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ABSTRACT

Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities. Addi-
tionally, it leverages inter-modal correlation to enhance recognition performance. Concurrently, the robustness
and recognition performance of the system can be enhanced through judiciously leveraging the correlation
among multimodal features. Nevertheless, two issues persist in multi-modal feature fusion recognition: Firstly,
the enhancement of recognition performance in fusion recognition has not comprehensively considered the
inter-modality correlations among distinct modalities. Secondly, during modal fusion, improper weight selection
diminishes the salience of crucial modal features, thereby diminishing the overall recognition performance. To
address these two issues, we introduce an enhanced DenseNet multimodal recognition network founded on
feature-level fusion. The information from the three modalities is fused akin to RGB, and the input network
augments the correlation between modes through channel correlation. Within the enhanced DenseNet network,
the Efficient Channel Attention Network (ECA-Net) dynamically adjusts the weight of each channel to amplify
the salience of crucial information in each modal feature. Depthwise separable convolution markedly reduces the
training parameters and further enhances the feature correlation. Experimental evaluations were conducted on
four multimodal databases, comprising six unimodal databases, including multispectral palmprint and palm vein
databases from the Chinese Academy of Sciences. The Equal Error Rates (EER) values were 0.0149%, 0.0150%,
0.0099%, and 0.0050%, correspondingly. In comparison to other network methods for palmprint, palm vein, and
finger vein fusion recognition, this approach substantially enhances recognition performance, rendering it suitable
for high-security environments with practical applicability. The experiments in this article utilized a modest sample
database comprising 200 individuals. The subsequent phase involves preparing for the extension of the method to
larger databases.
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1 Introduction

Attack methods targeting single-modal biometric identification are diverse and ceaseless, encom-
passing techniques such as 3D face replicas and sets of manipulated fingerprints. Multimodal fusion
biometric recognition inherently possesses advantages in countering attacks while alleviating the
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demands on the performance of unimodal biometric recognition. Comprehensive utilization of com-
plementary information from multimodal sources enriches the feature representation in multimodal
fusion, substantially mitigating the impact of environmental variations on recognition performance,
particularly in noisy or extreme conditions, thereby enhancing the robustness of the system.

Before the rise of multimodal biometrics, unimodal biometrics were already deeply integrated
into everyday life, such as face recognition. Benamara et al. [1] introduced a multi-sensor face
detector model built upon the advanced YOLO (You Only Look Once) v3 architecture. This model
demonstrates the capability to detect faces captured in both visible and thermal images. To mitigate the
modal gap between visible and thermal spectra, a novel CycleGAN structure is applied. Zheng et al. [2]
proposed a converter-based cross-fertilization method that effectively integrates facial and image
features to enhance focus on salient facial regions. Jiménez-Bravo et al. [3] designed a cost-effective
face recognition system, incorporating techniques like edge computing and data augmentation.
Sun et al. [4] employed global features learned from a global-based module and local features learned
from a region-based module to create a representation of fused face features.

At this stage, the use of multimodality to accomplish tasks is beginning to rise in all industries.
Especially for the field of biometric identification. Shi et al. [5] integrated a two-branch convolutional
neural network with a Long Short-Term Memory (LSTM) network to extract spatio-temporal
feature information from the original load pattern of network traffic. Additionally, a convolutional
neural network was employed to extract feature information for multimodal information mining.
Han et al. [6] employed an original traffic feature extraction method to reduce redundant features and
expedite neural network convergence. Chen et al. [7] incorporated designed spatial context information
to dynamically modulate and filter image features, thereby enhancing the dependency modeling of
image tagging and improving the model’s inference capabilities.

Wu et al. [8] utilized a deep hash network to extract binary templates for palm print and palm vein
features, followed by fractional level fusion. Oldal et al. [9] conducted key point detection and main line
extraction for hand geometry features and palm print features, recognizing them through template-
based matching to detect corresponding points in palm print images. Ramachandran et al. [10]
employed Log-Gabor transform, Histogram of Oriented Gradients (HOG), and Local Binary Pattern
(LBP) to extract features from palmprint and iris images, concluding with score-level fusion.

In this paper, an improved DenseNet multimodal recognition network based on feature-level
fusion is proposed to address the above two problems. The three-modal information is preprocessed
and input into the RGB three-color channel for RGB-like fusion. And the inter-modal correlation is
enhanced with channel correlation. Subsequently, the DenseNet network is improved. The weights of
each channel are dynamically adjusted with the Efficient Channel Attention Network (ECA-Net). By
adaptively choosing a convolution kernel size proportional to the channel dimension, the information
interaction across channels is accomplished with convolution operation. The correlation information
among the three modalities is fully utilized to improve the prominence of important information in the
features of each modality. Meanwhile, the depth separable convolution drastically reduces the training
parameters, avoids network overfitting, and again improves the feature correlation to ensure strong
generalization ability in small sample data sets. In order to prove the effectiveness of the network, this
paper selects palm prints, palm veins and finger veins as three modalities for fusion experiments. Fig. 1
shows the overall architecture of the proposed network in this paper. The main contributions of the
paper are:

i. This study makes a notable contribution by addressing the frequently neglected inter-modality
correlations in multi-modal feature fusion recognition. The proposed enhanced DenseNet network
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capitalizes on these correlations, thereby improving the robustness and overall performance of the
recognition system.

ii. The article presents a solution to the issue of improper weight selection during modal fusion,
a common challenge that can lead to diminished recognition performance. The Enhanced DenseNet
network integrates the ECA-Net, dynamically adjusting weights to amplify crucial modal features,
thereby optimizing fusion and enhancing overall recognition performance.
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Figure 1: Network structural diagram

2 Related Work

Although multimodal biometrics has started to gradually enter our lives. Nonetheless, multimodal
biometric recognition generally encounters the following two issues. Firstly, modality fusion fails to
fully consider the correlation between modes, hindering the improvement of recognition performance.
Secondly, improper weighting during modality fusion diminishes the significance of crucial modal
features, resulting in an overall decrease in recognition performance.

Within current multimodal feature fusion methods, Yang et al. [11] employed a single device to
capture multimodal data from the same hand area. To extract pertinent information, fingerprint and
finger vein features are decomposed into shared and private components, enhancing complementarity.
Rajasekar et al. [12] introduced a multimodal biometric recognition system based on deep learning
methodologies. The approach incorporates three Convolutional Neural Network (CNN) architectures
for iris, face, and fingerprint to integrate and construct the system. Additionally, it adopts a two-
level fusion strategy involving feature-level fusion and score-level fusion. Daas et al. [13] proposed
two multimodal architectures, feature-level fusion, and fractional-level fusion, based on the biometric
features of finger-knuckleprint and finger-vein. Transfer learning with CNN is employed for feature
extraction to bolster system security. Sasikala [14], the integration of two biometric features, namely
fingerprint and retina, involves a combination of deep learning (DL) and hashing methods. A
bidirectional gated recurrent unit (BiGRU) model is employed to discern the correlation among
internal features within single-modal images. While some methods in the aforementioned context
capture multimodal data from the same hand area, and others detect the correlation of internal features
within single-modal images, they fall short of fully leveraging the correlation information between
different modalities.



540 CMES, 2024, vol.140, no.1

In [15], the Improved Principal Component Analysis (IPCA) method was employed for the
extraction and dimensionality reduction of four modal databases, encompassing face, ear, palm,
and finger. The four biometric features were fused with corresponding matching scores, and the
resultant features were sorted. Despite the traditional method enhancing the salience of crucial
features, achieving improved recognition performance remains challenging, especially when dealing
with large-scale databases. In [16], a hybrid fusion model was introduced for iris, palm vein, and finger
vein modalities. This model incorporates a multi-set structure to capture typical features, and the
distribution information of scores is utilized to aid decision-making, thereby enhancing recognition
accuracy and security. Abdullahi et al. [17], a spatial and temporal multimodal fingerprint and
finger vein network, named FS-STMFPFV-Net, was introduced based on fingerprint and finger vein
modalities. Image variability is enhanced by independently learning two channels, and ReliefFS is
employed for feature selection. In [18], a Two-Stream Convolutional Neural Network was advocated to
augment the information pertaining to Multimodal Facial Biometrics. The architecture comprises two
successive components, each employing distinct fusion strategies, amalgamating three-color data and
multimodal face biometric texture descriptors. To augment the prominence of crucial features, certain
methodologies from the aforementioned employ multistage pretraining for refined feature weight
selection, while others intensify the layers of the feature extraction network. However, collectively,
these approaches amplify the intricacy of the network model.

In this research, we present an enhanced DenseNet multimodal recognition network that addresses
critical issues related to insufficient consideration of inter-modality correlations and improper weight
selection during fusion. The proposed network incorporates Efficient Channel Attention and depth-
wise separable convolution, leading to a notable improvement in recognition performance.

This paper is summarized as follows. Section 3 describes the derivation of the methods mentioned
in this article. Section 4 creates four multimodal databases and performs performance experiments on
the method. Section 5 summarizes the article.

3 Method

During the image data preprocessing stage, we utilize the methodology outlined by Wu et al. [19]
to implement denoising techniques on palmprint and palm vein images. This involves contour
extraction, identification of intersection and valley points, resulting in the acquisition of regions of
interest (ROI) images sized at 128 pixels × 128 pixels. Adhering to the methodology elucidated by
Krishnan et al. [20], denoising procedures were implemented on the finger vein image, eliminating
border elements, identifying finger edges, and demarcating the corresponding region. Subsequently,
an ROI image sized at 128 pixels × 128 pixels was derived.

The ROIs of palmprint, palm vein, and finger vein are individually fed into the RGB three-color
channels, resulting in a three-modal RGB feature map denoted as X , possessing dimensions of 3 × 128
× 128. The dimension of X is denoted as C × H × W , where C signifies the number of channels, and
H and W symbolize the height and width of the feature map, respectively. Initially, a global average
pooling operation is executed on X to generate a feature map incorporating global average information
from the three modes, as illustrated in Eq. (1),

Yc = 1
H × W

H∑
i=1

W∑
j=1

Xcij (1)
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In this context, Y c signifies the globally averaged pooled output on channel c. An adaptive
approach is employed to ascertain the size (k) of the convolution kernel, which scales proportionally
with the channel dimension C. This is depicted in Eq. (2),

k = Ψ (C) =
∣∣∣∣ log2 (C)

γ
+ b

γ

∣∣∣∣
odd

(2)

γ and b are the respective parameters of the mapping function. Additionally, |n| odd represents
the nearest odd number to n. This approach enables dynamic adjustments to the interaction coverage
among diverse modalities based on the channel count. It guarantees comprehensive consideration of
the correlation among the three modalities, as illustrated in Eq. (3),

Zc = K ∗ Yc (3)

Within this context, Zc denotes the convolution output specific to channel c, with K representing
the convolution kernel. Following the convolution operation, the resulting output undergoes process-
ing by the activation function σ , as outlined in Eq. (4),

Oc = σ (Zc) (4)

Ultimately, the feature map Oc, following processing, is element-wise multiplied with the original
input three-modal feature map X to yield the ultimate feature map. This methodology allows ECA-
Net to fully exploit the correlation information among the three-modal features. The detailed process
is illustrated in Fig. 2.
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Figure 2: Efficient channel attention module

In the preceding steps, ECA-Net dynamically determines the size (k) of the convolution kernel
using an adaptive method. This size delineates the scope of local cross-channel interaction. By
performing convolution operations on each channel with k neighbors, local cross-channel interaction
information is acquired. Subsequently, an element-wise multiplication operation is executed to fully
leverage the correlation information among channels, thereby enhancing the representational capacity
of the three-modal feature map. The representation of the process when k is set to 4 is depicted in Fig. 2.

Subsequently, to facilitate a more comprehensive learning of the employed trimodal features and
mitigate the risk of overfitting associated with a small sample database, enhancements are applied
to the Dense Block module and the Transition module through the integration of deep separable
convolution. Leveraging the densely connected nature inherent in the Dense Block module enables
the network to more effectively recycle features learned in earlier layers. This enhances the efficiency
of employing trimodal features. Robust generalization capability is guaranteed, particularly on small
sample databases. Concurrently, depth separable convolution further fortifies the network’s feature
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representation capability, leading to a substantial reduction in the number of parameters. This renders
the network more adaptive and robust. The core architecture of this network is depicted in Fig. 3.
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Figure 3: Structure diagram of proposed method network

The Dense Block module within this network stands as a pivotal constituent of the entire
architecture. Comprising numerous dense layers, each layer is intricately linked through cross-channel
concatenation. This thoughtful design ensures that each layer accepts the features from all preceding
layers as input and transmits its feature output to all ensuing layers. Thus, this approach ensures the
comprehensive utilization of information across the three modalities.

Within this network, the Dense Block module stands as a fundamental constituent and comprises
several dense layers. These layers are connected to each other by cross-channels. Such a design permits
each layer to accept features from all preceding layers as input and relay the feature output from this
layer to all succeeding layers. Consequently, this approach ensures the comprehensive utilization of
information among the three modalities.

In detail, the network incorporates four Dense Block modules, with each module comprising a
specific number of layers (3, 6, 12, 8). The input to the ith layer of each module encompasses a cascade
of feature maps from the initial layer up to layer i − 1. This implies that the input to layer i encompasses
all features from layer 1 to layer i − 1. This relationship is depicted in Eq. (5),

xi = Hi ([x0, x1, . . . , xi−1]) (5)

Here, xi represents the output feature map of the ith layer, while Hi denotes the mapping function
associated with the ith layer. The mapping function Hi receives the input feature maps [x0, x1, . . . , xi−1]
from all preceding layers and produces the output xi for the ith layer. The notation [x0, x1, . . . , xi−1]
indicates the concatenation of feature maps from all preceding layers, resulting in a tensor that
consolidates all the features of the prior layers.

The Transition layer serves as the linkage between two neighboring Dense Blocks. The primary
role of the Transition layer is to decrease the dimension of the feature map. This, in turn, reduces the
computational complexity of the model, making it easier to train the network and establish effective
transitions between adjacent Dense Blocks. The Transition layer consists of a 1 × 1 convolutional
layer and a 2 × 2 average pooling layer. Additionally, deep separable convolution decomposes the
convolution operation into deep convolution and pointwise convolution. This results in a substantial
reduction in the number of parameters. This aspect is especially crucial for small sample databases
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as it effectively mitigates the model’s reliance on an extensive amount of training data, consequently
minimizing the risk of overfitting.

In this network, the depthwise separable convolution can be deconstructed into two distinct steps:
Depthwise Convolution and Pointwise Convolution.

Within the realm of depthwise convolution, a convolutional kernel is individually applied to
each channel of the input. Given that the input comprises three channels, three 3 × 3 convolution
kernels are employed to process these channels. This step ensures the independence of each channel
without intermixing among channels. In pointwise convolution, a 1 × 1 convolution kernel linearly
combines the output of depthwise convolution. This step is responsible for the linear combination
between channels without considering spatial information. The depthwise separable convolution
disentangles channel information and spatial information within the input data. This segregation leads
to a reduction in computation workload and the number of parameters. The detailed architecture is
illustrated in Fig. 4.

Depthwise Convolution Pointwise Convolution

3 channel Input 1*1*3 conv3*3*3 conv

Figure 4: Depth separable convolution structure diagram

Fig. 4 depicts the initial step as the depthwise convolution operation. During this stage, the process
unfolds in a two-dimensional plane. Each channel undergoes processing by a depthwise convolution
kernel, resulting in a corresponding feature map. The number of depthwise convolution kernels
corresponds to the channels in the preceding layer. In the case of a three-channel image input, the
convolution produces only three feature maps, without an increase in their count. This ensures clarity
and simplicity in feature map production.

Subsequently, the pointwise convolution stage amalgamates the feature maps acquired through
deep convolution. The convolution kernel size is 1 × 1 × 3, with 3 representing the number of channels
in the upper layer. Pointwise convolution serves the purpose of weighting and amalgamating feature
maps along the depth direction, leading to the generation of novel feature maps. Each convolutional
kernel yields an output feature map. By combining deep convolution and pointwise convolution, deep
separable convolution achieves flexibility in processing feature information from various channels at
the same spatial position, all the while preserving computational efficiency. This results in a more
nuanced and specific feature representation.

Within this network, improvements are introduced to the Dense Block module and the Transition
layer, achieved by incorporating deep separable convolution. The network’s training performance is
further enhanced through the design of a specific architecture with adjusted parameters. This design
ensures optimized configurations for effective database training. The configurations include a growth
rate set to 16, utilization of four Dense Block modules, and each block having a specified number of
layers (3, 6, 12, 8). The initial convolution layer learns eight filters, and the batch normalization size is
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configured to 4. The choice of these parameters undergoes meticulous consideration and experimental
verification to guarantee that the network attains commendable performance in specific tasks. The
detailed parameters are presented in Table 1.

Table 1: The network architecture of the proposed method model

Output size Proposed method

Dense block 1:

[3,28,28]

[
Dense Layer : Depthwise_Conv.3 × 3, 64
Conv.1 × 1, 64 Pointwise_Conv.1 × 1, 16

]
× 3

Transition:

[
Depthwise_Conv.3 × 3, 56
Pointwise_Conv.1 × 1, 28

]

Dense block 2:

[3,62,62]

[
Dense Layer : Depthwise_Conv.3 × 3, 64
Conv.1 × 1, 64 Pointwise_Conv.1 × 1, 16

]
× 6

Transition:

[
Depthwise_Conv.3 × 3, 124
Pointwise_Conv.1 × 1, 62

]

Dense block 3:

[3,127,127]

[
Dense Layer : Depthwise_Conv.3 × 3, 64
Conv.1 × 1, 64 Pointwise_Conv.1 × 1, 16

]
× 12

Transition:

[
Depthwise_Conv.3 × 3, 254
Pointwise_Conv.1 × 1, 127

]

Dense block 4:

[3,16,16]

[
Dense Layer : Depthwise_Conv.3 × 3, 64
Conv.1 × 1, 64 Pointwise_Conv.1 × 1, 16

]
× 8

Transition:

[
Depthwise_Conv.3 × 3, 64
Pointwise_Conv.1 × 1, 16

]

4 Experimental Results and Analysis
4.1 Database

Following statistical analysis, it was observed that there is currently no publicly available database
encompassing various hand-based features simultaneously, such as palmprint, palm vein, fingerprint,
knuckleprint, finger vein, and hand shape, all belonging to the same individual. Consequently, this
paper employs two single-modal palm vein databases, two single-modal palmprint databases, and a
finger vein database to establish four multimodal databases centered around hand features. Detailed
information regarding the single-modal databases is outlined in Table 2. Sample images from the five
single-modal databases are depicted in Fig. 5.
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Table 2: Hand-based single-modal database description

Databases Traits Subject Sample Total

CASIA-P (Zhou et al. [21]) Palmprint 200 6 1200
Tongji-V (Zhang et al. [22]) Palm-vein 600 20 12000
Tongji-P (Zhang et al. [22]) Palmprint 600 20 12000
PolyU-NIR (Zhang et al. [23]) Palm-vein 250 6 1500
SDUMLA-HMT
(Yin et al. [24])

Finger-vein 106 18 1908

(a)                     (b)                     (c) 

(d)                     (e) 

Figure 5: ROI samples of single-modal database. (a) CASIA-P; (b) Tongji-V; (c) Tongji-P; (d) Poly
U-NIR; (e) SDUMLA-HMT

The multimodal database TCSD includes three publicly available single-modal databases: Tongji-
V, CASIA-P, and SDUMLA-HMT. The Tongji University Palm Vein database (Tongji-V) collects
palm vein images in a non-contact manner with a light source wavelength of 940 nm. It comprises
12,000 palm vein image samples from 600 individuals aged between 20 and 50 years. The Chi-
nese Academy of Sciences Palmprint database (CASIA-P) is derived from the CASIA Multispec-
tral Palmprint database. It captures palmprint features using a light source with a wavelength of
460 nm, including left and right hand features of the same individual. In this paper, these are treated as
features of two different individuals, resulting in 1,200 palmprint image samples from 200 individuals.
The Shandong University Machine Learning and Data Mining Laboratory Finger Vein database
(SDUMLA-HMT) provides finger vein images for the index, middle, and ring fingers of both hands
for each individual. Similar to CASIA-P, left and right hand features of the same individual, as well
as finger vein images from different fingers of the same hand, are treated as features of different
individuals. Therefore, the database comprises 3,816 finger vein image samples from 636 individuals.
For each of the three databases, 200 individuals were selected, resulting in a total of 600 images, and
the ROI size is 128 pixels × 128 pixels.

The multimodal database NIR-TSD comprises three publicly available single-modal databases:
PolyU-NIR, Tongji-P, and SDUMLA-HMT. The PolyU Multispectral Palmprint database (PolyU-
NIR) collects palmprint images under near-infrared illumination. The acquisition equipment includes
a CCD camera and a high-power halogen light source for contact-based collection. The near-infrared
illumination is used to capture palm vein images. This database contains 1,500 palm vein image samples
from 250 individuals. The Tongji University Palmprint database (Tongji-P) collects palmprint images
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through contact-based acquisition and includes 12,000 palmprint image samples from 600 individuals.
From the mentioned databases, including SDUMLA-HMT, 200 individuals were selected from each,
resulting in a total of 600 image samples. The ROI size is 128 pixels × 128 pixels.

The multimodal database NIR-CSD consists of three publicly available single-modal databases:
PolyU-NIR, CASIA-P, and SDUMLA-HMT. 200 individuals were selected from each of these three
databases, resulting in a total of 600 image samples. The ROI size is 128 pixels × 128 pixels.

The multimodal database TTSD comprises three publicly available single-modal databases:
Tongji-V, Tongji-P, and SDUMLA-HMT. A total of 600 images were selected, with 200 individuals
chosen from each of the three databases. The ROI size is 128 pixels × 128 pixels. Table 3 presents
detailed information about the utilized multimodal databases, and Fig. 6 displays sample images from
the four multimodal databases.

Table 3: Hand-based multimodal database description

Databases Subject Sample Total Image size

TCSD 200 6 1200 128 × 128
NIR-TSD 200 6 1200 128 × 128
NIR-CSD 200 6 1200 128 × 128
TTSD 200 6 1200 128 × 128

   

(a)                     (b)  

  

(c)                     (d)  

Figure 6: Multimodal database ROI samples. (a) TCSD; (b) NIR-TSD; (c) NIR-CSD; (d) TTSD

4.2 Performance Indicators
To evaluate the accuracy of the proposed multimodal biometric recognition method, this study

divided the data into training and validation sets in a ratio of 8:2 on four multimodal databases. The
individuals in the training and validation sets are non-overlapping.

The recognition performance is assessed using metrics such as True Positive Rate (TPR), False
Positive Rate (FPR), EER, Recall, Precision, Accuracy curves, Loss curves, Macro Precision-Recall
(PR) curves, and Receiver Operating Characteristic (ROC) curves, as outlined in Eqs. (6)–(9),

TPR = Recall = TP
TP + FN

(6)

FPR = FP
FP + TN

(7)



CMES, 2024, vol.140, no.1 547

Precision = TP
TP + FP

(8)

Accuracy = TP + TN
TP + TN + FP + FN

(9)

where TP represents the number of True Positives, TN represents the number of True Negatives, FP
represents the number of False Positives, and FN represents the number of False Negatives.

The ROC curve is used to assess the classification performance of a binary classi-fication model at
different thresholds. The Macro PR curve is a way to evaluate the performance of a model in multi-class
problems. It aggregates the predictive results of multiple classes into a binary classification problem
and then calculates the macro Precision and macro Recall, providing a comprehensive performance
assessment.

4.3 Ablation Experiments
For the proposed multi-modal fusion recognition method in this paper, experimental verification

is conducted from two aspects: modal ablation and network module ablation.

4.3.1 Modal Ablation

In modal ablation experiments, the proposed method is applied to train and recognize networks
in single-modal, dual-modal, and triple-modal forms. During single-modal training, 1,200 palm vein
image samples from 200 individuals in the PolyU-NIR database are used for training and validation.
For dual-modal training, a combination of 1200 image samples from 200 individuals in both the
PolyU-NIR and Tongji-P databases is used for training and validation after fusion. In the case of
triple-modal training, 1,200 image samples from 200 individuals in the TTSD database are utilized for
training and validation. Figs. 7 and 8 show the intuitive performance in terms of accuracy and loss
across the three modalities. It can be observed from the figures that with an increase in modalities, the
accuracy and loss curves of the validation set fit more quickly and approach the optimal values.

Figure 7: Three modal training/verification accuracy curves. (a) Single-mode accuracy; (b) Dual-modal
accuracy; (c) Three-modal accuracy
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Figure 8: Three modal loss rate curves. (a) Single-mode loss rate; (b) Dual-modal loss rate; (c) Three-
modal loss rate

4.3.2 Network Module Ablation

In the network module ablation experiments, the TTSD database, comprising 1200 images from
200 individuals, was used for training and validation. Performance tests were conducted on the original
DenseNet program, the program with only the addition of ECA-Net, the program with only the
introduction of depth separable convolution, and the completely improved program. Figs. 9 and 10
intuitively demonstrate the program’s performance in terms of accuracy and loss under these four
conditions. From the figures, it can be observed that the proposed improvements are effective, leading
to enhanced performance in each scenario compared to the original program. The accuracy and loss
curves of the validation set for the fully improved program fit more quickly and approach optimal
values.

Figure 9: Program accuracy in four cases. (a) DenseNet; (b) ECA-DenseNet; (c) DW-conv; (d)
Proposed method
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Figure 10: Program loss rate in four cases. (a) DenseNet; (b) ECA-DenseNet; (c) DW-conv; (d)
Proposed method

4.4 Recognition Performance
To validate the proposed network approach, experiments on recognition performance were

conducted on a multimodal database. Several classical network models in the field of biometric
recognition were selected for comparison with the proposed method. These models include VGG16
(Aleidan et al. [25]), ResNet18 (Aldjia et al. [26]), InceptionV3 (Jin et al. [27]), ShuffleNetV2
(Qian et al. [28]), and MobileNetV2 (Tapia et al. [29]). Standardization procedures were applied to
the different modal features for each method, followed by their fusion into new RGB image features.
Subsequently, the recognition performance of the models was evaluated.

In order to better adapt to high-security environments, this paper conducted experiments using a
small sample database. Specifically, 200 classes were selected, with each class containing 6 images.
The training and validation sets were divided in an 8:2 ratio, meaning that 5 images from each
class were used for training and 1 image for validation. This design resulted in evaluation curves
with an approximate curvature of 0, although it is still evident that the proposed method enhances
performance.

The experimental results are presented in Table 4. The curves depicting the performance of various
methods in relation to recognition across the four multimodal fusion databases are shown in Figs. 11
to 14. Figs. 11 and 12 illustrate the accuracy/loss curves on the NIR-TSD database, while Figs. 13 and
14 display the PR/ROC curves obtained from experiments on the four multimodal databases. It can be
observed that the proposed method outperforms other methods in terms of recognition performance.

Table 4: Comparison of equal err rate of multiple methods

VGG16 ResNet18 InceptionV3 ShuffleNetV2 MobileNetV2 Proposed method

TCSD 0.0947 0.0647 0.0199 0.0573 0.0597 0.0149
NIR-TSD 0.0698 0.0248 0.0497 0.0598 0.0249 0.0150
NIR-CSD 0.1196 0.0348 0.0398 0.1344 0.0237 0.0099
TTSD 0.0649 0.0398 0.0647 0.0548 0.0547 0.0050
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Figure 11: Accuracy of NIR-TSD database. (a) VGG16; (b) ResNet18; (c) InceptionV3;
(d) ShuffleNetV2; (e) MobileNetV2; (f) Proposed method

Figure 12: (Continued)
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Figure 12: NIR-TSD database loss rate. (a) VGG16; (b) ResNet18; (c) InceptionV3; (d) ShuffleNetV2;
(e) MobileNetV2; (f) Proposed method

Figure 13: PR curves of four multimodal databases. (a) TCSD; (b) NIR-TSD; (c) NIR-CSD; (d) TTSD
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Figure 14: ROC curves of four multimodal databases. (a) TCSD; (b) NIR-TSD; (c) NIR-CSD;
(d) TTSD

5 Conclusions

This study aims to improve feature-level fusion recognition for multimodal hand features. It
achieves this by employing an enhanced DenseNet deep learning network that leverages inter-modal
correlations. Multimodal biometrics recognition encounters two challenges in practical applications.
First, the fusion recognition often fails to adequately consider the correlation between modalities.
Second, improper weight selection during modal fusion can diminish the saliency of key features,
leading to a degradation in overall recognition performance. To address these problems, an improved
DenseNet multimodal recognition network based on feature-level fusion is proposed in this paper.
The fusion of the three modalities is similar to RGB fusion, where the correlation between modalities
is enhanced by inputting channel correlation information to the network. In the improved DenseNet
network, the ECA network dynamically adjusts the weights of each channel to increase the salience
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of important information in each modal feature. In addition, the deep separable convolution greatly
reduces the training parameters while further enhancing the feature correlation.

The experimental results indicate that the proposed method achieves remarkably low EERs
of 0.0149%, 0.0150%, 0.0099%, and 0.0050% on the four multimodal databases, demonstrating its
practical application value in identity recognition for scenarios with high security requirements. In the
next stage of research, further optimization of the model structure and parameter configuration will
be considered to enhance generalization performance under different environmental conditions and
reduce the demand for computational resources.

In the conducted experiments in this article, all the databases were processed following the criteria
of the finger vein database. The resulting multimodal databases are all small-sample databases with
limited capacity. Consequently, the next phase of this study aims to overcome the limitations of
the databases, enabling experimentation on more extensive databases. This ensures that the program
maintains robustness even when applied to larger databases.
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