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ABSTRACT

Transient heat conduction problems widely exist in engineering. In previous work on the peridynamic differential
operator (PDDO) method for solving such problems, both time and spatial derivatives were discretized using the
PDDO method, resulting in increased complexity and programming difficulty. In this work, the forward difference
formula, the backward difference formula, and the centered difference formula are used to discretize the time
derivative, while the PDDO method is used to discretize the spatial derivative. Three new schemes for solving
transient heat conduction equations have been developed, namely, the forward-in-time and PDDO in space (FT-
PDDO) scheme, the backward-in-time and PDDO in space (BT-PDDO) scheme, and the central-in-time and
PDDO in space (CT-PDDO) scheme. The stability and convergence of these schemes are analyzed using the Fourier
method and Taylor’s theorem. Results show that the FT-PDDO scheme is conditionally stable, whereas the BT-
PDDO and CT-PDDO schemes are unconditionally stable. The stability conditions for the FT-PDDO scheme are
less stringent than those of the explicit finite element method and explicit finite difference method. The convergence
rate in space for these three methods is two. These constructed schemes are applied to solve one-dimensional and
two-dimensional transient heat conduction problems. The accuracy and validity of the schemes are verified by
comparison with analytical solutions.
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1 Introduction

Transient heat conduction problems are prevalent in petroleum, chemical, metallurgy, and many
other fields. Consequently, effective numerical methods for studying these problems are crucial for
practical engineering applications.

Currently, numerical methods for solving transient heat conduction equations are broadly classi-
fied into two categories: mesh-based methods, including finite difference method (FDM) [1,2], finite
element method (FEM) [3,4], Finite Volume Method [5,6], and Boundary Element Method (BEM)
[7]; and meshless methods, such as the generalized finite difference method [8,9], smoothed particle
hydrodynamics method (SPH) [10], meshless local Petrov-Galerkin method (MLPG) [11–14], meshless
local radial basis function-based differential quadrature (RBF-DQ) [15], peridynamics (PD) [16,17],
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and peridynamic differential operator (PDDO) [18,19]. Based on time discretization, these methods
can be divided into explicit and implicit schemes. In the explicit scheme, unknown quantities are
explicitly given in terms of known quantities, offering the advantage of simpler programming but
suffering from strict stability conditions. Conversely, in the implicit scheme, unknown quantities
cannot be explicitly expressed, making the solution computationally challenging yet allowing for larger
time step sizes due to increased stability. Consequently, the implicit scheme is often favored in software.

The PDDO method, a recent advancement based on PD theory [20], is a nonlocal differential
operator that bridges local partial derivatives and nonlocal integrals using Taylor series expansions and
orthogonal function properties. Capable of solving differential equations and calculating derivatives
from smooth functions or scattered data amidst discontinuities or singular points [21], it also features
time nonlocality and generalized space-time nonlocality, unrestricted by order of space and time par-
tial derivatives, proving its efficacy in practical applications. For instance, Dorduncu devised a nonlocal
stress analysis model for functionally graded sandwich panels using PDDO [22], Gao et al. developed
a nonlocal model for fluid flow and heat transfer coupling using PDDO [23], and Li et al. introduced
a nonlocal model for steady-state thermoelastic analysis of functionally graded materials with PDDO
[24]. Additionally, Li et al. compared the PDDO with the other nonlocal differential operators and
proposed some improvements for PDDO [25–27].

In the previous work involving the PDDO method, both time and space derivatives were
discretized using the PDDO method [28,29]. Given the relative complexity and computational expense
of the PDDO method, it is essential to reduce its complexity. The FDM, being the oldest numerical
method, offers the advantage of straightforward implementation. Consequently, it was chosen to
discretize the time derivative. Furthermore, considering the capability of the PDDO method to handle
complex regions and discontinuous problems in space, the PDDO method was utilized to discretize
the spatial derivative.

In this study, the coupling of FDM with the PDDO method (FD-PDDO) has been developed to
solve transient heat conduction equations. In order to establish both explicit and implicit methods, the
time derivative is approximated using the forward difference formula, backward difference formula,
and centered difference formula, respectively. As a result, the forward-in-time and PDDO in space
(FT-PDDO) scheme, backward-in-time and PDDO in space (BT-PDDO) scheme, and central-in-time
and PDDO in space (CT-PDDO) scheme are developed. The FT-PDDO scheme is explicit, while the
BT-PDDO and CT-PDDO schemes are implicit. The stability and convergence of these new schemes
are analyzed using the Fourier method and Taylor’s theorem, respectively. The developed schemes are
applied to solve one-dimensional and two-dimensional transient heat conduction problems, and their
accuracy and validity are verified through comparison with the analytical solution.

2 Mathematical Model

The transient heat conduction equation can be expressed as:⎧⎪⎨
⎪⎩

∂T (x, t)
∂t

= D∇2T (x, t) + Q (x, t) x ∈ Ω,

T (x, 0) = g (x) x ∈ Ω,
T (x, t) = T (x, t) x ∈ Γ

(1)

where T is the temperature; t is the time; x is the spatial variable; Q (x, t) is the heat source; T (x, t)
is the temperature on the boundary Γ of the computational zone Ω; g (x) is the initial temperature;
D = kp

ρc
where ρ is the density; c is the specific heat capacity; kp is the thermal conductivity coefficient.
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3 Numerical Method
3.1 Basic Theory of the FDM

The FDM is a mesh-based algorithm, and its basic idea is to transform the derivative into
numerical differentiation. Taking the time derivative dT

dt
as an example and using the uniform grid

shown in Fig. 1, the forward difference formula can be obtained from [1] as follows:
dT
dt

∣∣∣∣
t=tk

≈ Tk+1 − Tk

Δt
(2)

The backward difference formula in [1] is as follows:

dT
dt

∣∣∣∣
t=tk+1

≈ Tk+1 − Tk

Δt
(3)

The centered difference formula in [1] is as follows:

dT
dt

∣∣∣∣
t=tk+1/2

≈ Tk+1 − Tk

Δt
(4)

where Tk represents the numerical solution of T at the time point t = tk. The truncation error of the
forward difference formula and the backward difference formula is O (Δt), while the truncation error
of the centered difference formula is O

(
(Δt)2

)
. The truncation errors can be obtained using Taylor’s

theorem.

Figure 1: Uniform grid diagram

3.2 The PDDO Method
The PD theory is a nonlocal theory proposed by Silling et al. [20]. Point x interacts with Point x′

within an interaction domain Hx as shown in Fig. 2. The relative position vector between these points
is defined as ξ = x′−x. Each point has its interaction domain (family). The interaction can be specified
as δ = mΔx with m being an integer and Δx representing the grid spacing between the points. The
interaction domain of points may have different sizes and shapes. The degree of nonlocal interaction
between the points is specified by the weight function ω (ξ).

Figure 2: PD interaction domains for the discretized points x and x′

Madenci et al. [29,30] proposed the PDDO method based on the PD theory. For the M-
dimensional scalar function, the N-th order Taylor expansions of f (x′) = f (x + ξ) are expressed
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as Eq. (5).

f (x + ξ) =
N∑

n1=0

N−n1∑
n2=0

· · ·
N−n1−···nM−1∑

nM =0

1
n1! n2! · · · nM !

ξ
n1
1 ξ

n2
2 · · · ξ nM

M

∂n1+n2+···+nM f (x)

∂xn1
1 ∂xn2

2 · · · ∂xnM
M

+ R (N, x) (5)

where R (N, x) representing the remainder of the M-dimensional approximation.

Multiplying each term in Eq. (5) by PD functions gp1p2 ···pM
N (ξ) and integrating over the domain of

interaction Hx forms Eq. (6).

∂p1+p2+···+pM f (x)

∂xp1
1 ∂xp2

2 · · · ∂xpM
M

=
∫

Hx

f (x + ξ) gp1p2 ···pM
N (ξ) dV (6)

where pi = 0, 1, · · · , N (i = 1, 2, · · · , M) represents the partial derivative with respect to variable
xi and p1 + p2 + · · · + pM ≤ N. The function gp1p2 ···pM

N (ξ) is a PD function constructed based on
the orthogonality principle in the domain of interaction Hx of the point x, which must possess the
orthogonality property of

1
n1! n2! · · · nM !

∫
Hx

ξ
n1
1 ξ

n2
2 · · · ξ nM

M gp1p2 ···pM
N (ξ) dV = δn1p1

δn2p2
· · · δnM pM

(7)

where ni = 0, · · · , N with n1 + n2 + · · · + nM ≤ N; δnipi represents the Kronecker symbol. The PD
function gp1p2 ···pM

N (ξ) can be constructed as [29,30]:

gp1p2 ···pM
N (ξ) =

N∑
q1=0

N−q1∑
q2=0

· · ·
N−q1−···qM−1∑

qM =0

ap1p2 ···pM
q1q2 ···qM

ωq1q2···qM (|ξ |) ξ
q1
1 ξ

q2
2 · · · ξ qM

M (8)

where ωq1q2 ···qM (|ξ |) is the weight function related to term ξ
q1
1 ξ

q2
2 · · · ξ qM

M .

The unknown coefficient ap1p2 ···pM
q1q2 ···qM

in Eq. (8) can be obtained from the following equations:

N∑
q1=0

N−q1∑
q2=0

· · ·
N−q1−···qM−1∑

qM =0

N∑
q1+q2+···+qM =0

A(n1n2 ···nM)(q1q2 ···qM)ap1p2 ···pM
q1q2 ···qM

= bp1p2 ···pM
q1q2 ···qM

(9)

where qi = 0, · · · , N with i = 1, 2, · · · , M and q1 + q2 + · · · + qM ≤ N. The coefficient matrix is
constructed as follows:

A(n1n2 ···nM)(q1q2 ···qM) =
∫

Hx

ωq1q2 ···qM (|ξ |) ξ
n1+q1
1 ξ

n2+q2
2 · · · ξ nM +qM

M dV (10)

The right-hand term is as follows:

bp1p2 ···pM
q1q2 ···qM

= n1! n2! · · · nM ! δn1p1
δn2p2

· · · δnM pM
(11)

3.3 The FD-PDDO Method for Solving One-Dimensional Transient Heat Conduction Equations
Using the FDM to discrete the time derivative and the PDDO to discrete the spatial derivative,

the new scheme of FD-PDDO is obtained for solving the one-dimensional transient heat conduction
equation.

The FT-PDDO scheme is obtained by using the forward difference formula in time and the PDDO
method in space as follows:
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Tk+1
i = Tk

i + DΔt
∫

Hxi

Tk (x + ξ) g2
N (ξ) dξ

= Tk
i + DΔt

N(i)∑
j=1

Tk
(
xj

)
g2

N

(
xj − xi

)
Δxj (12)

The BT-PDDO scheme is obtained by using a backward difference formula in time and the PDDO
method in space, namely

Tk+1
i = Tk

i + DΔt
∫

Hxi

Tk+1 (x + ξ) g2
N (ξ) dξ

= Tk
i + DΔt

N(i)∑
j=1

Tk+1
(
xj

)
g2

N

(
xj − xi

)
Δxj (13)

The CT-PDDO scheme is obtained by using the centered difference formula in time and the
PDDO method in space, which is:

Tk+1
i = Tk

i + DΔt
∫

Hxi

Tk+1 (x + ξ) + Tk (x + ξ)

2
g2

N (ξ) dξ

= Tk
i + DΔt

2

N(i)∑
j=1

Tk+1
(
xj

)
g2

N

(
xj − xi

)
Δxj + DΔt

2

N(i)∑
j=1

Tk
(
xj

)
g2

N

(
xj − xi

)
Δxj (14)

3.4 Stability and Convergence Analysis of the FD-PDDO Method for Solving One-Dimensional
Transient Heat Conduction Equations

The weight function is taken as ω(ξ) = e−(2ξ/δ)2 , where the interaction domain is δ = mΔx with m
the integer parameter and Δx the uniform spatial step size. This study assumes the polynomial order as
N = 2, integer parameter as m = 2 and m = 3 (the range for m is suggested as N ≤ m ≤ N +2 [29,30]).
Fig. 3 shows the PD interaction domains for the discretized Point x and x′ in the one-dimensional case,
with the interaction domain of δ = mΔx(m = 2).

x

Hx'

x'xHx

Figure 3: PD interaction domains for the discretized points x and x′ in one-dimensional case

3.4.1 Stability and Convergence Analysis of the FT-PDDO Scheme

In the FT-PDDO scheme of Eq. (12), in the case of polynomial order N = 2 and integer parameter
m = 2, the right-hand term

∑N(i)
j=1 Tk

(
xj

)
g2

N

(
xj − xi

)
Δxj can be expanded as follows:
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N(i)∑
j=1

Tk
(
xj

)
g2

2

(
xj − xi

)
Δxj = Tk

i−2

[
ω (−2Δx)

2∑
q=0

a2
q (−2Δx)

q

]
Δx + Tk

i−1

[
ω (−Δx)

2∑
q=0

a2
q (−Δx)

q

]
Δx

+ Tk
i

[
ω (0)

2∑
q=0

a2
q (0)

q

]
Δx

+ Tk
i+1

[
ω (Δx)

2∑
q=0

a2
q (Δx)

q

]
Δx + Tk

i+2

[
ω (2Δx)

2∑
q=0

a2
q (2Δx)

q

]
Δx

(15)

where a2
0, a2

1, a2
2 can be obtained from the following equations:⎛

⎝A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞
⎠
⎛
⎝a2

0

a2
1

a2
2

⎞
⎠ =

⎛
⎝b2

0

b2
1

b2
2

⎞
⎠ (16)

where A00 = 1.7724Δx; A01 = A10 = A12 = A21 = 0; A02 = A20 = A11 = 0.8823Δx3; A22 = 1.3219Δx5;
b2

0 = b2
1 = 0, b2

2 = 2. The coefficients for the PD function are obtained as given in Eq. (17).⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2
0 = −1.1279

1
Δx3

a2
1 = 0

a2
2 = 2.2659

1
Δx5

(17)

Therefore, the FT-PDDO scheme is obtained, as given in Eq. (18).

Tk+1
i = Tk

i + λ
[
0.1453Tk

i−2 + 0.4186Tk
i−1 − 1.1279Tk

i + 0.4186Tk
i+1 + 0.1453Tk

i+2

]
(18)

where λ = DΔt/Δx2.

The Fourier method is now utilized to show the stability [1]. Let Tk
i = ωkerxiI (where

√
I = −1

and r is the positive constant). Substituting it into Eq. (18) yields the amplification factor as shown in
Eq. (19).

κ = ωk+1/ωk = 1 + λ [−1.1279 + 0.2907 cos (2rΔx) + 0.8372 cos (rΔx)] (19)

The stability requirement is |κ| ≤ 1. Thus, the stability condition is shown in Eq. (20).

λ ≤ 1.1 (20)

Taylor’s theorem is now utilized to show the truncation error [1]. The truncation error caused by
the PDDO method in space is shown only here. The term can be obtained from Eq. (18) as follows:

1
Δx2

[
0.1453Tk

i−2 + 0.4186Tk
i−1 − 1.1279Tk

i + 0.4186Tk
i+1 + 0.1453Tk

i+2

]
(21)

Eq. (21) is the approximation of Txx

(
xi, tk
)
. By removing the time index, the function of T (xi−2),

T (xi−1), T (xi+1), T (xi+2) can be expanded by Taylor’s theorem. Take T (xi+1) for example, it can be
expanded as follows:

T (xi+1) = T (xi + Δx) = T (xi)+ΔxTx (xi)+ (Δx)
2

2
Txx (xi)+ (Δx)

3

3!
Txxx (xi)+ (Δx)

4

4!
Txxxx

(
xi, tk
)+· · ·
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After calculation, the truncation error is as follows:

τ = 1
4!

· 5.4868 Txxxx|x=ηi
(Δx)

2 ≈ 0.2286 Txxxx|x=ηi
(Δx)

2 (22)

where ηi is a point between xi−2 and xi+2.

Similarly, for the case of polynomial order N = 2 and integer parameter m = 3, the detailed
derivation process of the stability analysis of the FT-PDDO scheme is presented in Appendix A. The
stability condition is as follows:

λ ≤ 2.8 (23)

The truncation error is as follows:

τ ≈ 0.5098 Txxxx|x=ηi
(Δx)

2 (24)

The stability conditions of the FT-PDDO scheme in Eqs. (20) and (23) are less strict than that of
explicit FEM and explicit FDM, which the former one is λ = DΔt/Δx2 ≤ 2/π 2 and the latter one is
λ = DΔt/Δx2 ≤ 1/2, respectively.

3.4.2 Stability and Convergence Analysis of the BT-PDDO Scheme

For the BT-PDDO scheme in Eq. (13), when the polynomial order is taken as N = 2 and the
integer parameter is taken as m = 2, it has the following form:

Tk+1
i = Tk

i + DΔt/Δx2
[
0.1453Tk+1

i−2 + 0.4186Tk+1
i−1 − 1.1279Tk+1

i + 0.4186Tk+1
i+1 + 0.1453Tk+1

i+2

]
(25)

and the amplification factor is:

κ = 1
1 − λ [−1.1279 + 0.2907 cos (2rΔx) + 0.8372 cos (rΔx)]

(26)

The stability requirement is |κ| ≤ 1 and it is not hard to show that this always holds for the
amplification factor in Eq. (26). Therefore, in this case, the BT-PDDO scheme is unconditionally
stable.

For the case of polynomial order N = 2 and integer parameter m = 3, the detailed derivation
process of the stability analysis of the BT-PDDO scheme is presented in Appendix B. In this case, the
BT-PDDO scheme is unconditionally stable.

The truncation error for the BT-PDDO scheme is the same as that of the FT-PDDO scheme,
which is Eqs. (22) and (24) in the case of polynomial order N = 2 and integer parameter m = 2 and
m = 3, respectively.

3.4.3 Stability Analysis of the CT-PDDO Scheme

For the CT-PDDO scheme in Eq. (14), when the polynomial order is taken as N = 2 and the
integer parameter is taken as m = 2, it has the following form:

Tk+1
i = Tk

i + λ

2

[
0.1453Tk+1

i−2 + 0.4186Tk+1
i−1 − 1.1279Tk+1

i + 0.4186Tk+1
i+1 + 0.1453Tk+1

i+2

]
+ λ

2

[
0.1453Tk

i−2 + 0.4186Tk
i−1 − 1.1279Tk

i + 0.4186Tk
i+1 + 0.1453Tk

i+2

]
(27)
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The amplification factor is as follows:

κ = 1 + λ

2
[−1.1279 + 0.2907 cos (2rΔx) + 0.8372 cos (rΔx)]

1 − λ

2
[−1.1279 + 0.2907 cos (2rΔx) + 0.8372 cos (rΔx)]

(28)

The stability requirement is |κ| ≤ 1 and it is not hard to show that this always holds for the
amplification factor in Eq. (28). Therefore, in this case, the CT-PDDO scheme is unconditionally
stable.

For the case of polynomial order N = 2 and integer parameter m = 3, the detailed derivation
process of the stability analysis of the CT-PDDO scheme is presented in Appendix C. In this case, the
CT-PDDO scheme is unconditionally stable.

The truncation error for the CT-PDDO scheme is the same as that of the FT-PDDO scheme,
which is Eqs. (22) and (24) in the case of polynomial order N = 2 and integer parameter m = 2 and
m = 3, respectively.

3.5 FD-PDDO Method for Solving Two-Dimensional Transient Heat Conduction Equations
This section focuses on the schemes for solving two-dimensional transient heat conduction

equations. The FT-PDDO scheme is obtained using the forward difference formula in time and the
PDDO method in space as follows:

Tk+1
i = Tk

i + DΔt

[ N(i)∑
j=1

Tk
(
x1(j)

)
g20

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj +

N(i)∑
j=1

Tk
(
x2(j)

)
g02

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj

]
(29)

where ξ1(j,i) = x1(j) − x1(i), ξ2(j,i) = x2(j) − x2(i), ΔAj = Δx1Δx2.

The BT-PDDO scheme is obtained using a backward difference formula in time and the PDDO
method in space, which is:

Tk+1
i = Tk

i + DΔt

[ N(i)∑
j=1

Tk+1
(
x1(j)

)
g20

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj +

N(i)∑
j=1

Tk+1
(
x2(j)

)
g02

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj

]
(30)

The CT-PDDO scheme is obtained by using the centered difference formula in time and the
PDDO method in space, namely

Tk+1
i = Tk

i + DΔt
2

[ N(i)∑
j=1

Tk+1
(
x1(j)

)
g20

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj +

N(i)∑
j=1

Tk+1
(
x2(j)

)
g02

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj

]

+ DΔt
2

[ N(i)∑
j=1

Tk
(
x1(j)

)
g20

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj +

N(i)∑
j=1

Tk
(
x2(j)

)
g02

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj

]
(31)

3.6 Stability and Convergence Analysis of the FD-PDDO Method for Solving Two-Dimensional
Transient Heat Conduction Equations

The weight function is chosen as ω(ξ1, ξ2) = e−(2ξ1+2ξ2)2/δ2 , where the interaction domain is δ =
mΔx with m the integer parameter and Δx the spatial step size. Herein, the polynomial order N = 2,
integer parameter m = 2 and m = 3 are considered. Fig. 4 shows the PD interaction domains for the
discretized Point X (i) with the interaction domain of δ = mΔx (m = 2).
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Figure 4: PD interaction domains for the discretized point X(i)

3.6.1 Stability and Convergence Analysis of the FT-PDDO Method

For the FT-PDDO scheme in Eq. (29), in the case of polynomial order N = 2 and integer parame-
ter m = 2, the right-hand terms

∑N(i)
j=1 Tk

(
x1(j)

)
g20

N

(
ξ1(j,i),ξ2(j,i)

)
ΔAj and

∑N(i)
j=1 Tk

(
x2(j)

)
g02

N

(
ξ1(j,i),ξ2(j,i)

)
ΔAj

can be expanded as follows:
N(i)∑
j=1

Tk
(
x1(j)

)
g20

N

(
ξ1(j,i),ξ2(j,i)

)
ΔAj = Δx1Δx2

2∑
q=−2

Tk
i−2,j+qg

20
2 (−2Δx1,qΔx2)

+ Δx1Δx2

2∑
q=−2

Tk
i−1,j+qg

20
2 (−Δx1, qΔx2) + Δx1Δx2

2∑
q=−2

Tk
i,j+qg

20
2 (0,qΔx2)

+ Δx1Δx2

2∑
q=−2

Tk
i+1,j+qg

20
2 (Δx1,qΔx2) + Δx1Δx2

2∑
q=−2

Tk
i+2,j+qg

20
2 (2Δx1,qΔx2)

and
N(i)∑
j=1

Tk
(
x2(j)

)
g02

N

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = Δx1Δx2

2∑
q=−2

Tk
i+q,j−2g

02
2 (qΔx1, −2Δx2)

+ Δx1Δx2

2∑
q=−2

Tk
i+q,j−1g

02
2 (qΔx1, −Δx2) + Δx1Δx2

2∑
q=−2

Tk
i+q,jg

02
2 (qΔx1, 0)

+ Δx1Δx2

2∑
q=−2

Tk
i+q,j+1g

02
2 (qΔx1, Δx2) + Δx1Δx2

2∑
q=−2

Tk
i+q,j+2g

02
2 (qΔx1, 2Δx2)

where

g20
2 (ξ1, ξ2) = a20

00ω (ξ1, ξ2) + a20
10ω (ξ1, ξ2) ξ1 + a20

01ω (ξ1, ξ2) ξ2

+ a20
20ω (ξ1, ξ2) ξ 2

1 + a20
02ω (ξ1, ξ2) ξ 2

2 + a20
11ω (ξ1, ξ2) ξ1ξ2



2716 CMES, 2024, vol.140, no.3

g02
2 (ξ1, ξ2) = a02

00ω (ξ1, ξ2) + a02
10ω (ξ1, ξ2) ξ1 + a02

01ω (ξ1, ξ2) ξ2

+ a02
20ω (ξ1, ξ2) ξ 2

1 + a02
02ω (ξ1, ξ2) ξ 2

2 + a02
11ω (ξ1, ξ2) ξ1ξ2

The unknown coefficient can be obtained from the following equation:

Aa = b,

with A =
∫

Hx

ω

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ξ1 ξ2 ξ 2
1 ξ 2

2 ξ1ξ2

ξ1 ξ 2
1 ξ1ξ2 ξ 3

1 ξ1ξ
2
2 ξ 2

1 ξ2

ξ2 ξ1ξ2 ξ 2
2 ξ 2

1 ξ2 ξ 3
2 ξ1ξ

2
2

ξ 2
1 ξ 3

1 ξ 2
1 ξ2 ξ 4

1 ξ 2
1 ξ

2
2 ξ 3

1 ξ2

ξ 2
2 ξ1ξ

2
2 ξ 3

2 ξ 2
1 ξ

2
2 ξ 4

2 ξ1ξ
3
2

ξ1ξ2 ξ 2
1 ξ2 ξ1ξ

2
2 ξ 3

1 ξ2 ξ1ξ
3
2 ξ 2

1 ξ
2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

dV ′, a =

⎡
⎢⎢⎢⎢⎢⎢⎣

a20
00 a02

00

a20
10 a02

10

a20
01 a02

01

a20
20 a02

20

a20
02 a02

02

a20
11 a02

11

⎤
⎥⎥⎥⎥⎥⎥⎦

, and b =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
2 0
0 2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The focus herein is solely on a uniform grid with Δx = Δx1 = Δx2. Hence, the non-zero elements
in matrix A can be obtained as A00

00 = 3.1414Δx2, A20
00 = A02

00 = A10
10 = A01

01 = A00
20 = A00

02 = 1.5638Δx4,
A20

20 = A02
02 = 2.3429Δx6, and A02

20 = A20
02 = A11

11 = 0.7784Δx6. Thus, the coefficients for the PD function
are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a20
00 = −0.6364

1
�x4

a20
10 = 0

a20
01 = 0

a20
20 = 1.2784

1
�x6

a20
02 = 0

a20
11 = 0

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a02
00 = −0.6364

1
Δx4

a02
10 = 0

a02
01 = 0

a02
20 = 0

a02
02 = 1.2784

1
Δx6

a02
11 = 0

.

The FT-PDDO scheme is obtained as shown in Eq. (32).

Tk+1
i,j = Tk

i,j + λ[0.003Tk
i−2,j−2 + 0.0345Tk

i−1,j−2 + 0.0703Tk
i,j−2 + 0.0345Tk

i+1,j−2 + 0.003Tk
i+2,j−2

+ 0.0345Tk
i−2,j−1 + 0.1738Tk

i−1,j−1 + 0.0021Tk
i,j−1 + 0.1738Tk

i+1,j−1 + 0.0345Tk
i+2,j−1

+ 0.0703Tk
i−2,j + 0.0021Tk

i−1,j − 1.2728Tk
i,j + 0.0021Tk

i+1,j + 0.0703Tk
i+2,j

+ 0.0345Tk
i−2,j+1 + 0.1738Tk

i−1,j+1 + 0.0021Tk
i,j+1 + 0.1738Tk

i+1,j+1 + 0.0345Tk
i+2,j+1

+ 0.003Tk
i−2,j+2 + 0.0345Tk

i−1,j+2 + 0.0703Tk
i,j+2 + 0.0345Tk

i+1,j+2 + 0.003Tk
i+2,j+2] (32)

where λ = DΔt/Δx2.

The Fourier method is now utilized to show the stability [1]. Let Tk
i,j = ωker1x1i Ier2x2j I (where

√
I =

−1 and r is the positive constant). Substituting it into Eq. (32) yields the amplification factor as shown
in Eq. (33).

κ = ωk+1

ωk

= 1 − 1.2728λ + λ[0.012 cos(2r1�x) cos(2r2�x) + 0.138 cos(r1�x) cos(2r2�x)

+ 0.138 cos(2r1�x) cos(r2�x) + 0.6952 cos(r1�x) cos(r2�x)

+ 0.1406 cos(2r2�x) + 0.1406 cos(2r1�x) + 0.0042 cos(r2�x) + 0.0042 cos(r1�x)] (33)

The stability requirement is |κ| ≤ 1. Thus, the stability condition is shown in Eq. (34).

λ ≤ 1.1 (34)
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The Taylor’s theorem is used to show the truncation error. It is shown as follows:

τ = (Δx)
2
[
0.228625Tx1x1x1x1

+ 0.228625Tx2x2x2x2
+ 0.4978Tx1x1x2x2

]∣∣
x1=ηi ,x2=ξj

(35)

where
(
ηi, ξj

)
is the point in the area enclosed by

(
x1,i−2, x2,j−2

)
,
(
x1,i+2, x2,j−2

)
,
(
x1,i−2, x2,j+2

)
and(

x1,i+2, x2,j+2

)
.

Similarly, for the case of polynomial order N = 2 and integer parameter m = 3, the detailed
derivation process of the stability analysis of the FT-PDDO scheme is presented in Appendix D. The
stability condition is as follows:

λ ≤ 2.8 (36)

The truncation error is:

τ = (Δx)
2
[
0.509975Tx1x1x1x1

+ 0.509975Tx2x2x2x2
+ 1.1165Tx1x1x2x2

]∣∣
x1=ηi ,x2=ξj

(37)

The stability conditions of the FT-PDDO scheme in two-dimensional shown in Eqs. (34) and
(36) are equal to the one-dimensional shown in Eqs. (20) and (23), respectively. This means that the
stability conditions of the FT-PDDO scheme are independent of dimensionality. The values of stability
conditions of the FT-PDDO scheme are less strict than those of explicit finite element method of
λ = DΔt/Δx2 ≤ 2/π 2 and explicit finite difference method of λ = DΔt/Δx2 ≤ 1/4.

3.6.2 Stability and Convergence Analysis of the BT-PDDO Method

For the BT-PDDO scheme in Eq. (30), in the case of polynomial order N = 2 and integer
parameter m = 2, the detailed form is:

Tk+1
i,j = Tk

i,j + λ[0.003Tk+1
i−2,j−2 + 0.0345Tk+1

i−1,j−2 + 0.0703Tk+1
i,j−2 + 0.0345Tk+1

i+1,j−2 + 0.003Tk+1
i+2,j−2

+ 0.0345Tk+1
i−2,j−1 + 0.1738Tk+1

i−1,j−1 + 0.0021Tk+1
i,j−1 + 0.1738Tk+1

i+1,j−1 + 0.0345Tk+1
i+2,j−1

+ 0.0703Tk+1
i−2,j + 0.0021Tk+1

i−1,j − 1.2728Tk+1
i,j + 0.0021Tk+1

i+1,j + 0.0703Tk+1
i+2,j

+ 0.0345Tk+1
i−2,j+1 + 0.1738Tk+1

i−1,j+1 + 0.0021Tk+1
i,j+1 + 0.1738Tk+1

i+1,j+1 + 0.0345Tk+1
i+2,j+1

+ 0.003Tk+1
i−2,j+2 + 0.0345Tk+1

i−1,j+2 + 0.0703Tk+1
i,j+2 + 0.0345Tk+1

i+1,j+2 + 0.003Tk+1
i+2,j+2] (38)

Furthermore, the amplification factor is:

κ = 1/[1 − λ[−1.2728 + 0.012 cos(2r1�x) cos(2r2�x) + 0.138 cos(r1�x) cos(2r2�x)

+ 0.138 cos(2r1�x) cos(r2�x) + 0.6952 cos(r1�x) cos(r2�x)

+ 0.1406 cos(2r2�x) + 0.1406 cos(2r1�x) + 0.0042 cos(r2�x) + 0.0042 cos(r1�x)]] (39)

The stability requirement is |κ| ≤ 1 and it can be seen that this always holds for the amplification
factor in Eq. (39). Therefore, in this case, the BT-PDDO scheme is unconditionally stable.

For the case of polynomial order N = 2 and integer parameter m = 3, the detailed derivation
process of the stability analysis of the BT-PDDO scheme is presented in Appendix E. In this case, the
BT-PDDO scheme is unconditionally stable.

The truncation error for the BT-PDDO scheme is the same as that of the FT-PDDO scheme,
which is Eqs. (35) and (37) in the case of polynomial order N = 2 and integer parameter m = 2 and
m = 3, respectively.
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3.6.3 Stability and Convergence Analysis of the CT-PDDO Method

For the CT-PDDO scheme in Eq. (31), in the case of polynomial order N = 2 and integer
parameter m = 2, the detailed form is:

Tk+1
i = Tk

i + λ

2
[0.003Tk+1

i−2,j−2 + 0.0345Tk+1
i−1,j−2 + 0.0703Tk+1

i,j−2 + 0.0345Tk+1
i+1,j−2 + 0.003Tk+1

i+2,j−2

+ 0.0345Tk+1
i−2,j−1 + 0.1738Tk+1

i−1,j−1 + 0.0021Tk+1
i,j−1 + 0.1738Tk+1

i+1,j−1 + 0.0345Tk+1
i+2,j−1

+ 0.0703Tk+1
i−2,j + 0.0021Tk+1

i−1,j − 1.2728Tk+1
i,j + 0.0021Tk+1

i+1,j + 0.0703Tk+1
i+2,j

+ 0.0345Tk+1
i−2,j+1 + 0.1738Tk+1

i−1,j+1 + 0.0021Tk+1
i,j+1 + 0.1738Tk+1

i+1,j+1 + 0.0345Tk+1
i+2,j+1

+ 0.003Tk+1
i−2,j+2 + 0.0345Tk+1

i−1,j+2 + 0.0703Tk+1
i,j+2 + 0.0345Tk+1

i+1,j+2 + 0.003Tk+1
i+2,j+2]

+ λ

2
[0.003Tk

i−2,j−2 + 0.0345Tk
i−1,j−2 + 0.0703Tk

i,j−2 + 0.0345Tk
i+1,j−2 + 0.003Tk

i+2,j−2

+ 0.0345Tk
i−2,j−1 + 0.1738Tk

i−1,j−1 + 0.0021Tk
i,j−1 + 0.1738Tk

i+1,j−1 + 0.0345Tk
i+2,j−1

+ 0.0703Tk
i−2,j + 0.0021Tk

i−1,j − 1.2728Tk
i,j + 0.0021Tk

i+1,j + 0.0703Tk
i+2,j

+ 0.0345Tk
i−2,j+1 + 0.1738Tk

i−1,j+1 + 0.0021Tk
i,j+1 + 0.1738Tk

i+1,j+1 + 0.0345Tk
i+2,j+1

+ 0.003Tk
i−2,j+2 + 0.0345Tk

i−1,j+2 + 0.0703Tk
i,j+2 + 0.0345Tk

i+1,j+2 + 0.003Tk
i+2,j+2] (40)

Moreover, the amplification factor is as follows:

κ =
{

1 + λ

2

[
− 1.2728 + 0.012 cos(2r1�x) cos(2r2�x) + 0.138 cos(r1�x) cos(2r2�x)

+0.138 cos(2r1�x) cos(r2�x) + 0.6952 cos(r1�x) cos(r2�x)

+0.1406 cos(2r2�x) + 0.1406 cos(2r1�x) + 0.0042 cos(r2�x) + 0.0042 cos(r1�x)

]}
/

{
1 − λ

2

[
− 1.2728 + 0.012 cos(2r1�x) cos(2r2�x) + 0.138 cos(r1�x) cos(2r2�x)

+0.138 cos(2r1�x) cos(r2�x) + 0.6952 cos(r1�x) cos(r2�x)

+0.1406 cos(2r2�x) + 0.1406 cos(2r1�x) + 0.0042 cos(r2�x) + 0.0042 cos(r1�x)

]}
(41)

The stability requirement is |κ| ≤ 1 and it can be observed that this always holds for the
amplification factor in Eq. (41). Therefore, in this case, the CT-PDDO scheme is unconditionally
stable.

For the case of polynomial order N = 2 and integer parameter m = 3, the detailed derivation
process of the stability analysis of the CT-PDDO scheme is presented in Appendix F. In this case, the
CT-PDDO scheme is unconditionally stable.

The truncation error for the CT-PDDO scheme is the same as that of the FT-PDDO scheme,
which is Eqs. (35) and (37) in the case of polynomial order N = 2 and integer parameter m = 2 and
m = 3, respectively.
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4 Numerical Examples

The global error ε is defined as follows:

ε = 1
|Te|max

√√√√ 1
K

K∑
i=1

(
Te

i − Ti

)2
(42)

where |Te|max denotes the maximum of the absolute value of the temperature in the analytical solution;
Te

i and Ti are the analytical solution and numerical solution at the node xi, respectively. The parameter,
K, represents the total number of PD points in the discretization.

4.1 One-Dimensional Transient Heat Conduction Problem
The first example is the one-dimensional transient heat conduction problem with Dirichlet

boundary condition. The equation, initial condition, and boundary condition are shown as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T
∂t

= ∂2T
∂x2

0 < x < π , 0 < t ≤ 10

T (x, 0) = sin x

T (0, t) = 0 T (π , t) = 0

(43)

The analytical solution for this problem is T (x, t) = e−t sin (x). In the FD-PDDO scheme, the
weight function is taken as ω(ξ) = e−(2ξ/δ)2 and the interaction domain is chosen as δ = mΔx (m = 2
or m = 3); the initial condition can be discretized as: T 0

i = sin (xi) , i = 1, 2, · · · , K ; the boundary
condition can be discretized as:

∑N(i)
j=1 Tk

(
xj

)
g0

2

(
xj − xi

)
Δx = 0, for xi = 0+Δx/2 and xi = π −Δx/2.

Tables 1 and 2 show the comparison of global error and the rate of convergence when taking
interaction domain constant m = 2 and m = 3 in FD-PDDO schemes with polynomial order N = 2,
respectively. It is evident that all the schemes have a convergent rate of around 2, which is consistent
with the theoretical analysis. The convergent solution can be obtained when the time step size satisfies
the stability condition in the FT-PDDO scheme. In addition, with the increase in the interaction
domain constant m, the stability region of the FT-PDDO scheme is enlarged, and the convergent
solution can be obtained even if the time step size is large. The maximum time step size of FT-PDDO
has increased five times and two times, respectively, with interaction domain constant m = 2 compared
with explicit FEM (λ = DΔt/Δx2 ≤ 2/π 2) and explicit FDM (λ = DΔt/Δx2 ≤ 1/2), respectively.
Meanwhile, the maximum time step size can be magnified thirteen times and five times in FT-PDDO
with interaction domain constant m = 3 compared with explicit FEM (λ = DΔt/Δx2 ≤ 2/π 2) and
explicit FDM (λ = DΔt/Δx2 ≤ 1/2), respectively.

Table 1: Error measures of ln (ε) with N = 2, m = 2 in FD-PDDO schemes

Δt = 1
2
Δx2
(
λ = 1

2

)
Δt = 1.1Δx2 (λ = 1.1)

Δx π/20 π/40 π/80 π/160 Rate π/20 π/40 π/80 π/160 Rate

FT-PDDO −8.773 10.535 −12.180 −13.722 2.380 −6.948 −8.375 −9.781 −11.177 2.034
BT-PDDO −6.725 −8.063 −9.425 −10.800 1.959 −6.217 −7.564 −8.932 −10.310 1.968
CT-PDDO −7.541 −8.839 −10.183 −11.548 1.927 −7.551 −8.842 −10.180 −11.548 1.922
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Table 2: Error measures of ln (ε) with N = 2, m = 3 in FD-PDDO schemes

Δt = 2Δx2 (λ = 2) Δt = 2.7Δx2 (λ = 2.7)

Δx π/20 π/40 π/80 π/160 Rate π/20 π/40 π/80 π/160 Rate

FT-PDDO −6.290 −7.826 −9.293 −10.721 2.131 −5.870 −7.356 −8.791 −10.201 2.082
BT-PDDO −5.641 −6.944 −8.291 −9.658 1.931 −5.416 −6.725 −8.077 −9.447 1.938
CT-PDDO −6.983 −8.155 −9.438 −10.774 1.982 −7.003 −8.159 −9.439 −10.774 1.814

4.2 Two-Dimensional Transient Heat Conduction Problem
The second example is the two-dimensional transient heat conduction problem with Dirichlet

boundary condition. The equation, initial condition, and boundary condition are shown as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T
∂t

= D
(

∂2T
∂x2

1

+ ∂2T
∂x2

2

)
0 < x1 < Lx1

, 0 < x2 < Lx2
, 0 < t ≤ tend

T (x1, x2, 0) = 30

T (0, x2, t) = T
(
Lx1

, x2, t
) = T (x1, 0, t) = T

(
x1, Lx2

, t
) = 0

(44)

The analytical solution is [3] T (x1, x2, t) = ∑∞
i=1

∑∞
j=1 Aij sin iπx1

Lx1
sin jπx2

Lx2
exp
[
−
(

kpi2π2

L2
x1

+ kpj2π2

L2
x2

)
t
]
,

where Aij = 120
ijπ2

[
(−1)

i − 1
] [

(−1)
j − 1
]
. Herein, the parameters are taken as: Lx1

= Lx2
= 3 m,

tend = 1.2 s, kp = 1.25 W/(m · K), ρc = 1 J/(m3 · K) which means D = kp

ρc
= 1.25 m2/s. In the

FD-PDDO scheme, the weighting function is taken as ω(ξ1, ξ2) = e−(2ξ1+2ξ2)2/δ2 and the interaction
domain is considered as δ = mΔx (m = 2 or m = 3). The boundary condition can be discretized
as follows:

∑N(i)
j=1 Tk

(
x1(j)

)
g00

2

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = 0 for x1(i) = 0 + Δx/2, x1(i) = Lx1

− Δx/2, and∑N(i)
j=1 Tk

(
x2(j)

)
g00

2

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = 0 for x2(i) = 0 + Δx/2, x2(i) = Lx2

− Δx/2.

Tables 3 and 4 show the comparison of global error and the rate of convergence when taking
interaction domain constant m = 2 and m = 3 in FD-PDDO schemes with polynomial order N = 2,
respectively. It can be seen that all the schemes have convergent rates around 2 which is consistent
with the theoretical analysis. The FT-PDDO scheme gives the convergent solution even if the time
step is large. The maximum time step size can be magnified five times and four times in FT-PDDO
with interaction domain constant m = 2 compared with explicit FEM (λ = DΔt/Δx2 ≤ 2/π 2) and
explicit FDM (λ = DΔt/Δx2 ≤ 1/4), respectively. Meanwhile, the maximum time step size can be
magnified ten times and eight times in FT-PDDO with interaction domain constant m = 3 compared
with explicit FEM (λ = DΔt/Δx2 ≤ 2/π 2) and explicit FDM (λ = DΔt/Δx2 ≤ 1/4), respectively.
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Table 3: Error measures of ln (ε) with N = 2, m = 2 in FD-PDDO schemes

Δt = 1
4D

Δx2
(
λ = 1

4

)
Δt = 1.1

D
Δx2(λ = 1.1)

Δx 3/10 3/20 3/40 3/80 Rate 3/10 3/20 3/40 3/80 Rate

FT-PDDO −3.761 −5.019 −6.332 −7.679 1.884 −2.763 −4.519 −5.932 −7.329 2.196
BT-PDDO −2.306 −3.644 −4.990 −6.310 1.926 −1.458 −2.624 −4.067 −5.309 1.852
CT-PDDO −2.798 −4.114 −5.454 −6.786 1.921 −2.232 −3.570 −5.101 −6.174 1.896

Table 4: Error measures of ln (ε) with N = 2, m = 3 in FD-PDDO schemes

Δt = 2
D

Δx2 (λ = 2) Δt = 2.7
D

Δx2 (λ = 2.7)

Δx 3/10 3/20 3/40 3/80 Rate 3/10 3/20 3/40 3/80 Rate

FT-PDDO −1.703 −3.269 −4.709 −6.124 2.125 −0.870 −2.370 −3.744 −5.058 2.014
BT-PDDO −0.719 −2.110 −3.476 −4.840 1.982 −0.554 −1.688 −3.059 −4.722 2.004
CT-PDDO −2.033 −3.534 −4.928 −6.364 2.082 −1.369 −2.672 −3.944 −5.477 1.975

4.3 Two-Dimensional Transient Heat Conduction Problem with Both Dirichlet and Neumann
Boundary Condition

The third example is the two-dimensional transient heat conduction problem with both Dirichlet
and Neumann boundary conditions. The equation, initial condition, and boundary condition are
shown as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂T
∂t

= D
(

∂2T
∂x1

2
+ ∂2T

∂x2
2

)
0 < x1 < Lx1

, 0 < x2 < Lx2
, 0 < t ≤ tend

T (x1, x2, 0) = 30

Tx (0, x2, t) = 0, T
(
Lx1

, x2, t
) = T (x2, 0, t) = T

(
x1, Lx2

, t
) = 0

(45)

The analytical solution is [3] T (x1, x2, t) = ∑∞
i=1

∑∞
j=1 Bij cos (2i−1)πx1

2Lx1
sin jπx2

Lx2
exp[

−
(

k(2i−1)2π2

4L2
x1

+ kj2π2

L2
x2

)
t
]
, where Bij = 240

(2i−1)jπ2 (−1)
i+2
[
(−1)

j − 1
]
. Herein, the parameters are taken as

follows: Lx1
= Lx2

= 3 m, tend = 1.2 s, kp = 1.25 W/ (m · K), ρc = 1 J/
(
m3 · K

)
which means

D = kp

ρc
= 1.25 m2/s. In the FD-PDDO scheme, the boundary condition can be discretized as:∑N(i)

j=1 Tk
(
x1(j)

)
g10

2

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = 0 for x1(i) = 0 + Δx/2,

∑N(i)
j=1 Tk

(
x1(j)

)
g00

2

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = 0 for

x1(i) = Lx1
− Δx/2, and

∑N(i)
j=1 Tk

(
x2(j)

)
g00

2

(
ξ1(j,i), ξ2(j,i)

)
ΔAj = 0 for x2(i) = 0 + Δx/2, x2(i) = Lx2

− Δx/2.

Tables 5 and 6 show the comparison of global error and the rate of convergence when taking
interaction domain constant m = 2 and m = 3 in FD-PDDO schemes with polynomial order N = 2,
respectively. As shown in Tables 5 and 6, the rate of convergence of the FT-PDDO scheme is around 2,
which is consistent with the theoretical analysis. The FT-PDDO scheme gives the convergent solution
even if the time step is large.
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Table 5: Error measures of ln (ε) with N = 2, m = 2 in FD-PDDO schemes

Δt = 1
4D

Δx2
(
λ = 1

4

)
Δt = 1

D
Δx2 (λ = 1)

Δx 3/10 3/20 3/40 3/80 Rate 3/10 3/20 3/40 3/80 Rate

FT-PDDO −3.701 −4.941 −6.270 −7.632 1.890 −2.395 −3.857 −5.258 −6.652 2.047
BT-PDDO −3.815 −5.952 −8.285 −11.251 3.576 −2.308 −4.036 −5.703 −7.276 2.389
CT-PDDO −3.705 −5.203 −6.682 −8.126 2.126 −2.137 −3.470 −4.877 −6.286 1.994

Table 6: Error measures of ln (ε) with N = 2, m = 3 in FD-PDDO schemes

Δt = 3
2D

Δx2
(
λ = 3

2

)
Δt = 2

D
Δx2 (λ = 2)

Δx 3/10 3/20 3/40 3/80 Rate 3/10 3/20 3/40 3/80 Rate

FT-PDDO −1.816 −3.409 −4.905 −6.256 2.135 −1.591 −3.117 −4.584 −6.015 2.127
BT-PDDO −2.477 −4.003 −5.595 −7.390 2.362 −2.026 −3.739 −5.393 −6.969 2.377
CT-PDDO −3.017 −4.783 −6.241 −7.320 2.069 −2.973 −4.445 −5.809 −7.169 2.017

5 Conclusions

In this study, the FD-PDDO schemes for solving one-dimensional and two-dimensional transient
heat conduction equations are constructed. These schemes utilize the finite difference method to
discretize the time derivative and the PDDO method to discretize the spatial derivative. The FD-
PDDO schemes, which include the FT-PDDO scheme, the BT-PDDO scheme, and the CT-PDDO
scheme, are developed. The stability and convergence of these schemes are analyzed using the Fourier
method and Taylor’s theorem, respectively. The performance of the schemes in solving transient heat
conduction equations is investigated, and the results are compared to those of the analytical solutions.
The conclusions are as follows:

(1) The FT-PDDO scheme is conditionally stable, with the stability condition λ = DΔt/Δx2 ≤ 1.1
in the case of polynomial order N = 2 and interaction domain constant m = 2, and λ = DΔt/Δx2 ≤
2.8 in the case of polynomial order N = 2 and interaction domain constant m = 3 in both one-
dimensional and two-dimensional cases. Compared to the explicit FEM and FDM, the FT-PDDO
method has less strict stability conditions. In addition, both the BT-PDDO scheme and the CT-PDDO
scheme are unconditionally stable.

(2) The FD-PDDO schemes, including the FT-PDDO scheme, the BT-PDDO scheme, and the
CT-PDDO scheme, have a convergence rate of 2 in space when the polynomial order N = 2.

This study introduces three new schemes, namely the FT-PDDO scheme, the BT-PDDO
scheme, and the CT-PDDO scheme, for solving one-dimensional and two-dimensional transient heat
conduction equations. Numerical examples demonstrate their effectiveness. The algorithm’s approach
can also be extended to solve more complex differential equations. Furthermore, given that the PDDO
method can handle complex geometries [17,28] and discontinuity problems [31], it is anticipated that
our method will find wider practical applications.



CMES, 2024, vol.140, no.3 2723

Acknowledgement: The authors acknowledge the School of Mathematics and Statistics, Henan Uni-
versity of Science and Technology, for allowing the use of their high-performance computing. The
authors acknowledge the reviewer for the valuable revision suggestions.

Funding Statement: This work was financially supported by the Key Science and Technology Project
of Longmen Laboratory (No. LMYLKT-001), Innovation and Entrepreneurship Training Program
for College Students of Henan Province (No. 202310464050).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Chunlei Ruan; data collection: Cengceng Dong, Zeyue Zhang, Boyu Chen; analysis and
interpretation of results: Chunlei Ruan, Zhijun Liu; draft manuscript preparation: Chunlei Ruan.
Cengceng Dong. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available upon
reasonable request from the corresponding author.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Holmes MH. Introduction to numerical methods in differential equations. New York: Springer; 2007.
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Appendix A. Stability analysis of the FT-PDDO method for solving one-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the FT-PDDO scheme is:

Tk+1
i = Tk

i + λ[0.0455Tk
i−3 + 0.1535Tk

i−2 − 0.0233Tk
i−1 − 0.3513Tk

i − 0.0233Tk
i+1 + 0.1535Tk

i+2

+ 0.0455Tk
i+3]

and the amplification factor is:

κ = ωk+1/ωk = 1 + λ [−0.3513 + 0.0909 cos (3rΔx) + 0.3070 cos (2rΔx) − 0.0467 cos (rΔx)]

The stability requirement is |κ| ≤ 1. Thus, the stability condition can be obtained as follows:

λ ≤ 2.8

Appendix B. Stability analysis of the BT-PDDO method for solving one-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the BT-PDDO scheme is
as follows:

Tk+1
i = Tk

i + λ[0.0455Tk+1
i−3 + 0.1535Tk+1

i−2 − 0.0233Tk+1
i−1 − 0.3513Tk+1

i − 0.0233Tk+1
i+1 + 0.1535Tk+1

i+2

+ 0.0455Tk+1
i+3 ]

Additionally, the amplification factor is:

κ = 1
1 − λ [−0.3513 + 0.0909 cos (3rΔx) + 0.3070 cos (2rΔx) − 0.0467 cos (rΔx)]

The stability requirement always holds and is |κ| ≤ 1. Therefore, in this case, the BT-PDDO
scheme is stable.

Appendix C. Stability analysis of the CT-PDDO method for solving one-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the CT-PDDO scheme is:

Tk+1
i = Tk

i + λ

2

[
0.0455Tk

i−3 + 0.1535Tk
i−2 − 0.0233Tk

i−1 − 0.3513Tk
i − 0.0233Tk

i+1 + 0.1535Tk
i+2 + 0.0455Tk

i+3

]

+ λ

2

[
0.0455Tk+1

i−3 + 0.1535Tk+1
i−2 − 0.0233Tk+1

i−1 − 0.3513Tk+1
i − 0.0233Tk+1

i+1 + 0.1535Tk+1
i+2 + 0.0455Tk+1

i+3

]

Moreover, the amplification factor is as follows:

κ =
1 + λ

2
[−0.3513 + 0.0909 cos (3rΔx) + 0.3070 cos (2rΔx) − 0.0467 cos (rΔx)]

1 − λ

2
[−0.3513 + 0.0909 cos (3rΔx) + 0.3070 cos (2rΔx) − 0.0467 cos (rΔx)]

The stability requirement is |κ| ≤ 1. It can be seen that it always holds for the amplification factor
in the above equation. Therefore, in this case, the CT-PDDO scheme is stable.



2726 CMES, 2024, vol.140, no.3

Appendix D. Stability analysis of the FT-PDDO method for solving two-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the FT-PDDO scheme is
as follows:

Tk+1
i,j = Tk

i,j + λ[0.0006Tk
i−3,j−3 + 0.004Tk

i−2,j−3 + 0.0108Tk
i−1,j−3 + 0.0147Tk

i,j−3 + 0.0108Tk
i+1,j−3 + 0.004Tk

i+2,j−3 + 0.0006Tk
i+3,j−3

+ 0.004Tk
i−3,j−2 + 0.0195Tk

i−2,j−2 + 0.0356Tk
i−1,j−2 + 0.0354Tk

i,j−2 + 0.0356Tk
i+1,j−2 + 0.0195Tk

i+2,j−2 + 0.004Tk
i+3,j−2

+ 0.0108Tk
i−3,j−1 + 0.0356Tk

i−2,j−1 − 0.0113Tk
i−1,j−1 − 0.0936Tk

i,j−1 − 0.0113Tk
i+1,j−1 + 0.0356Tk

i+2,j−1 + 0.0108Tk
i+3,j−1

+ 0.0147Tk
i−3,j + 0.0354Tk

i−2,j − 0.0936Tk
i−1,j − 0.2644Tk

i,j − 0.0936Tk
i+1,j + 0.0354Tk

i+2,j + 0.0147Tk
i+3,j

+ 0.0108Tk
i−3,j+1 + 0.0356Tk

i−2,j+1 − 0.0113Tk
i−1,j+1 − 0.0936Tk

i,j+1 − 0.0113Tk
i+1,j+1 + 0.0356Tk

i+2,j+1 + 0.0108Tk
i+3,j+1

+ 0.004Tk
i−3,j+2 + 0.0195Tk

i−2,j+2 + 0.0356Tk
i−1,j+2 + 0.0354Tk

i,j+2 + 0.0356Tk
i+1,j+2 + 0.0195Tk

i+2,j+2 + 0.004Tk
i+3,j+2

+ 0.0006Tk
i−3,j+3 + 0.004Tk

i−2,j+3 + 0.0108Tk
i−1,j+3 + 0.0147Tk

i,j+3 + 0.0108Tk
i+1,j+3 + 0.004Tk

i+2,j+3 + 0.0006Tk
i+3,j+3]

Moreover, the amplification factor is:

κ = ωk+1

ωk
= 1 + λ[0.0024cos(3r1�x)cos(3r2�x) + 0.016cos(2r1�x)cos(3r2�x) + 0.0432cos(r1�x)cos(3r2�x)

+ 0.016cos(3r1�x)cos(2r2�x) + 0.078cos(2r1�x)cos(2r2�x) + 0.1424cos(r1�x)cos(2r2�x)

+ 0.0432cos(3r1�x)cos(r2�x) + 0.1424cos(2r1�x)cos(r2�x) − 0.0452cos(r1�x)cos(r2�x)

+ 0.0294cos(3r2�x) + 0.0708cos(2r2�x) − 0.1872cos(r2�x)

+ 0.0294cos(3r1�x) + 0.0708cos(2r1�x) − 0.1872cos(r1�x) − 0.2644]

The stability requirement is |κ| ≤ 1. Thus, the stability condition is given by:

λ ≤ 2.8

Appendix E. Stability analysis of the BT-PDDO method for solving two-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the BT-PDDO scheme is:

Tk+1
i,j = Tk

i,j + λ[0.0006Tk+1
i−3,j−3 + 0.004Tk+1

i−2,j−3 + 0.0108Tk+1
i−1,j−3 + 0.0147Tk+1

i,j−3 + 0.0108Tk+1
i+1,j−3 + 0.004Tk+1

i+2,j−3 + 0.0006Tk+1
i+3,j−3

+ 0.004Tk+1
i−3,j−2 + 0.0195Tk+1

i−2,j−2 + 0.0356Tk+1
i−1,j−2 + 0.0354Tk+1

i,j−2 + 0.0356Tk+1
i+1,j−2 + 0.0195Tk+1

i+2,j−2 + 0.004Tk+1
i+3,j−2

+ 0.0108Tk+1
i−3,j−1 + 0.0356Tk+1

i−2,j−1 − 0.0113Tk+1
i−1,j−1 − 0.0936Tk+1

i,j−1 − 0.0113Tk+1
i+1,j−1 + 0.0356Tk+1

i+2,j−1 + 0.0108Tk+1
i+3,j−1

+ 0.0147Tk+1
i−3,j + 0.0354Tk+1

i−2,j − 0.0936Tk+1
i−1,j − 0.2644Tk+1

i,j − 0.0936Tk+1
i+1,j + 0.0354Tk+1

i+2,j + 0.0147Tk+1
i+3,j

+ 0.0108Tk+1
i−3,j+1 + 0.0356Tk+1

i−2,j+1 − 0.0113Tk+1
i−1,j+1 − 0.0936Tk+1

i,j+1 − 0.0113Tk+1
i+1,j+1 + 0.0356Tk+1

i+2,j+1 + 0.0108Tk+1
i+3,j+1

+ 0.004Tk+1
i−3,j+2 + 0.0195Tk+1

i−2,j+2 + 0.0356Tk+1
i−1,j+2 + 0.0354Tk+1

i,j+2 + 0.0356Tk+1
i+1,j+2 + 0.0195Tk+1

i+2,j+2 + 0.004Tk+1
i+3,j+2

+ 0.0006Tk+1
i−3,j+3 + 0.004Tk+1

i−2,j+3 + 0.0108Tk+1
i−1,j+3 + 0.0147Tk+1

i,j+3 + 0.0108Tk+1
i+1,j+3 + 0.004Tk+1

i+2,j+3 + 0.0006Tk+1
i+3,j+3]
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The amplification factor is as follows:

κ = 1/{1 − λ[0.0024 cos(3r1�x) cos(3r2�x) + 0.016 cos(2r1�x) cos(3r2�x) + 0.0432 cos(r1�x) cos(3r2�x)

+ 0.016 cos(3r1�x) cos(2r2�x) + 0.078 cos(2r1�x) cos(2r2�x) + 0.1424 cos(r1�x) cos(2r2�x)

+ 0.0432 cos(3r1�x) cos(r2�x) + 0.1424 cos(2r1�x) cos(r2�x) − 0.0452 cos(r1�x) cos(r2�x)

+ 0.0294 cos(3r2�x) + 0.0708 cos(2r2�x) − 0.1872 cos(r2�x)

+ 0.0294 cos(3r1�x) + 0.0708 cos(2r1�x) − 0.1872 cos(r1�x) − 0.2644]}
The stability requirement is |κ| ≤ 1. It can be observed that it always holds. Therefore, in this case,

the BT-PDDO scheme is stable.

Appendix F. Stability analysis of the CT-PDDO method for solving two-dimensional transient heat
conduction equations

For the case of polynomial order N = 2 and integer parameter m = 3, the CT-PDDO scheme is:

Tk+1
i = Tk

i + λ

2
[0.0006Tk

i−3,j−3 + 0.004Tk
i−2,j−3 + 0.0108Tk

i−1,j−3 + 0.0147Tk
i,j−3 + 0.0108Tk

i+1,j−3 + 0.004Tk
i+2,j−3 + 0.0006Tk

i+3,j−3

+ 0.004Tk
i−3,j−2 + 0.0195Tk

i−2,j−2 + 0.0356Tk
i−1,j−2 + 0.0354Tk

i,j−2 + 0.0356Tk
i+1,j−2 + 0.0195Tk

i+2,j−2 + 0.004Tk
i+3,j−2

+ 0.0108Tk
i−3,j−1 + 0.0356Tk

i−2,j−1 − 0.0113Tk
i−1,j−1 − 0.0936Tk

i,j−1 − 0.0113Tk
i+1,j−1 + 0.0356Tk

i+2,j−1 + 0.0108Tk
i+3,j−1

+ 0.0147Tk
i−3,j + 0.0354Tk

i−2,j − 0.0936Tk
i−1,j − 0.2644Tk

i,j − 0.0936Tk
i+1,j + 0.0354Tk

i+2,j + 0.0147Tk
i+3,j

+ 0.0108Tk
i−3,j+1 + 0.0356Tk

i−2,j+1 − 0.0113Tk
i−1,j+1 − 0.0936Tk

i,j+1 − 0.0113Tk
i+1,j+1 + 0.0356Tk

i+2,j+1 + 0.0108Tk
i+3,j+1

+ 0.004Tk
i−3,j+2 + 0.0195Tk

i−2,j+2 + 0.0356Tk
i−1,j+2 + 0.0354Tk

i,j+2 + 0.0356Tk
i+1,j+2 + 0.0195Tk

i+2,j+2 + 0.004Tk
i+3,j+2

+ 0.0006Tk
i−3,j+3 + 0.004Tk

i−2,j+3 + 0.0108Tk
i−1,j+3 + 0.0147Tk

i,j+3 + 0.0108Tk
i+1,j+3 + 0.004Tk

i+2,j+3 + 0.0006Tk
i+3,j+3]

+ λ

2
[0.0006Tk+1

i−3,j−3 + 0.004Tk+1
i−2,j−3 + 0.0108Tk+1

i−1,j−3 + 0.0147Tk+1
i,j−3 + 0.0108Tk+1

i+1,j−3 + 0.004Tk+1
i+2,j−3 + 0.0006Tk+1

i+3,j−3

+ 0.004Tk+1
i−3,j−2 + 0.0195Tk+1

i−2,j−2 + 0.0356Tk+1
i−1,j−2 + 0.0354Tk+1

i,j−2 + 0.0356Tk+1
i+1,j−2 + 0.0195Tk+1

i+2,j−2 + 0.004Tk+1
i+3,j−2

+ 0.0108Tk+1
i−3,j−1 + 0.0356Tk+1

i−2,j−1 − 0.0113Tk+1
i−1,j−1 − 0.0936Tk+1

i,j−1 − 0.0113Tk+1
i+1,j−1 + 0.0356Tk+1

i+2,j−1 + 0.0108Tk+1
i+3,j−1

+ 0.0147Tk+1
i−3,j + 0.0354Tk+1

i−2,j − 0.0936Tk+1
i−1,j − 0.2644Tk+1

i,j − 0.0936Tk+1
i+1,j + 0.0354Tk+1

i+2,j + 0.0147Tk+1
i+3,j

+ 0.0108Tk+1
i−3,j+1 + 0.0356Tk+1

i−2,j+1 − 0.0113Tk+1
i−1,j+1 − 0.0936Tk+1

i,j+1 − 0.0113Tk+1
i+1,j+1 + 0.0356Tk+1

i+2,j+1 + 0.0108Tk+1
i+3,j+1

+ 0.004Tk+1
i−3,j+2 + 0.0195Tk+1

i−2,j+2 + 0.0356Tk+1
i−1,j+2 + 0.0354Tk+1

i,j+2 + 0.0356Tk+1
i+1,j+2 + 0.0195Tk+1

i+2,j+2 + 0.004Tk+1
i+3,j+2

+ 0.0006Tk+1
i−3,j+3 + 0.004Tk+1

i−2,j+3 + 0.0108Tk+1
i−1,j+3 + 0.0147Tk+1

i,j+3 + 0.0108Tk+1
i+1,j+3 + 0.004Tk+1

i+2,j+3 + 0.0006Tk+1
i+3,j+3]
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Moreover, the amplification factor is as follows:

κ =
{

1 + λ

2

[
0.0024 cos(3r1Δx) cos(3r2Δx) + 0.016 cos(2r1Δx) cos(3r2Δx) + 0.0432 cos(r1Δx) cos(3r2Δx)

+0.016 cos(3r1Δx) cos(2r2Δx) + 0.078 cos(2r1Δx) cos(2r2Δx) + 0.1424 cos(r1Δx) cos(2r2Δx)

+0.0432 cos(3r1Δx) cos(r2Δx) + 0.1424 cos(2r1Δx) cos(r2Δx) + (−0.0452) cos(r1Δx) cos(r2Δx)

+0.0294 cos(3r2Δx) + 0.0708 cos(2r2Δx) + (−0.1872) cos(r2Δx)

+0.0294 cos(3r1Δx) + 0.0708 cos(2r1Δx) + (−0.1872) cos(r1Δx) + (−0.2644)

]}
/

{
1 − λ

2

[
0.0024 cos(3r1Δx) cos(3r2Δx) + 0.016 cos(2r1Δx) cos(3r2Δx) + 0.0432 cos(r1Δx) cos(3r2Δx)

+0.016 cos(3r1Δx) cos(2r2Δx) + 0.078 cos(2r1Δx) cos(2r2Δx) + 0.1424 cos(r1Δx) cos(2r2Δx)

+0.0432 cos(3r1Δx) cos(r2Δx) + 0.1424 cos(2r1Δx) cos(r2Δx) + (−0.0452) cos(r1Δx) cos(r2Δx)

+0.0294 cos(3r2Δx) + 0.0708 cos(2r2Δx) + (−0.1872) cos(r2Δx)

+0.0294 cos(3r1Δx) + 0.0708 cos(2r1Δx) + (−0.1872) cos(r1Δx) + (−0.2644)

]}

The stability requirement is |κ| ≤ 1. It can be noticed that it always holds for the above equation.
Therefore, in this case, the CT-PDDO scheme is stable.
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