
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.047239

ARTICLE

Suboptimal Feature Selection Techniques for Effective Malicious Traffic
Detection on Lightweight Devices

So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1 and Il-Gu Lee1,2,*

1Department of Future Convergence Technology Engineering, Sungshin Women’s University, Seoul, 02844, Korea
2Department of Convergence Security Engineering, Sungshin Women’s University, Seoul, 02844, Korea

*Corresponding Author: Il-Gu Lee. Email: iglee@sungshin.ac.kr

Received: 30 October 2023 Accepted: 23 February 2024 Published: 20 May 2024

ABSTRACT

With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious
traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-
based detection methods, static analysis, and dynamic analysis techniques have been previously explored for
malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research
has been focused on the application of machine learning to detect these patterns. However, applying machine
learning to lightweight devices like IoT devices is challenging because of the high computational demands and
complexity involved in the learning process. In this study, we examined methods for effectively utilizing machine
learning-based malicious traffic detection approaches for lightweight devices. We introduced the suboptimal
feature selection model (SFSM), a feature selection technique designed to reduce complexity while maintaining
the effectiveness of malicious traffic detection. Detection performance was evaluated on various malicious traffic,
benign, exploits, and generic, using the UNSW-NB15 dataset and SFSM sub-optimized hyperparameters for
feature selection and narrowed the search scope to encompass all features. SFSM improved learning performance
while minimizing complexity by considering feature selection and exhaustive search as two steps, a problem not
considered in conventional models. Our experimental results showed that the detection accuracy was improved by
approximately 20% compared to the random model, and the reduction in accuracy compared to the greedy model,
which performs an exhaustive search on all features, was kept within 6%. Additionally, latency and complexity were
reduced by approximately 96% and 99.78%, respectively, compared to the greedy model. This study demonstrates
that malicious traffic can be effectively detected even in lightweight device environments. SFSM verified the
possibility of detecting various attack traffic on lightweight devices.

KEYWORDS
Feature selection; lightweight device; machine learning; Internet of Things; malicious traffic

Nomenclature

SFSM Suboptimal feature selection model
TP True positive
TN True negative

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.047239
https://www.techscience.com/doi/10.32604/cmes.2024.047239
mailto:iglee@sungshin.ac.kr

1670 CMES, 2024, vol.140, no.2

FP False positive
FN False negative
k Number of exhaustive search target features
r Number of features used when learning is performed
l Total number of data points
n Total number of features
s Data sampling ratio

1 Introduction

The Internet of Things (IoT) has become an integral part of individuals’ daily lives and is expected
to have a significant impact on economic aspects in the coming years [1,2]. According to the 2020
Internet of Things report by Business Insider, the continuous growth of the IoT industry will be the
driving force behind changes in all industries. The IoT market is projected to grow by over $2.4 trillion
annually by 2027 [3]. It is expected that over 41 billion IoT devices will be connected by 2027.

However, existing lightweight IoT technologies have low computing costs and limited storage
capacity, leading to security vulnerabilities [4]. Attack methods such as unauthorized access and
battery-draining attacks pose significant threats to IoT technologies that operate with low computing
power and minimal energy consumption [5,6]. These traditional issues have raised concerns about
potential security threats as IoT technology becomes deeply integrated into daily life. Concerns have
arisen regarding security threats that might harm personal information protection and the economy
[7]. For instance, botnets like Mirai exploit vulnerabilities in IoT devices to take control of devices
and rapidly spread, potentially causing adverse effects on the economy. There are threats to personal
information, such as phishing, data theft, and spoofing [8]. Security threats leading to malicious traffic
or compromising the confidentiality, integrity, and availability of systems through the distribution
of malicious code remain a challenge in various fields, including IoT devices [9]. Typical detection
methods for malicious attacks include static and dynamic analyses, signature-based detection, and
behavior-based detection.

Static analysis involves analyzing and detecting malicious codes without executing them. It can
discover potential security vulnerabilities in the code during the runtime environment, but it has
limitations, such as difficulty in analyzing obfuscated programs and the challenge of considering all
dynamic elements. Additionally, static analysis requires significant time and expertise, and it does
not focus on proactive prevention. Dynamic analysis entails executing malicious codes directly and
detecting abnormal behaviors through monitoring. It has the advantage of understanding the code’s
behavior without detailed code analysis, but it is resource-intensive because of the need for establishing
an analysis environment. There is also a limitation that malicious codes can infect real computers
during the analysis process [10].

The aforementioned conventional countermeasures are post-response methods because they
analyze malicious behavior after it occurs, making it impossible to detect in advance. Signature-based
detection involves creating databases of the behavioral patterns of malicious code and classifying them
as malicious if they match. This is the most widely used method because it provides the best detection
accuracy for previously identified malicious behavior. However, it is not effective in responding to
transforming variants of malicious code or zero-day attacks because it can only address previously
occurring patterns of malicious code [11]. However, conventional signature-based and behavior-
based detection techniques are not suitable for IoT devices with limited resources, as they rely on
databases with established detection performance. The behavior-based detection technique identifies

CMES, 2024, vol.140, no.2 1671

malicious behavior when different behavior patterns occur, designed to overcome the limitations of the
aforementioned signature-based detection techniques. Unlike signature-based detection methods that
rely on established databases, behavior-based detection methods can detect new attacks. However, the
category of normal behavior is quite broad, leading to a relatively high false-positive rate compared
to signature-based detection techniques. Traditional detection methods face a tradeoff issue between
detection performance and energy efficiency. As a result, conventional signature-based and behavior-
based detection techniques are not suitable for IoT devices with limited resources, as they rely on
databases with established detection performance.

Machine learning-based detection technology is actively being researched and utilized in the
detection of malicious activities to address the limitations of various existing detection techniques
[12]. Among traditional detection technologies, signature-based detection, which is the most effective,
identifies specific patterns of known malicious code. In contrast, machine learning-based detection
enables the identification of new types of malware [13]. However, machine learning operates based on
probability and statistics, leading to significant computational costs [14]. Therefore, it is not ideal for
IoT devices with limited resources. Recent studies have focused on reducing the complexity of machine
learning models or reducing the learning time to enable their use in lightweight devices [15]. However,
the use of a high-quality machine learning model requires a vast dataset. It is difficult to store and
learn extensive log datasets effectively to detect malicious behavior in IoT environments.

This paper proposes an efficient suboptimal feature selection model (SFSM) for detecting
malicious behavior in resource-limited IoT environments. It addresses the tradeoff between detection
performance and complexity, which conventional feature selection techniques do not consider. The
SFSM conducts feature selection based on the importance of features and learning by scrutinizing
feature sets. During the feature selection process, the number of features was subject to exhaustive
search, and the data sampling ratio parameters were optimized in a suboptimal manner to maintain
detection performance while reducing complexity. Previously, feature selection focused on improving
learning performance was mainly considered, so if there were restrictions on using lightweight devices.
However, SFSM improved learning performance while minimizing complexity by considering feature
selection and exhaustive search as two steps. In addition, a model that can be practically used in
lightweight devices was proposed by proposing a scheme to optimize parameters used in feature
selection to reduce the complexity that increases in the exhaustive search process.

The primary contributions of this paper are as follows:

• We propose a suboptimal method that reduces complexity while maintaining accuracy by
optimizing the parameters used in feature selection.

• The performance of the proposed SFSM was evaluated and compared with that of conventional
methods using detection accuracy, latency, and complexity evaluation metrics, which are crucial
in the IoT environment.

• By introducing a new lightweight detection model that enhances conventional feature selection
techniques, we improved the tradeoff between abnormal behavior detection performance and
resource complexity in IoT devices.

The remainder of this paper is organized as follows. Section 2 analyzes previous studies on the
detection of abnormal behavior in IoT environments. Section 3 explains the proposed SFSM method.
Section 4 details the experimental environment for evaluating the performance of the SFSM and
analyzes the experimental results, and Section 5 concludes the paper.

1672 CMES, 2024, vol.140, no.2

2 Related Work

The field of machine learning is being studied in various fields. In addition to the preceding studies
mentioned above, a recent study [16] has been conducted to propose a model that improves multi-
graph learning technology used for data classification, clustering, and graph abnormality detection
in machine learning technology or deep learning (DL)-based damage detection model that enables
excellent feature extraction in a noisy environment [17]. In particular, with DenseSPH-VOLOv5, a
method for reducing computational complexity while effectively detecting road damage in images
by improving feature extraction even in various and noisy environments was proposed. Feature
optimization has been actively studied until recently. IoT devices often use the basic authentication
value as it is or use it without a password. Hackers can access these devices to execute large-scale
attacks [18], and network security must be ensured as they may become vulnerable not only to the
corresponding IoT devices but also to other devices connected to the network [19]. To enhance the
security of IoT networks, it is crucial to detect and block malicious traffic. In recent years, machine
learning technology has been widely adopted to identify and detect malicious attacks accurately in
IoT network environments. Machine learning has high detection accuracy but is more complex than
other detection methods [20]. In machine learning-based malicious behavior detection technology,
duplicate data or features increase computational complexity and reduce detection performance [21].
Therefore, feature selection technology that enables IoT devices to extract and learn appropriate
features for effective malicious traffic detection is essential [21,22]. Table 1 provides an overview of the
characteristics, contributions, and limitations of previous technologies used for detecting malicious
behaviors in IoT environments.

Table 1: Previous studies of malicious traffic detection methods

Category Main focus Ref. Techniques Contribution Limitation

Non-machine
learning
detection
model

Static/Dynamic
analysis

[23] Proposed extension
of the static
analyzer to IoT
system

Introduced the
expansion direction
of the static
analyzer through
vulnerability
analysis

Did not consider
resources

[24] Used
Static/Dynamic
analysis to extract
features

IoT malicious code
spread trends can
be analyzed

• Poor
performance and
less information
available than
machine
learning

• Did not consider
resources

(Continued)

CMES, 2024, vol.140, no.2 1673

Table 1 (continued)

Category Main focus Ref. Techniques Contribution Limitation

Machine
learning
detection
model

Reducing
complexity

[25] Proposed Tabu
Search-Random
Forest feature
selection

• Reduced
computational
complexity by
reducing feature
space and vector

• Improved
detection
accuracy, even
for attacks with a
few data samples

Because the tabu
list must be
referenced every
time, a reference
delay occurs as the
number of features
increases

[26] Estimated the
importance of
features and select
the top-k features

Improved learning
performance and
shortened learning
time

• Insufficient basis
for selecting the
importance
threshold

• Did not consider
resource

[27] • Feature selection
based on
correlations

• Verified learning
performance
with the deep
neural network
(DNN) model in
multiple
scenarios

Improved learning
time and calculated
amount through
feature selection

Some datasets
result in poor
performance

(Continued)

1674 CMES, 2024, vol.140, no.2

Table 1 (continued)

Category Main focus Ref. Techniques Contribution Limitation

Improving
detection
performance

[28] Lightweight
signature
generation through
multi-level
clustering

• Lightweight
detection method
suitable for IoT
environment

• Improved
malware
detection rate
through cluster
merging

• Unable to detect
new malware

• Cluster merging
process takes a
long time

[29] • Improved attack
detection rate
over
standard WOA

• Reduced search
space by adding
an intersection
operator

• Detected network
attacks with high
accuracy

• Improvement of
WOA’s local
optimization
problem

High
computational
complexity and
time delay because
of GA operators

[20] • Effective feature
set filtering with
Bijective soft set

• Improved
accuracy using
correlation
attribute
evaluation (CAE)
and accuracy
metrics together

• The first study
using the
CorrACC metric
for botnet
identification
attacks

• Performance
measurement for
various machine
learning
classifiers

Computational
complexity is not
considered when
reducing the
number of features

[30] Built a malicious
Android
application package
dataset for accurate
feature selection

• Shorter detection
time compared to
commercial
antivirus
scanners

• High detection
rate compared to
previous
literature

It did not consider
limited resources

CMES, 2024, vol.140, no.2 1675

2.1 Non-Machine Learning Detection Model
Whereas conventional methods are primarily focused on detecting malicious behavior without

using machine learning, recent research emphasizes network behavior analysis in large networks
[23,24]. Ferrara et al. [23] proposed a method for conducting the Open Web Application Security
Project (OWASP) top 10 vulnerability-based static analysis for IoT vulnerability analysis, as static
analysis is effective in identifying security vulnerabilities in IoT devices. However, this involves
inspecting the Application Programming Interfaces (APIs) of IoT devices post static analysis, requiring
expertise and resources. Performance verification and resource considerations have not been ade-
quately addressed. Liu et al. [24] used static and dynamic analyses to extract features such as function
calls and traffic patterns from various malicious codes, comparing them to analyze the evolution
of malicious codes. Although they analyzed the spread trend of IoT malicious code through large-
scale network traffic analysis, they struggled to detect the diverse malicious traffic patterns seen
in machine learning techniques. Given IoT’s resource limitations, complex and resource-intensive
detection methods are not ideal for lightweight protection mechanisms [28].

2.2 Machine Learning Detection Model
To improve the limitations of existing static and dynamic analysis methods, recent malicious

traffic detection research has studied machine learning-based detection methods. Nazir et al. [25]
attempted to improve the complexity and introduced a Tabu Search-Random Forest (TS-RF) feature
selection technique aimed at reducing the dimensionality of high-dimensional data. Tabu search
is a high-speed search method based on a metaheuristic optimization algorithm. It calculates the
solution fit of neighboring features in the tabu list and moves it to the neighboring node with a
higher fit. However, once a predefined number of iterations is reached, no further improvements are
possible, or the objective function meets the required threshold, the search process stops. To prevent
local optimization problems, recently explored solutions are stored in a tabu list, and each time a
solution is moved, the tabu list prevents the next move. Their study [25] may be suitable for IoT
devices as it reduces computational complexity by reducing feature space and vectors by over 60%
and improving detection accuracy, even in attacks using small data samples. However, referencing
the tabu list at every movement may lead to increased reference delays as the number of features
increases. Abawajy et al. [26] focused on smartphones using the Android operating system among IoT
devices and proposed a general automated classification framework for Android malware detection.
The feature subset selection methods of this framework strengthen the learning algorithm’s training
and enhance classification performance using highly correlated features for classification. Although
this method improved learning performance and reduced learning time, resource usage, a critical
evaluation metric in the IoT environment, was not adequately considered. Alomari et al. [27] proposed
a low-calculated high-performance malware detection system using deep learning. Deep learning
is a good malicious code detection method, but there are numerous difficulties when considering
the detection mechanism; therefore, we attempted to improve the performance of the training and
evaluation process through correlation-based feature selection. Alomari et al. [27] also evaluated the
performance of DL models proposed in various learning scenarios, including the presence or absence
of feature selection. Although they implemented a lightweight model for IoT devices, reducing the
number of features by over half on a Unix/Linux-based platform led to reduced accuracy and similar
latency compared to a model without feature selection.

Alhanahnah et al. [28] focused on enhancing detection performance and creating lightweight
signatures to overcome the resource constraints of IoT devices. They proposed a multistage clustering
technique to cluster IoT malware samples into several families using n-gram string functions. A

1676 CMES, 2024, vol.140, no.2

combination of coarse- and fine-grained clustering reduced the clustering calculation cost and
improved the malware detection rate through cluster merging. However, detecting malware with low
similarity to conventional malware requires continuous IoT sample updates, and the cluster merging
process is time-consuming. Vijayanand et al. [29] introduced the whale optimization algorithm (WOA),
which improved attack detection compared to the standard WOA by adding intersection and mutation
operators. The improved WOA designated a randomly selected feature from the initial dataset as
the initial location and evaluated the fitness of each feature subset using a support vector machine
(SVM). The intrusion detection system (IDS) integrated with the WOA proposed in their study
detected network attacks with high accuracy by selecting relevant features and overcoming the local
optimization problem of the WOA. Nonetheless, the use of genetic algorithm (GA) operators increased
computational complexity and time delay, and the detection rate for classes with a few datasets was
low. Shafiq et al. [20] filtered features using a bijective soft set to select an effective feature set for
botnet IoT attacks in IoT networks, and accuracy was improved using CAE and accuracy metrics.
They selected seven out of 39 features in the dataset and correctly identified traffic using a decision
tree and a random forest model. However, it is not suitable for lightweight IoT devices because of
the lack of computational complexity in reducing the number of features through feature selection.
Mahindru et al. [30] built an effective Android malware detection model, highlighting that correct
feature selection impacts malware detection performance. They collected Android application package
files and constructed a dataset that extracts permissions and API calls, followed by feature selection
and implementing the least-squares SVM (LS-SVM) model. The model reduced the time required
for detection compared with conventional systems and showed a 3% higher detection rate compared
with models proposed in the literature. However, the study did not thoroughly analyze resource
considerations or limitations for IoT devices.

In summary, although static and dynamic analysis research in previous studies has not applied
machine learning, it is not suitable for IoT environments with limited resources because of the need
for specialized personnel and limited support. By contrast, recent studies that integrate machine
learning aim to improve detection performance or computational complexity while considering the
IoT’s resource-constrained environment, as opposed to non-machine learning detection models. We
evaluated prior research from two perspectives. Studies aimed at reducing computational complexity
failed to consider resources or exhibited poor performance, while those enhancing detection perfor-
mance had high computational complexity. Therefore, research addressing this tradeoff is crucial for
efficiently detecting malicious network traffic in resource-constrained IoT environments.

3 Proposed Scheme

This section describes the feature search mechanism and the overall operation of the pro-
posed SFSM.

3.1 Search Algorithm for Feature Selection
Feature selection aims to select a minimal representative feature subset from the entire feature set,

eliminating redundant and irrelevant features from the dataset [31]. Determining the optimal subset
of all features is challenging and is considered a combinatorial nondeterministic polynomial-time
(NP)-hard problem [32]. This section outlines the search algorithms employed in the feature selection
process.

The conventional exhaustive search method was widely adopted for finding an optimal feature
set [25]. An exhaustive search examines all feature subsets to determine the optimal features precisely;

CMES, 2024, vol.140, no.2 1677

however, the search complexity is extremely high, reaching 2N [25,33], where “N” represents the
number of features. The greater the feature dimensions, the more exponentially complex the search
becomes, leading to NP-hard problems [25,33]. The exhaustive search method is unsuitable for the
IoT environment because of its high computational complexity, requiring significant computational
time and memory to obtain an optimal solution [33]. To address this issue, search algorithms such as
random search and meta-heuristics have emerged [25].

A random search continuously generates subsets, thus enhancing the quality of selected fea-
tures through repeated selection [32]. It also mitigates local optimization problems by introducing
randomness into the search procedure [25]. In each step, the next subset is randomly generated
using information collected in the previous step [32]. However, in a worst-case scenario, exploring all
solutions may be necessary, resulting in issues akin to those encountered in an exhaustive search [32].

The metaheuristic method is a general-purpose optimization technology capable of determining
the optimal solution within a reasonable timeframe. Metaheuristic methods are divided into
single-solution-based (S-metaheuristics) and population-based (P-metaheuristics) methods [32].
S-metaheuristics construct and iterate a single solution for improvement, while P-metaheuristics
generate multiple solutions in each iteration and enhance them by selecting the best solution [25].
Metaheuristic techniques possess the ability to find a reasonable solution without exploring the
entire search space [33]. These techniques probabilistically solve optimization problems using the
randomness of a random search, engaging in optimization processes that randomly explore and
utilize search spaces with specific probabilities, starting from a random solution [34]. Metaheuristic
techniques are widely used because of their excellent performance capability, but increasing dataset
dimensions can impact their performance [34]. Additionally, a reasonable solution does not guarantee
an optimal solution [33].

Conventional search methods are ill-suited for lightweight IoT environments because of their high
computational complexities. Moreover, consistently achieving good performance is not guaranteed,
as the derived feature set is not necessarily optimal. Therefore, this study suggests the use of a
grid search method, which is a lightweight search approach for feature selection while achieving
an optimal solution. A grid search entails selecting a combination of feature sets that demonstrate
optimal performance by exploring candidate values from the entire set. This method addresses the
complexity problem associated with efficient yet highly complex exhaustive search algorithms and
also the performance issue of random search, which is efficient but lacks performance optimization.

3.2 Suboptimal Feature Selection Model
In this section, we describe the proposed SFSM. Fig. 1 illustrates its overall operational structure.

The SFSM operates in four phases: data preprocessing, input parameter optimization, feature
selection, and attack classification. First, data preprocessing is conducted on the dataset to derive
the final features for selection. Input parameter optimization is then performed on the preprocessed
dataset. In the initial step of feature selection, the top-k features are selected from the entire feature
set using permutation importance [35]. Permutation importance ranks features based on their impact
on the classification performance of the dataset. Fig. 2 shows a schematic diagram for selecting top-k
features using permutation importance.

As shown in Fig. 2, the error of the original model is first measured, then the feature matrix
X Perm is generated by mixing the feature j from the data X, and the error is measured based on the
predicted value of the mixed data [36]. Based on the difference between the error value of the predicted
and original models, the FI value is calculated by calculating the permutation feature importance

1678 CMES, 2024, vol.140, no.2

[36]. Lastly, the feature is selected based on its importance by arranging the features in reverse order
according to the FI value [36].

Figure 1: Flowchart of SFSM

Figure 2: Flowchart of feature selection based on permutation importance

The SFSM employs data sampling to reduce computational complexity while ensuring that
performance is not compromised. During this process, parameter optimization is performed to
determine the optimal values of k and s. Here, k represents the number of features considered in
the exhaustive search, and s represents the data sampling ratio. Initially, k and s values are inputted,
and the detection performance is evaluated by incrementally adjusting each parameter. The detection
performance results for each iteration are used to calculate the gradient of the rate of increase
in performance compared to the previous parameter setting. When the gradient flattens, further
parameter adjustments do not have a significant impact on the performance. Therefore, the k and s
parameters are selected and feature selection proceeds based on these chosen values. Data are sampled
according to the s value, which is the data sampling ratio, and an exhaustive search is performed

CMES, 2024, vol.140, no.2 1679

to find the optimal r feature set from the k-selected features. This process evaluates the detection
accuracy performance for all feature sets nCr, and the feature set with the best accuracy is chosen for
subsequent learning. The feature selection we propose significantly reduces computational complexity
while showing similar performance to general thorough search methods. ML can obtain accurate
performance results with an ML classifier optimized by feature selection. We can improve resources
efficiently while increasing ML performance by reducing the computational complexity of feature
selection.

Fig. 3 illustrates the system configuration of SFSM.

Figure 3: System architecture of SFSM

As depicted in Fig. 3, the SFSM receives mixed traffic comprising both normal and malicious
traffic from the receiver and aggregates it using a traffic collector. Subsequently, the collected traffic
data are preprocessed using the data preprocessor to generate the learning model and derive feature
importance. Next, the optimized parameters are selected using the parameter optimizer. The k and
s parameters determined using the parameter optimizer are applied to the dataset for an exhaustive
search. The goal is to identify the optimal feature set that exhibits the highest detection performance.
This selected feature set serves as input for the learning model responsible for attack classification.

Algorithm 1 provides the pseudo-code of SFSM, which operates in five stages: generate the
learning model phase, calculate the feature importance rank phase, optimize parameters that affect the
accuracy performance phase, exhaustive search of feature set showing optimal performance phase, and
learning with the optimal feature set phase. In Step 1, a learning model to derive feature importance is
generated, and in Step 2, feature importance is calculated through the permutation importance library,
and the importance ranking is listed. In Step 3, based on the derived feature importance rank, the top
features are added individually, points with little change in accuracy performance are derived, and the
number of exhaustive search target features (k) and data sampling rate (s) parameters are optimized.
In Step 4, the composition of the optimal feature set is derived from an exhaustive search. In Step 5,
the process operates by learning with the feature set that showed maximum accuracy.

Algorithm 1: Pseudo-code for SFSM
Input: Malicious traffic dataset, gradient
Output: Detection performance
Step 1: Generate the learning model

data_preprocessed = data_preprocess (dataset)
model = decision_tree (data_preprocessed) � Generate the machine

learning model
(Continued)

1680 CMES, 2024, vol.140, no.2

Algorithm 1 (continued)
Step 2: Calculate the feature importance rank

feature_importance = PermutationImportance (model) � List the features in
order of importance

Step 3: Optimizing parameters that affect accuracy performance
for i in range (len(feature_importance))

for j in range(i+1):
new_dataset.append (feature_importance[j])
acc = model.fit(new_dataset) � Input the feature to model in order of feature

importance
if current_acc-before_acc < gradient �If the gradient of accuracy is below to certain level,

loop stop
n_k = c_k � Determine k (the number of exhaustive search target features)

value
n_s = c_s � Determine s (data sampling ratio)

value
break

Step 4: Exhaustive search of feature set showing optimal performance
sampled_dataset = data_preprocessed.sample (n = n_s) � Apply s value to

dataset
for all n_k do

ES_acc.append (Exhaustive search()) � Derive the accuracy of each feature set by exhaustive
search

total_set = max (ES_acc) � Derive the final set from the feature set with maximum
accuracy

Step 5: Learning with optimal feature set
model.fit (total_set)

4 Performance Evaluation
4.1 Experimental Environment

In this section, we describe the experimental environment used to demonstrate the performance
of the proposed SFSM. This experiment was conducted using Python3 on an Intel(R) Core(TM) i9-
10850K 3.60 GHz CPU with 32.0 GB of RAM. To create an environment where malicious traffic
attacks occur, we utilized the UNSW-NB15 dataset [37] and trained it using a decision tree, a machine
learning model. All hyper-parameters of the decision tree were set to default values. Max_depth, the
maximum depth of the tree, was set to none; min_samples_split, the minimum number of sample data
to split a node, was set to 2; and max_features, the maximum number of features to use, was set to none
and was set to be divided using all features. In this experiment, our goal was to classify one normal label
and two attack labels: benign, exploits, and generic, all of which have sufficient data. The benign label
represents normal traffic, exploits denote attacks using vulnerabilities, and the generic label signifies
attacks that infiltrate by bypassing the block cipher. Table 2 lists the number of data points for each
label and the number of data points after preprocessing.

CMES, 2024, vol.140, no.2 1681

Table 2: Number of data points by label

Label Number of data points

Before preprocessing After preprocessing

Benign 37,000 10,000
Exploits 11,132 10,000
Generic 18,871 10,000

The number of data points was balanced at 10,000 for each label. In addition, to preprocess
the dataset, we removed ID and time information that were unrelated to the classification among
the features. NaN values were preprocessed with zero padding, and string data underwent one-hot
encoding.

In this study, we implemented and evaluated greedy and random models as comparative models
for the SFSM. The two comparison models were evaluated in the same environment as SFSM and
were selected as models applying representative search algorithms. The greedy model [25] performs an
exhaustive search targeting all the features. It exhibits the most efficient detection performance as it
tests all feature combinations and selects the set with the best performance. However, this model has
an extremely large search complexity, 2N. The random model [22], which performs a random search
targeting all features, was implemented by randomly selecting r features from the entire feature set.

We used detection accuracy, latency, and complexity as evaluation metrics to assess the perfor-
mance of SFSM. Detection accuracy is an evaluation metric that indicates whether malicious traffic
has been accurately classified, and it was calculated using Eq. (1).

Detection accuracy = Number of correctely predicted malicious traffic
Number of total traffic

(1)

Latency measures the total time from the dataset preprocessing to the learning process.

Complexity was determined by defining an equation that calculates the amount of computation
based on the data size. Complexity considered the complexity consumed in the feature importance
calculation and the complexity consumed in the exhaustive search process, as shown in Eq. (2) [38].

Complexity = kCr × l + n × l × s (2)

where k, r, l, n, and s are the number of exhaustive search target features, the number of features used
when learning is performed, the total number of data points, the total number of features, and the data
sampling ratio, respectively.

In this experiment, we evaluated the gradient for selecting the k and s parameters of the SFSM
was set to 0.005. Eq. (3) shows the objective function of SFSM.

Efficiency = max
k∈K,s∈S

(
Detection accuracy (k, s)

Complexity (k, s)

)
(3)

K and S in Eq. (3) are sets with a finite number of ranges of {1,2,3, . . . , i} and {1, 2, 3, . . . ,
j}, respectively, when i and j are integer values. SFSM aims to maximize accuracy performance and
minimize complexity. As the k and s parameters increase, accuracy and complexity both increase, and
as the k and s parameters decrease, accuracy and complexity both decrease. Therefore, the optimal

1682 CMES, 2024, vol.140, no.2

balance of the two evaluation metrics must be found to determine the optimal k and s values. In other
words, the k and s values that maximize the objective function of Eq. (3) must be derived.

4.2 Evaluation Results and Analysis
In this section, we compare the performance of the proposed SFSM with that of the comparative

greedy and random models in terms of detection accuracy, latency, and complexity to demonstrate
its feasibility. We confirmed the optimization of the k and s parameters by increasing the number
of features, k, and data sampling ratios. The detection performance is demonstrated as the number
of features is increased for data sampling ratios of 0.2, 0.5, and 0.8. Fig. 4 shows the workflow of
parameter optimization.

Figure 4: Workflow of input parameter optimization

To select the optimal input parameter, as shown in Fig. 4, SFSM measures the detection accuracy
of the model while increasing the k and s parameters. After that, the gradient of the accuracy result
of the parameter before increasing and the current parameter is calculated. Then, k and s values are
selected when the gradient becomes flattened. Fig. 5 illustrates the evaluation of detection accuracy
performance based on the number of features and data sampling ratio.

Figure 5: Detection accuracy performance by parameters: (a) Number of features; (b) Data sampling
ratio

CMES, 2024, vol.140, no.2 1683

As depicted in Fig. 5, an increase in the number of features and data sampling ratio leads to a
plateau in the rate of increase in detection performance at a specific point. Moreover, when the number
of features is increased, the rate of increase in detection performance flattens at a point where all three
values of k are similar. Similarly, as the data sampling ratio increases, the growth rate of the detection
performance slope plateaus at the point where all three values of k are identical. This study determined
the number of features and the data sampling ratio based on a slope value of less than 0.005.

Thus, the proposed SFSM optimizes the selection of k and s values when the slope of the detection
performance growth rate flattens as the k and s values increase. Fig. 6 presents a comparison of the
performances of the SFSM and conventional models.

Figure 6: Performance and complexity evaluation results of SFSM compared to conventional models:
(a) Detection accuracy; (b) Latency; (c) Complexity

According to Fig. 6, the results indicate that the greedy, SFSM, and random models achieved
good detection accuracy in that order. Because of the exhaustive search nature of the greedy model
across all features, it achieved the highest accuracy in the range of 90%–95%. Conversely, the random
model, which selects features randomly without considering their importance, exhibited the least
efficiency in terms of accuracy. Notably, the greedy model showed the lowest efficiency in terms of
latency and complexity, two crucial evaluation metrics for IoT environments. Specifically, the latency
of the greedy model was approximately 69 times higher than that of the SFSM, while the complexity
was approximately 313 times more inefficient than that of SFSM. As a result of calculating the
efficiency of Eq. (3) by normalizing complexity according to Fig. 7, the results were high in the order
of SFSM, Random model, and Greedy model. SFSM showed the most effective efficiency compared
to the greedy model, in which complexity is inefficient, and the random model, in which detection

1684 CMES, 2024, vol.140, no.2

performance is inefficient, by minimizing the trade-off of the evaluation metrics in terms of detection
accuracy and complexity.

Figure 7: Efficiency of SFSM compared to conventional models

These findings demonstrate SFSM can more efficiently minimize the tradeoff between these
two metrics compared to the greedy model. It significantly reduces latency and complexity, essential
considerations in the IoT environment, while incurring only a marginal loss in detection performance.

5 Conclusion

Machine learning technology is widely used to identify and detect malicious traffic in IoT network
environments. However, irrelevant and overlapping features result in an increase in computational
complexity and degrade machine learning performance during the learning process. Therefore, to
address the complexity problem and enhance the detection performance of machine learning, a feature
selection approach that eliminates less relevant or overlapping features is crucial. In this study, we
propose an SFSM that reduces the complexity of the feature selection process for effective machine
learning in IoT environments. During this process, the SFSM determines the number of features to
be considered and identifies suboptimal sampling rate parameters. It utilizes an optimized feature
set for learning through an exhaustive search. The effectiveness of the SFSM in detecting malicious
traffic in resource-constrained IoT environments has been demonstrated. However, SFSM has the
limitation that the gradient value, which is the standard for selecting parameters, operates at a fixed
value, and because it is a suboptimal model, it does not determine the most optimal value. Therefore,
in future studies, we plan to study the gradient value optimization method and other methods to find
optimal parameters to derive comparison results with the baseline model. The performance of SFSM
will be verified with a more diverse range of malicious traffic datasets and machine learning models
and compared with the latest advanced conventional model, considering its quality and reliability.
Furthermore, we will optimize its capabilities by varying the gradients for selecting the k and s
parameters. In addition, the performance of SFSM will be verified by expanding more diverse attack
scenarios and malicious traffic types.

Acknowledgement: This paper is a supplementary and extended version of the paper presented at the
7th International Symposium on Mobile Internet Security (MobiSec’23) Conference.

Funding Statement: This work was partly supported by the Korea Institute for Advancement of
Technology (KIAT) Grant funded by the Korean Government (MOTIE) (P0008703, The Competency
Development Program for Industry Specialists), and MSIT under the ICAN (ICT Challenge and

CMES, 2024, vol.140, no.2 1685

Advanced Network of HRD) Program (No. IITP-2022-RS-2022-00156310) supervised by the Institute
of Information & Communication Technology Planning and Evaluation (IITP).

Author Contributions: The authors confirm contribution to the paper as follows: So-Eun Jeon:
Conceptualization, methodology, software, validation, visualization, writing–original draft. Ye-Sol
Oh: Resources, formal analysis, writing–reviewing and editing. Yeon-Ji Lee: Resources, validation,
writing–review and editing. Il-Gu Lee: Conceptualization, validation, writing–review and editing,
supervision, project administration, funding acquisition.

Availability of Data and Materials: The data that support the findings of this study are available from
the first and corresponding authors upon reasonable request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Mohammed, M. A., Abdul Wahab, H. B. (2024). Enhancing IoT data security with lightweight blockchain

and okamoto uchiyama homomorphic encryption. Computer Modeling in Engineering & Sciences, 138(2),
1731–1748. https://doi.org/10.32604/cmes.2023.030528

2. Chen, C., Liu, S., Chaudhry, S., Chen, Y., Khan, M. (2022). A lightweight and robust user authentication
protocol with user anonymity for IoT-based healthcare. Computer Modeling in Engineering & Sciences,
131(1), 307–329. https://doi.org/10.32604/cmes.2022.018749

3. Insider Inc. (2020). The Internet of Things 2020: Here’s what over 400 IoT decision-makers say
about the future of enterprise connectivity and how IoT companies can use it to grow revenue.
https://www.businessinsider.com/internet-of-things-report (accessed on 12/09/2023).

4. Yun, S. W., Park, N. E., Lee, I. G. (2023). Wake-up security: Effective security improvement mecha-
nism for low power Internet of Things. Intelligent Automation & Soft Computing, 37(3), 2897–2917.
https://doi.org/10.32604/iasc.2023.039940

5. Mizna, K., Sufian, H., Abdul, Q., Syed, A. S., Dirk, D. (2023). Towards SDN-based smart con-
tract solution for IoT access control. Computer Communications, 198, 1–31. https://doi.org/10.1016/j.
comcom.2022.11.007

6. Il-Gu, L., Kyungmin, G., Jung-Hoon, L. (2020). Battery draining attack and defense against power saving
wireless LAN devices. Sensors, 20(7), 2043. https://doi.org/10.3390/s20072043

7. Bagaa, M., Taleb, T., Bernabe, J. B., Skarmeta, A. (2020). A machine learning security framework for IoT
systems. IEEE Access, 8, 114066–114077. https://doi.org/10.1109/Access.6287639

8. Malak, A., Amal, A. A., Rami, M. A. M., Fahd, A., Menna, A. et al. (2023). Machine learning-based
detection for unauthorized access to IoT devices. Journal of Sensors and Actuator Networks, 12(2), 27.
https://doi.org/10.3390/jsan12020027

9. Mohanta, B. K., Jena, D., Satapathy, U., Patnaik, S. (2020). Survey on IoT security: Challenges and solution
using machine learning, artificial intelligence and blockchain technology. Internet of Things, 11, 100227.
https://doi.org/10.1016/j.iot.2020.100227

10. Ngo, Q. D., Nguyen, H. T., Le, V. H., Nguyen, D. H. (2020). A survey of IoT malware and detection methods
based on static features. ICT Express, 6, 280–286. https://doi.org/10.1016/j.icte.2020.04.005

11. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J. (2019). Survey of intrusion detection systems:
Techniques, datasets and challenges. Cybersecurity, 2, 20. https://doi.org/10.1186/s42400-019-0038-7

https://doi.org/10.32604/cmes.2023.030528
https://doi.org/10.32604/cmes.2022.018749
https://www.businessinsider.com/internet-of-things-report
https://doi.org/10.32604/iasc.2023.039940
https://doi.org/10.1016/j.comcom.2022.11.007
https://doi.org/10.3390/s20072043
https://doi.org/10.1109/Access.6287639
https://doi.org/10.3390/jsan12020027
https://doi.org/10.1016/j.iot.2020.100227
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.1186/s42400-019-0038-7

1686 CMES, 2024, vol.140, no.2

12. Al-amri, R., Murugesan, R. K., Man, M., Abdulateef, A. F., Al-Sharaf, M. A. et al. (2021). A review of
machine learning and deep learning techniques for anomaly detection in IoT data. Applied Sciences, 11,
5320. https://doi.org/10.3390/app11125320

13. Liu, K. J., Xu, S. W., Xu, G. A., Zhang, M., Sun, D. W. et al. (2020). A review of android
malware detection approaches based on machine learning. IEEE Access, 8, 124579– 124607.
https://doi.org/10.1109/Access.6287639

14. Abdur, R. K., Amanullah, Y., Syed, M. U., Saddam, H., Shehzad, K. et al. (2022). Exploring lightweight
deep learning solution for malware detection in iot constraint environment. Electronics, 11(24), 4147.
https://doi.org/10.3390/electronics11244147

15. Mendonça, R. V., Silva, J. C., Rosa, R. L., Saadi, M., Rodriguez, D. Z. et al. (2022). A lightweight intelligent
intrusion detection system for Industrial Internet of Things using deep learning algorithms. Expert Systems,
39(5), e12917. https://doi.org/10.1111/exsy.v39.5

16. Jiang, B., Chen, S., Wang, B. B., Luo, B. (2022). MGLNN: Semi-supervised learning
via multiple graph cooperative learning neural networks. Neural Networks, 153, 204–214.
https://doi.org/10.1016/j.neunet.2022.05.024

17. Arunabha, M. R., Jayabrata, B. (2023). DenseSPH-YOLOv5: An automated damage detection model
based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism.
Advanced Engineering Informatics, 56, 102007. https://doi.org/10.1016/j.aei.2023.102007

18. Ahmad, R., Alsmadi, I. (2021). Machine learning approaches to IoT security: A systematic literature review.
Internet of Things, 14, 100365. https://doi.org/10.1016/j.iot.2021.100365

19. Mishra, S., Albarakati, A., Sharma, S. K. (2022). Cyber threat intelligence for IoT using machine learning.
Processes, 10(12), 2673. https://doi.org/10.3390/pr10122673

20. Shafiq, M., Tian, Z., Bashir, A. K., Du, X., Guizani, M. (2020). IoT malicious traffic iden-
tification using wrapper-based feature selection mechanisms. Computers & Security, 94, 101863.
https://doi.org/10.1016/j.cose.2020.101863

21. Sun, G., Li, J., Dai, J., Song, Z., Lang, F. (2018). Feature selection for IoT based on maximal information
coefficient. Future Generation Computer Systems, 89, 606–616. https://doi.org/10.1016/j.future.2018.05.060

22. Naheed, N., Shaheen, M., Khan, S. A., Alawairdhi, M., Khan, M. A. (2020). Importance of features
selection, attributes selection, challenges and future directions for medical imaging data: A review. Computer
Modeling in Engineering & Sciences, 125(1), 315–344. https://doi.org/10.32604/cmes.2020.011380

23. Ferrara, P., Mandal, A. K., Cortesi, A., Spoto, F. (2020). Static analysis for discovering IoT vulnerabilities.
International Journal on Software Tools for Technology Transfer, 23, 71–88.

24. Liu, Z., Zhang, L., Ni, Q., Chen, J., Wang, R. et al. (2018). An integrated architecture for IoT malware
analysis and detection. IoT as a Service. 4th EAI International Conference (IoTaaS 2018), pp. 127–137.
Xi’an, China.

25. Nazir, A., Khan, R. A. (2021). A novel combinatorial optimization based feature selection method for
network intrusion detection. Computers & Security, 102, 102164. https://doi.org/10.1016/j.cose.2020.102164

26. Abawajy, J., Darem, A., Alhashmi, A. A. (2021). Feature subset selection for malware detection in smart
IoT platforms. Sensors, 21(4), 1374. https://doi.org/10.3390/s21041374

27. Alomari, E. S., Nuiaa, R. R., Alyasseri, Z. A. A., Mohammed, H. J., Sani, N. S. et al. (2023).
Malware detection using deep learning and correlation-based feature selection. Symmetry, 15(1), 123.
https://doi.org/10.3390/sym15010123

28. Alhanahnah, M., Lin, Q., Yan, Q., Zhang, N., Chen, Z. (2018). Efficient signature generation for classifying
cross-architecture IoT malware. 2018 IEEE Conference on Communications and Network Security (CNS),
Beijing, China.

https://doi.org/10.3390/app11125320
https://doi.org/10.1109/Access.6287639
https://doi.org/10.3390/electronics11244147
https://doi.org/10.1111/exsy.v39.5
https://doi.org/10.1016/j.neunet.2022.05.024
https://doi.org/10.1016/j.aei.2023.102007
https://doi.org/10.1016/j.iot.2021.100365
https://doi.org/10.3390/pr10122673
https://doi.org/10.1016/j.cose.2020.101863
https://doi.org/10.1016/j.future.2018.05.060
https://doi.org/10.32604/cmes.2020.011380
https://doi.org/10.1016/j.cose.2020.102164
https://doi.org/10.3390/s21041374
https://doi.org/10.3390/sym15010123

CMES, 2024, vol.140, no.2 1687

29. Vijayanand, R., Devaraj, D. (2020). A novel feature selection method using whale optimization algo-
rithm and genetic operators for intrusion detection system in wireless mesh network. IEEE Access, 8,
56847–56854. https://doi.org/10.1109/Access.6287639

30. Mahindru, A., Sangal, A. L. (2021). FSDroid:- A feature selection technique to detect malware from
Android using Machine Learning Techniques. Multimedia Tools and Applications, 80, 13271–13323.
https://doi.org/10.1007/s11042-020-10367-w

31. Ma, T., Zhou, H., Jia, D., Al-Dhelaan, A., Al-Dhelaan, M. et al. (2019). Feature selection with a local search
strategy based on the forest optimization algorithm. Computer Modeling in Engineering & Sciences, 121(2),
569–592. https://doi.org/10.32604/cmes.2019.07758

32. Taradeh, M., Mafarja, M., Heidari, A. A., Faris, H., Aljarah, I. et al. (2019). An evolutionary gravitational
search-based feature selection. Information Sciences, 497, 219–239. https://doi.org/10.1016/j.ins.2019.05.038

33. Al-Tashi, Q., Kadir, S. J. A., Rais, H. M., Mirjalili, S., Alhussian, H. (2019). Binary opti-
mization using hybrid grey wolf optimization for feature selection. IEEE Access, 7, 39496–39508.
https://doi.org/10.1109/Access.6287639

34. Arora, S., Singh, H., Sharma, M., Sharma, S., Anand, P. (2019). A new hybrid algorithm based on grey
wolf optimization and crow search algorithm for unconstrained function optimization and feature selection.
IEEE Access, 7, 26343–26361. https://doi.org/10.1109/ACCESS.2019.2897325

35. Altmann, A., Toloşi, L., Sander, O., Lengauer, T. (2010). Permutation importance: A corrected feature
importance measure. Bioinformatics, 26, 1340–1347. https://doi.org/10.1093/bioinformatics/btq134

36. Fisher, A., Rudin, C., Dominici, F. (2018). All models are wrong, but many are useful: Learning a variable’s
importance by studying an entire class of prediction models simultaneously. Journal of Machine Learning
Research, 20(177), 1–81.

37. Moustafa, N., Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection sys-
tems (UNSW-NB15 network data set). 2015 Military Communications and Information Systems Conference
(MilCIS), Canberra, Australia, pp. 1–6.

38. Jeon, S. E., Oh, Y. S., Kil, Y. S., Lee, Y. J., Lee, I. G. (2023). Two-step feature selection technique for secure
and lightweight Internet of Things. The 32nd International Conference on Computer Communication and
Networks (ICCCN), pp. 1–6. Hawaii, USA.

https://doi.org/10.1109/Access.6287639
https://doi.org/10.1007/s11042-020-10367-w
https://doi.org/10.32604/cmes.2019.07758
https://doi.org/10.1016/j.ins.2019.05.038
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/ACCESS.2019.2897325
https://doi.org/10.1093/bioinformatics/btq134

	Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices
	1 Introduction
	2 Related Work
	3 Proposed Scheme
	4 Performance Evaluation
	5 Conclusion
	References

