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ABSTRACT

In pumped storage projects, the permeability of rock masses is a crucial parameter in engineering design and
construction. The rock mass permeability coefficient (K) is influenced by various geological parameters, and
previous studies aimed to establish an accurate relationship between K and geological parameters. This study uses
the improved sparrow search algorithm (ISSA) to optimize the parameter settings of the deep extreme learning
machine (DELM), constructing a prediction model with flexible parameter selection and high accuracy. First, the
Spearman method is applied to analyze the correlation between geological parameters. A sample database is built by
comprehensively selecting four geological indexes: burial depth, rock quality designation (RQD), fracture density
characteristic index (FD), and rock mass integrity designation (RID). Hence, the defects of the sparrow search
algorithm (SSA) are enhanced using the improved strategy, and the initial input weights of the DELM are optimized.
Finally, the proposed ISSA–DELM model is employed to predict the permeability coefficient of rock mass in the
entire study area. The results showed that the predictive performance of the model is superior to that of the DELM
and SSA–DELM. Therefore, this model successfully provides insights into the distribution characteristics of rock
mass permeability at engineering sites.
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Nomenclature

ISSA Improved sparrow search algorithm
DELM Deep extreme learning machine
RQD Rock quality designation
FD Fracture density characteristic index
RID Rock mass integrity designation
K Rock mass permeability coefficient

1 Introduction

K is vital for quantitatively describing the flow and migration of groundwater in rock fissures. It is
an essential index for engineering anti-seepage design and hydrogeological evaluation [1,2]. Therefore,
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an accurately determined permeability of rock masses is a prerequisite for the structural design,
construction feedback, and stability analysis of tunnels. K is influenced by various geological param-
eters, such as rock mass integrity, fracture structure, and rock mass quality [3–5]. Some researchers
have explored the relationship between various factors and rock mass permeability. Piscopo et al. [6]
analyzed the relationship between discontinuous spacing, depth, and permeability of a rock mass and
determined the preliminary characteristics of rock mass in a study area. Pei et al. [7] established a
predictive model for K at highly radioactive waste disposal sites using rock mechanics parameters.
The existing studies focus on inflexible parameter selection and difficulty in obtaining parameters.

Due to the heterogeneity and anisotropy of rock masses, K can exhibit substantial spatial
variability, resulting in difficulty in accurately obtaining its value. The primary methods utilized to
determine K include field hydrogeological tests, empirical formula methods, and numerical seepage
simulations [8–10]. The permeability coefficients obtained from field tests are the most direct and
effective. However, owing to the limitations in geological conditions and the construction period, only
a small amount of data can be obtained in crucial areas, making it impossible to display the distribution
characteristics of rock mass permeability. In the empirical formula method, the possible nonlinear
relationship between the parameters and permeability coefficient can result in significant errors in the
calculation results. The numerical simulation method requires many calculations, requires considerable
time and cost, and does not consider the correlation between numerous input parameters. Therefore,
a suitable method to accurately evaluate rock-mass permeability is urgently required.

Establishing complex nonlinear relationships involves predicting K using various geological
parameters. Machine learning algorithms have advantages in solving these nonlinear problems and
provide essential methods of obtaining the value of K quickly and efficiently [11–13]. Extreme
learning machine (ELM) has advantages such as high computation speed and a simple structure [14].
Deep extreme learning machine (DELM) extends ELM to multilayer structures, which can better
mine the basic features of data and improve the generalization ability of a model [15]. However,
the initial weighting of the DELM depends on random selection, which can affect the training
process in terms of accuracy and time consumption [16]. Researchers typically use swarm intelligence
optimization algorithms to optimize objective parameters to avoid this limitation [17–19]. The sparrow
search algorithm (SSA) has been shown to have excellent search capabilities [20,21]. The random
input weights and random deviations of the DELM have been optimized using the SSA, which can
significantly improve the accuracy of DELM. However, the standard SSA tends to fall into local
optima in later iteration stages [22]. Mao et al. [23] proposed an improved sparrow search algorithm
(ISSA) that combines Cauchy mutations and opposition-based learning (OBL), which enhanced its
ability to resist local optima. Qiao et al. [24] improved the basic SSA using a firefly algorithm and
optimized the initial input weights of the DELM. Therefore, using various optimization algorithms
can improve the prediction accuracy and efficiency of the DELM.

Accordingly, this study selects geological parameters that are easy to obtain and crucial in
engineering sites to represent the permeability characteristics of rock masses at an engineering site
as accurately as possible. The correlation between these parameters and K is analyzed in detail, and
a dataset of characteristic variables in the engineering site is constructed. Hence, the basic SSA is
enhanced based on the improvement strategy, and an ISSA–DELM model integrating multiple factors
is constructed to predict the distribution pattern of the permeability coefficients in the engineering site.
This model can provide guidance for the design of engineering structural supports and the analysis of
the surrounding rock stability.
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2 Methodology
2.1 Principle of DELM

DELM is an ELM-derived method that constructs multilayer network structures by super-
imposing an extreme learning machine auto-encoder (ELM-AE) to minimize input information
reconstruction errors and improve the representational capability of a network. The output of the
ELM-AE is expressed as follows:

xj =
∑L

i=1
βiG(ai, bi, xj), ai ∈ Rm, βi ∈ Rm, j = 1, 2, . . . , N, aTa = I , bTb = 1 (1)

where a is a matrix composed of ai, and b is a vector composed of bi.

When m > L, the ELM-AE can achieve dimensional compression, which transforms the input
data with high dimensionality into a feature space with low dimensionality, whereas when m < L,
the ELM-AE can achieve sparse representation, indicating that the input data are converted from a
low-dimensional to a high-dimensional expression space. The output weight β for the ELM-AE is
described in Eq. (2). If m = L, the ELM-AE can achieve a feature expression of equal dimensionality,
as depicted in Eq. (3). In each case, the objective of the ELM-AE is to learn a feature representation
through which the original data can be efficiently reproduced or transformed into new and valuable
feature forms.

β =
(

I
C

+ HTH
)−1

HTX (2)

where X = [X 1, X 2, X 3, . . . , X N] is the input data; C is the regularization parameter; H is the hidden
layer output matrix of the ELM-AE; I is the unit matrix.

β = H−1T (3)

T =
⎡
⎣ tT

1

. . .

tT
N

⎤
⎦

N×m

(4)

In the training process of the DELM, the original data sample X is typically employed as the
output of the first ELM-AE layer (X = X 1) to obtain the output weight β1. Hence, the output matrix
H1 of the first hidden layer in the DELM method is used as the input of the second ELM-AE layer (X
= X 2), and so on, layer by layer. The network structure model of the DELM is shown in Fig. 1.

2.2 Principle of the ISSA
2.2.1 SSA

The SSA is a relatively new swarm intelligence optimization algorithm introduced in 2020 [21].
This algorithm is mainly inspired by sparrows’ foraging and anti-feeding behaviors and has advantages
such as strong optimization ability and fast convergence. The sparrows in the SSA are divided into
discoverers and joiners, which change dynamically. The position of the discoverer is updated as follows:

X t+1
i,j =

⎧⎪⎨
⎪⎩

X t
i,j · exp

(
− i

α · itermax

)
, if R2 < ST

X t
i,j + Q · L, if R2 ≥ ST

(5)

where X t
i,j is the position of the ith sparrow in the jth dimension at the tth iteration; itermax is the

maximum number of iterations; α ∈ (0, 1) is a random number; R2 (R2 ∈ [0, 1]) and ST (ST ∈ [0.5, 1]) are
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the warned and safety values, respectively; Q is a random number conforming to a normal distribution;
L is a matrix of 1 × d. When R2 < ST , no natural enemies exist, and the discoverers can search for
food extensively. R2 ≥ ST implies that some sparrows have encountered natural enemies, and the entire
population must fly rapidly to other safe areas.

Figure 1: Network structure model of the DELM

If discoverers find food, they instantly leave their present position to compete. The position update
equation for joiners is expressed as follows:

X t+1
i,j =

⎧⎨
⎩ Q · exp

(
Xworst − X t

i,j

i2

)
if i < n/2

X t+1
p + ∣∣X t

i,j − X t+1
p

∣∣ · A+ · L otherwise
(6)

where X t+1
p is the best position of the current population; Xworst is the global worst position; A is a 1 ×

d matrix; i > n/2 is that the ith joiner with a lower fitness value does not obtain food and has a low
energy value; therefore, it must fly elsewhere to forage for food.

When a population forages, sparrows provide alerts. Vigilantes are randomly generated in each
group. The initial positions are randomly generated using the following rules:

X t+1
i,j =

⎧⎪⎪⎨
⎪⎪⎩

X t
best + β · ∣∣X t

i,j − X t
best

∣∣ if fi > fg

X t
i,j + K ·

(∣∣X t
i,j − X t

worst

∣∣
(fi − fw) + ε

)
if fi = fg

(7)
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where X best is the global best position; β is a step control parameter; K is a uniform random number
in the range [−1, 1] and represents the direction of the sparrow movement; fi is the current sparrow
fitness value; fg and fw are the current global best and worst fitness values, respectively; ε is the smallest
constant that prevents the denominator from becoming zero; fi > fg is that the sparrows are very
vulnerable to attacks by natural enemies; fi = fg indicates that the sparrows in the middle realize the
danger and must move closer to other sparrows.

2.2.2 ISSA

Mao et al. [23] presented an ISSA combining Cauchy’s variant and backward learning to address
the decreasing population diversity of SSA and its tendency to fall into local optimization in later
iterations. The algorithm improves the global optimization performance of the SSA through several
strategies.

(1) Sine chaotic initialization

Sine and logistic chaos are typically employed to improve the optimization performance of search
problems. When the sine chaotic method initializes the population, it ensures that the entire sparrow
population is uniformly distributed throughout the search space, thus increasing the probability of
determining the globally optimal solution [25]. Yang et al. [26] observed that sine chaos exhibits
superior chaotic properties to logistic chaos. Therefore, sine chaos has advantages as a method of
initializing the population in the SSA, and its one-dimensional self-mapping formula is expressed as
follows:⎧⎨
⎩xn+1 = sin

2
xn

, n = 0, 1, · · · , N

−1 ≤ xn ≤ 1, xn �= 0
(8)

The initial value cannot be 0 to prevent immobility and the occurrence of a zero point at [−1, 1].

(2) Dynamic adaptive weights

This study proposes an improved discovery position update strategy to enhance the effectiveness of
the search algorithm and avoid prematurely falling into local optimal solutions. The advantage of this
method is that the discoverer not only considers their previous position when moving but is also guided
by the previously determined optimal solution. This aids the algorithm in breaking out potential local
optimal traps determined solely by their current position [22]. In addition, this study incorporates
a dynamic weight factor ω [27], which adaptively adjusts its size with the iteration process. Thus, the
algorithm can maintain a large displacement during the initial exploration stage and gradually enhance
convergence during the process of obtaining accurate solutions. The formulas for the weight factor ω

and updating the discoverer position are shown below:

ω = e2(1− t
itermax ) − e−2(1− t

itermax )

e2(1− t
itermax ) + e−2(1− t

itermax )
(9)

X t+1
i,j =

{
X t

i,j + ω
(
f t

j,g − X t
i,j

) · rand R2 < ST

X t
i,j + Q R2 ≥ ST

(10)

where f t
j,g is the global optimal solution in the jth dimension in the previous generation.
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The updated formula for the improved vigilantes is

X t+1
i,j =

{
X t

best + β(X t
i,j − X t

best) fi �= fg

X t
best + β(X t

worst − X t
best) fi = fg

(11)

The improved equation indicates that when a sparrow is in the optimal position in a group, any
point between the current optimal and worst positions is selected as the new foothold to avoid potential
danger or prevent resource depletion. In other cases, a random point is selected to jump between its
current and best positions.

(3) Integration of Cauchy mutation and OBL

The use of Cauchy mutation can introduce more variation into the population to improve the
ability of the algorithm to explore the entire search space.

Incorporating Cauchy mutations into the update process of the target search positions further
expands the algorithm’s performance in global optimization problems.

X t+1
i,j = Xbest (t) + Xbest (t) · Cauchy (0, 1) (12)

Cauchy (0, 1) is the standard Cauchy mutation random value. The random variable-generating
function of the Cauchy distribution is η = tan[(ξ − 0.5)π ].

The OBL method [28] was integrated into the SSA to enhance the algorithm’s exploration
efficiency during optimization. The formula is expressed as follows:

X
′
best (t) = ub + r(lb − Xbest (t)) (13)

X t+1
i,j = X

′
best (t) + b1(Xbest (t) − X

′
best (t)) (14)

where X ′
best (t) is the reverse solution of the tth generation optimal solution generation; ub and lb are

the upper and lower bounds, respectively; r is a 1 ∗ d matrix of random numbers following a standard
uniform distribution of (0, 1); b1 is the information exchange control parameter [29].

b1 = (itermax − t/itermax)
t (15)

The optimization efficiency of the algorithm is improved through a flexible selection mechanism
that dynamically switches between different strategies [23]. The algorithm selects between OBL and
Cauchy mutation operators to update the target solution, depending on the selection probability Ps.

Ps = −exp
(

1 − t
itermax

)20

+ θ (16)

where θ is the adjustment parameter, whose value can be set as 0.05.

If rand < Ps, then the OBL method in Eqs. (15)–(17) is selected for the position update; otherwise,
the Cauchy mutation method of Eq. (14) is selected for the target position update.

Although OBL and Cauchy mutations can help the algorithm avoid falling into local optima, each
perturbation or variation is not guaranteed to result in a better solution because they are stochastic.
Therefore, the algorithm introduces a greedy rule to overcome the possible degradation of the solutions
caused by random disturbances. The greedy rule is a selective updating mechanism that ensures that
the algorithm only updates its position when it obtains a higher-quality solution. The greedy rule is
expressed as follows:
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{
Xbest = X t+1

i,j f (X t+1
i,j ) < f (Xbest)

Xbest = Xbest f (X t+1
i,j ) ≥ f (Xbest)

(17)

(4) Algorithm performance testing

Four benchmark functions are employed to compare the performance of ISSA with SSA, grey wolf
optimization (GWO), and moth-flame optimization (MFO) [23]. To reasonably verify the effectiveness
of the ISSA algorithm, testing was conducted in the same operating environment. The general
conditions are set to the same, with a population size of 30, a dimension of 30, 500 iterations, and each
algorithm running independently 50 times. Table 1 lists the specific benchmark function information,
whereas Table 2 shows the comparison results. The average value and standard deviation of multiple
optimizations compared to the other three algorithms show that the average value calculated by the
ISSA algorithm can be close to the theoretical optimal solution, and the standard deviation is the
smallest. The results indicate that the stability and robustness of the improved algorithm are better
than the other algorithms.

Table 1: Benchmark test functions

Function types Value ranges Optimal solution

Sphere [−100, 100] 0
Schwefel’s 2.22 [−10, 10] 0
Quartic [−1.28, 1.28] 0
Ackley [−32, 32] 0

Table 2: Comparison of optimal results of benchmark test functions

Function types Algorithm Average value Standard deviation

Sphere

GWO 9.568E−28 6.363E−04
MFO 3.956E+03 1.027E+03
SSA 1.187E−62 6.496E−62
ISSA 0.000E+00 0.000E+00

Schwefel’s 2.22

GWO 9.765E−17 7.336E−17
MFO 2.601E+01 3.290E+00
SSA 1.880E−30 8.665E−30
ISSA 1.140E−244 0.000E+00

Quartic

GWO 1.247E−51 2.127E−51
MFO 5.596E−01 3.943E−01
SSA 1.431E−109 7.839E−109
ISSA 0.000E+00 0.000E+00

(Continued)
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Table 2 (continued)

Function types Algorithm Average value Standard deviation

Ackley

GWO 1.055E−13 1.823E−14
MFO 1.184E+01 1.144E+00
SSA 8.882E−16 0.000E+00
ISSA 8.882E−16 0.000E+00

2.2.3 Flow of the ISSA

The algorithm steps are as follows:

1. Initialize parameters (Percentage of discoverers (PD), Percentage of vigilantes (SD), warning
value (ST), and others) and use Eq. (8) to perform sine chaotic mapping to enrich the
population diversity.

2. Calculate the fitness values of each sparrow.

3. Sparrows with better fitness values are selected as discoverers, and their positions are updated
according to Eq. (10). The remaining sparrows serve as joiners and update their positions
according to Eq. (6). Update the position of the vigilantes according to Eq. (11).

4. Select the Cauchy mutation or OBL strategy based on the Ps to perturb the current optimal
solution and generate a new one.

5. Determine whether to perform position updates based on Eq. (17).

6. Determine whether the end condition is satisfied. If the conditions are satisfied, the optimal
position of the output sparrow is used as the optimal input weight for the DELM model.
Otherwise, skip to step (2).

2.3 Flow of the ISSA–DELM
The input layer weights and thresholds of the DELM are randomly generated from the orthogonal

matrices according to the Johnson–Lindensrauss theorem. This orthogonalized design enhances the
generalization ability of the system but also results in high volatility in the prediction results. Therefore,
the ISSA is used to optimize the input layer weights and thresholds to reduce the prediction model’s
volatility and enhance the prediction results’ stability and accuracy. The optimization process and
flowchart are depicted in Fig. 2.
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Figure 2: ISSA–DELM flow chart

3 Engineering Background
3.1 Project Overview

A pumped-storage power station in Shanxi Province is planned to have an installed capacity of
1500 MW with a first-class engineering grade. The survey and location map of the study area are
shown in Fig. 3. This project focuses on serving the northern power grid of Shanxi Province and can
provide flexible scheduling and complementary advantages between networks for the North China
Power Grid.
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Figure 3: Survey and location map of the studied area

3.2 Engineering Geological Conditions
The geological engineering conditions are shown in Fig. 4. The terrain of the engineering site

is high in the east and low in the west, and it belongs to a medium-low mountain landform. The
mountaintop elevation is generally 1100–2200 m. The gullies in the area are deeply cut, and the cross
sections are mainly in a “V” shape. The lithology is primarily gneiss, and the surrounding rock types
are II and III. Based on geological mapping, the surface is affected by in-situ stress and rock unloading,
resulting in dense zones of northeast-oriented unloading cracks in multiple locations. The connectivity
of the rock fractures is poor, and the rock mass has a certain degree of impermeability. Based on the
field water pressure test, the overall permeability of the rock mass in the engineering site ranges from
micro to weak permeability. According to the results of acoustic testing, the wave velocity of a Class
II rock mass is typically greater than 4500 m/s, whereas the wave velocity of a more complete Class III
rock mass is generally between 3500 and 4500 m/s. The groundwater level in the engineering site varies
with the terrain, and its depth is generally within the range of 30–100 m.
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Figure 4: Engineering geological conditions

4 Model Parameter Selection
4.1 Geological Parameters
4.1.1 Burial Depth

The burial depth reflects the stress level of the geological environment in which the rock mass is
located. K is closely related to the burial depth [30]. Generally, K gradually decreases as the burial
depth increases [31]. Several researchers have applied a semi-empirical-semi-theoretical approach to
determine the relationship between K and the burial depth. Achtziger-Zupančič et al. [32] established
empirical formulas for the variation in K with the burial depth through power functions. Wei et al. [33]
established an empirical formula for the variation in K with the burial depth in the form of a
hyperbolic function. Accordingly, the burial depth influences almost all methods for estimating K.
The distribution pattern of K in the project area with burial depth is shown in Fig. 5. The coefficient
K gradually decreases with increasing burial depth within the 0–700 m range. It varies significantly
below 100 m, whereas it varies less as the burial depth continues to increase. This indicates a certain
degree of spatial variability in the rock mass of the project area.
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Figure 5: Relationship between burial depth and K

4.1.2 Rock Quality Designation (RQD)

The RQD is a quantitative index of a rock mass’s degree of integrity and weathering. Therefore,
several researchers have studied the relationship between the RQD and K , as shown in Table 3. This
table shows a negative correlation between RQD and K, indicating that the larger the RQD value, the
smaller the K value.

Table 3: Relationship between RQD and K

Author Simultaneous equations

Qureshi et al. [34] K = 0.01382 − 0.003lnRQD
El-Naqa [35] K = 177.45 × e(−0.0361×RQD)

Öge [36] KLu = e
[
5.5+( 16.5JCond−165

RQD )
]
−1

Jiang et al. [37] K = 0.5102 × e−0.0548RQD

4.1.3 Development and Filling of Rock Masses

The permeability properties of rock masses are influenced by the fracture filling and their
developmental characteristics [3,4]. However, the quantitative parameters for filling are challenging to
obtain and cannot be widely used in engineering applications. The development characteristic indexes
of rock masses can be relatively easily obtained by drilling and employing borehole TV, including
the (starting and ending) depth, density, dip angle, tendency, and width of fractures. The density
and dip angle of fractures can be obtained directly from the drilling data, which is convenient and
time-efficient for engineering applications. As shown in Figs. 6a and 6b, at the same RQD value, the
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permeability properties of the rock mass changed with different fracture densities (number of strips).
Under tectonic stress, the structural plane formed dip angles of varying widths. In particular, steep
dip angles (60–90°) significantly affect the RQD. As shown in Figs. 6c and 6d, at constant fracture
density, the proportion of steep dip angles varied, affecting the rock mass’s permeability. Accordingly,
the different development conditions of the structural planes resulted in different plane characteristics,
leading to significant differences in the permeability performance. Therefore, the development indexes
of these structural planes should be considered when calculating K.

Figure 6: Comparison of the development characteristics

4.1.4 Rock Mass Integrity Designation

The RID represents the integrity index of a rock mass through its longitudinal wave velocity index,
as shown in Eq. (18). Fig. 7 depicts that the longitudinal wave velocity of the rock body decreased
sharply at a drilling depth of 63–64 m. The corresponding drilling data and TV video indicate that
the rock body is considerably damaged and the rock quality is poor, confirming that the longitudinal
wave velocity is correlated with the integrity of the rock body. The larger the RID value, the better
the integrity of the rock and the lower the permeability coefficient; thus, the index may be negatively
correlated with K. If the elastic longitudinal wave velocity of the drilled rock mass is greater than the
elastic longitudinal wave velocity of the rock in the laboratory, it will result in a RID greater than 1.
Therefore, a relatively complete and homogeneous rock mass section must be selected as the standard
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sample based on the core and borehole TV. The maximum wave velocity of all the standard samples
is selected as the elastic longitudinal wave velocity of the rock [38].

RID =
(

Vm

Vn

)2

(18)

where Vm is the elastic longitudinal wave velocity of the rock mass (m/s); Vn is the elastic longitudinal
wave velocity of the rock (m/s).

Figure 7: Comparison of acoustic wave velocities with drilling data and TV recordings

4.2 Correlation Analysis
K is affected by several factors. Parameter correlation analysis helps identify and quantify

model parameters, providing reference values for parameter optimization and model construction.
To further select appropriate correlation analysis methods, this study calculated normality tests on
the distribution characteristics of geological parameters using the Kolmogorov-Smirnov test and
histograms. Fig. 8 and Table 4 indicate that these data do not follow a normal distribution (p <

0.05) and do not belong to ordered categorical variables. Therefore, the Spearman correlation analysis
method is used for index correlation analysis.

Spearman correlation explores the correlation between continuous variables in the range of [−1,
1]. Fig. 9 demonstrates that the correlation coefficient between the RQD and RID is greater than 0.6,
which is a strong positive correlation. It also implied that the better the integrity of the rock mass,
the higher the quality of the rock mass. The absolute value of the correlation coefficients between the
RQD and RID and fissure density is greater than 0.4, indicating a moderately negative correlation.
This also demonstrates that the lower the fracture density of the rock mass, the better the quality
and integrity of the rock mass tended to be. The correlation coefficient between the RID, RQD, and
burial depth is greater than 0.4, a moderately positive correlation. This indicates that the rock mass’s
quality and integrity tend to improve with the increase of burial depth in this project area. In addition,
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the Spearman correlation analysis between the five geological parameters and K showed that K had
a strong negative correlation with the burial depth, RQD, and RID; a moderate positive correlation
with the fracture density; and a certain degree of weak positive correlation with the steep dip ratio.

Figure 8: Modeling data histograms
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Table 4: Kolmogorov-Smirnov test results

Indexes Significance (p-value)

Burial depth <0.01
RQD <0.01
Fracture density <0.01
Steep dip ratio <0.01
RID <0.01
K <0.01

Figure 9: Spearman correlation analysis chart

Due to the limited proportion of steep-dip ratios in the sample data, some deviations can be
occurred in the correlation analysis. The lithology of this project area was primarily composed
of metamorphic rocks, and the weight of the fracture steep-dip ratio significantly impacted K.
Therefore, the direct exclusion of this parameter can impact the predictive analysis results. Based on the
lithological characteristics and industry experience, the dip ratio and fracture density were combined to
form a fracture density characteristic index abbreviated as FD, which was shown in Eq. (19). Fig. 10
exhibits that the correlation coefficient between FD and K is 0.583, indicating a moderate positive
correlation.

FD = (N0−30◦ · W1) + (N30−60◦ · W2) + (N60−90◦ · W3)

L
(19)
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where N0−30◦ , N30−60◦ , and N60−90◦ are the numerical values of fracture strips with dip angles of 0–30°, 30–
60°, and 60–90°, respectively; W 1, W 2, and W 3 are weight coefficients of 0.1, 0.3, and 0.6 for different
dip angles, respectively; L is the depth of the footage.

Figure 10: Optimized Spearman correlation analysis chart

In summary, the permeability of rock masses is closely related to the burial depth, RQD, and
degree of fracture development. This study indexes selected geological parameters such as the burial
depth, RQD, FD, and RID as the modeling indexes to ensure the model’s accuracy. Hence, a prediction
model of the rock mass permeability based on a multi-index was developed to mitigate the problems
of inflexible parameter selection and unreasonable model construction.

5 Database Construction
5.1 Database Construction Process

Based on the above analysis, four independent and one dependent variables were selected to form
a database. A total of 527 valid samples were collected through field tests, with 88% of the rock mass
being slightly weathered. The specific information is presented in Tables 5 and 6. In the input dataset
for the geological parameters, the burial depth, RQD, and FD were obtained from borehole data and
borehole TV, and the RID parameters were derived by acoustic logging. The permeability coefficient
values were obtained in the output dataset using an atmospheric pressure water test. The permeability
prediction model constructed in this study applies to parameters such as the Lvrong value, permeability
flow rate, and permeability coefficient. This study selected the actual permeability coefficient values
from on-site testing to avoid repetition as the prediction index.
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Table 5: Database statistics

Indexes Min Max Average value Coefficient of variation

Burial depth (m) 14 770 224 1.1
RQD (%) 2.8 99.9 65 0.37
FD (strips/m) 0.08 1.34 0.55 0.36
RID 0.34 0.92 0.70 0.20
K (m/d) 0.003 0.07 0.018 0.74

Table 6: Data specific information

Region Number of boreholes drilled Number of test sections

Upper reservoir 13 137
Water conveyance system 15 197
Lower reservoir 25 193

5.2 Parameter Specification
The data were divided into two independent datasets: 440 for simulation and 87 for testing the

model, as shown in Fig. 11. This study processed the original data using the max-min normalization
method to eliminate the effect of dimensionality and improve the algorithm’s performance.

x′ = x − xmin

xmax − xmin

(20)

where x′ and x are normalized and non-normalized data, respectively; xmin and xmax are the two
endpoint values of any input data parameter variable, respectively.

Figure 11: Output dataset
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The final requirement was the predicted values of the parameter variables to verify the model’s
predictive performance. Therefore, the normalized data must be converted to the original data scale
during the training process, and anti-normalization must be performed.

x = [x′ (xmax − xmin)] + xmin (21)

Based on the literature [22,23] and extensive calculations (by defining a wide range of parameter
spaces and observing the performance of models under different parameter combinations), the
parameter settings for the ISSA–DELM method were as follows: a sparrow population size of 10
(ST = 0.6, PD = 0.7, SD = 0.1), up to 100 iterations, an activation function was sigmoid, and three
hidden layers, each with ten nodes. The ISSA adds only Cauchy and OBL operators based on the SSA,
and the other settings are the same as those of the SSA. Using the ISSA–DELM model to predict rock
mass permeability is a minimization problem. Therefore, the best mean absolute error (MAE) in the
training process was selected as the fitness function of the ISSA. The ISSA–DELM was compared to
the DELM and SSA–DELM–DELM to verify the superiority of the proposed model.

5.3 Performance Metrics
The coefficient of determination (R2), mean absolute error (MAE), the root mean square error

(RMSE), and relative percent deviation (RPD) were utilized to quantitatively assess the model to
measure the performance of this model. The formulae are expressed as follows:

R2 = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)
2

(22)

MAE = 1
n

∑n

i=1

∣∣ŷi − yi

∣∣ (23)

RMSE =
√∑n

i=1(ŷi − yi)2

n
(24)

RPD = 1√∑n

i=1(yi − ŷi)
2∑n

i=1(yi − yi)
2

(25)

where ŷi is the predicted value; yi is the actual value; yi is the mean value; n is the number of predicted
samples.

Generally, the smaller the value of MAE and RMSE, the lower the error with the actual value.
The larger the values of R2 and RPD, the smaller the error with the actual value. If 1.4 < RPD < 2.0,
the model is considered relatively reliable. If RPD > 2.0, the model is considered highly reliable and
suitable for model analysis.

6 Results and Discussion
6.1 Comparison of Different Models

The results of the comparison between the measured and predicted K values are shown in Fig. 12.
Because of rock mass heterogeneity and spatial variability, the results of predictive analyses using
intelligent algorithms inevitably contained specific errors. Generally, if R2 is greater than 0.7, the model
has good predictive ability in this field. The ISSA–DELM model had the highest fitting degree between
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the measured and predicted values, with an R2 of up to 0.8268, significantly higher than that of the
other models. Overall, the ISSA–DELM demonstrated superior learning and training capabilities.

Figure 12: Comparison of different algorithms
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6.2 Comparison of the Results of Various Prediction Models
This study quantitatively evaluated all models using the three evaluation metrics described in

Section 5.3 to fully demonstrate each model’s predictive performance. Table 7 lists the evaluation
results. It shows that the MAE and RMSE values were ranked as follows: ISSA–DELM < SSA–
DELM < DELM. Compared to the standalone DELM, the ISSA-DELM achieves a significant
increase of approximately 16% in R2. Compared to the SSA-DELM, the ISSA-DELM performs best
for all error parameters, indicating that the ISSA can obtain more appropriate parameters and further
improve the optimization performance based on the SSA. In addition, the RPD of the ISSA–DELM
model is greater than 2, implying that the predicted values have high reliability, indicating that they
can satisfy the requirements of accurately predicting K. Considering these error assessment metrics,
the ISSA–DELM model has superior performance and prediction accuracy and is appropriate for
comprehensively predicting permeability coefficients in hydropower stations.

Table 7: Error statistics results

Item DELM SSA–DELM ISSA–DELM

MAE 0.0078 0.0073 0.0072
R2 0.6900 0.7970 0.8268
RMSE 0.0096 0.0090 0.0089
RPD 1.7962 2.2197 2.4029

7 Conclusion

This study constructs a dataset of characteristic variables for rock mass permeability by selecting
four geological indexes that are easy to obtain and have precise physical meanings on sites. Aiming
at the disadvantage that the traditional SSA algorithm easily falls into local optimum at the end of
training, Sine chaotic mapping, dynamic adaptive weights, Cauchy mutation, and OBL are adopted to
improve the basic SSA algorithm. In addition, the improved algorithm is combined with the DELM
algorithm to establish a prediction model of the rock mass permeability coefficient based on various
geological indexes in the pumped storage power station project area. The main conclusions are shown
below:

1. The Spearman correlation analysis method successfully identifies the main geological indexes
affecting the rock mass permeability in the project area, revealing the correlation between these
indexes and K. The results showed a significant negative correlation between burial depth,
RQD, RID, and K, while FD indicated a moderate positive correlation with K. The proposed
open-parameter model can replace or add modeling indexes based on the actual situation of
different projects.

2. The diversity of solutions is expanded and enriched by adopting multiple learning strategies to
improve the SSA algorithm. At the same time, the mutation and update of the optimal solution
position is achieved, reducing the probability of the algorithm falling into local extremes.
Compared to similar algorithms, the effectiveness and superiority of the ISSA algorithm are
verified.

3. The ISSA-DELM model can make a rapid and relatively accurate prediction of the rock
mass permeability in the pumped storage power station project area. The model has a good



2846 CMES, 2024, vol.140, no.3

application prospect and popularization value in the analysis of seepage stability and can
provide a specific reference basis for the support design of hydraulic structures.
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