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ABSTRACT

This article introduces a novel variant of the generalized linear exponential (GLE) distribution, known as the
sine generalized linear exponential (SGLE) distribution. The SGLE distribution utilizes the sine transformation
to enhance its capabilities. The updated distribution is very adaptable and may be efficiently used in the modeling
of survival data and dependability issues. The suggested model incorporates a hazard rate function (HRF) that may
display a rising, J-shaped, or bathtub form, depending on its unique characteristics. This model includes many
well-known lifespan distributions as separate sub-models. The suggested model is accompanied with a range of
statistical features. The model parameters are examined using the techniques of maximum likelihood and Bayesian
estimation using progressively censored data. In order to evaluate the effectiveness of these techniques, we provide
a set of simulated data for testing purposes. The relevance of the newly presented model is shown via two real-world
dataset applications, highlighting its superiority over other respected similar models.

KEYWORDS
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1 Introduction

In various practical fields like medicine, engineering, and finance, among others, it is essential to
model and analyze data related to the lifespan of objects or processes. Various lifetime distributions
have been applied to describe such data. For example, the exponential and Rayleigh distributions
and their variations. Each distribution possesses unique features determined by the behavior of
the failure rate function, which can either steadily decrease or increase, remain constant, exhibit
non-monotonic patterns, have a bathtub-shaped curve, or even follow an unimodal trend. In [1],
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Sarhan et al. proposed the generalized linear failure rate (GLFR) distribution which has another
name the GLE distribution. It has a decreasing or unimodal probability density function (PDF) and its
HRF can be increasing, decreasing, and bathtub-shaped. The GLE distribution has many applications
in applied statistics and reliability analysis. The GLFR distribution is very flexible and has more
special cases, as linear failure rate (linear exponential) (LFR), generalized exponential, generalized
Rayleigh, exponential and Rayleigh a very well-known distribution for modeling lifetime data in
reliability and medical studies. Lifetime data is frequently analyzed using the exponential, Rayleigh,
linear failure rate, or exponentiated exponential distributions. It is well known that an exponential
distribution can only have a constant HRF, whereas Rayleigh, linear failure rate, and generalized
exponential distributions can only have monotone HRFs (increasing in the case of Rayleigh or LFR
and increasing/decreasing in the case of the generalized exponential distribution). However, in practice,
non-monotonic functions like bathtub-shaped HRFs must also be considered. However, the GLE
distribution has a bathtub-shaped HRF and generalizes several well-known distributions, including
the traditional LFR distribution. The previous elements motivate us to introduce a new extension
of the GLE distribution. The cumulative distribution function (CDF) and the PDF for GLE are as
follows:

H(x; α, θ , λ) =
(

1 − e−αx− θ
2 x2

)λ

, x > 0, (1)

and

h(x; α, θ , λ) = λ (α + θx) e−(αx+ θ
2 x2)

(
1 − e−αx− θ

2 x2
)λ−1

, (2)

respectively, where λ > 0 is a shape parameter, α > 0 and θ > 0 are scale parameters. Many researchers
constructed generalizations of the GLE distribution. For instance, various univariate extensions of
the GLFR distribution have been introduced, including the generalized linear exponential (GLE) [2],
beta linear failure rate [3], exponentiated GLFR [4], generalized exponential LFR [5], odd generalized
exponential GLFR [6], inverted GLFR [7], Marshall-Olkin extended GLFR [8], truncated Cauchy
power LFR [9] and modified beta GLFR [10] distributions.

Over recent years, numerous methods for augmenting parameters in distributions have been put
forth and examined. These expanded distributions offer versatility in specific applications, including
but not limited to economics, engineering, biological studies, and environmental sciences. Some well-
known families are the Marshall-Olkin-G by [11], the beta-G by [12], the Kumaraswamy-G by [13],
the logistic-G by [14], exponentiated generalized-G by [15], the Weibull-G by [16], the logistic-X family
by [17], generalized inverted kumaraswamy by [18], marshall-olkin odd Burr III-G family by [19], type
II exponentiated half logistic generated family by [20], odd generalized N-H generated family by [21],
new truncated muth generated family by [22], exponentiated generalized Weibull exponential by [23],
and new inverse Rayleigh distribution by [24].

Recently, there has been a growing focus on developing families of distributions based on
trigonometric functions. These families offer a balance between simplicity in their definitions, enabling
a clear understanding of their mathematical properties, and a high degree of applicability for modeling
various real-world datasets. This balance is achieved through the effective utilization of flexible
trigonometric functions. As far as we are aware, the sine-G family of distributions is one of the earliest
examples of such trigonometric distribution families. In [25], Kumar et al. introduced a novel approach
for generating new probability distributions by modifying trigonometric functions. They modified the
sine function to create a unique statistical distribution known as the sine-G family, with the CDF and
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PDF defined as follows:

F
S
(x; κ) = sin

(π

2
H(x; κ)

)
, x ∈ R, (3)

f
S
(x; κ) = π

2
h(x; κ) cos

(π

2
H(x; κ)

)
, (4)

respectively. The HRF is given by

ξ
S
(x; κ) = π

2
h(x; κ) tan

(π

4
(1 + H(x; κ))

)
, (5)

where H(x; κ) and h(x; κ) are the CDF and PDF of a certain continuous distribution with parameters
vector denoted by κ = (α, θ , λ). This family has many advantages like, it is simple form, the two
cumulative functions F(x; κ) and H(x; κ) have the same number of parameters; there is no additional
parameter, avoiding any problem of over-parametrization, In addition to, F(x; κ) has the ability to
increase the flexibility of H(x; κ), providing new flexible models. These distributions are linked to a
predefined reference distribution, a choice made by the practitioner according to the specific study’s
context. It has been confirmed that the S-G family (i) provides an appealing alternative to the reference
family, as it satisfies the inequality H(x; κ) ≤ F

S
(x; κ) for any x ∈ R, (ii) maintains an acceptable level

of mathematical complexity without introducing additional parameters, and (iii) offers the flexibility
to construct diverse statistical models capable of handling data with varying characteristics.

Other trigonometric families of distributions have been developed. See, for instance, beta trigono-
metric distribution by [26], hyperbolic cosine-F family [27], odd hyperbolic cosine family of lifetime
distributions by [28], odd hyperbolic cosine exponential-exponential distribution by [29], transmuted
arcsine distribution by [26], the arcsine exponentiated-X family by [30].

The failure of components and units, which make up the majority of operational systems in
the fields of industrial and mechanical engineering, has been extensively studied by statisticians.
Their research focuses on tracking the functioning units until they fail, recording their lifespans,
using statistical inference methods to analyze the data gathered, and then calculating the reliability
and hazard functions for the entire system using the data gathered. However, some experimental
units are pricey and very reliable; therefore, in this case, the number of experimental units and the
length of the lifetime experiment of these units must be reduced. The progressively Type-II censoring
strategy satisfies the lifespan experiment’s requirements for good estimators while preventing certain
experimental units from failing.

The main objectives of this study are to contribute to the statistical literature and address some
issues about the failure of units and components for various applications of the extension model of
the trigonometric family. The following reasons are sufficient justification for doing so:

• Introducing the sine generalized linear exponential distribution as a novel three-parameter
model based on the sine-G family of distributions.

• The PDF can exhibit several features, such as being unimodal, declining, right-skewed, or heavy-
tailed. Similarly, the HRF might display growing, J-shaped. These properties are desired in a
range of applications, such as survival analysis, reliability, and uncertainty modeling.

• There is a closed-form expression for the equivalent quantile.

• The new suggested model is very flexible and it has five sub-models.

• It is possible to compute several statistical features, including the quantiles, Bowley’s skewness,
Moor’s kurtosis, moments, moment generating function, incomplete moments, conditional
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moments, Lorenz and Bonferroni curves, residual life and inverted residual life functions, and
so on.

• Using progressively Type-II censoring schemes to prevent certain experimental units from
failing.

• The parameters of the SGLE distribution can be estimated utilizing by Bayesian and non-
Bayesian estimation methods.

• For illustrative purposes, this study examines SGLE distribution distinct datasets in the actual
world. We demonstrate, by highlighting its functionalities, that the SGLE distribution may serve
as a more viable alternative to formidable competitors.

This article’s remaining sections are organized as follows. The sine generalized linear exponential
distribution and its sub-models are represented in Section 2. Section 3 introduces a linear represen-
tation of the SGLE density function. Section 4 provides information on the statistical characteristics
of the SGLE distribution, such as quantiles, Bowley’s skewness, Moor’s kurtosis, moments, moment
generating function, incomplete moments, conditional moments, Lorenz and Bonferroni curves, resid-
ual life and inverted residual life functions. In Section 5, the progressively Type-II censoring scheme is
carried out. In Section 6, the model parameters’ Bayesian and non-Bayesian inference is carried out. In
Section 7, two real datasets show the applicability and flexibility of the SGLE distribution. Section 8
delves into the results of the simulation. Furthermore, the conclusion is presented in Section 9, which
is located at the end of the paper.

2 Sine Generalized Linear Exponential Model

In this section, we construct a new flexible model called the sine generalized linear exponential
model by inserting (1) into (3), we obtain the CDF as follows:

F
SGLE

(x; κ) = sin
[
π

2

(
1 − e−αx− θ

2 x2
)λ

]
, x > 0, (6)

and the corresponding PDF is

f
SGLE

(x; κ) = π

2
λ (α + θx) e−(αx+ θ

2 x2)
(

1 − e−αx− θ
2 x2

)λ−1

cos
[
π

2

(
1 − e−αx− θ

2 x2
)λ

]
, (7)

where κ = (α, θ , λ). The survival function and HRF for the SGLE are, respectively, given by

F
SGLE

(x; κ) = 1 − sin
[
π

2

(
1 − e−αx− θ

2 x2
)λ

]
, (8)

and

ξ
SGLE

(x; κ) = πλ

2
(α + θx) e−(αx+ θ

2 x2)
(

1 − e−αx− θ
2 x2

)λ−1

× tan
[
π

4
(1 +

(
1 − e−αx− θ

2 x2
)λ

]
. (9)

Fig. 1 discussed density and hazard rate for the SGLE distribution with different values of
parameters.
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Figure 1: Density and hazard rate for the SGLE distribution

2.1 Some Special Models of the SGLE Model
The SGLE model contains five sub-models:

1. At λ = 1 the SGLE model reduces to the sine LE model.

2. At θ = 0 the SGLE model reduces to the sine generalized exponential model.

3. At α = 0 the SGLE model reduces to the sine generalized Rayleigh model.

4. At λ = 1, θ = 0 the SGLE model reduces to the sine exponential model.

5. At λ = 1, α = 0 the SGLE model reduces to the sine Rayleigh model.

3 Linear Representation of the SGLE Density Function

In this section, we derived the density expansion of the SGLE distribution. Using the Taylor series
expansion of the cosine function,

cos
[π

2
G(x)

]
=

∞∑
i=0

(−1)i

(2i)!

(π

2
G(x)

)2i

,

we have

cos
[
π

2

(
1 − e−αx− θ

2 x2
)λ

]
=

∞∑
i=0

(−1)i

(2i)!

(π

2

)2i (
1 − e−αx− θ

2 x2
)2λi

, (10)

inserting (10) in (7), the SGLE density function reduces to

f
SGLE

(x; κ) = λ

∞∑
i=0

(−1)i

(2i)!

(π

2

)2i+1

(α + θx) e−(αx+ θ
2 x2)

(
1 − e−αx− θ

2 x2
)λ(2i+1)−1

. (11)

But(
1 − e−αx− θ

2 x2
)λ(2i+1)−1

=
∞∑

j=0

(−1)j
(

λ(2i+1)−1

j

)
e−j(αx+ θ

2 x2), (12)
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applying (12) in (11), we obtain

f
SGLE

(x; κ) = λ

∞∑
i,j=0

(−1)i+j

(2i)!

(π

2

)2i (
λ(2i+1)−1

j

)
(α + θx) e−(j+1)(αx+ θ

2 x2). (13)

Expanding e−(j+1) θ
2 x2

in power series as

e−(j+1) θ
2 x2 =

∞∑
k=0

(−1)k(j + 1)k

k!

(
θ

2

)k

x2k, (14)

inserting (14) in (13) the SGLE density function can be written as

f
SGLE

(x; κ) =
∞∑

i,j,k=0

ω
i,j,k

(
αx2k + θx2k+1

)
e−(j+1)αx, (15)

where

ω
i,j,k

= λ

∞∑
i,j=0

(−1)i+j+k(j + 1)k

(2i)! k!

(π

2

)2i+1
(

θ

2

)k (
λ(2i+1)−1

j

)
.

4 Statistical Properties

In this section, we studied some important mathematical and statistical properties of the SGLE
distribution, specifically quantile function, ordinary moments, incomplete moments, Lorenz and
Bonferroni curves, and moments of the residual life and reversed residual lives.

4.1 Quantile Function
Quantile functions find utility in theoretical, statistical, and Monte Carlo scenarios. In Monte

Carlo simulations, these functions are utilized to generate simulated random variables for both
traditional and contemporary continuous distributions. To derive the quantile function Q(u) for the
SGLE distribution, represented as x = Q(u), we can obtain it by reversing the process described in
Eq. (6) as follows:

Q(u; κ) = F−1

SGLE
(u; κ) =

−α +
√

α2 − 2θ ln
[
1 − (

2
π

arcsin(u)
) 1

λ

]
θ

, u ∈ (0, 1), (16)

The median is given by

Median =
−α +

√
α2 − 2θ ln

[
1 − (

2
π

arcsin(0.5)
) 1

λ

]
θ

.

One of the initial proposals for a skewness measure is the Bowley skewness, introduced by Kenney
and Keeping in 1962, and it is defined as follows:

SK = Q( 3
4
) + Q( 1

4
) − 2Q( 1

2
)

Q( 3
4
) − Q( 1

4
)

.
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Conversely, the Moors kurtosis, as introduced by Moors in 1988 and calculated using quantiles,
is expressed as

KU = Q( 7
8
) − Q( 5

8
) + Q( 3

8
) − Q( 1

8
)

Q( 6
8
) − Q( 2

8
)

.

In this context, Q(.) denotes the quantile function. The metrics SK and KU exhibit reduced
sensitivity to extreme data points, and they are applicable to distributions that may not possess
moments. In the case of symmetric unimodal distributions, a positive kurtosis value suggests that the
distribution has heavier tails and is more peaked compared to a normal distribution, while a negative
kurtosis value indicates lighter tails and a flatter shape. Fig. 2 discusses SK and KT for the SGLE
distribution with different values of parameters.

Figure 2: Bowley skewness and Moors kurtosis for the SGLE distribution

4.2 Moments and Moment Generating Functions
In this particular section, we will establish the formulas for both the typical and moment-

generating functions of the SGLE distribution. These moment calculations for various orders are
essential for estimating the device’s expected lifespan, as well as assessing the spread, skewness, and
kurtosis of data sets encountered in reliability-related situations.
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4.2.1 Moments

The rth moment of the SGLE distribution can be derived using Eq. (7).

μ
/

r = E(X r) =
∫ ∞

0

xrf
SGLE

(x; κ)dx

=
∞∑

i,j,k=0

ω
i,j,k

∫ ∞

0

(
αx2k+r + θx2k+r+1

)
e−(j+1)αxdx.

After a series of transformations, which involve substituting a new variable z = (j + 1)αx and
introducing the gamma function, we arrive at the following result:

μ
/

r =
∞∑

i,j,k=0

ω
i,j,k

(
α + θ(2k + r + 1)

α(j + 1)

)
	(2k + r + 1)

[α(j + 1)]2k+r+1 . (17)

Table 1 shows some numerical values of moments for the SGLE distribution.

Table 1: Mean, variance, SK and KT for different values of parameters

λ α θ Mean Variance SK KT

0.5 0.1 0.3 0.8080 0.5545 0.1898 1.1519
1 0.4942 0.1807 0.1620 1.1638
1.7 0.3919 0.1084 0.1561 1.1691
2.4 0.3358 0.0775 0.1536 1.1717

0.9 0.3 0.2604 0.1153 0.4031 1.3923
1 0.2235 0.0716 0.3653 1.3002
1.7 0.2020 0.0534 0.3387 1.2538
2.4 0.1869 0.0431 0.3182 1.2256

1.7 0.3 0.1484 0.0417 0.4180 1.4427
1 0.1387 0.0329 0.4041 1.3959
1.7 0.1315 0.0277 0.3918 1.3609
2.4 0.1258 0.0241 0.3809 1.3337

2.5 0.3 0.1029 0.0207 0.4218 1.4562
1 0.0991 0.0181 0.4149 1.4307
1.7 0.0961 0.0162 0.4085 1.4092
2.4 0.0934 0.0148 0.4024 1.3900

1.3 0.1 0.3 1.6960 0.7007 0.0462 1.2106
1 0.9983 0.2161 0.0429 1.2133
1.7 0.7817 0.1278 0.0424 1.2138
2.4 0.6651 0.0907 0.0421 1.2139

0.9 0.3 0.6704 0.2359 0.1485 1.2162
1 0.5475 0.1270 0.1063 1.1963
1.7 0.4818 0.0884 0.0881 1.1948
2.4 0.4380 0.0682 0.0780 1.1960

1.7 0.3 0.3934 0.0940 0.1763 1.2424

(Continued)
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Table 1 (continued)

λ α θ Mean Variance SK KT

1 0.3578 0.0679 0.1506 1.2179
1.7 0.3330 0.0540 0.1333 1.2065
2.4 0.3140 0.0451 0.1208 1.2005

2.5 0.3 0.2750 0.0481 0.1840 1.2524
1 0.2609 0.0397 0.1691 1.2347
1.7 0.2496 0.0342 0.1573 1.2233
2.4 0.2403 0.0301 0.1475 1.2152

3 0.1 0.3 2.5250 0.6094 0.0232 1.2325
1 1.4575 0.1849 0.0222 1.2331
1.7 1.1346 0.1090 0.0222 1.2330
2.4 0.9623 0.0773 0.0220 1.2331

0.9 0.3 1.1687 0.2904 0.0725 1.2260
1 0.9096 0.1360 0.0463 1.2249
1.7 0.7823 0.0895 0.0380 1.2268
2.4 0.7008 0.0668 0.0339 1.2279

1.7 0.3 0.7091 0.1294 0.0976 1.2362
1 0.6251 0.0842 0.0739 1.2264
1.7 0.5706 0.0630 0.0617 1.2244
2.4 0.5305 0.0506 0.0541 1.2241

2.5 0.3 0.5009 0.0689 0.1065 1.2420
1 0.4660 0.0530 0.0906 1.2325
1.7 0.4396 0.0435 0.0795 1.2281
2.4 0.4184 0.0369 0.0715 1.2257

4.2.2 Moment Generating Function

The moment-generating function of the SGLE distribution is

M(t) = E(etX) =
∫ ∞

0

etxf
SGLE

(x; κ)dx

=
∞∑

i,j,k=0

ω
i,j,k

∫ ∞

0

(
αx2k + θx2k+1

)
e−[(j+1)α−t]xdx

=
∞∑

i,j,k=0

ω
i,j,k

(
α + θ(2k + 1)

α(j + 1) − t

)
	(2k + 1)

[α(j + 1) − t]2k+1 . (18)
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4.3 Incomplete Moments
The sth incomplete moment of the SGLE distribution is given by

ξs(t) = E(xs | X < t) =
∫ t

0

xsf
SGLE

(x; κ)dx

=
∞∑

i,j,k=0

ω
i,j,k

∫ t

0

(
αx2k+s + θx2k+s+1

)
e−(j+1)αxdx

=
∞∑

i,j,k=0

ω
i,j,k

[
αγ (2k + s + 1, (j + 1)αt)

[(j + 1)α]2k+s+1 + θγ (2(k + 1) + s, (j + 1)αt)

[(j + 1)α]2(k+1)+s

]
, (19)

where γ (n, x) = ∫ x

0
tn−1e−tdt denotes the lower incomplete gamma function.

4.4 Conditional Moments
The conditional moment of the SGLE distribution can be written as

�s(t) = E(xs | X > t) = 1

F(t)
ψs(t)

where

ψs(t) =
∫ ∞

t

xsf
SGLE

(x; κ)dx =
∞∑

i,j,k=0

ω
i,j,k

∫ ∞

t

(
αx2k+s + θx2k+s+1

)
e−(j+1)αxdx

=
∞∑

i,j,k=0

ω
i,j,k

[
α	(2k + s + 1, (j + 1)αt)

[(j + 1)α]2k+s+1 + θ	(2(k + 1) + s, (j + 1)αt)

[(j + 1)α]2(k+1)+s

]
, (20)

where 	(n, x) = ∫ ∞
x

tn−1e−tdt denotes the upper incomplete gamma function.

4.5 Lorenz and Bonferroni Curves
The Lorenz curve was first introduced by Lorenz in the year 1905, and the Bonferroni curve. These

curves have found applications in various fields, including economics, where they are used to analyze
income distribution and poverty. Additionally, they serve as tools for quantifying the inequality within
the distribution of a variable and apply to a wide range of disciplines, such as reliability, demography,
medicine, and insurance. For a positive random variable X , both the Lorenz and Bonferroni curves,
at a specified probability p, can be expressed as follows:

L(p) = 1
μ

∫ q

0

xf (x)dx = 1
μ

∞∑
i,j,k=0

ω
i,j,k

[
αγ (2(k + 1), (j + 1)αq)

[(j + 1)α]2(k+1)
+ θγ (2(k + 1) + 1, (j + 1)αq)

[(j + 1)α]2(k+1)+1

]
, (21)

and

B(p) = 1
μp

∫ q

0

xf (x)dx = 1
μp

∞∑
i,j,k=0

ω
i,j,k

[
αγ (2(k + 1), (j + 1)αq)

[(j + 1)α]2(k+1)
+ θγ (2(k + 1) + 1, (j + 1)αq)

[(j + 1)α]2(k+1)+1

]
,

(22)

respectively, where μ = E(X), and q = Q(p) is the quantile function of X at p.
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4.6 Residual Life and Reversed Residual Life Functions
Assume that a component remains operational until time t ≥ 0. The residual life is the duration

from time t until the point of failure, and it is described by the conditional random variable denoted
as X − t|X > t. The rth-order moment of the residual life is

μr(t) = E((X − t)r | X > t) = 1

F(t)

∫ ∞

t

(x − t)r f (x)dx, r ≥ 1.

For SGLE distribution, we get

μr(t) = 1

F(t)

∞∑
i,j,k=0

r∑
h=0

ω
i,j,k

(
r
h

)
(−t)r−h

∫ ∞

t

xrf
SGLE

(x; κ)dx

= 1

F(t)

∞∑
i,j,k=0

r∑
h=0

ω
i,j,k

(
r
h

)
(−t)r−h

[
α	(2k + r + 1, (j + 1)αt)

[(j + 1)α]2k+r+1 + θ	(2(k + 1) + r, (j + 1)αt)

[(j + 1)α]2(k+1)+r

]
.

(23)

The average remaining lifespan (also known as the life expectancy at time t) signifies the
anticipated additional life duration for a component or device that is still functioning at age t. To
calculate the mean residual life (MRL) for the SGLE distribution, you can set r = 1 in Eq. (23), which
is defined as

μ(t) = E(Xt) = E(X | X > t).

In the realm of reliability theory, the extra time a component can continue operating after it has
already failed by time t is referred to as the reversed residual life function (RRL). It represents the
duration of time the component remains inactive. The conditional random variable X(t) = t−X |X < t
denotes the time that has passed since the failure of X , given that it failed at or before time t. The rth

order moment of the reversed residual life, also known as the inactivity time, can be calculated using
a commonly known formula.

mr(t) = E((t − X)r | X ≤ t) = 1
F(t)

∫ t

0

(t − x)rf (x)dx, r ≥ 1

= 1
F(t)

∞∑
i,j,k=0

r∑
h=0

ω
i,j,k

(
r
h

)
(−t)r−h

∫ t

0

xrf
SGLE

(x; κ)dx

= 1
F(t)

∞∑
i,j,k=0

r∑
h=0

ω
i,j,k

(
r
h

)
(−t)r−h

[
αγ (2k + r + 1, (j + 1)αt)

[(j + 1)α]2k+r+1 + θγ (2(k + 1) + r, (j + 1)αt)

[(j + 1)α]2(k+1)+r

]
.

5 Progressively Type-II Censoring Schemes

Progressively censored samples are those that are removed from further analysis at different phases
of an experiment, while not all of the remaining specimens are. Sample specimens that are still present
after each censorship stage are kept under observation until they fail or until the next censoring stage.

Under progressively Type-II censored samples: Firstly, the experimenter adds n independent,
identical units to the measure of life. Secondly, the experimenter determines m observation of the
censored sample. Thirdly, the experimenter chooses optimal scheme R by the experience of the
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experimenter but the following constrains must be met as: Ri ≥ 0; n−m+∑m

i=1 Ri = 0. The remaining
n−1 surviving units get R1 units randomly removed from them after the first failure occurs, let us say at
time x1:m:n. The remaining n−R1−2 surviving units get R2 units randomly removed from them when the
second failure occurs at time x2:m:n. When the mth failure occurs at time xm:m:n, the experiment is over, and
the Rm = n − m − ∑m−1

i=1 Ri surviving units are taken out of the test. The progressive Type-II censoring
method is denoted by R = (R1, R2, . . . , Rm). progressive Type-II censoring, with a predetermined R
censoring scheme.

Assume that n independent units are put through a life test with the associated failure times of
x1:m:n < x2:m:n < . . . < xm:m:n, and m, respectively. Additionally, assume that the progressive Type-
II censoring scheme is R1, R2, . . . , Rm and that the pre-fixed number of failures to be seen is m. The
failure times that have been m entirely observed will be shown as xi:m:n; i = 1, 2, . . . , m. The likelihood
function is then as follows:

L(x; κ) = C
m∏

i=1

f (xi:m:n; κ) [1 − F(xi:m:n; κ)]Ri , (24)

where C may be a constant defined as C = n(n − R1 − 1) · · · (n − ∑m−1

i=1 (Ri + 1)) (see [31] for details)
and see Fig. 3.

Figure 3: A diagram showing Type-II progressive censorship

Based on the SGLE distribution by Eqs. (6), (7) and (24), the likelihood function of the SGLE
based on progressive Type-II censored sample is then as follows:

L(x; κ) =
(π

2

)n

λne− ∑m
i=1(αxi:m:n+ θ

2 x2)
m∏

i=1

(α + θxi:m:n)
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

)λ−1

×
m∏

i=1

cos
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

.

(25)

Based on Eq. (25) and Fig. 3, we note that there is more than one special case, such as the
following:

• Complete sample when m = n and Ri = 0; i = 1, . . . , m.

• Type-II censored sample when m < n and Rm = n − m and Ri = 0; i = 1, . . . , m − 1.

More information on the increasingly progressive censored samples may be found in Balakrishnan
et al. [32] and Balakrishnan et al. [31]. Aggarwala et al. [33] have discussed the differences in the
situation of progressive Type-II censoring where lifespan distributions are Weibull, log-normal, and
exponential. For more information and examples, see [34–37].
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6 Inference and Estimation Methods

In this section, Bayesian and non-Bayesian inference have been discussed for parameters of SGLE
distribution.

6.1 Maximum Likelihood Estimation
The maximum likelihood estimates (MLEs) possess favorable characteristics and find utility

in constructing confidence intervals, regions, and test statistics. We calculate the MLEs for the
parameters of the SGLE distribution using complete samples exclusively, see [38,39]. Consider a
random sample of size n, denoted as x1, ..., xn, drawn from the SGLE distribution as defined in Eq. (7).

Let Un(κ) =
(

∂Ln

∂α
,
∂Ln

∂θ
,
∂Ln

∂λ

)T

be q × 1 vector of parameters. The log-likelihood function is given by

Ln = n log
(π

2

)
+ n log(λ) +

n∑
i=1

log (α + θxi:m:n) − α

n∑
i=1

xi:m:n − θ

2

n∑
i=1

x2
i:m:n

+ (λ − 1)

n∑
i=1

log
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

)
+

n∑
i=1

log cos
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

+
m∑

i=1

Ri log
{

1 − sin
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]}

.

(26)

The log-likelihood can be maximized through direct utilization of the SAS program or R-language,
or by solving the nonlinear likelihood equations derived from differentiating (26).

∂Ln

∂α
=

n∑
i=1

1
(α + θxi:m:n)

−
n∑

i=1

xi:m:n + (λ − 1)

n∑
i=1

xi:m:ne−αxi:m:n− θ
2 x2

i:m:n

1 − e−αxi:m:n− θ
2 x2

i:m:n

− π

2

n∑
i=1

xi:m:ne−αxi:m:n− θ
2 x2

i:m:n tan
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

− λ
π

2

m∑
i=1

Ri

xi:m:ne−αxi:m:n− θ
2 x2

i:m:n

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ−1

cos
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

1 − sin
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
] ,

(27)

∂Ln

∂θ
=

n∑
i=1

xi:m:n

(α + θxi:m:n)
− 1

2

∑n

i=1
x2

i:m:n + (λ − 1)

n∑
i=1

x2
i:m:n

2
e−αxi:m:n− θ

2 x2
i:m:n

1 − e−αxi:m:n− θ
2 x2

i:m:n

− π

4

n∑
i=1

x2
i:m:ne

−αxi:m:n− θ
2 x2

i:m:n tan
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

− λ
π

2

m∑
i=1

Ri

x2
i:m:n

2
e−αxi:m:n− θ

2 x2
i:m:n

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ−1

cos
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

1 − sin
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
] , (28)
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and

∂Ln

∂λ
= n

λ
+

n∑
i=1

log
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

)
− π

2

n∑
i=1

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ

× log
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

)
tan

[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

+ π

2

m∑
i=1

Ri

log
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

) (
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ

cos
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

1 − sin
[

π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
] . (29)

The maximum likelihood estimation (MLE) of parameters is obtained by setting
∂Ln

∂α
= ∂Ln

∂θ
=

∂Ln

∂λ
= 0 and solving these equations simultaneously to get the MLE(̂κ). These equations cannot

be solved analytically, and statistical software can be used to solve them numerically via iterative
methods. Since the closed-form solutions to Eqs. (27)–(29) do not exist based on progressive Type-
II censored samples, the Newton-Raphson (NR) iteration method is used to obtain the estimations.
In the reference [40], the algorithm is described with the (maxLik) package which implements the NR
iteration of maximization.

It is standard that under some regularity conditions, α̂, θ̂ and λ̂ are approximately distributed as
multivariate normal with mean α, θ and λ covariance matrix I−1 (α, θ , λ). Then, the 100(1 − γ )% two
sided confidence interval of α, θ and λ, can be given by

α̂ ± Z γ
2

√
Var

(
α̂
)
, & θ̂ ± Z γ

2

√
Var

(
θ̂
)

, & λ̂ ± Z γ
2

√
Var

(
λ̂
)

, (30)

where Z γ
2

is that the percentile of the standard normal distribution with right-tail probability
γ

2
.

6.2 Bayesian Estimation Method
In this subsection, we establish Bayesian estimates that treat the parameter uncertainty as being

represented by a joint prior distribution that was created prior to the failure data being gathered.
Because it allows for the inclusion of prior knowledge in the study, the Bayesian technique is very
helpful in reliability analysis. Based on the square error loss function (SELF), Bayesian estimates
of the unknown parameters α, θ , and λ are derived. The parameters α, θ , and λ are assumed to be
independent and to follow the following gamma prior distributions:⎧⎪⎨
⎪⎩

π1 (α) ∝ αq1−1e−w1α, α > 0,

π2 (θ) ∝ θ q2−1e−w2θ , θ > 0,

π3 (λ) ∝ λq3−1e−w3λ, λ > 0,

(31)

where it is assumed that all of the hyper-parameters qi and wi have non-negative values and are known.
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The updated distribution of the parameters α, θ , and λ, represented as π ∗(α, θ , λ|x), can be
computed by integrating the likelihood function from Eq. (25) with the prior distributions from
Eq. (31).

π ∗ (
α, θ , λ | x

) = π1 (α) π2 (θ) π3 (λ) L (bx; κ)∫ ∞
0

∫ ∞
0

∫ ∞
0

π1 (α) π2 (θ) π3 (λ) L(bx; κ)dαdθdλ
. (32)

The square error loss function (SELF), a symmetrical loss function that attributes equal losses
to overestimation and underestimation, is frequently employed. If an estimator κ̂ is to estimate the
parameter κ, then the SELF is defined as

L
(
κ, κ̂

) = (
κ̂ − κ

)2
.

The Bayes estimate of any function of alpha, theta, and lambda, such as g (α, θ , λ) under the SELF,
can therefore be calculated as

ĝSELF

(
α, θ , λ | x

) = Eα,θ ,λ|x (g (α, θ , λ)) . (33)

When many integrals can be used to solve the expectation in Eq. (33), but it is not possible to
acquire these multiple integrals mathematically. Therefore, samples from the joint posterior density
function in Eq. (32) can be produced using the MCMC method. To employ the Markov Chain Monte
Carlo (MCMC) method, we incorporate the Gibbs sampling step within the Metropolis-Hastings
(M-H) sampler procedure. In statistics, two highly effective MCMC techniques frequently used are
the Metropolis-Hastings and Gibbs sampling methods.

The following equation yields the joint posterior density function of α, θ , and λ:

�(κ|x) ∝ λn+q3−1e− ∑m
i=1(αxi:m:n+ θ

2 x2)
m∏

i=1

(α + θxi:m:n)
(

1 − e−αxi:m:n− θ
2 x2

i:m:n

)λ−1

× αq1−1e−w1αθ q2−1e−w2θe−w3λ

m∏
i=1

cos
[
π

2

(
1 − e−αxi:m:n− θ

2 x2
i:m:n

)λ
]

.

(34)

It is clear that the joint posterior of θ in Eq. (34) does not exhibit typical forms, making the use
of the Metropolis-Hasting sampler necessary for the implementation of the MCMC approach. The
“coda” package in R 4.3.0 software can be used to implement the Metropolis-Hastings algorithm
within Gibbs sampling.

7 Applications

The SGLE model seeks to be employed in practical settings, such as the fit of real-world data,
thanks to its desirable flexible qualities. We discuss this finding after taking into account the two well-
cited real-world data sets below. Nine more effective models that have two or three tuning parameters
and are expanded or modified versions of the exponential model are also taken into account for
comparison. Namely, we consider generalized failure rate distribution (GFR), exponentiated Weibull-
H exponential (SEWHE) [41], distribution, sine exponential (SEx) [42] distribution, alpha-sine Weibull
(ASW) [43], sine-inverse Weibull (SIW) [44], sine-Burr XII (SBXII) [45], exponentiated Weibull (EW)
[46], alpha power inverse Weibull (APIW) [47], alpha power Weibull (APW) [48], generalized inverse
Weibull (GIW) [49], extended odd Weibull Rayleigh (EOWR) [50] distributions.
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Akaike’s (A), Bayesian (B), Consistent Akaike’s (CA), and Hannan-Quinn (HQ) model selection
information criteria are all used to demonstrate the utility of the SGLE distribution in contrast
to competing models. To evaluate the validity of the SGRF model in contrast to other competing
models, three additional goodness-of-fit statistics are also used: “Anderson-Darling (ADG), Cramer-
von Mises (CVMG), and Kolmogorov-Smirnov (KSD) (with its p-value (PVKS))”. We used the R
software along with the “AdequacyModel” package to estimate all unknown parameters through the
maximum likelihood method. The standard errors (StEr) for these parameters were also computed and
are reported in Tables 2 and 3. Based on these computations, the optimal distribution corresponds to
the lowest values of A, B, CA, HQ, ADG, CVMG, and KSD statistics, along with the highest p-value.
However, the estimated values of these goodness-of-fit measures for the various datasets are presented
in Tables 2 and 3.

Table 2: Different measures for each model by MLE: data I

Models Estimates StEr A B CA HQ KSD PVKS CVMGG ADG

SGLE α 0.1735 0.3458 104.9843 111.6866 105.3535 107.6433 0.0534 0.9894 0.0352 0.2797
θ 0.7560 0.1811
λ 2.4422 1.1195

GFR α 0.1655 0.3673 107.4824 107.8516 110.1414 114.1847 0.0723 0.8630 0.0652 0.4779
θ 1.2506 0.2451
λ 2.6331 1.1074

SEWHE α 14.2450 37.1414 105.2991 114.2356 105.9241 108.8445 0.0403 0.9999 0.0172 0.1557
β 0.2028 0.4361
θ 1.1062 1.7527
λ 2.9008 4.4375

SEx α 0.3958 0.0439 183.9069 186.1410 183.9666 184.7933 0.3544 0.0000 0.1119 0.7921
SIW α 1.6488 0.1493 142.3868 142.5687 146.8550 144.1595 0.1589 0.0613 0.5383 3.4100

β 1.5045 0.1149
SBXII α 4.9359 0.6941 115.7887 110.2569 115.9705 117.5614 0.1750 0.0293 0.3426 2.1790

β 0.2804 0.0455
APIW α 303.6005 402.5094 140.2925 146.9948 140.6617 142.9515 0.0534 0.9894 0.4948 3.1242

β 2.4982 0.1935
θ 0.2775 0.0692

GIW α 303.6005 402.5094 140.2925 146.9948 140.6617 142.9515 0.0534 0.9894 0.4948 3.1242
β 2.4982 0.1935
θ 0.2775 0.0692

EOWR α 1.4106 0.2233 144.8535 151.5558 145.2227 147.5125 0.0539 0.9825 0.0392 0.2814
β 0.3753 0.3172
θ 0.2904 0.0379

Table 3: Different measures for each model by MLE: data II

Models Estimates StEr A B CA HQ KSD PVKS CVMGG ADG

SGLE α 0.4010 0.2300 113.0032 117.8360 113.7305 114.7070 0.0794 0.9737 0.0292 0.1810
θ 0.0358 0.0897
λ 1.4151 0.4800

GFR α 0.5980 0.3513 113.9516 117.9679 114.6554 117.7844 0.0816 0.9661 0.0298 0.1833
θ 0.1158 0.1587
λ 1.4727 0.5657

SEWHE α 18.9511 686.6481 114.7737 121.2174 116.0237 117.0454 0.0826 0.9622 0.0329 0.1988
β 0.2121 3.1465

(Continued)
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Table 3 (continued)
Models Estimates StEr A B CA HQ KSD PVKS CVMGG ADG

θ 2.6809 27.8125
λ 0.6078 5.5706

SEx α 0.3318 0.0510 113.4639 118.0749 113.9578 114.0319 0.1457 0.4118 0.0308 0.1893
SIW α 1.2331 0.1583 123.6408 123.9937 126.8626 124.7766 0.1652 0.2646 0.2041 1.2683

β 0.7742 0.0853
SBXII α 2.0316 0.3323 115.0093 118.2311 116.3622 119.1451 0.1645 0.2692 0.0995 0.6194

β 0.4466 0.0836
EW α 0.2971 0.0380 115.5108 120.3435 116.2380 117.2145 0.0983 0.8673 0.0584 0.3735

β 0.0096 0.0096
θ 0.7951 0.5305

APIW α 64.7848 108.6950 125.6909 130.5237 126.4182 127.3947 0.0794 0.9737 0.2035 1.2612
β 1.2576 0.1435
θ 0.2272 0.0961

APW α 375.4554 68.1517 114.3618 119.1946 115.0891 116.0656 0.0794 0.9737 0.0370 0.2276
β 0.6930 0.3480
θ 1.7175 1.0715

GIW α 0.6432 0.4198 132.3845 137.2173 133.1118 134.0883 0.1668 0.2544 0.2969 1.7983
β 1.1904 0.5173
θ 0.9736 0.1097

EOWR 1 0.8012 0.2273 129.4340 134.2667 130.1612 131.1377 0.0938 0.9006 0.0416 0.2488
2 2.1965 2.3254
3 0.4552 0.3683

The first set of data: The first data set has been obtained by reference [51] as its source. It includes
the single carbon fibre tensile strength (in GPa). Data I: “0.312, 0.314, 0.479, 0.552, 0.700, 0.803,
0.861, 0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224,
1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490,
1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770,
1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233,
2.433, 2.585, 2.585”. The result of this application has baen presented by Table 2 and Figs. 4–8.
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Figure 4: Fitted application for the SGLE distribution of data I with different graph

To check the estimators by MLE for the SGLE parameters of data set I, Figs. 5, and 6 have been
plotted to check these estimators have maximum and uniqueness values of MLE. Also, to check the
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estimators by Bayesian, Figs. 7, and 8 have been plotted to check these estimators have convergence
and normality shapes of Bayesian estimates for the SGLE parameters.
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Figure 5: Profile MLE for for the SGLE parameters of data I
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Figure 6: Uniqueness property MLE for the SGLE parameters of data I
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Figure 7: Trace plot of Bayesian estimators for the SGLE parameters: data I
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Figure 8: Histogram plot with normal curve of Bayesian estimators for the SGLE parameters: data I

The second data set, which can be accessible on June 30 2022, (see https://dataverse.harvard.edu/)
shows the TFP growth in agricultural production for 37 African nations between 2001 and 2010. Data
II: “4.6, 0.9, 1.8, 1.4, 0.2, 3.9, 1.8, 0.8, 2.0, 0.8, 1.6, 0.8, 2.0, 1.6, 0.5, 0.1, 2.5, 2.4, 0.6, 1.1, 0.7, 1.7, 1.0,
1.7, 2.5, 3.5, 0.3, 0.9, 2.3, 0.5, 1.5, 5.1, 0.2, 1.5, 3.3, 1.4, 3.3”. The result of this application has been
presented by Table 3 and Figs. 9–13.
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Figure 9: Fitted application for the SGLE distribution of data II with different graph

To check the estimators by MLE for the SGLE parameters of data set II, Figs. 10, and 11 have
been plotted to check these estimators have maximum and uniqueness values of MLE. Also, to check
the estimators by Bayesian for data set II, Figs. 12, and 13 have been plotted to check these estimators
have convergence and normality shapes of Bayesian estimates for the SGLE parameters.

https://dataverse.harvard.edu/
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Figure 10: Profile MLE for the SGLE parameters of data II
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Figure 11: Uniqueness property MLE for the SGLE parameters of data II
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Figure 12: Trace plot of Bayesian estimators for the SGLE parameters: data II
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Figure 13: Histogram plot with normal curve of Bayesian estimators for the SGLE parameters: data II

It is obvious that, when compared to the other distributions under the different data sets,
the SGLE distribution is the best distribution. On the basis of the same data, we also create a
fitted/empirical CDF, histogram, fitted density, PP plot, and quantile-quantile plots of the SGLE
distribution (see Figs. 4 and 9). The results in Tables 2 and 3 show that the SGLE distribution is the
most effective model to fit the various data when compared to all other given distributions indicated
in Tables 2 and 3. Graphical representations in Figs. 4 and 9 support these findings.

8 Simulation

This section compares MLE and Bayesian estimates of the SGLE distribution parameter using
Monte Carlo simulations using progressive Type-II censored samples. The simulation results are run
in order to investigate and output in terms of mean square error (ω2), relative absolute bias (ω1),
length confidence interval (ω3), and coverage probability of a confidence interval (ω4). We generate
ten thousand random samples from the SGLE distribution for numerous individual parameters. For
various sample sizes, n = 40, 70, 100, 150, and 200, failure censored sample m and different scheme,
including:

Scheme (R) I: Rm = n − m, Ri = 0; i = 1, . . . , m − 1.

Scheme (R) II: R1 = n − m, Ri = 0; i = 2, . . . , m.

Complete: m = n, where Ri = 0; i = 1, . . . , m.

For the random variables generating, the values of the parameters α, θ , and λ are chosen as follows:

Case 1: α = 0.5, θ = 0.6, λ = 0.5.

Case 2: α = 0.5, θ = 0.6, λ = 2.2.

Case 3: α = 0.5, θ = 1.8, λ = 0.5.

Case 4: α = 1.1, θ = 0.8, λ = 0.9.
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All necessary calculations were conducted utilizing R 4.3.0 software, employing three beneficial
packages: the ‘coda’ package (MCMC by M-H algorithm) to make some Bayesian inference, the
(maxLik) package (Newton-Raphson algorithm) to obtain likelihood inference, and the spread,
skewness, and kurtosis of data sets encountercensored’ package to generate censored samples. Selecting
initial parameter values involves options like leveraging domain knowledge, employing guess-and-
check techniques, initiating random values within a defined range, executing grid searches in discrete
parameter spaces, utilizing optimization algorithms for value generation, conducting sensitivity
analyses for robustness, and referencing values from prior studies. The chosen method depends on the
problem context, optimization algorithm, and parameter specifics, often prompting the exploration
of multiple approaches. In our simulation study, we employed the guess-and-check method alongside
optimization algorithms, specifically utilizing the “nlminb” function for generating initial values.

The following is a summary of Tables 4–7 included in the observations that follow:

• As the sample size grows, the ω2, ω1, and LCI drop.

• As the number of steps (m) rises, the ω1, ω2, and LCI drop.

• For the majority of analysed cases of the SGLE distribution under progressively Type-II
censored data, the Bayesian estimates are more effective than alternative approaches.

Table 4: ω1, ω2, ω3, and ω4 for parameters SGLE distribution by MLE and Bayesian: case 1

α = 0.5, θ = 0.6, λ = 0.5 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

I 40 28 α 0.1953 0.3723 2.3623 94.9% 0.1066 0.0414 0.7405 97.30%
θ 0.0090 2.9581 6.7455 93.9% 0.1687 0.0698 0.8739 98.00%
λ 0.0203 0.0291 0.6683 96.1% 0.0204 0.0076 0.3331 97.50%

36 α 0.0522 0.1845 1.6817 95.5% 0.0504 0.0141 0.4396 99.40%
θ 0.1270 0.6235 3.0824 94.2% 0.1110 0.0264 0.5032 99.10%
λ 0.0123 0.0214 0.5731 96.2% 0.0075 0.0041 0.2418 99.00%

100 70 α 0.1609 0.1556 1.5147 94.9% 0.0361 0.0287 0.6061 98.00%
θ 0.1187 0.6089 2.9682 93.9% 0.1643 0.0588 0.7960 98.10%
λ 0.0868 0.0166 0.4751 97.1% 0.0358 0.0055 0.2680 96.10%

90 α 0.1341 0.1244 1.3583 95.2% 0.0202 0.0140 0.4479 99.50%
θ 0.1096 0.2593 1.9805 94.5% 0.0892 0.0216 0.5122 99.10%
λ 0.0691 0.0155 0.4691 97.6% 0.0225 0.0038 0.2306 96.60%

II 40 28 α 0.0517 0.1786 1.6545 95.8% 0.0742 0.0314 0.6062 98.20%
θ 0.2084 0.4287 2.5205 95.8% 0.1535 0.0551 0.7682 98.20%
λ 0.0090 0.0247 0.6159 96.6% 0.0071 0.0084 0.3327 98.00%

36 α 0.0722 0.1637 1.5803 95.1% 0.0745 0.0151 0.4615 99.80%
θ 0.1883 0.4016 2.4457 95.5% 0.0960 0.0239 0.5132 99.40%
λ 0.0085 0.0216 0.5763 96.7% 0.0132 0.0045 0.2581 98.60%

100 70 α 0.1973 0.1193 1.2979 95.4% 0.0327 0.0274 0.6124 97.50%
θ 0.2017 0.1760 1.5756 95.3% 0.1254 0.0473 0.7326 98.00%
λ 0.0910 0.0174 0.4849 97.6% 0.0326 0.0063 0.2865 94.60%

90 α 0.1986 0.1040 1.2032 96.6% 0.0276 0.0148 0.4567 99.00%
θ 0.1878 0.1454 1.4287 95.7% 0.0859 0.0212 0.5066 99.60%
λ 0.0867 0.0149 0.4474 97.5% 0.0271 0.0039 0.2340 96.60%

Complete n = 40 α 0.0031 0.1341 1.4362 95.7% 0.0789 0.0318 0.6328 94.73%
θ 0.1777 0.2885 2.0646 95.8% 0.1316 0.0514 0.7616 94.74%
λ 0.0075 0.0189 0.5393 96.3% 0.0203 0.0068 0.3193 94.73%

(Continued)
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Table 4 (continued)
α = 0.5, θ = 0.6, λ = 0.5 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

Complete n = 70 α 0.1107 0.1113 1.2906 95.8% 0.0196 0.0145 0.4469 94.71%
θ 0.1857 0.1837 1.6232 95.5% 0.0895 0.0202 0.5104 94.71%
λ 0.0546 0.0159 0.4823 97.4% 0.0095 0.0040 0.2406 94.70%

Complete n = 100 α 0.1782 0.1039 1.2146 96.2% 0.0138 0.0093 0.3765 94.66%
θ 0.1638 0.1331 1.3781 95.5% 0.0629 0.0120 0.3876 94.67%
λ 0.0826 0.0142 0.4391 97.2% 0.0225 0.0027 0.1899 94.68%

Complete n = 150 α 0.2398 0.0812 1.0137 97.0% 0.0343 0.0067 0.3039 94.60%
θ 0.1868 0.1050 1.1925 94.8% 0.0488 0.0085 0.3312 94.63%
λ 0.0991 0.0115 0.3738 97.1% 0.0293 0.0021 0.1688 94.64%

Complete n = 200 α 0.2810 0.0789 0.9538 96.2% 0.0535 0.0059 0.2697 94.56%
θ 0.2151 0.0948 1.0966 95.0% 0.0459 0.0066 0.2937 94.55%
λ 0.1117 0.0109 0.3455 97.3% 0.0348 0.0018 0.1476 94.60%

Table 5: ω1, ω2, ω3, and ω4 for parameters SGLE distribution by MLE and Bayesian: case 2

α = 0.5, θ = 0.6, λ = 2.2 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

I 40 28 α 0.6481 0.8067 3.2853 94.6% 0.0091 0.0109 0.3993 94.66%
θ 0.4101 0.5819 2.8319 94.7% 0.0997 0.0342 0.6541 94.65%
λ 0.5118 10.0287 11.6086 96.0% 0.0081 0.0023 0.1742 94.68%

36 α 0.4029 0.4768 2.5904 95.5% 0.0043 0.0072 0.3329 94.58%
θ 0.2179 0.2615 1.9390 95.5% 0.0616 0.0161 0.4427 94.59%
λ 0.3220 4.8543 8.1822 96.1% 0.0041 0.0008 0.1027 94.64%

100 70 α 0.4091 0.3254 2.0883 95.3% 0.0018 0.0082 0.3474 94.60%
θ 0.2654 0.2232 1.7443 95.3% 0.0395 0.0227 0.5686 94.58%
λ 0.2467 1.9750 5.0840 95.6% 0.0066 0.0022 0.1620 94.61%

90 α 0.3388 0.2392 1.7993 95.0% 0.0088 0.0050 0.2687 94.53%
θ 0.1913 0.1216 1.2913 95.1% 0.0358 0.0113 0.4026 94.51%
λ 0.2200 1.6129 4.6051 95.5% 0.0035 0.0006 0.1002 94.57%

II 40 28 α 0.3312 0.4025 2.4020 96.1% 0.0053 0.0137 0.4403 94.66%
θ 0.1373 0.1883 1.6709 94.8% 0.0895 0.0325 0.6257 94.67%
λ 0.2966 4.5424 7.9574 96.8% 0.0079 0.0026 0.1843 94.67%

36 α 0.3040 0.4018 2.3777 95.5% 0.0114 0.0076 0.3313 94.58%
θ 0.1292 0.1809 1.6463 95.0% 0.0464 0.0152 0.4528 94.60%
λ 0.3309 4.0023 7.3082 95.4% 0.0039 0.0008 0.1015 94.64%

100 70 α 0.2236 0.1974 1.6862 96.2% 0.0027 0.0089 0.3601 94.61%
θ 0.1106 0.0896 1.1451 95.5% 0.0406 0.0175 0.5013 94.62%
λ 0.1592 1.1968 4.0648 94.9% 0.0073 0.0025 0.1720 94.64%

90 α 0.2164 0.1841 1.6286 96.9% 0.0005 0.0055 0.2819 94.52%
θ 0.1169 0.0807 1.0796 96.4% 0.0277 0.0114 0.4044 94.52%
λ 0.1481 1.1544 4.0155 95.8% 0.0031 0.0007 0.1001 94.59%

Complete n = 40 α 0.3081 0.3609 2.2775 95.8% 0.0051 0.0108 0.3937 94.65%
θ 0.1599 0.1630 1.5383 95.3% 0.0589 0.0256 0.6042 94.66%
λ 0.2724 3.5646 7.0218 95.1% 0.0066 0.0026 0.1912 94.68%

Complete n = 70 α 0.2726 0.2376 1.8356 96.0% 0.0016 0.0062 0.2969 94.54%
θ 0.1377 0.1020 1.2097 94.9% 0.0376 0.0125 0.4158 94.53%

(Continued)
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Table 5 (continued)
α = 0.5, θ = 0.6, λ = 2.2 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

λ 0.2077 1.9030 5.1049 95.1% 0.0036 0.0009 0.1119 94.61%
Complete n = 100 α 0.1639 0.1695 1.5824 95.8% 0.0038 0.0037 0.2390 94.42%

θ 0.0936 0.0731 1.0371 96.2% 0.0205 0.0072 0.3159 94.44%
λ 0.1255 1.0890 3.9469 95.1% 0.0018 0.0005 0.0880 94.55%

Complete n = 150 α 0.1698 0.1474 1.4682 96.7% 0.0004 0.0029 0.2063 94.31%
θ 0.0964 0.0616 0.9467 95.9% 0.0187 0.0057 0.2828 94.30%
λ 0.1130 0.8056 3.3823 95.7% 0.0018 0.0004 0.0740 94.49%

Complete n = 200 α 0.0639 0.1022 1.2478 96.4% 0.0015 0.0022 0.1876 94.17%
θ 0.0358 0.0414 0.7936 95.7% 0.0146 0.0042 0.2407 94.18%
λ 0.0571 0.5372 2.8320 95.4% 0.0014 0.0003 0.0637 94.38%

Table 6: ω1, ω2, ω3, and ω4 for parameters SGLE distribution by MLE and Bayesian: case 3

α = 0.5, θ = 1.8, λ = 0.5 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

I 40 28 α 0.4150 0.5204 2.7097 95.0% 0.1237 0.0443 0.7168 94.71%
θ 0.1546 6.4644 9.9117 93.6% 0.0288 0.0147 0.4229 94.73%
λ 0.0613 0.0335 0.7082 96.3% 0.0195 0.0068 0.3056 94.73%

36 α 0.3122 0.4113 2.4396 94.8% 0.0781 0.0183 0.4715 94.70%
θ 0.0937 2.1927 5.7697 93.6% 0.0139 0.0058 0.2686 94.71%
λ 0.0409 0.0293 0.6665 96.0% 0.0067 0.0043 0.2562 94.71%

100 70 α 0.0121 0.2481 1.9533 94.7% 0.0029 0.0352 0.6743 94.62%
θ 0.0863 2.0403 5.5689 93.0% 0.0270 0.0139 0.4926 94.66%
λ 0.0523 0.0191 0.5327 97.0% 0.0254 0.0054 0.2760 94.66%

90 α 0.0178 0.2098 1.7961 95.3% 0.0082 0.0172 0.4879 94.63%
θ 0.0503 0.7836 3.4535 93.4% 0.0061 0.0058 0.2316 94.65%
λ 0.0512 0.0178 0.5139 96.8% 0.0220 0.0034 0.2195 94.65%

II 40 28 α 0.3140 0.3506 2.2391 94.4% 0.1334 0.0425 0.6984 94.72%
θ 0.0082 1.4898 4.7866 94.9% 0.0283 0.0189 0.4904 94.75%
λ 0.0518 0.0296 0.6670 96.2% 0.0255 0.0080 0.3366 94.74%

36 α 0.2281 0.2926 2.0740 95.0% 0.0743 0.0160 0.4387 94.70%
θ 0.0072 1.3308 4.5240 95.1% 0.0158 0.0060 0.2768 94.71%
λ 0.0321 0.0261 0.6306 96.5% 0.0041 0.0042 0.2415 94.72%

100 70 α 0.0644 0.1813 1.6650 94.7% 0.0062 0.0299 0.6166 94.65%
θ 0.0113 0.6247 3.0988 94.9% 0.0200 0.0242 0.5894 94.68%
λ 0.0615 0.0180 0.5120 97.2% 0.0294 0.0056 0.2692 94.69%

90 α 0.0464 0.1710 1.6191 96.1% 0.0149 0.0166 0.4895 94.63%
θ 0.0037 0.4868 2.7363 94.6% 0.0126 0.0079 0.3267 94.64%
λ 0.0524 0.0164 0.4922 96.6% 0.0208 0.0035 0.2170 94.65%

Complete n = 40 α 0.2200 0.3007 2.1068 94.8% 0.0947 0.0367 0.6871 94.71%
θ 0.0012 1.1855 4.2703 95.1% 0.0286 0.0208 0.5222 94.72%
λ 0.0285 0.0251 0.6187 96.1% 0.0092 0.0064 0.3055 94.72%

Complete n = 70 α 0.0254 0.1881 1.7003 95.4% 0.0216 0.0157 0.4708 94.66%
θ 0.0135 0.6533 3.1685 94.7% 0.0152 0.0079 0.3268 94.67%
λ 0.0230 0.0181 0.5263 96.8% 0.0097 0.0038 0.2324 94.66%

Complete n = 100 α 0.0787 0.1638 1.5797 96.4% 0.0068 0.0097 0.3725 94.62%

(Continued)
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Table 6 (continued)
α = 0.5, θ = 1.8, λ = 0.5 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

θ 0.0049 0.4591 2.6573 93.5% 0.0090 0.0046 0.2498 94.63%
λ 0.0581 0.0159 0.4812 96.9% 0.0213 0.0027 0.1977 94.63%

Complete n = 150 α 0.2375 0.1339 1.3573 95.1% 0.0359 0.0073 0.3258 94.53%
θ 0.0337 0.3053 2.1541 94.7% 0.0067 0.0035 0.2220 94.57%
λ 0.0987 0.0137 0.4168 96.5% 0.0294 0.0020 0.1603 94.58%

Complete n = 200 α 0.2822 0.1264 1.2795 95.3% 0.0363 0.0066 0.2939 94.46%
θ 0.0603 0.2663 1.9787 94.7% 0.0080 0.0027 0.1957 94.53%
λ 0.1093 0.0127 0.3864 96.2% 0.0289 0.0017 0.1429 94.53%

Table 7: ω1, ω2, ω3, and ω4 for parameters SGLE distribution by MLE and Bayesian: case 4

α = 1.1, θ = 0.8, λ = 0.9 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

I 40 28 α 0.1093 0.9154 3.7227 94.4% 0.0402 0.0196 0.5213 94.73%
θ 0.0392 6.9566 10.3436 94.5% 0.1380 0.0634 0.7851 94.74%
λ 0.0625 0.1188 1.3336 95.4% 0.0258 0.0070 0.3061 94.73%

36 α 0.0460 0.5524 2.9082 95.7% 0.0211 0.0088 0.3583 94.69%
θ 0.1808 2.0335 5.5639 95.3% 0.0833 0.0205 0.4804 94.69%
λ 0.0504 0.0990 1.2213 95.4% 0.0155 0.0035 0.2241 94.70%

100 70 α 0.0684 0.4942 2.7412 96.1% 0.0268 0.0190 0.5145 94.68%
θ 0.1615 3.1563 6.9493 94.6% 0.1139 0.0527 0.7770 94.67%
λ 0.0283 0.0568 0.9297 94.2% 0.0217 0.0060 0.2986 94.67%

90 α 0.0049 0.3074 2.1744 96.9% 0.0118 0.0084 0.3396 94.62%
θ 0.0751 0.9841 3.8835 94.8% 0.0640 0.0176 0.4614 94.64%
λ 0.0073 0.0431 0.8138 93.8% 0.0133 0.0032 0.2141 94.65%

II 40 28 α 0.0443 0.4814 2.7145 96.3% 0.0321 0.0187 0.5151 94.74%
θ 0.4326 1.5757 4.7323 94.2% 0.1111 0.0474 0.7315 94.74%
λ 0.0147 0.0960 1.2144 95.3% 0.0248 0.0081 0.3285 94.72%

36 α 0.0045 0.4258 2.5593 96.3% 0.0260 0.0097 0.3651 94.69%
θ 0.2842 1.1870 4.1789 95.6% 0.0713 0.0176 0.4601 94.69%
λ 0.0238 0.0758 1.0766 93.8% 0.0124 0.0033 0.2140 94.70%

100 70 α 0.0412 0.2799 2.0671 97.4% 0.0220 0.0175 0.5042 94.69%
θ 0.2335 0.7215 3.2498 96.0% 0.1064 0.0473 0.7523 94.69%
λ 0.0061 0.0429 0.8120 94.0% 0.0197 0.0058 0.2961 94.69%

90 α 0.0196 0.2375 1.9096 93.7% 0.0136 0.0082 0.3437 94.65%
θ 0.1393 0.5469 2.8673 95.5% 0.0603 0.0172 0.4643 94.64%
λ 0.0043 0.0372 0.7559 93.9% 0.0137 0.0032 0.2197 94.66%

Complete n = 40 α 0.0080 0.3920 2.4554 96.9% 0.0327 0.0205 0.5392 94.72%
θ 0.1901 1.0183 3.9125 95.3% 0.0935 0.0452 0.7647 94.72%
λ 0.0263 0.0700 1.0334 96.1% 0.0257 0.0064 0.2952 94.71%

Complete n = 70 α 0.0239 0.2718 2.0421 95.0% 0.0184 0.0083 0.3449 94.65%
θ 0.2144 0.7154 3.2483 95.8% 0.0679 0.0178 0.4691 94.66%
λ 0.0050 0.0446 0.8285 93.7% 0.0129 0.0032 0.2121 94.67%

Complete n = 100 α 0.0397 0.2209 1.8355 92.6% 0.0074 0.0052 0.2833 94.61%
θ 0.1282 0.4950 2.7299 95.9% 0.0376 0.0090 0.3527 94.60%
λ 0.0138 0.0331 0.7118 92.8% 0.0049 0.0020 0.1692 94.62%

Complete n = 150 α 0.0524 0.1717 1.6096 92.6% 0.0064 0.0038 0.2277 94.54%

(Continued)
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Table 7 (continued)
α = 1.1, θ = 0.8, λ = 0.9 MLE Bayesain

R n m ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

θ 0.1629 0.3943 2.4092 96.0% 0.0352 0.0067 0.2918 94.59%
λ 0.0164 0.0260 0.6302 92.6% 0.0054 0.0015 0.1515 94.49%

Complete n = 200 α 0.0476 0.1450 1.4793 93.6% 0.0069 0.0032 0.2141 94.46%
θ 0.1410 0.3165 2.1615 95.3% 0.0268 0.0050 0.2610 94.53%
λ 0.0193 0.0214 0.5696 93.5% 0.0027 0.0011 0.1274 94.53%

9 Conclusion

In this paper, we suggest a novel modification of the generalized linear exponential distribution
termed the sine generalized linear exponential distribution, which makes use of the sine transforma-
tion’s features. The new distribution is extremely versatile and may be used to simulate survival data
and reliability difficulties successfully. Depending on its settings, the new proposed model may have a
rising, J-shaped HRF. As special sub-models, it incorporates various well-known lifespan distributions.
The suggested model’s statistical features are described in detail. Under progressively censored data,
the model parameters are addressed using maximum likelihood and Bayesian estimate approaches. We
give simulated data to put these strategies to the test. Two real-world dataset applications highlight the
importance of the newly presented model when compared to numerous regarded comparable models.
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