany, Netherlands,
and Finland each reported fewer than 3000 new cases. The data provided by WCRF highlights the
global distribution of melanoma skin cancer cases and the varying incidence rates across different
countries [5].

Section 1 serves as the introduction, setting the stage by introducing the ISIC dataset and
its pivotal role in collaborative efforts for skin cancer analysis. In Section 2, a concise overview
of skin cancer classification and segmentation utilizing the ISIC dataset is presented, providing
readers with foundational knowledge. The methodology employed in these processes is detailed in
Section 3. Section 3 delves into the dataset’s characteristics, offering insights into its composition
and complexities. Challenges such as data quality and labeling accuracy are thoroughly discussed in
Section 4, alongside proposed solutions. Section 5 explores future directions for advancing skin cancer
diagnostics. The paper concludes in Section 6, summarizing findings and highlighting the significant
contributions of vision transformers in enhancing skin cancer analysis using the ISIC dataset. This
structured approach efficiently guides researchers and clinicians through the dataset introduction,
challenges, and future directions in skin cancer diagnostics. Fig. 2 presents the overall layout of the
survey paper.

This structured approach aims to efficiently guide researchers and clinicians through dataset
introduction, challenges, and future directions in advancing skin cancer diagnostics.
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Figure 1: Worldwide skin cancer statistics

Figure 2: Layout of survey paper on ISIC dataset
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The significance of mathematical and computational modeling processes cannot be overstated.
This paper emphasizes their pivotal role, particularly in advancing methodologies for skin can-
cer detection. It underscores the crucial intersection between computer science and mathematical
modeling, illustrating how these disciplines collaborate to improve algorithmic performance and
interpretability. In Section 4, the paper delves into the intricate mathematical equations that underpin
the algorithms utilized in the ISIC, SCC, and SCS tasks. Detailed discussions on the mathematical
modeling processes are provided for well-established architectures such as VGG-16, ResNet50,
AlexNet, and ShuffleNet within the context of SCC. Additionally, comprehensive explanations
of the mathematical equations governing the operation of advanced segmentation architectures,
including U-Net and SegNet, are meticulously outlined. This rigorous examination illuminates the
computational and mathematical foundations of these algorithms, enriching our understanding of
their functioning and facilitating their application in dermatological image analysis using the ISIC
dataset. All abbreviations are presented in Table 1.

Table 1: Abbreviations

Abbreviation Definition

WHO World Health Organization
ISIC International skin imaging collaboration
BCC Basal cell carcinoma
SCC Squamous cell carcinoma
AKs Actinic keratoses
VGG Visual geometry group
LSVRC Large scale visual recognition challenge
UV Ultraviolet
CNN Convolutional neural networks
SCC Skin cancer classification
SCS Skin cancer segmentation
MRI Magnetic resonance imaging
CT Computed tomography
WSRF World cancer research funds
SVM Support vector machine
BYOL Bootstrap your own latent

2 Literature Review

This section provides a comprehensive overview of the application of medical datasets, specifically
focusing on the widely acclaimed ISIC image datasets. It delves into crucial issues pertinent to their
utilization, encompassing concerns such as the prevalence of duplicate images, class imbalances,
variations in image resolution, and potential label inaccuracies. Moreover, it emphasizes the primary
focus of this paper, which is centered around SCC and SCS utilizing the ISIC dataset. By synthesizing
these observations, this paper underscores the pivotal role of CNNs as formidable tools in the
realm of dermatology, offering promising avenues for advancing clinical decision-making processes.
Furthermore, it underscores the significance of leveraging the ISIC dataset as a cornerstone in
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the pursuit of enhancing skin cancer diagnosis and treatment through innovative machine-learning
methodologies.

The primary method for diagnosing skin cancer is visual examinations by dermatologists, which
demonstrate an accuracy of approximately 60%. Dermoscopy, an enhanced imaging technique,
increases diagnostic accuracy to 89%. Dermoscopy also exhibits specific sensitivity rates, such as 82.6%
for melanocytic lesions, 98.6% for basal cell carcinoma, and 86.5% for squamous cell carcinoma [6].
Despite its effectiveness, dermoscopy faces challenges in accurately diagnosing certain lesions, espe-
cially early melanomas lacking distinct features. While it significantly improves melanoma diagnosis,
there remains a need to enhance accuracy, particularly for featureless melanomas, to further improve
patient survival rates. The limitations of dermoscopy and the quest for higher diagnostic accuracy have
led to the development of computer-aided detection methods for skin cancer diagnosis [7].

The utilization of ISIC datasets is diverse, with a predominant focus on classification and
segmentation tasks. Binary classification tasks have garnered significant attention, given their capacity
to offer a larger pool of images for algorithm training. The advent of ISIC 2018 and ISIC 2019 marked
a shift towards exploring multiclass classification, primarily leveraging the ISIC 2020 dataset. It is
noteworthy that the ISIC 2020 challenge centered specifically on melanoma detection, indicating a
potential surge in additional binary classification studies in subsequent research. While segmentation
tasks have not gained as much popularity as lesion diagnosis, especially beyond 2019 when ISIC
discontinued this challenge type, the ISIC 2016 to 2018 datasets stand out for providing delineated
segmentation masks. However, the number of segmentation tasks is relatively limited compared to the
abundance found in classification tasks [8].

Beyond classification and segmentation, researchers have delved into other dimensions of ISIC
datasets. For instance, a study by [9] investigated the impact of color constancy, while reference
[10] explored data augmentation using generative adversarial networks. These diverse applications
highlight the versatility of ISIC datasets for addressing various aspects of skin image analysis
beyond traditional classification and segmentation tasks [11]. The utilization of the ISIC dataset has
significantly propelled the field of skin cancer analysis, particularly in the realms of classification and
segmentation. The dataset’s richness and diversity have enabled researchers to explore and implement
state-of-the-art techniques, leveraging advanced machine learning algorithms and deep neural net-
works. The collective efforts within the research community, as showcased in this paper, underscore
the dataset’s pivotal role in enhancing diagnostic precision and efficacy. Through a synthesis of the
latest developments and strategies, this study strives to not only provide a comprehensive overview but
also to equip researchers and clinicians with the necessary insights to navigate the complexities of skin
cancer analysis. By delving into the intricacies of image segmentation methodologies and the nuanced
landscape of classification techniques, this paper seeks to foster a deeper understanding of the ISIC
dataset’s potential, fostering advancements that hold promise for more accurate, reliable, and clinically
relevant outcomes in the diagnosis and treatment of skin cancer [12].

In recent times, advancements in deep learning techniques within artificial intelligence have led
to the development of novel solutions for detecting abnormalities across various medical domains,
including breast cancer, lung cancer, skin cancer, brain tumors, liver cancer, and colon cancer, utilizing
medical imaging technologies. CNNs have emerged as pivotal tools, particularly in image processing
applications such as CT, MRI, histology images, and pathology images, among others, owing to their
remarkable performance. In dermatology, CNNs have demonstrated significant potential in assisting
physicians with the diagnosis of SCC and SCS.
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3 Methods
3.1 Systematic Review

This review employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) strategy for article selection. Using a Google Scholar search with the keywords “skin
cancer classification” and “skin cancer segmentation,” 699 SCC and 621 SCS publications were
initially identified. After removing duplicates, there are 549 SCC and 520 SCS articles. The first
screening round, excluding the ISIC dataset and those categorized as reviews, database entries, or
letters, results in 282 SCC and 224 SCS articles from 2013 to 2023. Further exclusions are made based
on relevance to the review’s objectives and suitability of schemes, leaving 232 SCC and 194 SCS articles.
Subsequently, articles not explicitly illustrating SC and SCC systems or similar strategies are deleted,
reducing the count to 197 SCC and 184 SCS articles. Fig. 2 presents the overall structure of paper and
Fig. 3 demonstrates the PRISMA process extensively.

Figure 3: The PRISMA process utilized for articles entails detailing the criteria for inclusion and
exclusion of evidence within the article

3.2 Skin Cancer Types
This section provides an in-depth overview of the most prevalent forms of skin cancers, exploring

their characteristics, impact on individuals, and the role of datasets like ISIC in enhancing research
and diagnosis. Fig. 4 presents the graphical view of all skin cancer types.
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Figure 4: Most common skin cancer types

3.2.1 Melanoma

Melanoma, often referred to as “the most serious skin cancer,” is notorious for its potential to
metastasize throughout the body. It can arise in normal, healthy skin or develop within existing moles
[13,14]. Men are prone to developing melanoma on their faces or trunks, with occurrences even in
sun-protected skin for both genders [15]. Early detection is paramount, and the ISIC dataset has
played a pivotal role in advancing research for the timely identification and treatment of melanoma.
Studies leveraging the dataset have contributed to improving diagnostic accuracy and enhancing our
understanding of melanoma’s diverse manifestations [16]. Recent investigations utilizing the ISIC
dataset have delved into molecular markers associated with melanoma progression, shedding light
on potential therapeutic targets for personalized treatment strategies [17]. Moreover, advancements
in machine learning algorithms, fueled by the wealth of data in the ISIC dataset, have enabled
the development of predictive models for melanoma prognosis [18]. These models not only aid in
risk stratification but also contribute to optimizing treatment plans for affected individuals. The
collaborative nature of data sharing within the ISIC community has fostered a global exchange of
insights, accelerating the pace of melanoma research and paving the way for innovative approaches in
precision medicine [19]. Fig. 5 has an image annotation of melanoma.

3.2.2 Dysplastic Nevi

Dysplastic nevi, recognized as atypical moles, exhibit characteristics resembling normal moles
but possess melanoma-like traits. With irregular shapes or colors and larger sizes than typical moles,
they can emerge on various skin areas, including those typically covered or exposed to the sun. The
ISIC dataset has been instrumental in studying and classifying dysplastic nevi, aiding researchers in
identifying patterns and features associated with their progression towards malignancy [20,21]. In
recent years, the wealth of data within the ISIC dataset has facilitated in-depth analyses exploring
the genetic markers linked to dysplastic nevi. This has not only refined our understanding of the
molecular underpinnings of atypical moles but has also contributed to the development of more
accurate diagnostic tools [22]. Machine learning models trained on the ISIC dataset have showcased
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promising capabilities in distinguishing between benign and potentially malignant nevi, providing
clinicians with valuable insights for early intervention [23]. Moreover, collaborative efforts within the
dermatology community, fueled by the shared ISIC dataset, have led to the identification of novel
biomarkers associated with dysplastic nevi progression [24]. This collaborative approach has fostered
a collective understanding of atypical mole biology, paving the way for more targeted and effective
strategies in the prevention and early detection of melanoma. The ISIC dataset continues to be a
cornerstone in ongoing research endeavors focused on unraveling the complexities of dysplastic nevi,
guiding advancements in both clinical practice and scientific understanding [25]. Fig. 6 has an image
annotation of dysplastic nevi.

Figure 5: From (a) to (h): different states of Melanoma images of ISIC dataset

Figure 6: From (a) to (h): different states of Dysplastic Nevi images of ISIC dataset
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3.2.3 Basal Cell Carcinoma

As the most prevalent form of skin cancer, BCC often manifests as a flesh-colored growth, a pearl-
shaped bump, or a pinkish skin patch. Linked to prolonged indoor tanning or frequent sun exposure,
it primarily affects individuals with fair skin but can also impact those with darker skin tones [26].
The ISIC dataset has significantly contributed to BCC research, providing a wealth of diverse images
for analysis. This dataset has been instrumental in developing and validating machine learning models
for early detection, preventing the spread of BCC and associated complications [27,28]. Recent studies
leveraging the ISIC dataset have explored the molecular signatures associated with different subtypes
of BCC. This deeper understanding has not only refined diagnostic accuracy but has also paved
the way for targeted therapeutic interventions [29]. Additionally, the diverse representation of BCC
cases in the ISIC dataset has facilitated the development of robust classification algorithms capable of
distinguishing BCC from other skin lesions with high precision [30]. Fig. 7 has an image annotation
of BCC. Furthermore, collaborative initiatives fueled by the ISIC dataset have allowed researchers to
investigate the impact of environmental factors on BCC development, providing insights into potential
preventive measures [31]. The shared dataset has acted as a catalyst for international collaboration,
fostering a collective effort to mitigate the impact of BCC on public health. As a result, the ISIC dataset
stands as a cornerstone in ongoing efforts to advance our understanding of BCC, with implications
for improved diagnosis, treatment, and prevention strategies [32].

Figure 7: From (a) to (h): different states of Basal Cell Carcinoma images of ISIC dataset

3.2.4 Squamous Cell Carcinoma

SCC, a common skin cancer type, is more prevalent in individuals with light skin, although it
can affect individuals with darker skin tones. It often presents as a red, firm lump, a scaly area, or
a recurrent sore [33,34]. Frequent sun-exposed areas are susceptible to SCC development. Research
leveraging the ISIC dataset has facilitated the exploration of unique patterns and features associated
with SCC. The dataset’s contribution has led to advancements in early detection techniques and
the development of targeted treatment approaches [35]. Recent investigations using the ISIC dataset
have focused on unraveling the genomic landscape of SCC, providing insights into the molecular
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mechanisms driving its development and progression [36]. This deeper understanding has paved the
way for personalized treatment strategies, potentially improving outcomes for individuals diagnosed
with SCC. Additionally, machine learning applications trained on the ISIC dataset have demonstrated
promising capabilities in distinguishing between different subtypes of SCC, aiding clinicians in refining
their diagnostic assessments [37]. Furthermore, collaborative efforts within the dermatology research
community, fueled by the ISIC dataset, have facilitated international studies on the epidemiology of
SCC [38]. This collective approach has not only enhanced our understanding of risk factors associated
with SCC but has also informed public health strategies for prevention and early intervention. The
ongoing contributions of the ISIC dataset continue to play a crucial role in advancing SCC research,
with implications for improved diagnostics, treatment outcomes, and public health policies. Fig. 8 has
an image annotation of SSC.

Figure 8: From (a) to (h): different stages of Squamous Cell Carcinoma images of ISIC dataset

3.2.5 Actinic Keratoses

While not categorized as skin cancer, AKs are precursors with the potential to progress into
squamous cell carcinoma. These scaly, dry skin lesions result from excessive sun exposure and typically
appear on the head, neck, hands, and forearms. The ISIC dataset has been crucial in studying the
evolution of AKs, aiding in distinguishing benign lesions from those with malignant potential. Insights
from the dataset have informed timely interventions to prevent the progression of AKs into advanced
stages of skin cancer [39]. Recent analyses leveraging the extensive data within the ISIC dataset have
provided a deeper understanding of the genetic and molecular alterations associated with AKs. This
knowledge has not only refined diagnostic criteria but has also contributed to the identification of
biomarkers indicative of malignant transformation. Machine learning applications trained on the ISIC
dataset have demonstrated promising capabilities in predicting the likelihood of AKs advancing to
squamous cell carcinoma, allowing for more personalized and proactive patient management [40,41].
Fig. 9 has an image annotation of AKs. Moreover, collaborative efforts among dermatologists and
researchers, facilitated by the shared ISIC dataset, have enabled the development of risk stratification
models for individuals with AKs. These models consider a range of factors, including clinical features
and genetic markers, to tailor surveillance and intervention strategies. The global exchange of insights
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within the ISIC community has played a pivotal role in shaping guidelines for the management of
AKs, emphasizing the importance of preventive measures and early interventions to mitigate the risk
of progression to invasive skin cancer [42]. Where Table 2 presents the characteristics and ISIC data
contribution for different skin cancer types.

Figure 9: From (a) to (h): various states of Actinic Keratoses images of ISIC dataset

Table 2: Characteristics and ISIC dataset contribution for different skin cancer types

Skin cancer type Characteristics ISIC dataset contribution

Melanoma Asymmetrical, irregular borders,
multicolored

Advanced diagnostic models,
nuanced lesion analysis

Dysplastic Nevi Irregular borders, uneven coloring,
larger diameter

Key features identification, aiding
in differentiation

Basal Cell Carcinoma Pearly or waxy bump, visible blood
vessels

Refinement of diagnostic models,
early detection

Squamous Cell Carcinoma Scaly, red patch, firm lump Identification of unique visual
cues, enhanced accuracy

Actinic Keratoses Dry, scaly patches from sun
damage

Contribution to AK research,
distinguishing malignant potential

Skin cancer symptoms encompass changes in moles, the appearance of new lesions, or alterations
in skin texture. Early detection is crucial, prompting regular self-examination and professional checks.
Precautions include sun safety practices wearing protective clothing, using sunscreen, and avoiding
excessive sun exposure [43]. Prevalence varies among skin cancer types. BCC is most common, linked
to sun exposure. SCC follows, associated with sun exposure and tobacco use. Melanoma, the most
serious type, requires vigilance for changes in moles. Dysplastic nevi, atypical moles, necessitate close
monitoring: AKs, precursors to SCC, mandate sun protection [44]. While BCC has a higher patient
prevalence due to sun exposure, early detection, and preventive measures are universally vital. Regular
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skin checks and adherence to sun safety mitigate risks across all skin cancer types. Individuals need
to be proactive in monitoring their skin, seeking professional evaluation for any concerning changes,
and adopting sun-safe behaviors to reduce the overall burden of skin cancer [45]. Public awareness
campaigns play a pivotal role in educating individuals about skin cancer symptoms, the importance of
early detection, and the significance of sun protection. Dermatologists emphasize the need for routine
skin examinations, especially for those with fair skin or a history of sun exposure. With advancements
in technology, mobile applications, and telemedicine services are also becoming valuable tools for
promoting skin health and providing accessible avenues for skin cancer assessments. Regular check-ups
with healthcare providers further enhance the collective effort in preventing, detecting, and managing
skin cancer, ultimately contributing to improved outcomes and reduced morbidity [46].

Fig. 4 illustrates common types of skin cancers, emphasizing the diverse visual representations
captured in the ISIC dataset that contribute to a deeper understanding of each skin cancer type. Fig. 10
presents the incidence of skin cancer across different regions over the past years.

Figure 10: Worldwide publication on skin cancer images using ISIC dataset

3.3 ISIC Dataset
Our research delved into the utilization of ISIC datasets for various research objectives, spanning

the past 4 to 5 years. Due to the widespread adoption of ISIC datasets, offering a comprehensive list
of studies is unfeasible. Nevertheless, we meticulously selected some of the most prominent and well-
cited papers for our analysis. Our examination revealed a prevalent trend where recent research often
incorporated multiple datasets, showcasing the versatile nature of ISIC datasets. The ISIC dataset has
evolved significantly over the years, starting with ISIC 2016, comprising 900 training images and 379
test images, totaling 1279 images. Each image was sized at 512 × 512 pixels and included ground truth
data indicating lesion malignancy. Subsequent years saw substantial expansions: ISIC 2017 contained
2600 images; ISIC 2018 introduced a dataset with 10,015 training images and 1512 test images, totaling
11,527 images at 600 × 450 pixels. The trend continued with ISIC 2019, offering 25,331 training images
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and 8238 test images, totaling 33,569 images at 1024 × 1024 pixels. In 2020, the largest ISIC dataset
yet was released, comprising 33,126 training images and 10,982 test images, totaling 44,108 images
with varying resolutions, commonly at 768 × 786 pixels.

Our analysis highlighted the predominant focus on tasks such as classification and segmentation
within the studies deemed relevant. Binary classification emerged as a popular research area, par-
ticularly with the advent of ISIC 2018 and ISIC 2019 datasets. Moreover, the ISIC 2020 challenge
specifically concentrated on melanoma detection, potentially leading to an influx of additional
binary classification papers. While SCS tasks are not as prevalent as cancer diagnosis, ISIC datasets,
particularly ISIC 2016 to 2018, provided valuable delineated segmentation masks. Additionally,
other notable applications of ISIC datasets include studies on color constancy impact and data
augmentation using generative adversarial networks. Table 3 presents the annotation of ISIC dataset
in various publications.

Table 3: Characteristics of ISIC in various publications

Publication Datasets Images DA Method

Hekler et al. [47] HAM10000, ISIC 804 No Binary classification
Rotemberg et al. [48] ISIC 2020 33,126 No Binary classification
Bisla et al. [49] ISIC 2017, ISIC

2018, PH2, Dermofit
1875 Yes Binary classification

Bissoto et al. [50] Atlas, ISIC 2018 3466 Yes Binary classification
Xie et al. [51] ISIC 2017/2018 6344 Yes Segmentation
Jojoa Acosta et al. [52] ISIC 2017, PH2

malignant
2742 Yes Binary classification

Adegun et al. [53] ISIC 2017, PH2 2860 Yes Binary classification
Nahata et al. [54] ISIC 2018/2019 35,348 Yes Binary classification
Ha et al. [55] ISIC 2018, ISIC

2019, ISIC 2020
33,000+ Yes Binary classification

(with 9-class output)
Goyal et al. [56] ISIC 2017, PH2 3520 Yes Segmentation
Brinker et al. [57] ISIC 2016,

HAM10000
12,378 No Binary classification

Mahbod et al. [58] ISIC 2016/2017 2787 Yes Binary classification +
seborrheic keratosis

Bisla et al. [59] ISIC 2017/2018,
Dermofit, PH2

16,270 Yes Generative adversarial
network segmentation
and binary classification

Tang et al. [60] ISIC 2016/2017, PH2 4079 Yes Segmentation
Majtner et al. [61] ISIC 2016 1279 No Binary classification
Barbosa et al. [62] ISIC 2017 2750 Yes Binary classification
Gessert et al. [63] ISIC 2018 13,500 Yes Multi-class (7 classes)
Al-Antari et al. [64] ISIC 2018 11,720 Yes Multi-class (7 classes)



2144 CMES, 2024, vol.140, no.3

3.4 Overview of SCC and SCS with ISIC Dataset
The ISIC dataset has emerged as a pivotal resource in advancing research on skin cancer detection

and segmentation. Skin cancer, one of the most prevalent types of cancer, necessitates early and
accurate diagnosis for effective treatment. The ISIC dataset addresses this imperative by providing a
comprehensive collection of high-resolution dermoscopic images, encompassing various skin lesions,
including malignant and benign cases [65]. Skin cancer classification involves the categorization of
lesions into different classes, such as melanoma, basal cell carcinoma, and squamous cell carcinoma.
Machine learning and deep learning techniques have been extensively applied to the ISIC dataset
for automated classification, leveraging the rich visual information present in dermoscopic images
[66]. CNNs and other deep learning architectures have demonstrated remarkable performance in
distinguishing between different skin lesions with a high degree of accuracy [67]. In addition to SCC,
SCS plays a crucial role in delineating the boundaries of skin lesions, aiding in a more detailed analysis
of their characteristics. Segmentation algorithms applied to the ISIC dataset aim to precisely identify
and outline the regions of interest within the images, facilitating a better understanding of lesion
morphology and size [68]. Researchers often employ transfer learning, fine-tuning pre-trained models,
and ensemble techniques to enhance the generalization and robustness of skin cancer classification
and segmentation models. The ISIC dataset’s large-scale and diverse collection of images contributes
to the development of robust models that can handle variations in skin types, lesion sizes, and imaging
conditions [69].

As the field continues to evolve, collaborations like ISIC play a pivotal role in fostering advance-
ments in skin cancer research. The integration of advanced computer vision techniques with the rich
data provided by the ISIC dataset holds promising potential for improving early detection and aiding
clinicians in making more informed decisions for optimal patient care [70,71]. Furthermore, the ISIC
dataset supports benchmarking and comparison of different algorithms, fostering healthy competition
and driving innovation in the field of dermatology [72]. The incorporation of clinical metadata, such
as patient demographics and lesion histories, enhances the dataset’s utility for building models that
not only classify and segment lesions but also consider the broader patient context [73].

The ISIC dataset’s global accessibility has facilitated collaborative efforts across institutions,
enabling researchers worldwide to contribute to the collective knowledge in skin cancer research [74].
Open challenges and competitions based on the ISIC dataset serve as platforms for researchers to
showcase novel approaches and methodologies, fostering a community-driven pursuit of improved
diagnostic tools [75]. Ethical considerations and privacy concerns in handling medical image datasets,
including the ISIC dataset, have prompted the development of secure and privacy-preserving method-
ologies [76]. Researchers are increasingly mindful of ensuring patient privacy and obtaining proper
consent, laying the foundation for responsible and transparent use of medical data.

Continuous updates and expansions of the ISIC dataset, incorporating new cases and diverse
populations, ensure that the models trained on this dataset remain relevant and applicable across
different scenarios [77]. The evolving nature of skin cancer pathology demands a dynamic dataset,
and the ISIC collaboration is responsive to this need [78]. In response to emerging challenges, such
as data scarcity in specific subtypes or demographic groups, efforts are underway to enhance the
representatives of the ISIC dataset. This includes targeted data collection initiatives and collaborations
with diverse healthcare institutions to ensure a more comprehensive and inclusive dataset that can
address disparities in skin cancer diagnosis and treatment [79]. The ongoing integration of multi-modal
data, including not only dermoscopic images but also clinical and genetic information, further enriches
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the ISIC dataset. Fig. 11 presents the number of ISIC images used in the various publications for the
skin cancer SCC and SCS.

Figure 11: Number of images used in various publications

This holistic approach facilitates a more comprehensive understanding of skin cancer, enabling
researchers to explore correlations between genetic markers, clinical parameters, and imaging features
for a more nuanced diagnosis and prognosis [80]. As artificial intelligence applications in dermatology
continue to evolve, there is a growing emphasis on the interpretability and explainability of models
trained on the ISIC dataset. Transparent models can enhance trust among healthcare practitioners,
fostering seamless integration of AI-driven tools into clinical workflows for more effective decision-
making [81]. Moreover, the dynamic nature of the ISIC dataset not only fosters advancements in
algorithmic precision but also encourages ongoing research into emerging skin cancer subtypes and
their distinct diagnostic markers. This adaptability ensures that the dataset stays abreast of the
ever-evolving landscape of dermatological knowledge, contributing to the refinement of diagnostic
methodologies [82]. Additionally, the ISIC dataset’s open-access nature cultivates a global community
of researchers, allowing for the seamless exchange of ideas, methodologies, and benchmarking
standards. This collaborative ethos promotes a collective push towards more accurate, efficient, and
universally applicable skin cancer diagnostic tools, ultimately benefiting patients worldwide [83].
Table 4 demonstrates the contribution of ISIC dataset in skin cancer types.

Table 4: Literature review of ISIC dataset contribution for different skin cancer types

Authors Dataset Model Performance

Gajera et al. [84] ISIC 2016, ISIC 2017 AlexNet, VGG-16, VGG-19 Accuracy = 98.33%,
F1-score = 0.96

Shinde et al. [85] ISIC Squeeze-MNet Accuracy = 99.36%
Alenezi et al. [86] ISIC 2017 Deep residual network Accuracy = 96.971%,

F1-score = 0.95

(Continued)
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Table 4 (continued)

Authors Dataset Model Performance

Alenezi et al. [87] ISIC 2019, ISIC 2020 ResNet-101 with SVM Accuracy = 96.15%
(2019), 97.15% (2020)

Gouda et al. [88] ISIC 2018 CNN Accuracy = 83.2%
Bassel et al. [89] ISIC ResNet50, Xception,

VGG-16
Accuracy = 90.9%,
F1-score = 0.89

Kousis et al. [90] ISIC 2019 Eleven CNN architectures
with DensNet169

Accuracy = 92.25%,
F1-score = 0.932

Shorfuzzaman [91] ISIC archive DenseNet121, Xception,
EfficientNet80

Accuracy = 95.76%,
F1-score = 0.957

Abbas et al. [92] ISIC 2020 NASNet Accuracy = 97.7%,
F1-score = 0.97

Reis et al. [93] ISIC 2018, ISIC 2019,
ISIC 2020

InSiNet, U-Net Accuracy = 94.59%
(2018), 91.89% (2019),
90.54% (2020)

Ghosh et al. [94] ISIC archive SkinNet-16 Accuracy = 95.51%
(HAM10000), 99.19%
(ISIC)

Mazoure et al. [95] ISIC Inceptionv313,
ResNet5014, 170
MobileNetv23,
EfficientNet15, BYOL16,
SwAV

Class prediction
probability = 1.00
(Mel)

Rashid et al. [96] ISIC 2020 MobileNetV2-based
transfer learning

Average accuracy =
98.20%

Aljohani et al. [97] ISIC 2019 DenseNet201,
MobileNetV2,
ResNet50V2,
ResNet152V2, Xception,
VGG-16, VGG-19,
GoogleNet

Accuracy = 76.09%

Demir et al. [98] ISIC archive ResNet-101, Inception-v3 F1-score = 84.09%
(ResNet-101), 87.42%
(Inception-v3)

Khan et al. [99] ISIC 2017, ISIC 2019 A hybrid framework of 20
layered and 17 layered
CNN for segmentation, 30
layered CNN for feature
extraction

Segmentation accuracy
= 92.70% (ISIC 2018),
Classification accuracy
= 87.02%

Abdar et al. [100] ISIC 2019 ResNet152V2,
MobileNetV2, DenseNet20

Best accuracy = 89%,
F1-score = 0.91
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Through meticulous examination of various research papers, we have observed that researchers
frequently utilize models such as AlexNet, VGG, ResNet, SqueezeMNet, among others, to achieve
remarkable accuracy and F1-scores, ranging from 76.09% to 99.3%. Our analysis encompassed
datasets spanning ISIC 2016, 2017, 2018, 2019, and 2020. However, it is imperative to highlight that our
detailed review revealed a concerning trend associated with preprocessing techniques, particularly in
data augmentation. We identified a recurrent issue of random data creation and duplication resulting
from these techniques. This phenomenon has significantly contributed to mispredictions, overfitting,
biases, and a lack of generalization in the outcomes. Such challenges underscore the necessity for a
more careful consideration of preprocessing methods to ensure the integrity and reliability of the data
and subsequent analysis in the field of skin cancer diagnosis.

3.5 CNNs for the SCC and SCS Using ISIC Dataset
CNNs play a crucial role in advancing the classification and segmentation of skin lesions,

leveraging datasets like ISIC for improved diagnostic accuracy. CNNs directly learn from data,
excelling in image recognition and analysis tasks related to skin cancer detection [101]. Recognized as
one of the most proficient machine learning algorithms, CNNs demonstrate remarkable performance
in various image processing tasks and computer vision applications, including skin lesion localization,
segmentation, classification, and detection [102]. Typically comprising tens or hundreds of layers,
each responsible for recognizing distinct aspects of skin lesion images, CNNs operate by applying
convolutional filters during training. These filters start by detecting fundamental features such as color
variations, edges, and textures, progressively becoming more sophisticated, and ultimately identifying
specific lesion characteristics [103]. Hidden layers between the CNN’s input and output layers conduct
operations that modify the data to learn features specific to the skin lesion dataset. The most commonly
used layers include Convolution, activation (or ReLU), and pooling [104].

The Convolution layer is the fundamental building block, handling most of the computational
workload. Through convolution, filters are applied to input skin lesion images, activating different
lesion aspects. Mathematically, convolution can be expressed as:

S(i, j) = (I ∗ K)(i, j) =
∑

m

∑

n

I(m, n)K(i − m, j − n) (1)

where S(i, j) represents the output of the convolution operation at position (i, j) in the resulting
image or feature map. And (I ∗ K)(i, j) This is the convolution operation between the input image
I and the convolutional kernel K at the position (i, j) [105].

∑
m

∑
n are summation symbols that

indicate a double summation over the indices m and n. The convolution operation involves summing
up the elementwise product of corresponding elements of the input image and the flipped (or rotated)
convolutional kernel. At the end, I(m, n) represents the pixel value of the input image at position (m,
n) [106]. K(i − m, j − n) represents the corresponding weight of the convolutional kernel at the relative
position (i − m, j − n). The kernel is typically smaller than the input image, and this term defines how
the kernel is applied to different positions of the input [107].

Activation functions, such as Rectified Linear Unit (ReLU), expedite training by introducing non-
linearity and ensuring that only activated characteristics proceed to the subsequent layer. Mathemati-
cally, ReLU is defined as:

f (x) = max(0, x) (2)
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where pooling is another essential layer that reduces the network’s parameter count by performing
nonlinear downsampling on the output [108]. Max pooling, for instance, can be expressed as:

P(i, j) = max
m,n

I(m + i, n + j) (3)

These operations, including convolution, activation, and pooling, are repeated across multiple lay-
ers, where each layer learns to recognize diverse features of skin lesions. The final classification output
is obtained from the top layer’s classification layer in the CNN architecture. Fig. 12 demonstrates the
overall methodology of ISIC image classification and segmentation in detail.

Figure 12: Overall methodology of ISIC images classification and segmentation

3.6 State-of-the-Art CNN Architectures for SCC and SCS Using ISIC Dataset
This section delves into the forefront of CNN architectures, demonstrating their mathematical

and computational prowess in image classification and segmentation for skin cancer detection. These
algorithms are utilized to enhance computational involvement for better results, specifically tailored
to the ISIC dataset. Researchers have extensively explored these architectures to improve diagnostic
accuracy. Key architectures employed in ISIC dataset studies include:

3.6.1 VGG Architecture

VGG is a convolutional neural network architecture developed by Karen Simonyan and Andrew
Zisserman at Oxford University’s Visual Geometry Group [109]. The VGG-16 model, detailed in
attained an impressive 92.7% top-5 test accuracy on the ImageNet dataset, which encompasses 14
million images across 1000 classes. Simonyan and Zisserman enhanced performance by substituting
large-size kernel filters with multiple 3 × 3 kernel-sized filters, surpassing the capabilities of AlexNet
[110]. VGG offers various configurations based on the number of convolution layers, with VGG-16
and VGG-19 being the most prevalent. The architecture of VGG-16, illustrated in Fig. 13, consists of
thirteen convolution layers, a max-pooling layer, three fully connected layers, and an output layer [111].
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Figure 13: Architecture of VGG

This model’s architecture has demonstrated its efficacy in diverse image classification tasks,
making it a valuable asset for researchers in the field [112]. The versatility of the VGG architecture
extends to its application in skin cancer detection using the ISIC dataset. Researchers have harnessed
the power of VGG-16 and VGG-19 configurations to address the intricacies of skin lesion classification
and segmentation [113]. The rich diversity of skin images within the ISIC dataset aligns seamlessly with
VGG’s ability to capture complex features. By adapting the pre-trained VGG models on ImageNet
to the specific characteristics of skin cancer images from the ISIC dataset, studies have achieved
remarkable results [114]. Fine-tuning VGG architectures with transfer learning techniques allows
the models to grasp subtle patterns indicative of various skin conditions. The robust performance
demonstrated by VGG in broader image classification tasks translates effectively to the nuanced
domain of skin cancer detection within the ISIC dataset [115].

y = f (Wx + b) (4)

Eq. (4), inherent to VGG’s convolutional layers, encapsulates the mathematical foundation of its
adaptability and effectiveness in processing skin images from the ISIC dataset. This synergy between
VGG architecture and the ISIC dataset underscores the significance of leveraging state-of-the-art
models for advancing the accuracy and reliability of skin cancer detection systems.

3.6.2 AlexNet

AlexNet, introduced by Hosny et al. [116], is a pioneering CNN architecture renowned for revo-
lutionizing image classification tasks. Comprising five convolutional layers and three fully connected
layers, as depicted in Fig. 6, AlexNet played a pivotal role in winning the ImageNet LSVRC in 2012
[117]. With a total of 60 million parameters, AlexNet effectively addressed overfitting concerns through
the innovative integration of dropout layers, enhancing the model’s generalization capabilities:

P(dropout) = 0.5 (5)

where P(dropout) represents the probability of dropout, this equation signifies that during training,
each neuron has a 50% chance of being dropped out, preventing reliance on specific neurons and
promoting better generalization [118]. Beyond its success on ImageNet, AlexNet’s architecture has
become a foundational blueprint for subsequent deep learning models, contributing significantly
to the advancement of computer vision applications [119]. Trained on ImageNet LSVRC-2010,
AlexNet demonstrated remarkable performance with top-1 and top-5 error rates of 37.5% and 17.0%,
respectively, solidifying its position as a landmark in the evolution of deep learning architectures. The
softmax activation function used in the final layer is defined as:
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P(classi) = ezi

∑K

j=1 ezj
(6)

where P(classi) is the probability of the input belonging to class i, zi is the raw output for class i, and
K is the total number of classes [120]. This equation reflects the normalization of raw outputs into
class probabilities, facilitating effective multiclass classification. Fig. 14 demonstrates the architecture
of AlexNet in detail.

Figure 14: Architecture of AlexNet

3.6.3 ResNet

AlexNet secured victory in the ImageNet 2012 competition, featuring an original eight-layer
architecture. In the landscape of deep learning, the common strategy of adding more layers aims to
boost performance and reduce error rates [121]. However, this approach introduces challenges like
vanishing gradients, where the gradient approaches zero, and exploding gradients, where the gradient
becomes excessively large. Addressing these challenges, He et al. [122] introduced skip connections,
an innovative concept to alleviate problems associated with exploding and vanishing gradients. Skip
connections involve bypassing certain levels between layers and directly linking layer activations to
subsequent layers, forming what is known as residual blocks [123]. The ResNet architecture stands as
a powerful tool for researchers aiming to construct and train deep neural networks effectively. The
equations for ResNet skip connections can be expressed as follows, where x represents the input to a
particular layer, F denotes the operations within a residual block, and y is the output [124]:

y = F(x) + x (7)

This novel approach serves as the foundation of the ResNet architecture, depicted in Fig. 15.
ResNet’s skip connections enable the bypassing of problematic layers during training, effectively
mitigating issues related to exploding and vanishing gradients [125]. This architectural innovation has
proven instrumental in facilitating the training of deep neural networks, providing a practical solution
to challenges encountered with increasing network depth [126].

3.6.4 MobileNet

Howard et al. [127] introduced a lightweight network called MobileNet specifically designed for
mobile applications. In MobileNet, the traditional 3 × 3 convolution operation found in standard
CNNs is replaced with a combination of a 3 × 3 depthwise convolution and a 1 × 1 pointwise
convolution operation. This strategic use of depthwise separable convolution, as opposed to the
standard convolution operation, proves effective in reducing the overall number of training parameters
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[128]. The distinction between the standard convolution operation and the depthwise separable
convolution employed in MobileNet is illustrated in Fig. 16.

Figure 15: Architecture of ResNet

Figure 16: Architecture of MobileNet

This modification in the convolutional operation contributes to the efficiency of MobileNet,
making it well-suited for deployment on mobile devices by significantly reducing computational
demands and model size [129]. MobileNet represents a noteworthy advancement in tailoring neural
network architectures for optimal performance on resource-constrained platforms [130]. Moreover,
MobileNet’s architecture is characterized by the following equations for depthwise convolution and
pointwise convolution:

Depthwise convolution:

y = depthwiseconv(x, w) =
∑

k

x ∗ wk (8)

Pointwise convolution:

z = pointwiseconv(y, b) =
∑

k

yk + bk (9)

In these equations, x represents the input, w denotes the depthwise convolutional kernel, y is the
intermediate output after depthwise convolution, z is the final output after pointwise convolution, and
b represents the bias term [131]. The depthwise convolution is followed by batch normalization and
ReLU activation, contributing to the overall efficiency of MobileNet [132].
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3.6.5 DensNet

In the groundbreaking work by Huang et al., the DenseNet architecture, or densely connected
convolutional network, was introduced, and its application to skin cancer classification and seg-
mentation, specifically on the ISIC dataset, has demonstrated notable success [133,134]. Illustrated
in Fig. 17, DenseNet’s unique connectivity pattern, where each layer is directly connected to every
other layer, proves advantageous in capturing intricate features inherent in skin lesion images. For skin
cancer classification, DenseNet leverages the comprehensive information flow between layers, utilizing
feature maps from all preceding layers as inputs for each subsequent layer [135,99]. This connectivity
scheme mitigates the vanishing gradient problem and enhances the model’s ability to discern nuanced
patterns indicative of different skin conditions within the ISIC dataset [136,137]. In the domain of
segmentation, DenseNet’s connectivity pattern contributes to robust feature propagation throughout
the network, aiding in the precise delineation of lesion boundaries. The efficiency gains from reduced
parameters make DenseNet well-suited for handling the complexities of skin cancer images in the
ISIC dataset [138,139]. The connectivity equation for DenseNet, tailored to the ISIC dataset, is
expressed as follows, where xi denotes the feature map of the ith layer and [x0, x1, x2...xi−1] represents
the concatenation of feature maps from all preceding layers:

xi = Hi([x0, x1, x2...xi−1]) (10)

This adaptation underscores the efficacy of DenseNet in processing ISIC dataset images, empha-
sizing its role in advancing both skin cancer classification and segmentation tasks [140].

Figure 17: Architecture of DensNet

3.6.6 U-Net

U-Net’s popularity in medical image segmentation, particularly for skin cancer segmentation on
the ISIC dataset, can be attributed to its robust architecture [141,142]. The encoder-decoder structure,
complemented by skip connections, facilitates the accurate localization of skin lesions. The model’s
effectiveness lies in its ability to maintain a seamless flow of information between the encoder and
decoder, enabling precise delineation of lesions in the challenging scenarios posed by the ISIC dataset
[143,144]. The incorporation of skip connections proves pivotal in retaining fine-grained details during
upsampling, a crucial factor contributing to U-Net’s remarkable success in skin cancer segmentation
[145,146]. The following equation can succinctly represent the architecture of U-Net:

Output = σ (Decoder (Encoder(Input) + Skip Connections)) (11)

where σ denotes the sigmoid activation function, and the skip connections play a crucial role in
preserving detailed information during the segmentation process. Additionally, U-Net’s adaptability
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and ease of implementation, as expressed by this equation, make it a preferred choice for researchers
and practitioners in the field of medical image analysis [147,148]. Fig. 18 illustrates UNet architecture
in detail.

Figure 18: Architecture of UNet

3.6.7 SegNet

SegNet is a convolutional neural network architecture tailored for pixel-wise image segmentation
tasks, making it suitable for applications like skin lesion segmentation in the ISIC dataset [149,150].
Its design includes an encoder-decoder structure with symmetrically paired encoder and decoder
layers. SegNet utilizes max-pooling indices from the encoder during the upsampling process, aiding in
preserving spatial information crucial for accurate segmentation [151,152]. The model’s architecture
enhances the localization of intricate features within skin lesions, contributing to its effectiveness in
the challenging context of the ISIC dataset. SegNet’s performance is often attributed to its focus on
retaining fine-grained details, demonstrating its utility in medical image segmentation, particularly for
dermatological applications [153,154].

Ŷ = Decoder(Encoder(X)) (12)

This equation represents the forward pass of SegNet, where X is the input image, Encoder that
performs the encoding operation, and Decoder performs the decoding operation to generate the
segmented output Ŷ [155].

In the realm of SCC and SCS using the ISIC dataset, various models, including AlexNet, VGG,
ResNet, and SqueezeMNet, have been extensively employed by researchers, yielding commendable
accuracy and F1-scores ranging from 76.09% to 99.3%. Notably, in the domain of SCS, particularly
utilizing the ISIC dataset across multiple iterations, significant advancements have been made with
the adoption of specialized models such as InSiNet and U-Net. In recent investigations spanning
ISIC 2018, ISIC 2019, and ISIC 2020 datasets, these models have demonstrated notable efficacy,
achieving commendable accuracy rates. Specifically, across the respective datasets, segmentation
accuracies of 94.59%, 91.89%, and 90.54% have been attained. These results underscore the continual
refinement and adaptation of deep learning architectures to address the challenges inherent in SCS.
Such accuracies not only reflect the robustness of the models but also signify their potential utility
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in clinical settings for aiding dermatologists in accurate diagnosis and treatment planning. Each
model presents distinct advantages and disadvantages in the context of ISIC data utilization. AlexNet,
renowned for its pioneering role in deep learning, offers a relatively straightforward architecture and
efficient training, making it suitable for initial experimentation. However, its shallower depth may
limit its ability to capture intricate features in complex skin lesion images. VGG, characterized by its
deeper architecture, excels in feature extraction but suffers from increased computational complexity
and memory requirements, potentially limiting its scalability. ResNet, with its residual connections,
mitigates the vanishing gradient problem and facilitates the training of deeper networks, thereby
enhancing feature representation. Nonetheless, its extensive depth may lead to overfitting, particularly
with smaller datasets. SqueezeMNet, notable for its lightweight architecture, enables efficient inference
on resource-constrained devices, but may sacrifice some accuracy compared to larger models. InSiNet
incorporates attention mechanisms, allowing for dynamic focus on salient regions within the ISIC
input image. This adaptability can enhance segmentation accuracy, particularly in cases with complex
or heterogeneous cancer. U-Net, renowned for its ability to effectively capture fine-grained details in
ISIC image segmentation tasks, features a symmetric architecture with contracting and expansive path-
ways. This design facilitates precise delineation of lesion boundaries, leading to accurate segmentation
results. Despite their strengths, all these models are susceptible to the aforementioned issue of data
duplication resulting from preprocessing techniques. This recurring challenge has posed significant
obstacles, including mispredictions, overfitting, biases, and a lack of generalization, underscoring
the critical need for meticulous consideration of preprocessing methods to uphold the integrity and
reliability of both the data and subsequent analyses in skin cancer diagnosis.

4 Challanges

After conducting an exhaustive review of existing literature, it has been discerned that the
incorporation of preprocessing techniques to expand ISIC datasets presents a myriad of challenges,
thereby exerting a discernible impact on the reliability and accuracy of the outcomes:

1. Random duplication in images: Preprocessing methodologies often engender the random dupli-
cation of images within the ISIC dataset. This inadvertent replication can lead to the recurrence
of identical or highly similar images multiple times, thus precipitating erroneous predictions
during both the training and evaluation phases of model development. Additionally, such
random duplication exacerbates the problem of imbalanced data, where certain classes may be
overrepresented while others are underrepresented, further complicating model training and
evaluation.

2. Overfitting due to replicated data: The replication of data facilitated by preprocessing tech-
niques may inadvertently induce overfitting of the model on the ISIC dataset. Overfitting, a
phenomenon characterized by the model’s tendency to memorize the intricacies of the training
data rather than generalize from it, can yield ostensibly superior performance metrics on the
training dataset. However, such models often exhibit suboptimal generalization capabilities on
unseen data, thereby impugning the reliability and robustness of the resultant outcomes.

3. Reduced diversity and generalizability: The process of replicating data through preprocessing
interventions has the potential to attenuate the diversity inherent within the ISIC dataset. This
reduction in diversity, precipitated by the introduction of identical or highly similar images,
can impede the model’s capacity to generalize effectively to novel, unseen data instances.
Consequently, this limitation culminates in a concomitant reduction in overall performance
and reliability.
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4. Inefficient resource utilization: The augmentation of ISIC datasets via preprocessing method-
ologies significantly amplifies the dataset’s size, thereby engendering inefficiencies in terms of
memory and computational resource utilization during model training. The resultant elon-
gated training times and augmented computational costs detrimentally affect the scalability
and practical applicability of the model.

5. Introduction of biases: Preprocessing techniques may inadvertently introduce biases into the
ISIC dataset, particularly in instances where the augmentation strategies are inadequately
designed or implemented. The inadvertent introduction of biases can skew the model’s learning
trajectory, precipitating biased predictions and ultimately compromising the fairness and
reliability of the resultant outcomes.

Addressing these multifarious challenges necessitates a comprehensive understanding of the
potential pitfalls associated with preprocessing techniques, as well as the judicious implementation of
rigorous validation and quality control measures to safeguard the integrity and reliability of both the
ISIC dataset and the ensuing model. Moreover, strategies to mitigate imbalanced data problems, such
as class weighting or data resampling techniques, are imperative to ensure equitable representation of
all classes and enhance the model’s performance and generalizability.

5 Future Directions

In future directions, addressing the challenge of random duplication in ISIC datasets resulting
from the use of distinct augmentation techniques is paramount. Such duplications can lead to
misleading outcomes and adversely affect real-time analysis, potentially increasing the incidence of
true negative predictions and thereby promoting erroneous conclusions. To tackle this issue effectively,
the integration of ViTs with their encoder-decoder architectures and attention mechanisms emerges
as a promising approach. ViTs are renowned for their adeptness in feature extraction, while the
ViT encoder-decoder framework offers the additional capability of generating diverse and realistic
data samples. This integration presents a holistic solution for mitigating the impact of duplicated
data on analysis outcomes. Moreover, by combining these techniques with ResNet, a well-established
algorithm for feature extraction, there is an opportunity to bolster the detection of false positives
in diagnosis as SCC and SCS. In the envisioned architecture, the encoder-decoder aspect of the ViT
framework plays a crucial role. The encoder processes input images and extracts relevant features,
while the decoder generates output predictions based on these features, thereby enabling both feature
extraction and generation of diverse data samples. By amalgamating these methodologies, a more
robust framework for ISIC image analysis can be established, leading to enhanced diagnostic accuracy
and reliability in clinical settings.

6 Conclusion

In conclusion, this paper has highlighted the multifaceted challenges encountered in utilizing
preprocessing techniques to expand ISIC datasets for skin cancer classification and segmentation.
These challenges include random duplication in images, overfitting due to replicated data, reduced
diversity and generalizability, inefficient resource utilization, and the introduction of biases. Collec-
tively, these factors impede the reliability and accuracy of outcomes derived from machine learning
models trained on such datasets. Addressing these challenges requires a comprehensive understanding
of the pitfalls associated with preprocessing techniques, as well as the implementation of rigorous
validation and quality control measures. Strategies to mitigate imbalanced data problems, such as class
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weighting or data resampling techniques, are essential to ensure equitable representation of all classes
and enhance model performance and generalizability. Looking ahead, future directions outlined in
this paper propose innovative approaches to overcome the challenge of random duplication in ISIC
datasets. The integration of ViTs with its robust architecture offers an opportunity to enhance the
detection of false positives in diagnosis, contributing to improved diagnostic accuracy and reliability in
image datasets. This systematic review paper underscores the importance of addressing the challenges
associated with preprocessing techniques in ISIC dataset utilization for skin cancer analysis. By
delineating future directions and proposing innovative solutions, this paper contributes to advancing
the field of skin cancer diagnostics, ultimately benefiting patient care and global healthcare initiatives.
This study elucidates the pivotal role of mathematical and computational modeling in enhancing skin
cancer detection methodologies, paving the way for more accurate and reliable diagnostic tools in
dermatological image analysis research.
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