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ABSTRACT

Mobile Edge Computing (MEC) is a promising technology that provides on-demand computing and efficient
storage services as close to end users as possible. In an MEC environment, servers are deployed closer to mobile
terminals to exploit storage infrastructure, improve content delivery efficiency, and enhance user experience.
However, due to the limited capacity of edge servers, it remains a significant challenge to meet the changing, time-
varying, and customized needs for highly diversified content of users. Recently, techniques for caching content
at the edge are becoming popular for addressing the above challenges. It is capable of filling the communication
gap between the users and content providers while relieving pressure on remote cloud servers. However, existing
static caching strategies are still inefficient in handling the dynamics of the time-varying popularity of content and
meeting users’ demands for highly diversified entity data. To address this challenge, we introduce a novel method
for content caching over MEC, i.e., PRIME. It synthesizes a content popularity prediction model, which takes users’
stay time and their request traces as inputs, and a deep reinforcement learning model for yielding dynamic caching
schedules. Experimental results demonstrate that PRIME, when tested upon the MovieLens 1M dataset for user
request patterns and the Shanghai Telecom dataset for user mobility, outperforms its peers in terms of cache hit
rates, transmission latency, and system cost.
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1 Introduction

The rapid growth of the Internet of Things (IoT) [1] has spurred the development of MEC
[2], a field that has garnered significant attention in the domains of information technology and
communication. Traditional mobile networks are ineffective in meeting crucial requirements, such
as minimizing latency and content transmission costs due to the distance between service providers
and users. The MEC paradigm addresses these challenges by providing robust computing capabilities
at Internet access points close to users and offloading computing tasks from remote cloud servers
to physical network edge nodes. This approach significantly reduces data transmission latency and
achieves high energy efficiency, enabling real-time responsive applications and sensitivity-requiring
services.

Edge content caching is an important component of MEC, which further improves the efficiency
of resource storage and delivery. The core idea of this technology is to cache frequently accessed
content on edge servers close to users to guarantee high responsiveness when content requests
arrive and alleviate the traffic from/to remote cloud data centers. This approach improves systems
responsiveness and guarantees low latency in content delivery. Consequently, it achieves high quality
of experience (QoE) for content requestors as well as a significant portion of requested content can be
delivered from nearby storage.

However, existing solutions to edge content caching still need to be improved in several ways. On
one hand, the storage capacity of edge servers is usually limited. Given the high user mobility in mobile
edge networks [3], previously in-demand content can quickly become outdated. Consequently, static
caching schemes often fail to meet content requests when users in MEC are with high mobility. On the
other hand, the users’ preference for content demand can also be time-varying in spatial and temporal
domains. Content providers are thus supposed to smartly change the caching schemes over time to
accommodate such changes to guarantee high hit rates of content.

To address the above challenges, we propose a novel predictive popularity-aware approach for
proactive MEC caching, PRIME. PRIME aims to predict the popularity of content among users and
cache content over MEC servers in a dynamic MEC environment. PRIME is featured by:

(i) It synthesizes a content popularity prediction model with a deep reinforcement learning model
for capturing user mobility and content popularity.

(ii) It is capable of forecasting future content popularity and yield dynamic caching schedules
accordingly.

The structure of this paper is organized into the following sections: Section 2 provides a review
of related research, Section 3 introduces the system model and problem definition, Section 4 describes
the proposed method, and Section 5 presents the performance evaluation results.

2 Related Work

With the booming of 5G and MEC technologies, content caching has gained significant attention
in academic research in recent years. Particularly in 5G infrastructures using mmWave Massive
MIMO systems [4], the constraints on storage, communication, and computational capacities at
base stations pose significant challenges due to the increase in latency-sensitive applications. Content
caching reduces data access latency, enhances service quality, and decreases core network load by
storing popular content closer to users at network edges, thereby improving overall network energy
efficiency. The most widely used methods are Least Recently Used (LRU) [5] and Least Frequently
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Used (LFU) [6], which optimize content storage and management by intelligently deciding caching
schedules in terms of plans of content deployment and replacement, at run time.

To further improve storage efficiency in MEC, recently, proactive caching strategies have gained
attention [7]. These strategies aim to proactively cache popular content near users by analyzing user
preferences. For instance, Garg et al. [8] proposed a strategy for handling unknown and changing
content popularity. It utilizes an online prediction method for analyzing the difference in average
successful probability (ASP) and an online learning method for minimizing mean squared error and
ASP regret. Li et al. [9] considered user mobility by distinguishing between fast and slow-moving
users and used a Long Short-Term Memory (LSTM) network for predicting content popularity.
Yu et al. [10] leveraged a federated learning model for identifying user interests. Similarly, Qi et al. [11]
leveraged a federated learning framework for handling weighted aggregation of personal preferences.
Zhang et al. [12] introduced the PSAC algorithm, which employs a self-attention mechanism for
reducing network load. It pre-caches content at network edges based on user preferences and further
analyzes sequential characteristics of user requests for predicting and re-caching content at the edge.
Gao et al. [13] developed a token bucket-based dynamic batching (TBDB) algorithm that dynamically
adjusts the maximum batch size (MBS) of cached content for optimizing device utilization and
reducing system load. Additionally, Uthansakul et al. [14] designed a hybrid analog/digital precoder
and decoder, proposing an alternating optimization algorithm to improve system energy efficiency
and compute optimal system parameters. Wei et al. [15] proposed the SAPoC algorithm efficiently
manages energy use by determining content popularity based on historical requests and similarities
to popular existing content. Gao et al. [16] introduced a neural collaborative sequential learning
mechanism deriving sequential information from biased user behavior sequences. Tang et al. [17]
developed the Caser method. It transforms user interactions into low-dimensional embeddings and
utilizes Convolutional Neural Networks (CNNs) for analyzing local interaction patterns of content
requests.

Recently, learning-based methods and algorithms are becoming popular in related works [18].
These models learn to yield intelligent caching schedules through interaction with the environment.
For instance, Cai et al. [19] considered user mobility by preemptively transferring user information
to the next base station. They employed a Deep Q-Network (DQN) for content caching when
such transferring is undergoing. Wu et al. [20] proposed a collaborative caching scheme using an
asynchronous federated learning method to gather popular content information and determine the
optimal collaborative caching strategy. He et al. [21] introduced a Multi-Agent Actor-Critic (MAAC)
strategy empowered by a learning algorithm, where each Road Side Unit (RSU) decides its own
caching schedules, enhancing caching efficiency. Somesula et al. [22] proposed a collaborative caching
update method based on Multi-Agent Reinforcement Learning and Continuous Deep Deterministic
Policy Gradient (MADDPG). Chen et al. [23] developed a collaborative edge caching algorithm
that adopts an actor-critic framework for reducing data exchange between agents. Kong et al. [24]
aimed to minimize the long-term energy consumption of a caching system by leveraging a DDPG for
determining the schedules of computation offloading, service caching, and resource allocation.

3 System Models and Problem Formulation
3.1 System Model

In this paper, we consider an MEC environment with a central cloud server Ccloud, multiple base
stations equipped with edge servers belonging to a set of E = {e1, e2, · · · , ei, · · · , em}, multiple users
U = {u1, u2, · · · , uj, · · · , un} and a set of content items C = {c1, c2, · · · , ck, · · · , cl}, as shown by Fig. 1.
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The caching mechanism works according to a caching, transmission, and cost model. When a content
request reaches the base station, it directly responds when the corresponding content is cached.

Figure 1: Edge computing system model

The central cloud server Ccloud is responsible for storing all content requested by users while the
base stations E are distributed. Each base station can be described by a tuple ei = (LEi, radi, capi, Ni),
where LEi represents the two-dimensional coordinates of base station ei, radi the coverage radius of
the base station, capi the current caching capacity of the base station and Ni = {ei1, ei2, · · · , eiq} the set
of neighboring base stations adjacent to base station ei. This paper refers to Table 1 for annotations.

Table 1: Summary of the key notations

Notation Definition

E = {e1, e2, · · · , ei, · · · , em} A set of base stations
Ni A set of neighboring base station of the i-th base station
csi(t) The caching state of the i-th base station at time t
capi Capacity of the i-th base station
U = {

u1, u2, · · · , uj, · · · , un

}
A set of users

C = {c1, c2, · · · , ck, · · · , cl} A set of content
csci,k(t) The cache status of the k-th content at the i-th base station
sk The size of content ck

pi The transmission power for the i-th base station
di,j(t) The request latency from the j-th user to the i-th base station at

time t
ri,j(t) The transmission rate between the j-th user and the i-th base

station at time t
rdi(t) The average request delay of the i-th base station at time t
uri,j(t) A boolean indicator of whether the j-th user sends a request to the

i-th base station at time t

(Continued)
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Table 1 (continued)

Notation Definition

bci,k(t) A boolean indicator of whether the i-th base station caches the k-th
content at time t

cpi(t) The cost of proactive caching at the i-th base station
radi(t) The coverage radius of the i-th base station
cpci,k(t) The cost of proactively caching the k-th content at the i-th base

station at time t
cri,j(t) The cost of the request from the j-th user to the i-th base station
sci(t) The average system cost of the i-th base station
WF(uj) A set of weighted vectors of content interests for the j-th user
CIBi The set of content that is of interest to the i-th base station
nbi(t) The number of requests from users at the i-th base station at time t
LUj(t) The two-dimensional coordinates of j-th user at time t
LEi The two-dimensional coordinates of i-th base station
Li(t) The cache status of the predicted queue CIBi at the i-th base station
NEi(t) The cache status of the predicted queue CIBi in the neighboring

base stations of the i-th base station
UVj The set of content vectors for the j-th user is generated by the

Caser algorithm
CIUj The set of content that is of interest to the j-th user
si(t), ai(t), ri(t) The set of state, action, reward of the i-th base station at time t
BCR The basic cost of replacing content at the base station
BCH The basic cost for handling user requests
Wt The Caser global model parameters at time t
Hi(t) The Caser local model parameters for the i-th base station at time t
rdmax, rdmin The maximum and minimum values of the base station’s average

request delay.
scmax, scmin The maximum and minimum values of the base station’s average

system cost

3.2 Storage Model
Given edge servers’ limited storage capacity, it is impossible to cache all available content

simultaneously. We use csci,k(t) to indicate whether content ck is cached by the base station ei. Thus,
the caching state of base station ei can be represented as:

csi(t) = {
csci,1(t), csci,2(t), · · · , csci,l(t)

}
(1)

As the caching capacity of a base station is often limited by its total size:
l∑

k=1

(
csci,k(t) · sk

) ≤ capi (2)

where sk represents the size of content ck.
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3.3 Transmission Model
At time t, user uj requests content ck from the nearest base station ei. Upon receiving the request,

base station ei responds when the requested content is available or forwards the request to the
neighboring base station eNi otherwise. When both stations fail, the request is subsequently sent to
the cloud.

According to Shannon’s formula [25], We have the delay of user uj requesting content from ei at
time t as di,j(t):

di,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sk

ri,j(t)
, if csci,k(t) = 1

sk

ri,j(t)
+ sk

rNi ,i(t)
, if csci,k(t) = 0 and ∃cscNi ,k(t) = 1

sk

ri,j(t)
+ sk

rC,i(t)
, otherwise

(3)

ri,j(t) = bi · log2

(
1 + pi · gi,j

σ 2

)
(4)

where ri,j(t) represents the transmission rate between base station ei and user uj. It depends on the
transmission power pi; channel gains gi,j (distance-dependent), Gaussian noise σ 2, and the bandwidth
rate bi.

Therefore, the average request delay for base station ei is:

rdi(t) = 1
nbi(t)

·
n∑

j=1

uri,j(t) · di,j(t) (5)

where nbi(t) represents the number of content requests to base station ei at time t, and uri,j(t) a boolean
indicator of whether mobile device uj requested content from ei at time t.

3.4 Cost Model
The cost model comprises two main components: the cost of proactive caching and the cost of

content delivery. In order to improve cache hit rates and minimize user request latency, base stations
proactively cache a portion of popular content in the current server and replace unpopular content.

When base station ei proactively caches content ck at time t, we define the cost of proactive caching
as cpci,k(t):

cpci,k(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if csci,k(t) = 1

pNi · sk

rNi ,i(t)
+ BCR, if csci,k(t) = 0 and ∃cscNi ,k(t) = 1

pC · sk

rC,i(t)
+ BCR, otherwise

(6)

where csci,k(t) is a boolean indicator of whether the content actively cached by base station ei is available
in the current storage, and BCR represents the basic cost of replacing content at the base station.
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The average cost of proactively caching content at the base station is:

cpi(t) = 1
nbi(t)

·
(

l∑
k=1

bci,k(t) · cpci,k(t)

)
(7)

where bci,k(t) is a boolean indicator of whether the ei caches ck at time t.

The cost of the request, cri,j(t), is decided by the energy required for user uj to request content ck:

cri,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pi · sk

ri,j(t)
+ BCH, if csci,k(t) = 1

pi · sk

ri,j(t)
+ pNi · sk

rNi ,i(t)
+ BCH, if csci,k(t) = 0 and ∃cscNi ,k(t) = 1

pi · sk

ri,j(t)
+ pC · sk

rC,i(t)
+ BCH, otherwise

(8)

where BCH represents the basic cost for handling user requests, and BCR � BCH.

The average system cost of base station ei is:

sci(t) = 1
nbi(t)

·
(

n∑
j=1

uri,j(t) · cri,j(t) +
l∑

k=1

bci,k(t) · cpci,k(t)

)
(9)

3.5 Problem Formulation
As mentioned earlier, latency is a leading factor in deciding the effectiveness of the caching system.

Nevertheless, the goal of reducing latency can usually conflict with other goals, e.g., reducing cost [26].
The objective of this work is thus to reconcile conflicting goals:

Min:
1
m

·
tmax∑
t=0

m∑
i=0

[
w1 · rdi(t) − rdmin

rdmax − rdmin

+ w2 · sci(t) − scmin

scmax − scmin

]
(10)

s.t. C1.
∑m

i=0 uri,j(t) = 1 ∀j, ∀t

C2.
√

(LUj(t) − LEi)
2
< radi ∀i, ∀j, ∀t

C3.
∑l

k=1

(
csci,k(t) · sk

) ≤ capi ∀j, ∀t

where w1 and w2 are the weighting factors for latency and cost, respectively. LUj(t) denotes the two-
dimensional coordinates of mobile device uj at time t. rdmax, rdmin, and scmax, scmin represent the maximum
and minimum values of the base station’s average request delay and system cost, respectively. C1
ensures users request content from only one base station at a time, maintaining network efficiency. C2
aims to ensure that the distance between users and the base station is within the base station’s coverage
radius to ensure reliable connectivity. C3 indicates that all content cached on the base station does not
exceed its storage capacity, ensuring it remains within storage capacity limits to prevent performance
degradation. Clearly, the proposed optimization problem falls under the Mixed-Integer Nonlinear
Programming (MINLP) category, known for its computational challenges and recognition as NP-
hard. MINLP uniquely integrates continuous and discrete variables within nonlinear constraints,
reflecting the nuanced demands of real-world problems. The sophisticated nature of MINLP means
that finding an exact solution within a reasonable timeframe is often impractical. This reality, especially
apparent in our model’s blend of continuous variables (e.g., device coordinates) and discrete decisions
(e.g., choices about content caching) alongside nonlinear constraints (e.g., ensuring connectivity within
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a base station’s coverage radius), necessitates the pursuit of heuristic or approximate methods. Our
approach aims to provide a practical solution to the challenges posed by this complex problem in edge
caching.

4 The Proposed Method

This chapter provides a comprehensive introduction to the PRIME model, which utilizes content
popularity prediction for forecasting the popularity ranking CIBi of content at the base station ei. The
PRIME model incorporates the Caser algorithm for content popularity prediction. In doing so, the
stay time of users is used as a weighting factor for content, and the algorithm increases the likelihood
of caching content that is appealing to users with a long stay time. To avoid the imbalance of the model,
the parameters of the Caser algorithm are periodically updated for each base station. The computed
popularity rankings CIBi are fed into the reinforcement learning-based content decision model. This
model takes into account the caching status of neighboring and current base stations, as well as the
request counts, aiming to minimize both the system cost and the request delay. It is important to
emphasize that the algorithm in this paper assumes that users send requests to the neighboring base
stations at fixed time intervals, and each user’s position remains constant during each interval. This
assumption aids in building the model to address content caching issues and provides performance
optimization solutions in practical edge computing environments [27]. Fig. 2 presents the architecture
of the PRIME model.

Figure 2: Framework of PRIME for yielding the caching strategy

4.1 Content Popularity Prediction Model
The popularity prediction model takes into account users’ stay time and their request traces, as

illustrated in Fig. 3. The model comprises four sequential steps:

Global Model Download: At the beginning of each time t, every base station retrieves the Caser
global model parameters denoted as Wt from the cloud. The Caser model’s fundamental function is
to predict the content that users may be interested in the near future based on their recent request
traces. This enables each base station to accurately identify the content of interest for each user, thus
providing robust support for content caching decisions.

Acquiring User-Interest Content: Upon receiving the Caser global model parameters Wt, base
station ei utilizes the most recent user request trace for local Caser model iterative updates (Lines
4–6). The Caser algorithm predicts user behaviors in recommendation systems by embedding user-
item interactions and leverages convolutional neural networks for identifying temporal patterns. Once
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the update is complete, the updated local Caser model Hi(t) is uploaded to the cloud (Line 8). In the
training process, the Caser model extracts a request data sequence of length g from the user’s recent
request trace. The first p times’ request contents serve as Caser’s input, while the remaining h times’
request contents are treated as predictive (h = g − p). Caser’s processing steps involve extracting
features of users and requested content through an embedding layer, followed by applying horizontal
and vertical convolutions to the requested content to capture diverse interest patterns within the user’s
historical behavior sequence. Horizontal convolution focuses on long-term interest variations, while
vertical convolution is better suited for modeling users’ short-term interests. Finally, more advanced
and abstract features are generated through a fully connected neural network layer that integrates
the outputs from horizontal and vertical convolutions and user characteristics, thereby producing the
weights of user requests for each content item. During the prediction phase, the algorithm generates
request weights for each content for users based on the user’s most recent p content requests. The top
k1 contents with the highest weights are the ones that uj is interested in, denoted as CIUj (Line 10).
Caser employs a binary cross-entropy loss function, where smaller losses are associated with higher
request weights for predicted content and lower request weights for non-predicted content. The loss
function for user uj is:

lossuj =
∑

t∈h

∑
k∈ctj (t)

[
− log(sig(yj,k(t))) +

∑
w �=k

− log(1 − sig(yj,k(t)))

]
(11)

where ctj(t) represents the content requested by user uj within the h times, yj,k(t) denotes Caser’s request
weight for content ck, sig represents the sigmoid function, and w �= k signifies that content cw was not
requested within the h times.

Figure 3: Framework of PRIME for yielding the caching strategy
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Retrieving Currently Popular Content at the Base Stations: Once the base station obtains the
content of interest for all users within its coverage, it weighs these contents to determine the most
popular content (Line 11). In this process, the base station employs the stay time of users as an
aggregation weight for content, where content requested by users with higher weight is more likely to
be cached, according to the stay times of users. This mechanism helps avoid caching content requested
by users with short stay times, thus bringing in a high overhead of cache replacement. The stay time
of users is estimated according to the coverage radius of the corresponding base station and its mobile
trajectory, which falls into such coverage area. The weight is thus:

WF(uj) =
⎧⎨
⎩

tstay

2tcon

UV j (1 + sgn(tstay − th)) (tstay < tcon)

UV j otherwise
(12)

where tcon is the maximum time allowed for predicting user preferences in the Caser algorithm, UVj =
{ci1, ci2, · · · , cil} a set of content vectors generated by the Caser algorithm, cik a boolean indicator of
whether content ck attracts user uj, sgn a sign function [28] and th a threshold value for excluding users
with stay times lower than it.

Each base station maintains the weights WF(uj) and selects the top k2 contents of interest CIBi

(Line 14).

CIBi = k2
max

p=1

n∑
j=0

uri,j(t) · WF(uj) (13)

Model Aggregation: Upon receiving the local models Ht uploaded from each base station, the
cloud server updates the global model Wt+1 (Line 16). To address the issue of imbalanced training data
in local models of different base stations, the algorithm assigns varying weights to the local models
uploaded from different base stations for aggregation. In this scenario, the updated global model
Wt+1 is:

Wt+1 = Wt +
∑
ei∈E

nbi(t)∑
ei∈E nbi(t)

(Hi(t) − Wt) (14)

where nbi(t) represents the number of user content requests received by base station ei at time t.

4.2 Deep Reinforcement Learning for Cache Decision Making
Increasing caching capacity helps improve the user-experienced QoS in terms of cache hit rate

but can increase caching cost and energy. Due to capacity limitations, not all popular content can
be cached at the base station [29]. It is thus clear that the objectives of minimizing system cost and
improving user QoS are conflicting and should be reconciled. To address this challenge, we leverage
a DQN, a type of deep reinforcement learning model, to yield high-quality caching plans according
to the optimization formulation given in Eq. (10). This approach allows for dynamic adjustment of
caching strategies based on learning from user demands and system constraints, as illustrated in Fig. 4.
The model comprises the following components:

Algorithm 1: Predicting popularity using stay time
Input: A set of user request traces and mobile trajectories.
Output: The predicted popularity priority queue CIB.
1: for each t ∈ T do

(Continued)
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Algorithm 1 (continued)
2: for each ei ∈ E do
3: Download the Caser global model W t

4: for each user’s recent request traces cached on ei do
5: Calculate the predicted loss according to Eq. (11).
6: end for
7: Update model parameters Hi(t)
8: Upload Hi(t) to the CS
9: for each uj requesting content from ei at time t do
10: Obtain the top k1 content according to Caser.
11: Calculate the weighted WF(uj) according to Eq. (12).
12: Update recent request traces for uj

13: end for
14: Obtain the predicted queue CIBi under ei according to Eq. (13).
15: end for
16: The CS update Wt+1 according to Eq. (14).
17: end for
18: return The predicted popularity priority queue CIB.

Figure 4: Framework of PRIME for yielding the caching strategy

State: The state space si(t) of base station ei involves the cache status of the predicted queue CIBi

in ei, the cache status of CIBi in the neighboring base stations NEi(t) and the number of user requests
at ei for the next time mi(t + 1). Therefore, the state can be described as a tuple si(t) = (Li(t), NEi(t),
mi(t+1)), where Li(t) = {Li,1, Li,2, · · · , Li,k2

}, Li,k represents whether the k-th popular content is cached
in ei, NEi(t) = {NEi,1, NEi,2, · · · , NEi,k2

} and NEi,k whether the k-th popular content is cached in the
neighboring base stations. mi(t+1) can be estimated based on the coverage radius of the corresponding
base station and the dwell time of users who stay within the current area.
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Actions: We define actions as a = (a1, a2, · · · , an), where ai = (ai,1, ai,2, · · · , ai,k2
) represents the

caching decision for popular content at base station ei. In this context, ai,k is a boolean indicator of
whether caching the k-th popular content is necessary. While ai,k = 1 denotes that it is necessary to
cache the k-th popular content. To cache the necessary content, the base station removes less popular
content. The action space size can be estimated in the following way: each base station has the ability
to cache multiple contents. However, the DQN model outputs only a single action per decision. With
a total of k2 candidate contents, the total size of the action space is the sum of combinations from 0
to k2, which is C0

k2
+ C1

k2
+ C2

k2
+ · · · + Ck2

k2
. To simplify, we divide the contents into v segments (where

v � k2), which significantly reduces the action space to C0
k2

+ C1
v + C2

v + · · ·+ Cv
v . The choice of action

function follows the ε-greedy method to balance exploration and exploitation for optimizing content
caching strategies. The calculation formula is:

a(t) = argmax
a

(Q(s(t), a; θ)) (15)

Reward: It aims to minimize the cost for each base station with the constraints of user QoS. The
reward function is:

ri(t) = wse−scni(t) + wre−rdni(t) (16)

where scni(t) represents the normalized cost of sci(t) at the base station ei and rdni(t) the normalized
value of the request delay rdi(t). ws and wr are the weighting factors for cost and request delay.

We employed the DQN reinforcement learning algorithm to dynamically adjust cache content
based on users’ historical data and behavior, aiming to optimize system performance. The DQN
algorithm, an amalgamation of deep learning and reinforcement learning, utilizes deep neural
networks to approximate the Q-function, denoted as Q(si, ai; θ), where θ represents the reinforcement
learning parameters, this Q(si, ai; θ) is also known as the prediction network. This represents the Q-
value when the agent is in the state si and takes action ai, enabling DQN to handle high-dimensional
sensory inputs effectively. Key features of the DQN algorithm include experience replay and a target
network. Experience replay involves storing the agent’s experiences in a memory pool and randomly
sampling these experiences for network training, reducing correlation between samples and enhancing
learning stability. The target network, denoted as Q̂

(
si, ai; θ

′), where θ
′ represents the parameters of

the target network, serves as a periodically updated replica of the Q-network. It is used for calculating
the target Q-values and is crucial in enhancing the algorithm’s performance and stability.

In our study, within the DQN framework, each base station functions as an agent. At each base
station ei, the process begins by taking an action ai(t) based on the current state si(t) to decide which
content to cache. Following this action, the base station receives a ri(t) reward and transitions to the
next state si(t + 1). This progression forms a state transition, denoted as (si(t), ai(t), ri(t), si(t + 1)),
which is then stored in a replay buffer [30]. Subsequently, P tuples are randomly selected from the
replay buffer to create a minibatch, with the p-th tuple represented as (sp, ap, rp, sp+1). The loss function
used for updating parameters is:

L(θ) = 1
P

P∑
p=1

[(
yp − Q

(
sp, ap; θ

))2
]

(17)

where yp represents the target Q-value of the target network, and the target network’s parameters θ
′

are periodically updated to match the prediction target network’s parameters θ (Lines 18–19), yp is
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calculated as:

yp = rp + γ max
a

Q̂
(
sp+1, a; θ ′) (18)

where γ represents the discount factor, γ ∈ (0, 1). The gradient of the loss function for all elements
taken from the replay buffer is calculated as:

∇θL(θ) = 1
P

P∑
p=1

[(
yp − Q

(
sp, ap, θ

))∇θpQ
(
sp, ap, θ

)]
(19)

At the end of time t, the prediction network’s parameters θ are updated:

θ ← θ − ηθ∇θL(θ) (20)

where ηθ is the learning rate for the prediction network.

Algorithm 2: Predicting popularity using stay time
Input: A set of content requests and the predicted popularity priority queue CIB.
Output: The caching decisions.
1: for each t = 1, 2 · · · , T do
2: for i = 1, 2 · · · , m do
3: Obtain the predicted popularity priority queue CIBi according to Algorithm 1
4: Obtain the state s(t) according to environment
5: Calculate the Q-value of the target network according to Eq. (18).
6: Calculate the action a(t) according to Eq. (15).
7: Obtain the next state s(t + 1) after executing a(t).
8: Obtain cost sci(t) according to Eq. (9).
9: Obtain latency rdi(t) according to Eq. (5).
10: Obtain the reward r(t) according to Eq. (16).
11: Store the tuple (s(t), a(t), r(t), s(t + 1)) and randomly sample a minibatch from it.
12: Calculate the loss function by Eq. (17).
13: Calculate the gradient by Eq. (19).
14: Update parameters θ according to Eq. (20).
15: end for
16: Obtain the caching decisions according to θ .
17: Each base station selects contents for replacement from the prediction queue CIBi based on

caching decisions.
18: if the number of slots is z then
19: θ

′ = θ
20: end if
21: end for
22: return The caching decisions

At each time step t, Algorithm 1 is used to generate a predicted popularity priority queue Qk2
.

This algorithm integrates the priority queue with environmental factors, including the base station’s
current caching status, neighboring base stations’ caching status, and the number of user requests, to
formulate the base station’s state s(t) (Lines 3–4). Following this, a deep reinforcement learning model
is employed. This model leverages the cost function from Eq. (9) and the delay function from Eq. (5)
as its reward functions, aiming to optimize cache decision making (Lines 5–14). Ultimately, based on
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the results of this training, each base station selects content from the predictive queue Qi,k2
for caching

or replacement (Lines 16–17).

5 Performance Evaluation
5.1 Simulation Configuration

In this experiment, we employed two datasets: MovieLens 1M [31] and Shanghai Telecom [32]. The
Shanghai Telecom dataset was used to analyze user mobility, which features over 7.2 million content
access event records from 9,481 mobile users and 3,233 edge base stations. This dataset also includes
detailed mobile trajectory information, as shown in Fig. 5. For training and testing user request
patterns for interesting content, we utilized the MovieLens 1M dataset, which comprises around one
million ratings from 6,040 anonymous users.

Figure 5: Sample user trajectories of Shanghai Telecom

To simulate user content request processes, we regarded user movie ratings as requests for the
corresponding movies [33]. The distribution of users and edge servers is shown in Fig. 6. We selected
3,350 users with at least 80 ratings from MovieLens and paired them with corresponding trajectories
from the Shanghai Telecom dataset. The key criterion for this pairing was ensuring that the trajectories
in the study area were longer than the users’ rating records, thereby aligning user requests with the
study area. The Caser algorithm was pre-trained using the remaining data. Users send requests to the
nearest base station when they are within the coverage of multiple edge servers. Other parameters are
valued according to [20,34], and are given in Table 2.
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Figure 6: Partially selected user trajectory and base station deployment locations

Table 2: Parameter table

Parameter Value

Number of users 3350
Edge server capacity in the base station 0–300
Number of contents that attract users 4–6
Coverage radius (m) 1250
Bandwidth between base stations and users (MHz) 20
Bandwidth between base stations (MHz) 50
Bandwidth between base stations and cloud (MHz) 200
Learning rate for DRL 0.001
Reward decay factor for DRL 0.95
Total rounds of simulation 300

5.2 Baseline Algorithms
We compare our method against four baselines:

1) Baseline Algorithm 1 (BA1) [19]: A wireless edge caching method based on deep reinforcement
learning. This method determines content to be cached according to the uneven distribution of file
popularity and user mobility.
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2) Baseline Algorithm 2 (BA2) [9]: A cooperative caching method that utilizes LSTM networks
for predicting content popularity. It leverages the content size-based weights for trading off content
popularity and size’s impact. It takes the mobility of users as inputs for yielding caching schedules.

3) First-In-First-Out Scheme (FIFO): Base stations cache content in the order of content requests
and discard the earliest cached content when the cache space is exhausted.

4) Random: Base stations randomly cache a portion of the content.

5.3 Performance Analysis
Fig. 7 compares cache hit rates of different methods with varying cache capacities. As the edge

server capacity increases, base stations can cache more content, thereby enhancing the opportunities
for users to access resources from local edge servers and neighboring edge servers. Consequently, the
hit rates increase with the capacity. PRIME outperforms FIFO, BA1, and BA2 strategies in terms of
edge cache hit rate by 45.11%, 15.69%, and 9.08% on average, respectively.

Figure 7: Capacity and edge hit rate

Fig. 8 displays the average request latency for different cache strategies with varying cache
capacities. It is clear that PRIME achieves lower latency than its peers. As the cache capacity of the
edge server increases, the request latency decreases for all cache strategies. This is because a larger
cache capacity increases the likelihood of mobile users accessing content from local and nearby servers,
thereby reducing the request latency. PRIME outperforms Random, FIFO, BA1, and BA2 by 30.24%,
17.28%, 8.43%, and 5.31%, respectively.

Fig. 9 shows the average cost of proactive caching for different methods at varying cache capaci-
ties. As cache capacity increases, the cost of proactive caching also rises. This increase is attributed to
the server’s enhanced ability to store more content, which reduces user latency but increases caching
costs. Furthermore, its growth tends to decrease with capacity because higher hit rates help to alleviate
the cost of communication with the remote cloud. It is important to note that since FIFO recommends
only one content per user at a time, when the cache capacity reaches 150, the content that needs to
be proactively cached by the base station no longer increases. In contrast, PRIME saves proactive
caching cost by 72.59%, 36.71%, 23.19%, and 17.41% in comparison with Random, LRU, BA1 and
BA2, respectively.
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Figure 8: Capacity and average request latency

Figure 9: Capacity and average cost of proactive caching

Fig. 10 displays the system’s average cost with different methods and varying cache capacities.
As is evident from all methods, the system’s cost comprises two primary components: the cost of
proactive caching at the base stations and the cost of user requests. As server cache capacity increases,
the proactive cache cost at base stations gradually rises. However, the cost of user requests decreases
due to the gradual reduction in user request latency. Thus, the system’s average cost does not necessarily
increase with the increased capacity. PRIME demonstrates a lower system cost than FIFO, BA1, and
BA2 by 54.85%, 26.02%, 15.31%, and 10.62%, respectively.
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Figure 10: Capacity and average system cost

6 Conclusion

In this paper, we introduced PRIME, a predictive user popularity-aware approach for proactive
content caching in MEC. PRIME synthesizes a content popularity prediction model and a deep
reinforcement learning procedure for yielding dynamic caching schedules. It generates accurate and
evolving popularity score estimates for cached content, leading to superior predictive and proactive
caching plans. Our experiments show that PRIME surpasses existing methods in various performance
metrics.

In the future, we plan to incorporate anomaly detection models to refine content caching strategies
and deepen our analysis of user behavior. This will involve examining temporal patterns in user
requests and mobility to enhance PRIME’s predictive precision. Furthermore, we aim to explore
PRIME’s scalability in more extensive and complex network settings and its adaptability to different
user densities and mobility scenarios. Integrating edge computing with emerging technologies like
5G and IoT devices is another exciting direction to improve MEC content caching efficiency. These
focused efforts will progressively advance proactive caching in MEC environments.
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