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ABSTRACT

The large-scale multi-objective optimization algorithm (LSMOA), based on the grouping of decision variables,
is an advanced method for handling high-dimensional decision variables. However, in practical problems, the
interaction among decision variables is intricate, leading to large group sizes and suboptimal optimization effects;
hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision
variables (MOEAWOD) is proposed in this paper. Initially, the decision variables are perturbed and categorized
into convergence and diversity variables; subsequently, the convergence variables are subdivided into groups based
on the interactions among different decision variables. If the size of a group surpasses the set threshold, that group
undergoes a process of weighting and overlapping grouping. Specifically, the interaction strength is evaluated based
on the interaction frequency and number of objectives among various decision variables. The decision variable
with the highest interaction in the group is identified and disregarded, and the remaining variables are then
reclassified into subgroups. Finally, the decision variable with the strongest interaction is added to each subgroup.
MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision
variables within groups, which contributed to the optimized direction of convergence and diversity exploration
with different groups. MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,
and the experimental results demonstrate the effectiveness of our methods. Compared with the other algorithms,
our method is still at an advantage.
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1 Introduction

Large-Scale Multi-Objective Optimization Problems (LSMOPs), applied in territories like engi-
neering design and logistics [1–4], share the conflicting objectives characteristic of Multi-Objective
Optimization Problems (MOPs) [5–7]. However, their high-dimensional decision variables necessitate
specialized strategies for effective resolution. In addressing MOPs, the optimization of one objective
frequently results in the degradation of others. Multi-Objective Evolutionary Algorithms (MOEAs)
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address this by finding a group of non-dominated solutions, effectively balancing these objectives to
meet various requirements [8,9]. For a minimizing problem that involves m objectives, it is symbolically
represented as F (X) = min (F1 (X) , F2 (X) , . . . , Fn (X)) , ∀F (X1) < F (X2), then it is called that X1

dominates X2 [10]. If at least one objective in X1 and X2 is such that neither can be superior to the other,
then X1 and X2 are considered non-dominated solutions [11–13]. This implies that each solution has its
unique advantages, necessitating the retention of all such solutions [14–16]. Therefore, the fundamental
goal of MOPs is to find a set of mutually non-dominated Pareto solutions. MOEAs like nondominated
sorting genetic algorithm III (NSGA-III) [17] have shown effectiveness in these problems [18–21].
However, the decision variables in engineering design, genetic biology, and other fields usually reach
thousands or even hundreds of thousands recently [22–24]. These problems are characterized by
high nonlinearity, complexity, and uncertainty, which make the traditional optimization algorithms
inefficient and perform degradation, and present a great challenge [11,25,26].

MOPs that encompass more than 100 dimensions of decision variables are referred to as LSMOPs
[27]. Algorithms addressing LSMOPs must consider how the substantial dimensionality of decision
variables impacts problem-solving [28]. This is crucial because the decision space expands exponen-
tially with high dimensionality, rendering existing MOEAs less effective in solving LSMOPs [29].
Traditional MOEAs are generally committed to an excellent solution selection strategy, i.e., selecting
the better and more appropriate solution when multiple individuals are at the same Pareto level
during the evolutionary iteration process. However, the conventional MOEAs fail to construct a more
excellent individual in the LSMOPs, and the huge decision space cannot be explored through basic
operations like crossover and mutation, which often results in the algorithms finding suboptimal
solutions within a limited local space [30–32]. In environmental selection among poor-quality sub-
optimal solutions, the chosen individuals usually provide no significant aid in problem-solving [18].
Consequently, this situation compels researchers to develop exceptional individuals that are capable
of guiding the evolution of the entire population and explore the expansive decision space. Currently,
LSMOAs are typically categorized into three broad groups [1].

The first category encompasses MOEAs that are based on the reduction of decision space, pri-
marily concentrating on reducing the dimensionality of decision variables. This approach transforms
LSMOPs into more manageable, non-large-scale optimization tasks [33]. It is crucial that offspring
generated from reduced-dimension parent variables can be mapped back to the initial decision space
for function evaluation, facilitating optimization without navigating the high-dimensional space.
However, this approach often leads to local optima rather than global optima [34]. Common strategies
here involve problem transformation and dimensionality reduction.

The second category involves MOEAs with novel search strategies, distinct from decision space
partitioning and dimensionality reduction [27]. Recent MOEAs address LSMOPs directly through
innovative search strategies that enhance traditional MOEA operators, including crossover and muta-
tion [35]. These approaches focus on generating superior offspring without complex manipulation
of the vast decision space [36–38]. Typical strategies include new crossover operators and innovative
probabilistic models. However, while typically effective for specific problems, these algorithms often
lack generalizability.

The third category comprises MOEAs that focus on decision variable grouping, employing a
classic divide-and-conquer strategy to tackle LSMOPs [39,40]. Given the abundance of decision
variables in LSMOPs, specific strategies for grouping and alternately optimizing each group are widely
applied. Common strategies encompass random grouping, differential grouping, and decision variable
analysis.
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Currently, most of the grouping-based evolutionary algorithms are random grouping, which
divides the decision variables into several groups of equal size [41]. This random partitioning
strategy increases the probability of simultaneous optimization of interacting variables and makes
the population converge faster [42]. However, it completely fails to take into account the interaction
between decision variables and easily leads to local optima. The differential grouping strategy analyzes
the relationship between the decision variables and achieves better convergence, but fails to take into
account the diversity of the population at the same time [43]. Hence, a decision variable analysis (DVA)
approach is used by MOEA/DVA to categorize decision variables into distance, position, and mixed
variables [39]. A more precise grouping method is employed to differentiate diversity variables from
convergence variables, while the DVA is utilized to address the challenge of insufficient population
diversity within the differential grouping method [44].

However, the size of the subgroups remains large due to the intricacy of the decision variables in
LSMOPs. For example, LSMOPs with 1000 dimensions of decision variables are grouped in such a way
that there are still more than 100 decision variables in a group, in which case the subproblem is still an
LSMOPs. Reference [40] proposed the concept of overlapping grouping, which divides the oversized
group into multiple subgroups that can contain the same decision variables, so that the group size can
be reduced while taking into account that the decision variables with direct interaction relationships
can be optimized at the same time. However, the decision variables with the highest number of direct
interaction relationships are chosen for division during the process of overlapping grouping, but this
approach overlooks the intensity of these interaction relationships. The determination of interaction
relationships is random and may have a large error with the real situation between decision variables.
Based on these problems, this paper proposes MOEAWOD with the following contributions:

• A weighted overlapping grouping strategy enhances decision variable grouping effectiveness.
This strategy involves subdividing larger groups after interaction analysis on convergent vari-
ables, using interaction frequency and targets as subdivision weights. This method strengthens
intra-group interactions and weakens inter-group ones, showing better effectiveness in experi-
ments.

• For optimizing post-grouped decision variables, directional information is used to guide non-
dominated solutions toward more promising directions. Diversity is explored when directed
by two non-dominated individuals, and convergence is expanded when directed by both non-
dominated and dominated individuals.

• The experimental findings reveal that the convergence and diversity of the proposed MOEA-
WOD algorithm surpass those of other algorithms.

This paper is structured as follows: The related work is shown in Section 2. Section 3 elaborates
on the specifically proposed MOEAWOD. Section 4 discusses the experimental process, results, and
analysis. Finally, Section 5 concludes the paper and outlines prospects for future research.

2 Related Work

One straightforward method to address LSMOPs involves employing the divide-and-conquer
concept. This approach entails grouping decision variables and optimizing them alternately. LSMOAs
based on decision variable grouping are typically classified into three categories: random grouping,
differential grouping, and decision variable analysis.

The random grouping method enhances the probability of simultaneous optimization of inter-
acting variables, resulting in expedited population convergence [41]. Antonio et al. [42] introduced



366 CMES, 2024, vol.140, no.1

a MOEA named Cooperative Coevolutionary Generalized Differential Evolution 3 (CCGDE3) to
tackle LSMOPs, incorporating randomization within a cooperative coevolutionary framework. It
builds on the generalized differential evolution 3 (GDE3), and decision variables are randomly
partitioned into subgroups of equal size to increase the probability of optimizing interactive vari-
ables concurrently. However, its performance is susceptible to the predetermined determination of
population number and grouping mode, potentially leading to a decline in algorithmic effectiveness.
Song et al. [45] introduced a stochastic coevolutionary dynamic grouping strategy, yielding favorable
test results. Relying solely on randomness to enhance the probability of simultaneous optimization of
interacting variables may result in local optimization of the population. Additionally, the size of the
group can also influence the evolutionary effectiveness of the population.

To avoid this situation, Cao et al. [43] incorporated a differential grouping strategy to identify
interactions among decision variables. This strategy resolves the interaction problem by simultane-
ously optimizing interrelated decision variables, thus fostering a closer alignment between theoretical
and practical optimization. Nevertheless, the performance improvement of the differential grouping
strategy comes at the expense of increased computational complexity, as it requires analyzing the
interaction between decision variables in pairs. To mitigate computational demands, Li et al. [46]
implemented a fast interdependent identification method that selectively ignored certain unnecessary
checks between decision variables. While the differential grouping technique enhances the convergence
of the population, it overlooks population diversity in LSMOPs. This oversight may result in the
evolution of the population towards a solution set characterized by overly singular traits.

To circumvent the issue of poor diversity, Ma et al. [39] proposed MOEA/DVA, which uses a
grouping method of DVA to treat convergence variables and diversity variables separately. Within this
approach, variables are categorized into position variables, distance variables, and mixed variables.
Following an interactive analysis, decision variables that notably influence convergence are grouped for
joint optimization. Subsequently, variables influencing diversity are optimized independently, yielding
improved results. Although MOEA/DVA is very effective in dealing with LSMOPs, it is computationly
costly due to the evaluation of the interaction of a wide range of decision variables. Moreover, due to
the particularity of large-scale, the interaction between decision variables is intricate, and the grouping
after DVA processing may still be too large, which will still be an LSMOPs.

To address the issue of declining evolutionary performance in large groups, we propose a
MOEAWOD based on DVA to conduct weighted overlapping grouping for such instances. Following
the interaction analysis, the most interactive decision variables are allocated to different groups as
overlapping parts. This enables the simultaneous optimization of interacting decision variables, with
the added advantage that the size of the group does not influence the evolutionary performance of the
population.

3 Proposed MOEAWOD
3.1 Motivation

Random grouping of decision variables fails to account for their interactive relationships, depend-
ing solely on randomness to enhance the probability of jointly optimizing interacting variables [41].
This oversight might result in the population towards local optima within the decision space [43]. The
interaction between decision variables is characterized by how variables xi and xj jointly influence
the behavior of the objective value, such as its monotonicity or convexity [47,48]. In summary, xi

alone cannot determine the directional change of the objective function f (x), the value of xj must
also be considered. Formally, an interaction between variables xi and xj implies at least one set of
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values a1, a2, b1, b2 that meet specific conditions [46].{
f (X) |xi=a2,xj=b1

< f (X) |xi=a1,xj=b1

f (X) |xi=a1,xj=b2
< f (X) |xi=a2,xj=b2

(1)

This illustrates that optimizing decision variables i and j together in one group can more accurately
and efficiently optimize the original objective function.

Current group-based LSMOAs primarily utilize random and differential grouping. However,
these methods do not effectively balance solution diversity and convergence. Consequently, decision
variable analysis-based strategies are used to achieve more effective grouping.

In LSMOPs characterized by a high number of decision variables, even after categorizing them
into convergent and diverse types, the resulting groups from differential grouping may still be
excessively large. For example, when the LSMOPs problem exceeds 1000 dimensions, the decision
variables are intricately related, and the group size obtained could be larger than 100, which is still
an LSMOPs and remains difficult to process. Addressing these challenges, this study proposes a
weighted overlapping grouping strategy. For larger groups, weighted overlapping is implemented,
distributing highly interactive variables across subgroups to maximize intra-group and minimize inter-
group interactions.

3.2 The Proposed Overall Framework of MOEAWOD
Algorithm 1 and Fig. 1 comprehensively describe the MOEAWOD framework. Initially, decision

variables undergo control analysis, where each position is fixed except one, to determine its influence
on the convergence of objective function, categorizing them into convergent and diverse variables.
Then interaction analysis between pairs of convergent variables to assess their combined effect on the
objective. Subsequently, interacting variables are grouped using a weighted overlapping approach for
simultaneous optimization. Finally, the grouped variables are alternately optimized.

Algorithm 1: Main framework of MOEAWOD
Input: Maximum number of times a function evaluates to a value FEmax, Population size N, Threshold
for group size α, The number of direction vectors r
Output: Population P
1. P,V ← Initialization (N)
2. ConverVariable (CV), DiverVariable (DV) ← DecisionVariablesAnalysis (P)
3. subcomponents ← WeightedOverlappGrouping (CV , α) → see Algorithm 2
4. while FEs < FEmax

5. Q ← Preselection (P)
6. Offspring ← DirectionGuidedEvolution (CV , P, Q, V , r) → see Algorithm 3
7. P ← EnvironmentalSelection (P, Offspring, N)
8. end

After initializing the population for LSMOPs (the parameters are set in the experimental setup
section), decision variables undergo perturbation analysis. Each variable is fixed and individually per-
turbed within its space, creating a set of individuals differing only in the perturbed position. Diversity
variables (DV ), not affecting convergence, are randomly grouped for optimization, whereas convergent
variables undergo weighted overlapping grouping. LSMOPs are transformed into manageable non-
large-scale tasks for collaborative optimization after grouping.
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Figure 1: Algorithm framework diagram

3.3 Method of Weighted Overlapping Grouping of Decision Variables
After identifying interactions between pairs of convergent decision variables, those with direct

interactions are grouped. If a group becomes too large, a weighted overlapping grouping strategy
is applied for further division. To ascertain interactions between pairs of convergent variables, an
individual is randomly selected to study the interaction between positions xi and xj, with random
values assigned within their decision spaces. In the original population, the value of individual xk

is given by xk
i = a1, xk

j = b1. Values a2 and b2 are randomly selected within the bounds of xi

and xj. Subsequently, calculate the function value F
(
xk

) |xi=a2
, F

(
xk

) |xj=b2
, F

(
xk

) |xi=a2,xj=b2
, where

F
(
xk

) |xi=a2,xj=b2
= F

(
xk

1, . . . , xk
i−1, a2, x(kk)

(i+1) , . . . , xk
j−1, b2, xk

j+1, ..., xk
n

)
. The correlation between decision

variables xi and xj concerning the objective function F is assessed through an interaction judgment
formula, which is expressed as follows:

�iF |xj=b1
← F

(
X k

) |xi=a2,xj=b1
− F

(
X k

) |xi=a1,xj=b1

�iF |xj=b2
← F

(
X k

) |xi=a2,xj=b2
− F

(
X k

) |xi=a1,xj=b2

(2)

Hence, it follows that the decision variables xi and xj exhibit interactive characteristics in
circumstances where �iF |xj=b1

∗ �iF |xj=b2
< 0 is applicable. This implies that the monotonicity of the

objective function F is jointly determined by xi and xj. In single-objective problems, the interaction
between decision variables is directly discernible. However, in LSMOPs, it is assumed that at least one
of the m objectives demonstrates a correlation between variables i and j, indicates their interaction.
In LSMOPs, optimizing groups of connected decision variables improves results. Yet, the complexity
and quantity of these variables can lead to oversized groups, maintaining the large-scale challenge.

The links between decision variables in LSMOPs are complex, and dividing subgroups based on
interactions will lead to oversized subgroups, but disregarding interactions will segment the indivisible
problem and result in not getting the genuine optimal solution. Therefore, a weighted overlapping
grouping decision variable division strategy is proposed to address the issue of excess decision variables
with interconnections, and the grouping protects the integrity of the indivisible problem. As shown in
Algorithm 2.

Algorithm 2: WeightedOverlappGrouping
Input: CV , α
Output: Combined subcomponents (CS)

(Continued)
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Algorithm 2: (continued)
1. for p = 1:M–1
2. for q = p+1:M
3. for r = 1:NIA
4. link, fitness ← FitnessEvaluate (CV )
5. end for
6. end for
7. end for
8. divided = false
9. while ∼ all (divided) do
10. x0 ← find (divided = false)
11. x ← Interconnected (x0)
12. if size(x) > α

13. k ← MaximumInteractivity (x)
14. S0 ← Ignoring the role of the decision variable k and regrouping
15. S ← Decision variable k is added to each new set S0

end if
16. CS ← CS ∪ S

end while

In the interaction analysis of convergent variables due to the huge decision space, multiple
interactions are analyzed to learn the real interaction situation and to avoid failing to detect the
real interaction situation due to the absence of interactions in some subspaces. The number of detected
interactions is used as the weight of the interactions between the variables, and the higher number of
interactions indicates a closer connection between the two variables. At the same time, two variables
in the multi-objective problem have an interaction with one or more objectives, thus the number of
interacting objectives is used as the second weight to indicate the intensity of the interaction (Steps 1–
4). Next, decision variables are segmented into weighted overlapping groups according to interactions
(Steps 8–16). Grouping directly or indirectly related decision variables together (Steps 8–11). Weighted
overlapping grouping is applied to group sizes larger than the threshold alpha, which maintains the
connections between variables within the subgroups while refining the subgroups (Steps 12–16). After
neglecting the variable k with the most interactive performance and then regrouping the remaining
variables efficiently by interaction, finally, k is added as an overlap within each regrouped group.

To demonstrate the weighted overlapping group strategy, we apply it to the Benchmark MOP
proposed by Walking Fish Group (WFG) with a setup of 10 decision variables and 3 objectives.
Fig. 2a shows how other methods group directly connected variables in WFG6, for comparison.
In the test problem, x1 and x2 are diversity variables that are not subject to interaction analysis.
The diagram reveals that x3 has direct connections with x5 and x6, and indirect connections with
other variables through intermediary decision variables. This linkage via intermediaries often results
in overly large groups, such as assigning the seven variables from x3 to x10 into the same group,
which can reduce optimization performance. By omitting variables with the strongest interactions,
we refine the decision variables: x3, x4, x5, x6 and x8 from Subgroup 1; x7 and x9, Subgroup 2, as
shown in Fig. 2b. Reintegrating x10 into each subgroup ensures a balance between subgroup size and
internal connectivity. The example uses 10 decision variables to effectively demonstrate the weighted
overlapping grouping. This approach is highly practical for LSMOPs.
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Figure 2: Weighted overlapping grouping

3.4 The Optimization Method for Grouping Decision Variables
After weighted overlapping grouping of decision variables, subgroups are collaboratively opti-

mized using a direction-guided evolutionary method. This involves preselecting individuals to inherit
directional cues, steering them toward optimal evolution in their respective subspaces, and focusing
on both convergence and diversity. To improve convergence in less cohesive populations, the direction
shifts from dominant to non-dominant solutions, and to enhance diversity, it moves between non-
dominant solutions.

Algorithm 3: Direction-guided evolutionary algorithms
Input: CS, P, V , r
Output: Offspring
1. Fm, Nd = NDsort(P)
2. if Nd > r
3. Q0 ← F1 ∪ . . . ∪ Fm−1; P ← Fm

4. else if
5. Q0 ← F1; P ← F2 ∪ . . . ∪ Fm−1

6. end if
7. z ← Calculate the ideal point(P)
8. for i = 1: |P|
9. for j = 1: |V |
10. COSθ ← Cosines of reference vector j and individual i

(Continued)
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Algorithm 3: (continued)
11. end for
12. k = arg max(COSθ )
13. end for
14. for j = 1: |V |
15. k = arg min(APD)
16. end for
17. Q ← Q0 ∪ pk

18. ps ← random(Q)
19. if Nd < r
20. R ← Selecting r dominated solutions at random from the population Q
21. else
22. R ← Selecting r non-dominated solutions at random from the population Q
23. for j = 1: r
24. dj ← ps − ri

25. sj = γ ∗ dj + ps

26. Offspring ← Offspring ∪ sj

27. end for

The algorithm includes two main steps: preselecting individuals for directional information inher-
itance (Steps 1–17), and evolving non-dominance individuals using direction cues from preselected
and non-dominance individuals (Steps 18–25). Pre-selection is primarily done to improve parental
population diversity in order to facilitate more effective evolution, i.e., individuals of the parent that
balance diversity and convergence can lead to better overall evolution. Angle-penalized distance APD
to assess individual diversity and convergence as a way to select a few less convergent but well-
distributed solutions (Steps 13–15). During evolution, pre-selected individuals keep the population
from reaching a local optimum and pre-selected non-dominated individuals allow convergence to be
guaranteed, while the reference vector approach selects dominated individuals to ensure diversity.
If the number of dominant solutions is below threshold r, indicating good diversity, all dominant
solutions are chosen to enhance population convergence (Steps 19–22). Otherwise, selection from
non-dominant solutions expands diversity. Directional information is then added to preselected
individuals, completing the evolution process, in which step size γ is determined randomly from a
normal distribution (Steps 23–27). A balance in step size is crucial; too large causes instability and local
optima, while too small results in low efficiency. Thus, using the average length of the non-dominant
solutions and direction vectors as the evolutionary step size is more effective.

It is observed in Fig. 3 in which X3 is a dominated solution and X1 and X2 are non-dominated
individuals. When there are many non-dominant solutions, suggesting room for convergence improve-
ment, the direction shifts from dominance solution X3 to non-dominance X2. Conversely, a scarcity of
non-dominant solutions, indicating low diversity, leads to a directional shift from non-dominance X2

to X1, enhancing diversity potential.
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3.5 Discussions
The core operations of the proposed MOEAWOD algorithm encompass two key components: the

first involves weighted overlapping grouping, and the second entails directed population evolution. In
weighted overlap grouping, the convergence and diversity of decision variables are initially analyzed.
Subsequently, each bit of the n-dimensional variable is classified after a constant number of pertur-
bations, resulting in a time complexity of O(n). Following the analysis, the interaction between each
pair of convergent variables is examined to calculate the weight, and the time complexity is O(n2).
Subsequently, the group is overlapped according to the weight. The procedure involves selecting the
most interactive variable each time, and regrouping the group until the group size meets the specified
threshold, and the time complexity is O(logn). In the process of direction-guided population evolution,
preselected individuals exhibiting both diversity and convergence accept directional information for
evolution. Subsequently, directional information is added to the preselected individuals, and the time
complexity of both operations is O(1).

In summary, the time complexity for decision variable grouping is O(n2). For LSMOPs, an increase
in the dimension of decision variables results in an exponential expansion of the decision space.
While weighted overlapping grouping introduces a computational complexity of O(n2), it significantly
reduces the decision space compared to the original, enabling faster local convergence. Moreover, the
combination of variables enhances the exploration of the potential optimization space more effectively.

4 Experiments
4.1 Experimental Setup

This study evaluates the performance of the proposed MOEAWOD through the utilization of two
distinct test sets: the large-scale multi-objective optimization set LSMOPs and the continuous multi-
objective set WFG. LSMOPs, comprising LSMOP1-LSMOP9, feature complex decision variable
interactions, non-uniform variable grouping, and intricate fitness landscapes [39]. WFG, containing
WFG1-WFG9, includes problems with complex Pareto fronts and optimal sets, suitable for assessing
overall performance in diverse multi-objective scenarios [49]. We compare our algorithm with other
advanced LSMOAs to validate its practical problem-solving effectiveness.
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Different types of advanced LSMOAs were selected for comparison, including methods based
on decision variable grouping and those reconstructing LSMOPs. Key comparison algorithms are
the Decision Variable Clustering-based Evolutionary Algorithm (LMEA) [50], Grouped and Linked
Polynomial Mutation Operator (GLMO) [51], Decision Variable Analysis and Reconstruction-based
Multi-objective Evolutionary Algorithm (LERD) [52], Fast Large-scale Evolutionary Algorithm
(FLEA) guided by reference [53]. All algorithms were sourced from PlatEMO 4.2, a platform
encompassing various multi-objective algorithms, including those for large-scale problems [54]. The
experiments were conducted on an Intel i5 PC with a 2.4 GHz CPU, Windows 10 OS, and implemented
in Matlab-R2021b. Parameters are detailed in the following Table 1. Decision variables were perturbed
20 times for analysis, and categorized into convergence and diversity variables. For convergence
variable grouping, the interaction was set at 6 times to assess interactivity strength. The grouping
threshold was set at 60, with weighted overlapping grouping applied when the number of directly or
indirectly connected variables exceeded this threshold.

Table 1: Parameter settings

Algorithm Parameter settings

MOEAWOD Number of decision variable perturbations: 20; Number of interactivity analyses:
6; Weighted overlapping grouping thresholds: 60

LMEA Decision variables clustering selective solution number: 5; Number of selected
solutions for decision variable interaction analysis 5; Number of perturbations per
solution for clustering: 50

GLMO The optimization method: NSGA-III; Grouping method: ordered; The number of
variable Groups: 4

LERD The number of sampling points: 3; DVA optimized population size: 10; Number of
DVA optimization iterations: 20

FLEA Population sizes: 100; Number of reference points:
√

N

In multi-objective problems with multiple outcome objectives, performance cannot be measured
solely by objective values. Consequently, the overall performance of the algorithm is evaluated
using the Inverted Generational Distance plus (IGD+) metric [55–57]. IGD+ effectively evaluates the
convergence and diversity of the population. The formula is as follows:

IGD+ (P) = 1
|Z|

|z|∑
j=1

min→
p i∈P

d
(→

pi,
→
zj

)
(3)

where dIGD+
(→

p,
→
z
)

=
√∑m

k=1 (max {pk − zk, 0})2 (minimization problems). Z denotes the reference

points on the Pareto front of the specific problem, while P representing the results obtained from
the algorithm. IGD+ evaluates the quality of solutions by calculating, the average distance from each
reference point to the nearest point in the dominated region by the solution set. When the IGD+ value
is low, it indicates a high degree of similarity between P and Z, reflecting better convergence and
distribution of P.
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4.2 Experimental Results and Analysis
Initially, the performance of the algorithm is assessed on LSMOPs test problems, using the IGD+

metric to evaluate the convergence, diversity, Pareto optimality, and overall distribution characteristics
of the populations generated by the proposed evolutionary algorithm. Table 2 compares the perfor-
mance of five algorithms on the LSMOPs test series with 300, 500, and 1000 decision variables and
3 objectives. It shows the average IGD+ values and standard deviations for each algorithm over 30
independent runs on each test case. The Wilcoxon rank-sum test was employed for statistical tests
with a significance level of 5%. Bold text indicates the best solutions among all compared algorithms.
In the table, ‘+’ denotes IGD+ metrics better than the MOEAWOD algorithm, ‘−’ indicates inferior
solutions, and ‘=’ signifies similar results to the proposed algorithm.

Table 2: IGD+ obtained across LSMOPs test suites

Problem D LMEA GLMO LERD FLEA MOEAWOD

LSMOP1 300 2.6974e−1
(3.07e−1) −

2.6922e−1
(2.40e−2) −

3.2887e−1
(3.79e−2) −

5.6008e−1
(1.17e−1) −

2.1357e−1
(1.69e−2)

500 9.3841e+0
(3.79e+0) −

2.9052e−1
(2.12e−2) −

4.4200e−1
(3.28e−2) −

5.0573e−1
(1.13e−1) −

8.5119e−2
(3.11e−3)

1000 8.3417e+0
(4.61e+0) −

3.1414e−1
(8.67e−3) −

4.1036e−1
(1.55e−2) −

4.7241e−1
(9.58e−2) −

5.0282e−2
(1.69e−3)

LSMOP2 300 8.3712e−2
(7.32e−3) =

8.6105e−2
(2.39e−2) −

8.9839e−2
(1.99e−3) −

8.5844e−2
(9.32e−3) =

8.5185e−2
(2.71e−3)

500 7.2870e−2
(6.19e−3) −

6.5551e−2
(1.58e−2) +

6.8155e−2
(8.54e−4) −

7.3285e−2
(5.90e−3) −

6.6761e−2
(1.22e−3)

1000 5.7138e−2
(3.84e−2) =

5.8561e−2
(1.84e−3) −

5.0424e−2
(3.58e−4) −

5.7603e−2
(5.07e−3) −

4.7844e−2
(4.36e−4)

LSMOP3 300 3.4808e+0
(2.75e+0) −

7.7982e−1
(3.00e−1) =

2.5349e+0
(2.22e+0) =

6.6545e−1
(2.77e−3) +

1.1219e+0
(8.56e−1)

500 5.0339e+2
(5.52e+2) −

8.7373e−1
(4.88e−1) +

8.4136e+0
(1.60e+0) −

7.5083e−1
(4.69e−1) +

1.5994e+0
(1.16e−1)

1000 2.3233e+2
(3.08e+2) −

6.6667e−1
(1.61e−6) +

7.7720e+0
(2.77e+0) −

6.6499e−1
(2.99e−3) +

9.2805e−1
(4.28e−2)

LSMOP4 300 1.5131e−1
(5.81e−2) −

2.0904e−1
(5.70e−2) −

1.9563e−1
(3.70e−3) −

1.9282e−1
(1.18e−2) −

1.1852e−1
(3.76e−3)

500 2.1253e−1
(1.37e−2) −

1.5783e−1
(4.68e−2) −

1.4203e−1
(4.79e−3) −

1.4108e−1
(6.21e−3) −

7.4304e−2
(3.41e−3)

1000 1.2695e−1
(1.46e−2) −

1.2339e−1
(5.37e−3) −

9.5312e−2
(3.54e−3) −

9.0997e−2
(5.39e−3) −

4.8426e−2
(1.84e−3)

LSMOP5 300 4.9799e+0
(4.11e+0) −

1.4527e−1
(3.32e−2) =

9.2454e−2
(1.68e−3) +

7.9752e−1
(4.33e−1) −

1.3380e−1
(1.12e−2)

500 1.3991e+1
(3.47e+0) −

1.7148e−1
(2.94e−2) +

9.2290e−2
(1.48e−3) +

7.1865e−1
(4.46e−1) −

2.0241e−1
(4.52e−3)

1000 9.1705e+0
(5.13e+0) −

1.9859e−1
(1.53e−2) −

9.3379e−2
(4.60e−3) −

6.5353e−1
(3.75e−1) −

8.7888e−2
(7.35e−3)

(Continued)
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Table 2 (continued)

Problem D LMEA GLMO LERD FLEA MOEAWOD

LSMOP6 300 1.8092e+3
(3.93e+3) −

1.1378e+0
(4.22e−3) +

1.0111e+0
(1.80e−1) +

7.7495e+0
(3.70e+1) −

7.4127e+0
(2.99e+1)

500 1.1527e+4
(1.74e+4) =

1.1022e+0
(1.77e−1) +

1.4918e+0
(5.64e−1) +

6.5899e+0
(3.08e+1) +

1.4041e+1
(1.57e+1)

1000 5.2197e+3
(8.50e+3) =

1.2000e+0
(1.09e−3) +

5.2548e+0
(1.41e+1) −

9.0289e+0
(3.70e+1) −

3.2162e+0
(2.79e+0)

LSMOP7 300 1.6453e+0
(8.22e−1) −

7.0798e−1
(2.53e−2) −

5.1814e−1
(9.27e−4) +

8.1483e−1
(6.44e−2) −

5.4132e−1
(1.67e−2)

500 1.1908e+2
(5.47e+2) −

6.5432e−1
(1.28e−2) +

5.2182e−1
(1.00e−2) +

7.2593e−1
(5.61e−2) =

1.1389e+0
(8.39e−1)

1000 8.0443e−1
(1.62e−1) −

2.8070e−1
(2.34e−3) +

5.1951e−1
(3.80e−4) +

6.4701e−1
(3.35e−2) −

6.1828e−1
(2.38e−1)

LSMOP8 300 1.5945e−1
(1.07e−1) =

1.2143e−1
(3.64e−2) =

1.0097e−1
(5.26e−3) +

3.0994e−1
(1.44e−2) −

1.3621e−1
(4.55e−2)

500 2.4880e−1
(1.32e−1) −

1.1993e−1
(3.41e−2) =

9.8846e−2
(5.25e−3) +

3.0550e−1
(4.98e−3) −

1.2776e−1
(5.19e−3)

1000 1.1970e−1
(1.62e−1) −

1.4094e−1
(5.48e−3) −

8.3998e−2
(6.11e−3) −

2.9691e−1
(5.20e−3) −

6.3485e−2
(2.73e−3)

LSMOP9 300 1.5210e+0
(1.81e+0) =

1.1875e+0
(1.95e−1) −

9.6628e−1
(1.09e−1) −

1.0594e+0
(4.88e−1) −

5.3104e−1
(8.59e−2)

500 1.1710e+2
(5.18e+1) −

1.0537e+0
(1.47e−1) −

1.0550e+0
(1.65e−1) −

9.5137e−1
(4.70e−1) −

3.4384e−1
(1.72e−2)

1000 9.5989e+1
(6.78e+1) −

9.8228e−1
(3.68e−5) −

9.1195e−1
(2.14e−1) −

1.1797e+0
(3.42e−1) −

1.0077e−1
(4.93e−3)

+/−/= 0/21/6 9/14/4 9/17/1 4/21/2

The LSMOPs test problems, designed for complex large-scale multi-objective optimization,
effectively reflect the performance of an algorithm in large-scale scenarios. The IGD+ values of five
algorithms on LSMOPs with a 3-dimensional objective and decision variables set at 300, 500, and
1000 dimensions are shown in the table below. In this table and in the following ones, ‘D’ denotes the
dimensions of the decision variable.

As Table 2 shows, in the LSMOPs test suites, the MOEAWOD secured the best results in 12 out
of the tests, indicated by black bold text. Following that, LERD in 7 and LMEA in only 1, but none
matched the overall performance of MOEAWOD. When the decision variable is set at 1000 dimensions,
MOEAWOD achieves the optimal solution 6 times in the LSMOPs test suite. This performance is
notably superior to other comparison algorithms, providing evidence of its effectiveness in addressing
LSMOPs. Notably, in LSMOP1 with 500 and 1000 decision variables, the IGD+ of MOEAWOD was
significantly lower than its competitors. However, its performance in LSMOP6 with 500 decision
variables was weaker, likely due to insufficient analysis of decision variable convergence and less
accurate capture of variable relationships in weighted overlapping grouping. Despite this, the overall
superiority of MOEAWOD in LSMOP test suites over LMEA, GLMO, LERD, and FLEA validates
the effectiveness of the proposed weighted overlapping group-based MOEAs in handling LSMOPs.
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In addition, the performance of the algorithm is evaluated on the WFG test suite, characterized
by complex variable interactions and more frequent interactions between different variables. Table 3
compares the performance of the five algorithms across WFG test cases with 300, 500, and 1000
decision variables and 3 objectives.

Table 3: IGD+ obtained across WFGs test suites

Problem D LMEA GLMO LERD FLEA MOEAWOD

WFG1 300 1.0199e+0
(4.73e−1) −

1.4208e+0
(3.31e−2) −

1.1997e+0
(7.05e−2) −

1.1905e+0
(1.83e−1) −

6.4433e−1
(1.10e−1)

500 7.1906e−1
(1.01e−1) −

1.4935e+0
(2.02e−2) −

1.2933e+0
(8.52e−2) −

1.1190e+0
(2.52e−1) −

5.5973e−1
(1.81e−1)

1000 1.0904e+0
(1.23e−1) −

1.5329e+0
(1.41e−2) −

1.3338e+0
(7.71e−2) −

1.0982e+0
(2.99e−1) −

6.3016e−1
(9.02e−2)

WFG2 300 3.3143e−1
(5.75e−1) −

2.7695e−1
(1.86e−2) −

1.6528e−1
(1.85e−2) =

3.4815e−1
(5.02e−2) −

1.6531e−1
(4.43e−2)

500 1.6650e−1
(8.27e−3) +

3.3616e−1
(1.88e−2) +

1.7765e−1
(1.87e−2) +

3.5137e−1
(4.51e−2) +

4.0484e−1
(3.04e−2)

1000 1.8607e−1
(1.34e−2) +

4.2186e−1
(2.46e−2) +

1.8132e−1
(1.58e−2) +

2.5823e−1
(6.69e−2) +

5.7114e−1
(2.58e−3)

WFG3 300 9.7846e−2
(8.35e−3) +

3.5014e−1
(1.57e−2) −

1.9358e−1
(1.91e−2) +

6.2458e−2
(2.02e−2) +

2.9803e−1
(1.84e−2)

500 1.6174e−1
(5.93e−3) +

4.8746e−1
(1.74e−2) −

1.6301e−1
(2.38e−2) +

4.8682e−2
(1.58e−2) +

3.5100e−1
(2.53e−2)

1000 1.8414e−1
(7.34e−3) +

6.1968e−1
(3.15e−2) −

1.7616e−1
(1.31e−2) +

4.9273e−2
(1.44e−2) +

4.0908e−1
(4.52e−3)

WFG4 300 1.7287e−1
(3.07e−1) −

2.6688e−1
(8.00e−3) −

1.9349e−1
(1.36e−2) −

1.7557e−1
(2.72e−2) −

1.5268e−1
(6.90e−3)

500 7.6302e−2
(1.47e−3) +

3.1084e−1
(1.14e−2) −

1.8359e−1
(1.48e−2) −

1.7476e−1
(3.75e−2) =

1.5623e−1
(1.07e−2)

1000 7.7948e−2
(2.63e−3) +

3.5719e−1
(8.63e−3) −

1.9065e−1
(1.59e−2) −

1.6024e−1
(8.44e−3) =

1.6224e−1
(7.32e−5)

WFG5 300 1.4354e−1
(1.42e−2) +

2.0634e−1
(1.70e−2) =

1.7751e−1
(6.94e−3) =

1.8150e−1
(1.37e−2) =

1.8634e−1
(3.55e−2)

500 2.4931e−1
(4.59e−2) −

2.1125e−1
(2.08e−2) −

1.7594e−1
(6.37e−3) −

1.8049e−1
(1.58e−2) −

1.7166e−1
(6.85e−2)

1000 1.5343e−1
(2.19e−2) =

1.9278e−1
(1.32e−2) −

1.7685e−1
(5.35e−3) −

1.7856e−1
(1.38e−2) −

1.4874e−1
(1.63e−2)

WFG6 300 8.0985e−2
(1.47e−3) +

3.4475e−1
(1.23e−2) −

1.2229e−1
(9.21e−3) +

1.5931e−1
(2.53e−2) =

1.6667e−1
(2.53e−2)

500 8.2918e−2
(6.91e−3) +

4.3767e−1
(1.41e−2) −

1.2295e−1
(2.15e−2) +

1.4236e−1
(1.11e−2) +

1.7248e−1
(8.83e−3)

1000 9.5659e−2
(1.47e−2) =

5.4671e−1
(8.48e−3) −

1.2011e−1
(1.23e−2) −

1.4367e−1
(1.35e−2) −

9.5262e−2
(6.02e−4)

(Continued)
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Table 3 (continued)

Problem D LMEA GLMO LERD FLEA MOEAWOD

WFG7 300 3.4690e−1
(5.65e−2) −

3.1046e−1
(1.17e−2) −

1.4960e−1
(6.02e−3) +

1.4759e−1
(9.74e−3) +

2.2856e−1
(2.36e−2)

500 3.5427e−1
(7.55e−2) −

3.8793e−1
(1.16e−2) −

1.4374e−1
(4.48e−3) +

1.3985e−1
(1.45e−2) +

2.1793e−1
(1.16e−2)

1000 3.4745e−1
(1.44e−1) −

5.1909e−1
(1.65e−2) −

1.5636e−1
(9.22e−3) +

1.4998e−1
(1.19e−2) +

2.0697e−1
(1.70e−2)

WFG8 300 1.8238e−1
(4.40e−2) +

2.9948e−1
(5.85e−3) −

2.4075e−1
(1.98e−2) =

3.1516e−1
(5.78e−2) −

2.4599e−1
(2.52e−2)

500 1.7192e−1
(5.68e−3) +

3.4992e−1
(8.27e−3) −

2.1740e−1
(1.37e−2) +

2.2292e−1
(3.90e−2) +

2.4753e−1
(9.42e−3)

1000 2.2155e−1
(1.29e−2) −

4.2018e−1
(1.15e−2) −

2.2165e−1
(6.97e−3) −

2.3424e−1
(7.04e−2) −

1.8006e−1
(4.94e−4)

WFG9 300 5.9226e−1
(1.15e−1) −

2.9353e−1
(7.98e−2) −

1.6029e−1
(3.36e−2) −

1.7515e−1
(1.00e−1) −

1.0993e−1
(1.42e−2)

500 7.1619e−1
(6.38e−2) −

2.3443e−1
(1.29e−1) −

1.6817e−1
(2.87e−2) −

1.8658e−1
(1.04e−1) −

1.1767e−1
(5.94e−2)

1000 7.4727e−1
(1.02e−1) −

3.2435e−1
(2.16e−1) −

1.8772e−1
(6.32e−2) −

1.4514e−1
(1.76e−2) −

9.5544e−2
(4.79e−4)

+/−/= 12/13/2 2/24/1 11/13/3 10/13/4

In these tests, the MOEAWOD algorithm achieved the best results in 11 cases, while LMEA
excelled in 8 cases. The WFG tests feature complex variable interactions, with more frequent inter-
actions among different variables. The clustering approach of LMEA for variable grouping yielded
good results, but overall, MOEAWOD showed superior optimization performance. The effectiveness
of MOEAWOD in handling strong variable interactions outperformed LMEA, GLMO, LERD, and
FLEA, highlighting its advantage in LSMOPs.

Fig. 4 displays the final populations optimized by the comparative algorithms on LSMOP1,
involving 500 decision variables and 3,000,000 iterations. GLMO, and LERD achieved objective
values around 1 but lacked uniform distribution and diversity. LMEA and FLEA were farther from
the Pareto optimal reference, indicating poorer convergence, with the solutions of FLEA being par-
ticularly concentrated, showing limited diversity. MOEAWOD demonstrated superior performance,
maintaining objective values close to 1 and exhibiting a more uniform distribution. However, there
was some deviation from the true Pareto optimal reference. Such results may be attributed to errors in
the analysis of the interaction among decision variables. In Fig. 5, the LSMOP8 test with 300 variables
and 3 objectives, GLMO and LERD lack diversity, LMEA and FLEA struggle with convergence, and
the solutions of FLEA concentrated between 5–15 in one objective, indicating poor convergence in
that area. MOEAWOD algorithm maintains convergence on several objectives with decent results, the
overall distribution of solutions is uniform, and the convergence and diversity are superior to several
other algorithms.
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(a) LMEA (b) GLMO (c) LERD

(d) FLEA (e) MOEAWOD

Figure 4: Effectiveness of comparison algorithms in LSMOP1 test problem with 500-dimensional 3-
objective

(a) LMEA (b) GLMO (c) LERD

(d) FLEA (e) MOEAWOD

Figure 5: Effectiveness of comparison algorithm in the LSMOP8 test problem with 300-dimensional
3-objective



CMES, 2024, vol.140, no.1 379

Fig. 6 illustrates the progression of IGD+ values for different algorithms applied to two LSMOP
test problems. Owing to the poor convergence performance exhibited by certain algorithms in
LSMOPs, 100-dimensional LSMOP tests were employed to facilitate a more distinct comparison.
The decision variable is 100-dimensional, the objective number is 3, and the maximum number of
function evaluations is 1,000,000. Several comparison algorithms experienced varying degrees of
rebound during convergence, indicating instability. MOEAWOD, however, showed stable convergence
in both tests, continually evolving until convergence with noticeably superior IGD+ values compared
to others, demonstrating the most stable convergence performance and optimal IGD+ results on both
problems.
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Figure 6: Evolution of IGD+ metrics for the contrasting algorithms on the LSMOP test problem

5 Conclusion

This paper addresses the inefficiency of optimization algorithms in LSMOPs due to high decision
variable dimensions by proposing MOEAWOD. Currently, group-based LSMOAs typically factor in
decision variable interactions for grouping but overlook the intricate nature of variable interactions
in LSMOPs. Having over 100 decision variables in a group still qualifies as an LSMOP, contradicting
the original intent of divide-and-conquer.

The proposed MOEAWOD assesses the interactivity of decision variables using two weights
and designates the most interactive decision variables to each group as overlapping elements. This
strengthens the interactivity within each decision variable group while simultaneously diminishing the
interactivity between different groups. Subsequently, each group underwent optimization employing a
direction-guided population evolution strategy. The experimental results on various LSMOPs bench-
mark test suites demonstrate the remarkable convergence and diversity of the proposed MOEAWOD
algorithm. The superiority of its IGD+ index over other algorithms substantiates its effectiveness.

Nevertheless, MOEAWOD still exhibits certain limitations that warrant further investigation
in future studies. Grouping based on weights acquired through DVA of random individuals before
population evolution may result in interaction information that only represents the local subspace of
the analyzed individuals. This could result in an inaccurate analysis of decision variables, limited to the
partial space rather than the entire huge decision variable space. Additionally, the reliance on a limited
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number of evaluations for the weight measurement in the DVA process may introduce errors that
deviate from the actual situation, potentially impacting the performance of LSMOAs. Future work will
delve into the dynamic analysis of decision variables, and DVA will be conducted based on the stage of
population evolution to attain precise variable interactions. Additionally, there is consideration given
to designing reasonable weights to achieve a more accurate evaluation of interaction performance.
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