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ABSTRACT

To compare finite element analysis (FEA) predictions and stereovision digital image correlation (StereoDIC) strain
measurements at the same spatial positions throughout a region of interest, a field comparison procedure is
developed. The procedure includes (a) conversion of the finite element data into a triangular mesh, (b) selection
of a common coordinate system, (c) determination of the rigid body transformation to place both measurements
and FEA data in the same system and (d) interpolation of the FEA nodal information to the same spatial locations
as the StereoDIC measurements using barycentric coordinates. For an aluminum Al-6061 double edge notched
tensile specimen, FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic
anisotropic yield criterion, with the unknown Hill model parameters determined using full-field specimen strain
measurements for the nominally plane stress specimen. Using Hill’s quadratic anisotropic yield criterion, the point-
by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown
to be in excellent agreement, confirming the effectiveness of the field comparison process.
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Nomenclature

DEN Double edge notched tensile specimen
FEA Finite element analysis
FE Finite element
3D Three-dimensional
MTS Material Test Systems Corporation
σe Equivalent stress (FL−2)
σy Yield stress (FL−2)
σ ij Components of the stress tensor (FL−2)
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VTK Visualization ToolKit, an open-source, freely available software system for 3D com-
puter graphics, modeling, image processing, volume rendering, scientific visualization,
and 2D plotting

VTP Visualization Toolkit Polygonal Data file format for storing VTK surface models
(polydata)

Polydata Surface mesh that consists of data arrays in points, cells, or in the dataset itself.
The algorithm has special traversal and data manipulation methods to process data
efficiently

XML Extensible Markup Language used to define and store data in a shareable manner.
Open3D Library of open access programs for coordinate transformation and modification of

3D data sets
Python Interpreted, object-oriented, high-level programming language with dynamic seman-

tics. Its high-level built in data structures, combined with dynamic typing and dynamic
binding, make it very attractive for rapid application development.

MTS 810 Electromechanical tension test frame manufactured by MTS Corporation
E Young’s modulus or Modulus of Elasticity (FL−2)
ν Poisson’s ratio
σ axial Engineering stress obtained from uniaxial tensile experiment (FL−2)
εaxial Engineering strain obtained from uniaxial tensile experiment
σ , σ true True stress obtained from uniaxial tensile experiment (FL−2)
ε, εtrue True strain obtained from uniaxial tensile experiment
εT Total equivalent strain at any point, as defined in Eq. (5)
εe

ij Elastic strain components
εp

ij Plastic strain components
�E12, �E23 Percent difference in εT at several nodes when comparing FE predictions from mesh 2

to mesh 1 and mesh 3 to mesh 2, respectively, as defined in Eq. (4)
LED Light Emitting DIode light used to illuminate specimen during imaging
dε

p
ij Components of the incremental plastic strain tensor

λ, Γ Plastic multiplier
Q, Λ Plastic potential
FPFH Fast Point Feature Histogram
ICP Iterative Closest Point
K-D Tree Binary search tree that organizes points in a K-Dimensional space with each node in

the tree representing a K-Dimensional point
Rij Components of the orthonormal rigid body rotation tensor
1, 2, 3 Cartesian coordinate system
RSij Directional yield stress ratios
�εij εij exp – εij mod

εij exp Experimentally measured strain components
εij mod Model-predicted strain components
σ ij exp Stress components obtained using measured strains and a yield criterion (FL−2)
σ ij mod Model predicted stress components using the same yield criterion as employed for σ ij

exp (FL−2)
�σ ij σ ij exp – σ ij mod (FL−2)
∂ui/∂xj Gradients of the displacement vector components
ti Translation vector from model to experimental coordinate system (L)
DIC Digital Image Correlation
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2D-DIC Two-dimensional DIC
StereoDIC Stereo DIC
VIC-3D Correlated Solutions software for StereoDIC analysis of images
VIC-3D.OUT Output file for VIC-3D software
VicPy Correlated Solutions Python library and interpreter
ANSYS Commercial FE software package
SOLID186 ANSYS finite element type used in this study
ABAQUS Commercial FE software package
Al6061-T6 Aluminum with 6061 designating its constituents and T6 designating temper
Q Arbitrary point on the specimen that is imaged by both stereo cameras
P1, P2 Pinhole locations for camera 1 and camera 2 in a stereovision system that is modeled

as a pinhole camera.
λ1, λ2 Scale factors for cameras 1 and 2 converting pixels to metric units (L/pixel)
f 1, f 2 Distances from camera 1 and 2 pinholes along the optical axis to the center of image

sensor plane, respectively (pixels).
Cx

1, Cy
1 Location of the center of camera 1 image sensor plane (pixels)

Cx
2, Cy

2 Location of the center of camera 2 image sensor plane (pixels)
X, Y, Z Global coordinate system
x, y, z Pinhole camera system, with separate systems for each camera
Xs, Ys Sensor plane coordinate system, with separate systems for each camera sensor plane
xs, ys Sensor coordinates of Q in image, different sensor locations for each camera (pixels)
Tx, Ty, Tz Components of baseline position vector between P1 and P2 in Fig. 6 (L)
α, β, γ Three angles relating x,y,z for camera 1 to x,y,z for camera 2 in Fig. 6 (°)
κ1, κ2 Radial lens distortion correction factors for r3 and r5 (L−2 and L−4 units, respectively)
με Strain x 10−6

pixel Picture element or an individual sensor in the camera sensor plane
SD Standard Deviation
IRIS Graphical interface within VIC-3D version 9 and higher software packages
VIC-Snap Correlated Solutions image acquisition and synchronization software
U,V,W Displacements of specimen in x, y, z system shown in Fig. 9. Same x, y, z directions are

used in Figs. 8–10, 12, 13 and 17 (L)
Kt Stress concentration factor
Kf Fatigue factor
q Notch sensitivity factor
HAY Hill’s quadratic Anisotropic Yield criterion
F,G,H,L,M,N Parameters for the HAY criterion defined in Eqs. (7) and (8)
RSij Ratios of yield stresses due to σ ij with the uniaxial yield stress, σ y

σ yy
far field Uniaxial tensile stress applied by mechanical test system (FL−2)

r Vector between two spatial points that is used in Appendix A (L)
n Normal vector for a surface as used in Appendix A

1 Introduction

For complex problems, finite element (FE) simulations are integral to predicting physical phe-
nomena, with the accuracy of FE analysis directly dependent on various factors, including boundary
conditions, loading, and material properties. Analyses are generally paired with experiments to validate
model predictions. Kobayashi [1] wrote one of the earliest such articles in 1983. In his paper, the author
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designated the methodology as a hybrid experimental-computational approach. As he noted, the
concept had been around since the mid-century but became more popular in the 1970 s with increasing
computer speeds and improved numerical analysis software. This was particularly true in experimental
mechanics. As noted by Kobayashi, growth of the full-field moire’ method provided investigators with
the ability to measure interior and boundary displacements on nominally planar specimens during
mechanical loading. The boundary measurements could then be used as input in the hybrid approach
to more accurately predict specimen response in real-world applications. McNeill et al. [2] followed
this work by developing boundary element software, performing baseline studies applying boundary
displacements with Gaussian noise. The least squares approach was used to quantify the effect of
noise on boundary and interior stress predictions. Their results indicated that interior stresses at least
five boundary element lengths from the boundary were predicted accurately. In the new millennium,
investigators [3] used a hybrid experimental-numerical procedure with a twist. In their studies, the
authors extracted a three-dimensional sub-region around a crack to perform sub-region FE analysis.
Using a rigid normal assumption to determine deformations on the back surface while measuring
data only on the front surface using stereo imaging and StereoDIC for image analysis, the authors
smoothed the measured boundary displacements for input to the FE program. Results from the studies
demonstrated excellent agreement between FE predictions and measurements on both the sub-region
boundary and at interior points, provided that (a) measurement locations and FE nodes where data
is input are at the same spatial positions and (b) material properties are accurately estimated prior to
performing the simulations.

İplikçioğlu et al. [4] performed studies with dental implants, comparing non-linear FE predictions
of vertical and transverse strains to strain gage measurements bonded to an implant-abutment
complex that was loaded vertically and transversely. Noting that the predicted “averaged strains”
under transverse loading did not agree with gage measurements, the authors indicated this was most
likely due to factors such as geometric or material property differences. In a more recent study, the
authors [5] used both strain gages and DIC to measure strains on a welded specimen undergoing
3-point bending. Though the gage and local DIC results agreed, FE predictions did not agree with
the measurements, the authors noting several factors including (a) geometric differences in the actual
weldment geometry vs. the model rendition and (b) the material properties used in the simulations
which did not include variations expected in the weld. As part of his work with the Indian Space Center,
Pany [6] performed FE and membrane theory analysis for a thin-wall pressure vessel and compared
predictions to a single strain gage measurement. Noting that the predicted hoop strains deviated from
the strain gauge measurement, the author measured the profile of the as-manufactured shape of the
cylindrical shell in the region where the strain gauge was mounted. Using the updated shape, the FE
prediction of the hoop strain using the modified geometry was shown to be closer to the hoop strain
measurement, with the modified shape introducing bending stresses/strains that were not included in
previous FE and membrane theory predictions. In a related study, Pany [7] again combined strain gage
measurements with FE simulations for a tank containing a long seam joint.

An elegant theoretical development involving both DIC measurements and FE simulations was
proposed [8]. In their work, the authors consider the measured displacement fields as inherently a
function of the underlying constitutive formulation. Since DIC measures the total displacement, and
thus includes rigid body motions, elastic components, and plastic components, the authors proposed
the use of an anelastic (time dependent) component to define an auxiliary problem to be solved so that
the constitutive properties could be determined in each region. Conceptually complex, the authors
developed their own software and used it to demonstrate the procedure with simulated nodal data for
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several 2D problems, concluding that the overall approach for determining local properties, and hence
local stresses, is effective.

In another related study, the authors [9] used 2D-DIC to measure surface displacement fields
on uniaxial tension and simple shear specimens, performing FE simulations for comparison to the
measurements. Through differentiation of the measured displacements, the authors estimated the
in-plane strains and used an elasto-plastic material model with independently determined material
properties to predict the applied forces. The authors then indicated their FE model estimates for
the applied boundary forces deviated substantially from the measured forces, while the measured
forces were in good agreement with values estimated using only the DIC measurements and material
properties.

To determine whether high magnification imaging could be used with 2D-DIC to estimate residual
stresses during hole drilling, investigators [10] developed a method to correct 2D-DIC measurements
for the effects of rigid body camera motion that occurred during the hole drilling process. Using
established theoretical relationships between the changes in measured displacement and the residual
stresses that are released during hole drilling, the authors indicated that stress errors on the order of
7% were obtained from one experiment, though no pointwise comparisons of 2D-DIC measurements
and full-field model predictions were shown. A previous study related to this was performed by
Torabi et al. [11] using 2D-DIC to obtain in-plane surface displacements in the vicinity of a V-
shaped notch. Showing global contours of measured full-field displacements and FE predictions
of displacements, the authors used least squares to optimally determine parameters in an analytic
solution in the vicinity of the notch, indicating that good agreement was obtained. However, no
pointwise comparisons of the FE and experimental data were shown.

He et al. [12] manufactured a cube specimen that is 50% aggregate and 50% mortar, subjecting the
specimen to compressive loading. Using a scanning electron microscope to acquire high magnification
images and 2D-DIC to analyze the images, the authors obtained the compressive strain field. For
their uniaxial compressive loading case, the authors combined the compressive strain measurements
with uniaxial stress metrics to estimate the evolution of compressive modulus as one moves from the
interface into the mortar.

To assess the accuracy of 2D-DIC measurements for planar specimens, investigators [13] per-
formed both tensile experiments and FE simulations on planar specimens with a range of geometric
cutouts. By globally comparing strain contours obtained by FE simulations and 2D-DIC measure-
ments, the authors concluded that there was “fairly good” agreement between the predictions and
FE simulations, though no pointwise comparisons were shown. In addition, the authors computed
the local stress concentration factor, Kt, and fatigue factor, Kf, near the cutouts for their material
system using 2D-DIC results and FE simulations, concluding that the theoretical models did not
agree with the 2D-DIC based results for Kt. Careful inspection of the FE and 2D-DIC strain fields
near the cutouts where Kt was estimated clearly show significant differences near the notches that are
most likely the reason for the observed differences, though no pointwise comparisons were shown to
quantify the differences.

Yasmeen et al. [14] performed a series of tension and torsion experiments on precision machined,
thin-walled aluminum specimens extracted at different angles from a rolled plate, with surface strains
obtained using StereoDIC. Employing both an isotropic yield criterion [15] and a six-parameter
anisotropic yield criterion [16], the authors compared the measured and predicted average total surface
shear strain vs. average surface shear stress, with experimental data in good agreement with Barlat
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model predictions (+/−5%) but with larger differences when using the von Mises model (up to 25%
difference).

In the enclosed work, the authors present a complete field comparison procedure developed to
co-register FEA predictions and experimental data at the same spatial positions throughout a region
of interest, providing a direct way to assess the level of agreement at each spatial location. The authors
demonstrate the methodology using a nominally planar, double edge notched (DEN) aluminum spec-
imen that is subjected to far-field tensile loads, showing the importance of the pointwise comparison
procedure for accurate assessment of model and experimental agreement. Sections 2.1–2.3 detail the
field comparison and interpolation methodologies developed for field comparison of predictions and
measurements at the same spatial locations. Sections 3.1–3.7 describe the experimental studies and
the StereoDIC method used to obtain full-field displacements and strains, showing full-field strains at
selected load levels in Section 3.8. Sections 4.1 and 4.2 describe the FE model. Section 4.3 details the
von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion (HAY) [17] used in
this study. Sections 5.1 and 5.2 present results from the computational studies along with comparisons
of StereoDIC experimental measurements to full-field FE predictions using the von Mises and HAY
criteria, respectively. To highlight the importance of point-by-point comparisons when assessing the
level of agreement between measurements and predictions, line plots comparing FE predictions and
StereoDIC measurements of the strains εxx and εyy are also shown in Section 5.1. When using the HAY
criterion, Section 5.3 compares FE stress predictions to StereoDIC measurement-based stresses at all
points on the specimen, and Section 5.4 compares notch tip parameters obtained using both FE stress
predictions to StereoDIC measurement-based stresses. Section 6 provides a discussion of the findings.
Section 7 briefly describes the potential long-term implications and Section 8 highlights conclusions
for the work.

2 Field Comparison Procedures

Conceptually, there are three ways in which the measurements and predictions can be compared
at common spatial locations.

(a) Transform data at measurement locations into values at FE nodal locations.

(b) Transform both experimental data and model predictions into values at pre-specified locations
using a specific coordinate system.

(c) Transform model predictions at nodal points into predictions at measurement locations.

The transformation in (a) is useful when importing measurements to an FE code and performing
a form of hybrid analysis such as the ones noted in [1,2,5] that use experimental data in the
solution process. The transformation in (b) is important in applications where data is needed (b-1)
at specific locations that may not coincide with FE nodes or (b-2) in a specific coordinate system (e.g.,
uniform Cartesian mesh, cylindrical coordinate system) for comparison to a theoretical construct. The
transformation in (c) is the one described in the enclosed study and discussed in detail in Sections 2.1–
2.3.

2.1 Methodology for Point-by-Point Comparison of FE Predictions and Experimental Measurements
at the Same Spatial Locations

A flowchart for the methodology developed by the authors to obtain point-by-point field
comparisons of the measurements and FE predictions at the same spatial locations in the measurement
coordinate system and quantitatively assess the level of agreement is shown schematically in Fig. 1. As



CMES, 2024, vol.140, no.2 1269

shown in Fig. 1, there are several steps in the field comparison process. For interpolation purposes,
the authors developed algorithms to identify the FE model surface corresponding to the StereoDIC
measurement. Using the scripting interface within ANSYS and ABAQUS, which provides direct
access to the solution environment, the element faces on the FE surface are converted into triangular
elements, as some elements may contain quadrilateral faces. During this process, the authors retrieved
mesh information (i.e., nodal locations, mesh connectivity and coordinate system) and computational
results including displacements, strains, and stresses for future interpolation.

Figure 1: Flowchart for full-field transformation of model predictions at nodal points into model
predictions at measurement locations for direct, point-by-point comparison

After triangularization of the mesh and extraction of the computational results, the information is
then output as a VTK polydata object and stored as a .vtp file. Since external Python libraries are not
accessible within either the ABAQUS or ANSYS scripting interfaces, the .vtp file is manually written
in an appropriate XML syntax structure as specified within VTK documentation. After conversion to
the .vtp format, VTK interpreters access details such as nodes, element connectivity, field variables,
etc., for rendering and data processing purposes.

To convert the model coordinate system into the measurement coordinate system, feature iden-
tification algorithms are used to match selected model positions with corresponding measurement
locations and obtain the required rigid body translation and rotations. Next, rigid body motions
are used to convert all nodal locations and data (e.g., strains, displacements) into the measurement
coordinate system. In the final steps, a combination of algorithms is used with the triangular mesh and
barycentric coordinates to obtain FE data at all measurement locations for comparison at the same
spatial positions. Details for the coordinate transformation process that underpins the field comparison
process are given in Section 2.2.

2.2 Coordinate Transformation
As shown in Fig. 1, the coordinate transformation between the model system and the measure-

ment system is an integral part of the comparison process. There are several approaches that can be
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used to transform the model coordinate system into the measurement coordinate system, or vice versa.
A few of the common approaches are discussed in the following sections, with some of the approaches
readily adapted to allow manual user determination and adjustment of transformation parameters.

2.2.1 Feature Extraction and Identification

To obtain the 3D position of a point/feature on the physical specimen that is in correspondence
with a model location, a common approach is to identify the point/feature visually in both stereo
images. For specimens with existing features (e.g., corners, notches, interfaces), identifying the pixel
locations of the common feature in both cameras in a stereovision system is sufficient to obtain the
three-dimensional position when using a calibrated stereovision system; additional details for a typical
two-camera stereovision system are provided in Section 3.5. After determining the metric translation
required to transform the corresponding feature location in the model into the measurement system,
the process is repeated for several non-colinear points in both the measurement and model systems
and used to define the components of rigid body rotation between the two systems. Since there are
inevitable inaccuracies when determining the position of a feature in an image (typical estimates are
+/−1 pixel in each image plane), using multiple features to define an optimal rigid body rotation matrix
is recommended. Once the rigid body translation vector and rotation matrix are determined, all model
locations are transformed into the measurement coordinate system, as discussed in Section 2.3.1.

2.2.2 Surface Markers

For applications where natural surface features are not present, the application of surface markers
is another option. Typically, circular markers are placed on the specimen surface to take advantage
of their natural symmetry and optimally determine the pixel location of the marker center in both
cameras. Once the marker locations are identified in both stereo cameras, the remainder of the process
to define the Transformation between coordinate systems is the same as outlined in the previous
section, with placement of multiple markers improving accuracy of the transformation parameters.

2.2.3 Point Clouds

A more sophisticated approach utilizes concepts from the computer vision and computer graphics
communities to co-register related, transformed, data sets. In this approach, the 3D nodal data from
the FE model is output. For approximately the same spatial region as the FE model, the 3D StereoDIC
data is output. Conceptually, the two sets of 3D data can be viewed as point clouds in different
coordinate systems. To “align” or co-register the two data sets, both a rigid body translation vector
and a rigid body rotation matrix must be determined.

A common approach to co-register two data sets utilizes the Open3D Python library of programs,
as was used in this study. If the coordinate systems are not in rough alignment, which is oftentimes
the case since model development may be performed independently, one of the data sets is selected as
the reference (or destination) coordinate system and an initial alignment process is performed using a
global registration algorithm. In this study, the authors used a Fast Point Feature Histogram (FPFH)
algorithm. Once initial estimates for the rigid body parameters are obtained, a local refinement
algorithm is used to optimally transform and improve the initial optimal estimates for both rigid body
translation and rotation. In this work, an Iterative Closest Point (ICP) algorithm is employed.

Before proceeding, it is worthwhile to note that point cloud methods are not appropriate in all
cases since, in some cases, there is no defined or visible correspondence between points in the two
sets of data. Examples where the method is not recommended include planar and spherical data sets
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without known correspondence, as well as any data sets where symmetry may result in non-uniqueness
in the rigid body motion parameters. In such cases, a hybrid target-point cloud methodology may be
appropriate to ensure uniqueness.

2.3 Determining Field Data for Model and Measurement Systems at Common Spatial Locations
Once rigid body transformation from the model coordinate system to the measurement coordinate

system is determined using any of the approaches described in Section 2.2, it is necessary to (a) use the
rigid body transformation to convert model coordinates and output variables into the measurement
coordinate system and (b) obtain model predictions at the same spatial locations as the measurements.
As shown in Fig. 1 and discussed briefly in Section 2, this process requires several steps, with the
implementation used in this study described in detail in this section.

First, the FE nodal locations and predicted variables (e.g., displacements, strains, stresses) are
output from the model software in the model coordinate system; in this work, the model software is
ANSYS. To convert the ANSYS model output into a format that is easily interpolated, Python script is
written for ANSYS to convert the model’s front surface nodal locations, which correspond to locations
on the surface where measurements are obtained, into a triangular mesh.

Since an FE mesh may have a variety of different element types, some of which have quadrilateral
faces such as the ones present on the SOLID186 element used in this study, software is required to
perform the conversion to a triangular mesh for all nodes on the surface where measurements are
acquired. As shown in Fig. 2a, the quadrilateral front face of the element is crosshatched, highlighted
in green, and bounded by nodes 1, 2, 5, 6, 9, 13, 17, 18. Using the corner and side mid-nodes as vertices,
the face is subdivided into six triangular elements as shown in Fig. 2b. The mesh conversion procedure
is automated through Python extensions that were specifically written for ANSYS: similar conversions
were also written for ABAQUS.

(a) (b)

Figure 2: (a) Schematic of 20-node hexahedral element, (b) Schematic of the front quadrilateral face
subdivided into six triangular faces. Front surface of 3D element corresponding to measurement
surface is cross-hatched and shown in (b)

The converted triangular mesh is subsequently written as a VTK PolyData surface and stored in
VTP file format. Since external Python libraries, such as the VTK library, are not accessible within
the scripting interface of ANSYS or ABAQUS, the VTP files are manually written in the appropriate
XML syntax. To process the measurement data, the ∗. OUT file from VIC-3D [18] is interpreted using
VicPy.
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2.3.1 Transformation of Model Positions and Output into Measurement System

Once the rigid body transformation from model system to measurement system is determined
through common feature identification in both the model and physical specimen, and both measure-
ment and field data are available, model nodal coordinates and model output variables are transformed
into the reference measurement coordinate system. Consistent with continuum concepts [19], the
transformation of model variables into the measurement coordinate system using the optimally
determined rotation matrix, [R], and translation vector, {t}, can be written in index notation as follows:

ri = rimod + ti (1a)

riexp = Rij · rj (1b)

uiexp = Rij · ujmod (2)

εijexp = [Rik]T · εklmod · Rlj (3)

where Rij denotes components of the orthonormal rotation matrix transforming the model system
into the measurement system, ti are components of the translation of model system origin to the
measurement system origin, ‘exp’ denotes the transformed model data in the reference experimental
measurement system, ‘mod’ denotes values in the model coordinate system, ui denotes three compo-
nents of the displacement vector, and εij denotes components of the strain tensor. In Eqs. (1b)–(3),
the summation convention on repeated indices is used. Since Eq. (2) is applicable to any vector output
variable (e.g., velocity and acceleration) and Eq. (3) is applicable to similar 2nd order tensor quantities
(e.g., gradients of displacement, ∂ui/∂xj), the same algorithms can be used for any vector or 2nd order
tensor quantity defined in the model coordinate system.

2.3.2 Interpolation of Model Data to Measurement Locations

Once the two coordinate systems have been aligned and the model data (nodal positions, all model
output variables) are transformed into the measurement coordinate system, an additional Python
script is executed to (a) assemble each node of the triangulated finite element mesh into a K-D tree,
(b) loop over each point in the DIC dataset and query the K-D tree to identify at least six nodes
within the finite element mesh that are closest to the current DIC point, (c) identify each triangular
element connected to those nodes, (d) project the measurement location into each connected element,
(e) determine which triangle the point falls within and (f) interpolate the model’s triangular mesh
with barycentric coordinates using the procedure given in Appendix A to obtain field data at the same
location as the DIC measurements. Using this process for interpolation, finite element data is accessible
at every spatial location in the DIC dataset where the two data sets overlap.

3 Experiments

To validate the concepts described above, experiments were performed multiple times with
essentially identical results; the average results at each point are reported in this study. The material,
specimen geometries, loading process, details for the non-contacting stereovision system, StereoDIC
parameters, along with a flowchart for the process employed to convert stereovision images into full
field displacements and strains, are given in this section.

3.1 Specimen Geometries
All specimens were extracted from a 4.76 mm thick, hot rolled Al6061-T6 aluminum sheet, with the

rolling direction aligned with the tensile loading direction. The geometry for both the dog-bone tension



CMES, 2024, vol.140, no.2 1273

specimens and the double edge-notched (DEN) specimens are shown in Figs. 3a and 3b, respectively.
Each edge notch is machined as a semi-circular cutout with 20 mm diameter and a center-to-center
distance between cutouts of 40 mm. Machining of the specimens was performed with a tolerance of
0.0254 mm. The mean dimensions are used in all simulations.

Figure 3: (a) Geometry of tensile specimen; (b) Geometry of double edge-notched specimen. All
specimen thicknesses are 4.76 mm

3.2 Material Properties
To obtain uniaxial stress-strain data, two Al6061-T6 tensile specimens with geometries shown

in Fig. 3a are subjected to tensile loading in an electromechanical MTS 810 test frame that has a
maximum loading capacity of 250 kN. Clamp grips are used at the top and bottom to distribute the
load more evenly across the specimen width. Average strain data is obtained using (a) a center-mounted
strain gage rosette and (b) an MTS extensometer with a gage length of 25.4 mm attached to the gage
section. Fig. 4 shows the average true stress-average true strain data for the material, with engineering
axial strain, εaxial, converted to true strain, εtrue, using εtrue = ln (1 + εaxial) and engineering stress, σ engr

converted to true stress, σ true, using the following formula σ true = σ engr (1 + εaxial). As shown in Fig. 4,
Al6061-T6 is approximately bi-linear with a Young’s modulus, E = 71 GPa and a 0.2% offset yield
stress of 290 MPa. Poisson’s ratio obtained from the strain gage rosette is ν = 0.34.

Figure 4: Average uniaxial true stress-true strain data for Al6061-T6
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3.3 Mechanical Loading of Specimens
Like the loading process described for tensile specimens, each DEN specimen is loaded in

tension via displacement control in the electromechanical MTS 810 load frame using clamp grips. A
photograph of the test configuration, including a vertically oriented stereovision system to maximize
image resolution along the specimen length, is shown in Fig. 5. All full-field displacement and strain
data were obtained using stereovision with StereoDIC analysis of the images using VIC-3D software
[18]. Details regarding specimen preparation for imaging, stereovision imaging, and StereoDIC
analysis of the images are given in the following sub-sections.

3.4 Specimen Preparation
To place a high contrast speckle pattern on the specimen surface, the specimen surface is slightly

roughened, cleaned with alcohol, and lightly coated with flat white paint. The speckle pattern is applied
using black ink and a patterned rubber roller [20] with an average speckle size of 0.33 mm. Fig. 5 shows
the specimen after speckle pattern application, along with a close-up image of the speckle pattern.

Figure 5: Experimental test setup including (a) low heat LED light, (b) stereovision system with
cameras on rigid bar rotated 90° to optimize spatial resolution along length, (c) DEN specimen with
speckle pattern, (d) hydraulic clamp grips, (e) MTS 810 electromechanical test frame and (f) tripod
with attachment or rigid bar with camera mounts. Large Inset: DEN specimen with speckle pattern.
Small Inset: Close-up of speckle pattern on specimen

3.5 StereoDIC Principles for Full-Field Deformation Measurements
Since all full-field deformation measurements were obtained using stereo images and the non-

contacting StereoDIC analysis method [21], the measurement method and how it is used to obtain
measurements are described. Fig. 6 shows a schematic of two pinhole cameras that are used to model
the imaging process for a stereovision system used with StereoDIC to measure the three-dimensional
shape and deformation of a component. As shown in Fig. 6, a small region surrounding each spatial
location, Q, is imaged by two cameras with pinhole locations P1 and P2, respectively. By applying a
random pattern to the specimen, matching of the local patterns recorded by camera 1 and camera
2 requires an optimal search process in the sensor plane to obtain the pixel coordinates of Q in the
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camera 1 and camera 2 sensor planes. To convert the optimally matched sensor locations in camera
1 and camera 2 into the three-dimensional coordinates of Q, the pinhole model parameters for each
camera must be determined as accurately as possible. Typical parameters for a pinhole camera model
are (a) the focal length, f, (b) the location in pixels of the sensor plane center, (Cx, Cy), (c) the scale
factor, λ, converting sensor coordinates into metric units (not shown in Fig. 6), (d) translation vector
between global system and each pinhole, (e) orientation of each camera coordinate system relative to
the global system which has three independent angles (not shown in Fig. 6) and (f) correction factors
to account for deviations of the actual camera imaging process from the assumed pinhole model. A
common image correction is for radial distortion due to deviation of the lens geometry from an ideal
spherical lens shape. In this work, the correction terms are κ1 r3 and κ2 r5, where r is measured from
the sensor plane center located at (Cx, Cy).

Global coordinate
system

X

Y

Z

Camera 1 
coordinate system

1 
y1

x1

z1 Camera 2 
coordinate system

y2

x2

z2

Figure 6: Schematic of a two-camera stereovision system individually modeled as pinhole cameras with
pinholes P1 and P2

Finally, once each camera’s position and orientation relative to the global system are known, the
position of the camera 2 system relative to the camera 1 system (e.g., baseline vector shown in Fig. 6)
with components (Tx, Ty, Tz), and the relative orientation of camera 2 with respect to the camera 1
system are calculated, which again has three independent angles (α, β, γ ). To obtain the required
camera parameters, a calibration process is performed as discussed in the following section.

3.6 Camera Calibration Procedure and Parameter Estimates
To perform camera calibration, the authors acquired synchronized stereo images of a 14 × 10 array

of 10 mm white dots on a rigid black calibration target for a range of three-dimensional rotations and
translations. In this study, 35 image pairs of rotated and translated target images are acquired and
a bundle adjustment procedure using VIC-3D Versions 9 and 10 (with Iris) software [18] is used to
perform the optimal camera parameter estimation process. The resulting calibration parameters for
both cameras are given in Table 1, including parameters for the transformation from camera 1 to
camera 2 pinhole coordinate system.
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Table 1: Calibrated stereovision parameters

Intrinsic Extrinsic

Parameters Camera 1 Camera 2 Parameters

Cx (pixels) 1094.5 1093.92 α (deg) −25.1632
Cy (pixels) 2010.17 2031.97 β (deg) 0.187521
fx (pixels) 7023.69 7059.56 γ (deg) 179.896
fy (pixels) 7023.69 7059.56 Tx (mm) 1.85377
κ1 (pixels−2) −0.21089 −0.218975 Ty (mm) 166.913
κ2 (pixels−4) 1.04587 1.1586 Tz (mm) 37.0298

Fig. 7 presents an overview of the process used to convert synchronized stereovision images into
full-field surface positions, displacements, and strains. To obtain baseline estimates for variability
in strain and displacement measurements, the procedure outlined in Fig. 7 is used to compare four
pairs of synchronized stereo images that were obtained prior to mechanical loading. Table 2 shows the
measured variability and mean values for the displacements and strains when using a 45 × 45 subset
and a 5-pixel subset spacing. As shown in Table 2, the mean strains are near zero with all standard
deviations less than 125 με throughout the entire specimen.1

Figure 7: Overview of the main steps to obtain 3D surface position, displacement and strain field
measurements using stereo images and StereoDIC with VIC-3D for image analysis

1When a specimen surface is modified to include a random, high contrast pattern, optimal matching of the common specimen region imaged by both cameras is sufficient
to ensure that surface shape can be measured without incurring “ill-posedness” in the process. The main requirements are (a) sufficient contrast in the random pattern to
accurately match the patterns in the stereo image pair and (b) sufficient density of the random pattern to ensure that there are sufficient StereoDIC measurements in a region
to elucidate important local shape changes.
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Table 2: Baseline mean values and variability in VIC-3D StereoDIC displacements and strains

Variable Mean Median Std. dev.

U (mm) −4.63E-05 −9.111E-05 27.61E-05
V (mm) 2.48E-05 −2.15E-06 30.73E-05
W (mm) −49.07E-05 −42.24E-05 115.72E-05
εxx −4.09E-05 −5.01E-05 9.84E-05
εyy −1.65E-05 −3.87E-05 12.07E-05
εxy −3.18E-05 −3.82E-05 7.40E-05

3.7 Stereovision System and Image Acquisition for Experimental Measurements
StereoDIC image analysis parameters and details for the Basler Ace cameras used in the

experiments to obtain measurements from the speckle pattern images shown in Fig. 6 are given in
Table 3. As shown in Table 3, each speckle is imaged by a 6 × 6 pixel2 area, which is more than the
minimum required for accurate StereoDIC displacement and strain measurements [21]. During the
loading process, synchronized stereo image pairs are acquired every 0.5 s using VIC-Snap software
[22] as the specimen is subjected to a displacement rate of 0.06 mm/s. Testing continued until the
initial cracking of the tensile specimen was observed. In this study, a total of 40 image pairs obtained
during the first 20 s of testing were used to obtain full-field displacements and strains.

Table 3: StereoDIC and camera specifications

Subset size 45 × 45 pixels
Step size 5 pixels
Subset weighting Center-weighted Gaussian
Strain filter size 9 × 9 data points (area of 45 × 45 pixels2)
Camera 9 MP Basler Ace (acA4096-40 um)
Average speckle size (mm) 0.33
Digital magnification (pixels/mm on object) 19.74

3.8 Measured Surface Strain Fields
For the 170 mm by 40 mm surface area on the DEN specimen shown in Fig. 5, over 100,000

deformation measurements are obtained using StereoDIC software VIC-3D, with a spacing of
0.25 mm between each data point. Due to the density of the measurements, most of the results are
shown as full-field plots. Fig. 8 presents the measured full-field total strains εxx, εyy and εxy on the
DEN specimen surface for tensile loading P = 8.3 kN, 18.3 kN, 30.5 kN and 35.1 kN. As shown in
Fig. 8, all strains are relatively small when P ≤ 18.3 kN, with indistinct strain variations around the
notches. For P > 18.3 kN, variations in strain around the notch tips and between the two notches are
clearly visible, with εyy reaching its maximum at the notch tips for P = 35.1 kN.
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Figure 8: StereoDIC strain measurements for four tensile loads

4 Simulation Details

For comparison to experimental measurements, all calculations are obtained using commercial
software, ANSYS [23], with theoretical details for the isotropic von Mises yield criterion and Hill’s
anisotropic quadratic yield (HAY) criterion given in the following sub-sections. In order to define
the linear elastic material response range, input material properties include the modulus of elasticity,
Poisson’s ratio, and yield stress obtained from the uniaxial experiments performed by the authors, as
described in Section 3.2. For stress states beyond the yield stress, the effective stress (i.e., the applied
stress for the uniaxial specimen) and the uniaxial plastic strain are input into ANSYS at several points
along the measured stress-strain curve, with linear interpolation used within the software to define
stress-strain states between data points.

4.1 FE Mesh Convergence
Fig. 9 shows the FE model for the DEN specimen. To ensure accuracy of model predictions,

a mesh convergence study was conducted for three different structured hexahedral meshes labeled
Mesh 1, Mesh 2 and Mesh 3 in Table 4 by applying the largest load, P = 35.1 kN. The meshes
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contained 102,503, 179,572 and 305,319 nodes and 19,980, 35,200 and 63,200 20-node quadratic
(ANSYS SOLID186) elements, respectively. As shown in the graphic attached to Table 4, results are
obtained at five nodes, including nodes at both notch tips. Defining the percent change in total strain,
εT, as a function of mesh density by �E12 and �E23 for meshes 1, 2 and 3, we can write:

ΔE12 = 100
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T − ε1
T

∣∣∣∣ε1
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with εT defined as the sum of the effective elastic strain and effective plastic strain as follows:
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Results for �E12 and �E23 at five nodal locations are shown in Table 4. Since there is less than a
1% change in εT at all nodes for Meshes 2 and 3, in this study, Mesh 2 was used in all simulations.

(b)

(a)

U, V, W

U, V

30mm

30mm

DIC 
Area
of
Interest

FEA
Mesh

Figure 9: (a) FEA mesh with the imposed boundary conditions of U, V (green area) and U, V, W
(yellow line) displacements on the top and bottom of the specimen, (b) specimen geometry and DIC
area of interest (red) within the FEA model
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Table 4: Mesh convergence results

Equivalent total strain predictions % Difference

Node Mesh 1 Mesh 2 Mesh 3 �E12 �E23

� 0.0487580 0.0479840 0.0476000 1.59 0.80
� 0.0442750 0.0435410 0.0431960 1.60 0.79
O 0.0027108 0.0026461 0.0026441 2.39 0.08
X 0.0067355 0.0067147 0.0067084 0.31 0.09
+ 0.0026656 0.0027387 0.0027375 2.74 0.04

4.2 FE Model and Boundary Conditions
Regarding boundary conditions at the top and bottom of the FE model shown in Fig. 9, personal

experiences of the authors with clamping grips suggest that specimen boundary conditions in the grips
are difficult to quantify; clamping pressure variations across the width, the potential for specimen
slippage and slight in-plane rotation of the specimen during gripping is high and has been observed
in previous experiments [24], none of which can be represented by idealized gripping conditions. As
shown schematically in Fig. 9, to account for such effects the authors selected a slightly reduced
specimen length so that StereoDIC measurements could be obtained at the top and bottom of the
specimen and applied as FE boundary conditions. Specifically, the following are the displacements
that were applied for all simulations:

• Measured (U, V, W) displacements along two horizontal yellow lines spanning the specimen
width at the top and bottom of the specimen are applied in the (x, y, z) directions, respectively,
for each applied load level.

• Measured (U, V) displacements on the front surface are applied to all nodes through the
thickness on the top and bottom of the specimen for each applied load.

• Integration of σ yy on the top and bottom surfaces was performed to confirm the axial load
corresponded to the load cell measurement.

• W displacements are not applied to nodes on the back surface.

Since loads are recorded every 0.5 s in correspondence to the experimental image acquisition rate,
the measured displacements along the yellow lines are used as boundary conditions for each load step.
Large-deformation effects are enabled in the analysis, though this option is not required since loading
was terminated when the first crack was observed, and the strains are not large.

In addition to the displacement boundary conditions at the top and bottom of the specimen,
additional boundary conditions for the model include traction-free conditions on the front, back,
sides and notch surfaces in regions away from grips.

4.3 Material Properties and Plastic Flow
Since hot rolling may affect the response of the aluminum specimen during mechanical loading,

the authors used both isotropic and anisotropic yield criteria in the FE simulations. For applications
where the material responds isotropically during mechanical loading, the von Mises yield criterion [15]
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is one of the most used yield criteria. The von Mises yield criterion is independent of the first stress
invariant or the hydrostatic component of stress at a point. As such, it is applicable for the analysis of
plastic deformation in ductile materials (e.g., metals) since the onset of yield for these materials does
not depend on the hydrostatic component of the stress tensor.

For applications where anisotropy in material response is present (e.g., sheet metal forming), four
of the commonly used anisotropic yield criteria are the original Hill’s quadratic yield criterion [17], a
modified Hill criterion developed decades later [25], the criterion of Barlat et al. [26] and a criterion
developed by Banabic et al. [27,28]. The original Hill criterion stands out due to its simplicity, user-
friendliness and the fact that only four parameters are required to predict yielding behavior. Though
the other criteria have advantages when predicting response under a variety of loading conditions,
they require a larger number of experimentally determined parameters, which is both expensive and
time-consuming for a wide range of loading conditions. An additional concern is the availability
of computational platforms capable of using various criteria in simulations. Typically, the original
quadratic Hill criterion is available for simulations in FE codes such as Abaqus and Ansys, while
implementation of others may require substantial time and expense to independently develop, validate
and then incorporate as user subroutines within an FE code. In this work, the von Mises yield criterion
and original HAY criterion are used to model the response of the Al6061-T6 specimen.

4.3.1 Von Mises Isotropic Yield Criterion

The von Mises yield criterion is a rate-independent, multilinear plasticity model. In this study,
the authors used an associated flow rule and an isotropic hardening rule [21]. The von Mises yield
criterion in terms of the effective stress is defined as follows [14,15]:
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√
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2 + σ31
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where σe = equivalent stress, σy = yield stress and σ ij is the stress tensor with i = 1, 2, 3 corresponding
to directions X, Y, Z, respectively. The uniaxial true stress-true strain data shown in Fig. 4 is used in
the simulations. The onset of plastic deformation is determined using Eq. (6) and an associated flow
rule defining the direction of incremental plastic strain. The increments in plastic strain can be written
in the following form [14]:

dεp
ij = d

∂�

∂σij

(7)

where dε
p
ij = plastic strain component,  = plastic multiplier and � = plastic potential. For an

associated flow rule, the plastic potential is the yield function, with plastic strains occurring normal
to the yield surface.

4.3.2 Hill’s Quadratic Anisotropic Yield Criterion (HAY)

The HAY criterion [17,23] is a quadratic function of normal stress differences and shear stresses
but is not a function of pressure. The form used in these simulations can be written as follows in a
coordinate system aligned with the anisotropy coordinate system.√

F (σ22 − σ33)
2 + G (σ33 − σ11)
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2 + 2Lσ23

2 + 2Mσ31
2 + 2Nσ12

2 = σy (8)

where the coefficients F, G, H, L, M, N in Eq. (8) are six parameters that each the ratio of the yield stress
for each of the six stress components to the uniaxial yield stress obtained from the tension experiment,
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as shown in Eq. (9).
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The stress ratios or directional yield stress ratios, RSij, in Eq. (9) are user-input parameters related
to the isotropic yield stress parameter and are written as follows:
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where σ y is the uniaxial yield stress along the length of the specimen (corresponds to σ yy stress
component, with the response shown in Fig. 4). When the directional yield stress ratios are equal to 1,
the HAY criterion reduces to the von Mises yield criterion in Eq. (6).

5 Comparison of Co-Registered FE Predictions and Experimental Measurements at Same Spatial
Locations

Comparison of the FE predictions and experimental measurements using both the von Mises and
anisotropic Hill’s yield criteria are presented in the following sub-sections, with results showing the
importance of comparing measurements and predictions at the same spatial locations.
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5.1 FE Strain Field Predictions Using Von Mises Yield Criterion and Comparison to Measurements
Fig. 10 presents the FE strain field predictions for axial loads of 8.3, 18.3, 30.5 and 35.1 kN. A

visual comparison of the full-field experimental results in Fig. 8 to the predictions in Fig. 10 suggests
there is very good agreement of measurements and predictions, especially in the high strain regions
near the cutouts. Though visually consistent, and a form commonly used by investigators to indicate
model agreement with experimental measurements, in fact, this type of visual comparison is not a
pointwise quantitative indicator. To provide quantitative comparisons, one must analyze point-by-
point comparisons of the measured and predicted quantities at the same spatial positions. In this regard,
closer visual inspection of Figs. 8 and 10 indicates that there are strain differences as large as 0.006 in
regions near the notch tips where the highest stresses and strains occur. These localized regions of
higher differences suggest there is an underlying reason for higher strain differences as the tensile load
increases.

�xx

�yy

35.1kN30.5kN8.3kN 18.3kN

-0.02 0.04

-0.02 0.04

-0.02 0.04�xy

Figure 10: FE results using von Mises yield criterion for four tensile loads

To clearly show the differences between FE and StereoDIC measurements at the same spatial
positions everywhere in the specimen, the FE and StereoDIC measurements are co-registered using
the procedures outlined in Section 2. Fig. 11 shows line plots of the difference between FE predictions
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and StereoDIC measurements for (a) εxx and (b) εyy at various load levels along a horizontal line at
the centerline of the bottom notch that starts at node � shown in Table 4. As shown in Fig. 11, the
strain differences between the FE predictions and StereoDIC measurements increase when the applied
load exceeds 18 kN and plastic deformations increase in the high stress notch region. Since (a) the
strains are relatively small throughout the experiment, (b) the speckle pattern has high contrast, (c) the
cameras sufficiently oversample the pattern to ensure accurate matching and (d) camera calibration
was performed successfully and with low variability throughout the DEN specimen with standard
deviation for all in-plane strain components less than 125 με, the differences shown in Fig. 11 are not
due to experimental measurement factors.
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Figure 11: Strain differences, �εij = εij exp – εij mod, at four load levels for (a) εxx and (b) εyy at common
spatial locations along a horizontal line at the center line of the bottom notch using the von Mises
yield criterion

Since the results in Fig. 11 indicate the FE predictions are higher than the StereoDIC measure-
ments, one possibility is the convergent FE mesh with quadratic shape functions near the notch is
capable of more effectively resolving the local strain gradients near the notch than the StereoDIC
measurement system which uses subsets and a strain window that are both 5.76 mm2 and a linear shape
function, resulting in a higher local average value for the predictions. However, this seems at odds with
the fact that the model predictions and measurements are in excellent agreement until the material
undergoes local plastic deformation. To assess the level of agreement between FE and measurements
for all strains throughout the entire specimen, Fig. 12 shows the point-by-point differences between
FE predictions and StereoDIC measurements throughout the specimen. Inspection of Figs. 11 and 12
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confirms that the notch region has the largest strain differences at higher loads for both normal strains
εxx and εyy.

35.1kN18.3kN 30.5kN

-0.02 0.04��xx -0.006 0.006��xx

-0.02 0.042 0��yy

-0.02 0.04��xy -0.006 0.006��xy
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Figure 12: Full-field strain differences, �εij = εij exp – εij mod, at common spatial locations throughout
the region of interest using isotropic plasticity and hardening for three load levels. Here i, j = 1 is the
x-direction and i, j = 2 corresponds to the y-direction

Though the strain differences shown in Figs. 11 and 12 are much smaller than the applied strain
for each load level, it is equally clear that the largest differences occur in the high strain region
near the notch tips where elastic-plastic material behavior is present. Since the Al6061-T6 material
used in the experiments incurred manufacturing deformations during production that could result in
anisotropic response (e.g., yield stresses in length, width and thickness directions may not be equal),
the authors performed FE simulations of the DEN specimen using Hill’s anisotropic quadratic yield
(HAY) criterion which requires estimates for the material parameters in the HAY criterion.

5.2 Parameter Determination and FE Strain Field Predictions Using HAY Criterion and Comparison
to Measurements

As shown in Eqs. (8)–(10), the HAY criterion has six material parameters. Since measurements
are obtained on the relatively thin, nominally planar, traction-free front surface of the DEN specimen
that is being subjected to axial loading, the effects of σ zz, σ xz and σ yz on the surface measurements are
minimal and hence parameters L and M cannot be determined using only the surface measurements
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for the DEN specimen. However, for the nominally plane stress state on the front surface, there is
sufficient variation in the x-y stresses and strains throughout the specimen (see Fig. 7) to optimally
determine F, G, H and N parameters in Eqs. (8), (9), as detailed in the following subsections.

5.2.1 HAY Criterion Parameter Estimation

Since dense sets of full field strain measurements for εxx, εyy and εxy are obtained on the traction-
free front surface of the DEN specimen at several load levels, the author used the measurements and
known loads in an optimization process to quantify four HAY criterion parameters. To initiate the
optimization process, the authors selected an initial set of HAY parameters based on the existing
literature [29–31]. The authors then performed a gradient search process varying F, G, H and N in
Eq. (8) in Hill’s anisotropic yield criterion, performing simulations to extract εxx, εyy and εxy predictions
for point-by-point comparisons of FE predictions and experimental measurements.

By varying one parameter at a time in the FE model and minimizing the difference between the FE
strain predictions and the StereoDIC measurements throughout the specimen for 36 load levels2, the
appropriate direction for future parameter increments is determined and the process continued until
the % change in each parameter is less than 3%. The optimized computational predictions in terms of
stress ratios are RS11 = 1.20, RS22 = 1.00, RS33 = 0.95 and RS12 = 1.15. Using these values in Eq. (9),
the HAY parameters are F = 0.70, G = 0.41, H = 0.30 and N = 1.134.3

As to how well the HAY criterion parameters in this study compare to previous plane stress
studies using Al6061-T6, Table 5 provides a comparison of our optimally estimated parameters to
those obtained in previous studies [30–32].

Table 5: Comparison of current and previous Al6061-T6 studies for HAY parameters

Hill criterion parameter Current study Luo et al. [30] Wagre [31] and Wu et al. [32]

F 0.70 0.61 0.66
G 0.41 0.56 0.48
H 0.30 0.39 0.34
N 1.134 1.29 1.25

5.2.2 FE Strain Field Predictions Using HAY Criterion and Comparison to Measurements

Fig. 13 shows the full-field strain predictions obtained using FE analysis with the HAY criterion
and parameters shown in Table 1.4 Fig. 14 shows the difference between the predictions and exper-
imental measurements in a small area just ahead of the lower notch tip. As shown in the higher
magnification insets in Fig. 14, for all components of strain the maximum differences occur near the
notch tips.

To provide a direct comparison of FE predictions and StereoDIC measurements at a specific
point, the authors selected a small region located just ahead of the notch tip (see the red region in
Fig. 15), the StereoDIC measurements and FE predictions for the transverse strain, εxx, are averaged

2The parameters were varied iteratively to obtain the optimal set of parameters based on minimization of �εij in the entire region of interest. During the optimization
process, the data obtained for the four load levels shown in Figs. 10–12 and none of the data comparing FE and StereoDIC measurements are used in the optimization
process.
3For our nominally plane stress cases, it is common practice to set RS13 and RS23 to either 0 or 1 since these stresses are zero on the front surface and cannot be determined
using free surface strain data. In this study, the authors set RS13 = RS23 = 1.
4The 36 loads used to optimally determine parameters for the HAY criterion did not include the four in Fig. 13.
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over the same area as the DIC subset size (2.28 mm × 2.28 mm). The difference between the spatially
averaged experimental measurements and FE predictions, defined as �εxx = εxx exp – εxx mod, is shown
in Fig. 15 for all load levels. As was noted earlier, for low loads when the notch region remains elastic,
there is virtually no difference between the FE predictions and StereoDIC measurements. However, for
higher loads, as plasticity increases the strain differences are on the order of 300 με, which is a twenty-
fold reduction relative to comparisons using the von Mises yield criterion, clearly demonstrating the
presence of anisotropy in material response.
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Figure 13: ANSYS full field finite results using the HAY criterion and isotropic work hardening

5.3 Comparison of Measurement-Based Stresses to Model Predictions
The point-by-point difference between model predictions and experimental measurements for

strains shown in Fig. 14 was extended to stresses. To obtain full-field stresses from experimental
StereoDIC strain measurements without employing FE modeling, the authors used the HAY criterion
with the experimentally measured strains. To ensure that stresses obtained at the applied loads
are accurate, the authors used (a) 36 full-field measurements of strain that corresponded to load
increments of ∼900 N or smaller and (b) a modified version of the incremental procedure for isotropic
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materials described previously [30] to obtain stresses after each load step using the HAY criterion.
For applied loads of 18.5, 30.5 and 35.1 kN, Fig. 16 shows the point-by-point differences between
StereoDIC measurements-based stresses and FE model predictions.
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Figure 14: Full-field strain differences, �εij = εij exp – εij mod, at common spatial locations throughout
the region of interest using optimized anisotropy yield parameters and isotropic hardening for three
load levels. Here i, j = 1 is the x-direction and i, j = 2 corresponds to the y-direction

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 5 10 15 20 25 30 35

�
�

Load (kN)

von Mises Hill

xx

Figure 15: Differences between computational prediction and experimental measurement of εxx at the
same spatial position in region shown in red near notch tip as function of tension load for von Mises
and Hill’s yield criteria
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Figure 16: Full-field stress difference, given by �σ ij = σ ij exp – σ ij mod, at same spatial locations
throughout the region of interest using optimized anisotropic yield parameters and isotropic hardening
for three load levels. Here i, j = 1 is the x-direction and i, j = 2 corresponds to the y-direction

As shown in Fig. 16, the FE stress predictions and the measurement-based stresses when using the
HAY criterion are in excellent agreement throughout the domain, including the higher stress regions
around the notches. Results show the maximum stress difference is ≤34 MPa throughout the domain,
with these differences occurring in small, isolated regions away from the notch tips.

5.4 Notch Tip Parameters
In the linear elastic regime, the StereoDIC strain measurements can be converted to stresses using

the measured Young’s modulus, E, and Poisson’s ratio, ν. Using the measured strains and the elastic
parameters, stresses at a notch tip can be determined and used to determine parameters such as the
stress concentration factor, Kt, for the axial stress, σ yy, and the associated notch sensitivity factor, q.
Though Kt values for single edge notch specimens exist in the literature [33] and q values for similarly
notched specimens [34], these estimates do not include the interaction of the notches in our DEN
specimen. In this work, a direct comparison of notch tip Kt values obtained using FE simulations and
StereoDIC measurement-based stresses is shown. Since σ yy

far field = P/A and our far-field cross-sectional
area is A = 190.4 × 10−6 m2, using the definition of Kt = σ yy

notch/σ yy
far field, Fig. 17 shows both the FE

and StereoDIC values for Kt at the bottom notch tip vs. σ yy
far field. As shown in Fig. 17, there is very
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good agreement between the measurement-based Kt predictions which range from 4.3 to 5.0 with an
average of ∼4.6, and the FE predictions which range from 4.3 to 4.5 with an average of ∼4.4.
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Figure 17: Kt vs. σ yy
far field at the bottom notch tip using εyy measurements for stresses within the linear

elastic range

Once Kt is determined, the notch sensitivity factor, q, can be estimated. Owolabi et al. [35]
determined the fatigue factor for Al6061, with Kf ≈ 1.76. Using the definition for Kf = 1 + q (Kt

– 1). Fig. 18 shows a direct comparison of q values obtained from FE predictions and StereoDIC
measurements-based values for a range of σ yy

far field stresses. Inspection of Fig. 18 again shows very
good agreement between the FE and StereoDIC measurement-based values for q.
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Figure 18: q vs. σ yy
far field at the bottom notch tip using εyy measurements to obtain stresses within the

linear elastic range

6 Discussion

As noted in [21] and shown in detail by investigators [36], a distinct advantage of the stereovision
method used in this work relative to single camera imaging (such as was used in [2,4,5,8–13]) is the
direct measurement of both surface shape and all three displacement components. This is in contrast
with single camera measurements, where the strains are affected by out-of-plane motions. The use
of stereovision with StereoDIC allows investigators to image complex, non-planar components and
obtain accurate deformation measurements, regardless of the geometry or specimen motions, as long
as the specimen surface remains in focus. To further clarify this issue, inspection of Fig. 15 shows
that StereoDIC strain components in front of the bottom notch are in excellent agreement with FE
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predictions using the HAY criterion. To provide a quantitative metric for the strain errors that occur
if single camera imaging with 2D-DIC is used to obtain the deformations, based on formulae given in
[36], if the camera is placed 1/2 m in front of the specimen and there is a 1/2 mm out of plane displacement
of the object at a point, the normal strains errors are 1 × 10−3 at this point, which is nearly 50% of a
typical yield strain in aluminum and much larger than the strain differences shown in Fig. 13. Since
slight motions are inevitable experimentally, either due to Poisson effects, grip issues, or slight changes
in loading resulting in bending or torsion of the specimen, single camera imaging should be used with
caution.

Inspection of the strain differences in Fig. 14 when using the HAY criterion with an optimally
selected set of model parameters shows that a set of 4 parameters5 can be determined that nearly
eliminates �εxx, substantially reduces �εyy and continues to maintain a small �εxy. These results are
consistent with previous studies [8], though in this work all the HAY criterion parameters are obtained
using subset-based image analysis with StereoDIC for measurements and ANSYS simulations with
gradient-based optimization to minimize the difference between measurements and model predictions.
Furthermore, as shown in the higher magnification inset in Fig. 14, the maximum differences occur
near the notch tips and are on the order of 300 με or smaller for all three strain components. In
this regard, though Table 1 indicates reasonably good agreement with our parameter estimates and
previous studies for nominally plane stress applications, the range of stress states in the DEN specimen
is limited to tension dominated conditions. Further investigations, including additional experiments
for a range of specimen orientations and loading conditions, would be needed to improve confidence
in the predicted HAY criterion parameters while also providing data to determine parameters L and
M associated with through-thickness shear stresses that are minimal in the DEN specimen.

Regarding the determination of stresses using full-field measurements, for those cases where
nominally plane stress conditions are present, the results in Fig. 16 clearly show that surface StereoDIC
measurements can be used with appropriate material characterization models to obtain full-field
stresses without the necessity for FE modeling and validation. The only requirement when using
StereoDIC measurements with non-linear constitutive property models is to ensure that load steps
where data is obtained are sufficiently small so that stress increments are obtained accurately.

As shown in Figs. 17 and 18, the methodology developed in this study to obtain stresses using
StereoDIC measurements allowed the investigators to obtain estimates for both Kt and q at the notch
tip that are in very good agreement with FE predictions. These findings are somewhat different from
those obtained in previous studies [13] that employed 2D-DIC, most likely because the DIC data did
not agree with the FE predictions at the notch tip.

Finally, in contrast to previous studies that used single-point strain measurement methods, such
as [4,6,7], the enclosed study provides a dense set of measurements to make it easier to identify
regions with higher strains. Identifying such locations is particularly important when comparing
measurements to FE model predictions.

7 Longer-Term Implications and Applicability for Non-Planar and Composite Applications

The demonstrated ability to obtain accurate, full-field deformation measurements and combine
these measurements with existing constitutive models to estimate constitutive model parameters and
obtain full-field stresses without requiring independent computational modeling has the potential to
significantly impact future mechanics of materials studies. The capability can be readily combined

5The two parameters associated with σ xz and σ yz cannot be determined in this case since these stresses are zero on the free surface where data is being obtained. Typically,
these two parameters are either set to zero or to unity, an indication that the loading is nominally a planar state in the x-y plane.
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with measured mechanical loads and prescribed boundary conditions (e.g., traction-free boundaries)
to ensure that measurement-based calculation of stresses is consistent with known conditions. In addi-
tion, the approach can be extended to dynamic applications where displacements, strains, velocities,
and accelerations can be obtained experimentally at discrete time increments.

Conversely, the capability can also be inverted by defining a new FE type structure that can
be combined with prescribed boundary conditions and known mechanical loads to extract a full
field of material properties for a pre-specified constitutive model. Combining the calculated material
properties with measured strains, the entire stress field can be determined, as shown above. A form of
this inverted process has recently been proposed and conclusively demonstrated for one-dimensional
applications by Rajan-Kattil et al. [37].

Regarding broader applicability of the approach to more complex geometries, the method
using stereovision and StereoDIC to acquire dense sets of experimental data can be used with FE
simulations for many structural shapes, including non-planar shapes, provided there is a surface on
the structure where stereo images can be obtained. If the material system is nominally isotropic and
the material properties are known (e.g., many metallic components, polymeric specimens and ceramic
systems), then for surfaces where the pressure is known (e.g., a free surface), the experimental strain
measurements can be used to obtain the entire local surface stress field and then used to compare
with FE model predictions on the same surface. Examples would be (a) curved or flat surfaces of
an aluminum aerostructure, as originally demonstrated by Sutton et al. [38], (b) web and/or flange
regions of an I-beam [39], (c) region around a bolt as the bolted joint is assembled and then again
during mechanical loading of the as-bolted joint [40], (d) mortar joints during mechanical loading or
environmental changes [41], (e) underwater structures with sufficient visibility to observe deformations
[42,43].

Use of the method to obtain pointwise stresses from the StereoDIC measurements can be used
for some anisotropic materials, specifically those where there is minimal coupling between the stresses
on the surface and the through-thickness shear stresses/strains that cannot be readily measured. For
example, if x and y are local tangent vectors at a point on a composite surface, then the strains εxx,
εyy and εxy can be measured. These can be used with FE simulation predictions for the same strains
to assess the level of agreement between FE strain predictions and measurements. However, if the
measured surface strains are to be used to predict surface stress, then the surface stresses must not
be coupled to strains such as εxz which cannot be measured on the x-y surface and would require
additional measurements or independent experiments to quantify.

Finally, given the current interest in machine learning and artificial intelligence for a range of
problems, the ability to obtain dense sets of material property measurements for a broad range of
mechanical loading conditions and specimen geometries seems to be an ideal situation where data sets
can be used for training. As an example, it has been shown on numerous occasions that a first-order
effect of damage in a material is to reduce the local “stiffness” of the material, which would correspond
to reductions in the elastic modulus. By subjecting a specific material to a range of mechanical loading
conditions while measuring the local modulus at discrete load levels, the measured changes in modulus
can be combined with independent measurements of local damage (e.g., visual observations for thin
structures, CT scans for three-dimensional components), using the dense data sets to train an ML
model to identify local damage through correlation with property changes.
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8 Conclusions

Registration and field comparison procedures have been developed, implemented, and successfully
validated to compare full-field measurements and FE predictions at the same spatial locations. To
compare FE predictions to measurements at the same locations, the procedures include (a) conversion
of FE surface discretization into a structured triangular mesh using Python extensions for ease
in interpolation of field quantities at common spatial positions, (b) output of triangular mesh
descriptors (nodes, connectivity, field data at nodes) in a VTP format, (c) conversion of the model
coordinate system into the measurement coordinate system, and (d) development of Python script
with FE predictions and measurement-based results for use with a K-D Tree search process to project
measurement points onto model triangular mesh and identify the appropriate element location to
perform interpolation using barycentric coordinates of all ANSYS field quantities at each common
measurement-model spatial location.6

To demonstrate the approach, a DEN tensile specimen, designed and manufactured using Al
6061-T6, is subjected to far-field tensile loading at a displacement rate of 0.06 mm/s, with full-
field deformation obtained by performing StereoDIC with VIC-3D using stereo images captured at
2 Hz using VIC-Snap image acquisition and synchronization software. For comparison to StereoDIC
measurements, the specimen is modeled using ANSYS software. Using the field comparison processes
developed by the authors, StereoDIC measurements and ANSYS model predictions are compared
at the same spatial positions throughout the entire specimen. Strain predictions using an isotropic
yield criterion indicate excellent agreement between FE and StereoDIC measurements in the early-
to-mid stages of loading, with larger strain differences near the notches occurring as the specimen
undergoes increasing plastic deformation in these areas during loading. Finite element predictions of
strain and stress using Hill’s anisotropic yield criterion with optimally selected material parameters are
in very good agreement with observations for all applied loads, though future studies should include
an independent set of experiments to improve estimates for the anisotropic material parameters.
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Appendix A
Interpolation Process Using Model Triangular Mesh

Using the procedure described in Section 2.3, Fig. A-1 shows schematically the triangle �ABC
that contains the measurement point, P.

Figure A-1: (a) DIC point P (red) and the three closest finite element mesh nodes (green), along with the
eight nodes in the connecting triangles; (b) Location, Q, of the perpendicular intersection (projection)
of point P in �ABC

To obtain model field data at this point for comparison to the measurements, the measure-
ment location, P, is projected onto �ABC using Eq. (A-1), where the interpolation process uses
“barycentric” coordinates of the projected point, Q. To obtain the barycentric coordinates [44,45],
the perpendicular projection of point P onto �ABC is required. The projection process is shown
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schematically in Fig. A-2, where d is the perpendicular distance from P to the intersection, Q. One set
of equations that can be used to obtain the vector Q, knowing rA, rB, rC and rP in a common coordinate
system, is given below.

First the normal to �ABC is given by the cross-product of two vectors in the plane.

n =
[(

rB − rA

)
x

(
rC − rA

)]
| [(rB − rA

)
x

(
rC − rA

)] | (A-1)

where x denotes a cross-product. Since rA and rP have a common origin, the distance, d, to the plane
from P is the normal component of the difference between the two vectors.

d = n · (rA − rP) (A-2)

So that the three-dimensional location of the intersection, Q, can be written;

Q = rP + dn (A-3)

Once Q is determined, then the barycentric coordinates for interpolation can be obtained.

Figure A-2: Graphical representation of process to obtain the intersection of the perpendicular
projection of point P onto �ABC

To obtain the barycentric coordinates, we define scalar parameters α, β, γ . If 0 ≤ α, β, γ ≤ 1 then
the projected point, Q, falls within the triangle and the parameters are given by ratios of triangle areas
as follows:

α = AQBC

AABC

β = AQCA

AABC

γ = 1 − α − β

(A-4)

with AABC = area of �ABC, AQBC = area of �QBC and AQCA = area of �QCA. If the point is located
inside the triangle, field variables such as strain are interpolated. For strain component εij, the value
of strain at Q is interpolated using the values of strains at the corner nodes A, B, C as follows:

εQ
ij = αεA

ij + βεB
ij + γ εC

ij (A-5)
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where:

ε
Q
ij = strain component at the projected point Q

εA
ij = strain component at A

εB
ij = strain component at B

εC
ij = strain component at C

Similar forms are used for vector components such as displacement and velocity.

Appendix B
Software for Conversion of Model Data to Measurement Coordinate System

Conversion and comparison software described in Sections 2.1–2.3.2 and used in this study
to compare FE output to measurements and measurement-based stresses are available from www.
correlatedsolutions.com for general use.

Available software includes:

• Python script to output ANSYS or ABAQUS data into a VTK PolyData surface and saved in
a VTP file format.

• Software to transform all model information into the reference measurement system.

• Python script to assemble each node of the triangulated finite element mesh into a K-D tree and
iteratively identify locations of measurement data within elements for interpolation of model
data to common spatial location.

• Python script to compare measurements and model predictions at common spatial locations.

www.correlatedsolutions.com
www.correlatedsolutions.com
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