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ABSTRACT

Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely
recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation
for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within
localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within
the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite
element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-
shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-
element discontinuities without necessitating extra nodes or nodal DoFs. Following CZM validation using existing
experimental data, this integrated algorithm was utilized to analyze soil slope failure mechanisms involving a
specific tensile strength and to assess the impact of mechanical parameters (e.g., tensile strength, weighting factor,
modulus) in soils.

KEYWORDS
FEM analysis; strong discontinuity; nonlinear; soil rupture; cohesive zone model; tension-compression-shear
coupling

1 Introduction

Microcrack/microvoid evolution and irreversible deformations, characterized by strain localiza-
tion, are prevalent in solid materials such as composites, geotechnical materials, and metals. These
localized behaviors are widely recognized as fundamental mechanisms leading to progressive failures
and catastrophic structural collapse. Strain localization in solids leads to a softening regime in the
stress-strain curve, displaying macroscopic strain/displacement discontinuities. These characteristics
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inherently limit the applicability of continuum-based approaches, including material models. Despite
significant advancements in understanding localized failure through pioneering studies, achieving
high-fidelity modeling of this behavior remains a challenging issue in engineering.

Within the geotechnical sphere, slope failure, known as landslides, represents a common geotech-
nical and geological hazard stemming from strain localization. Various approaches have been grad-
ually introduced to evaluate slope stability precisely. The limit-equilibrium method (LEM) stands as
one of the prominent methods, originating from early geotechnical theory and amassed engineering
experience [1,2]. This method assumes slope materials undergo rigid-plastic deformation, failing to
reflect strength degradation from deformation accumulation. Additionally, dynamic crack propaga-
tion due to slope instability is simplified into a static crack (i.e., the preset crack). In response to these
limitations, the strength reduction method (SRM) was proposed. It assumes simultaneous strength
reduction across the entire slope material zone [3,4]. However, this assumption in the SRM fails to
convincingly capture the progressive formation of a slip plane [5].

Confronting the above challenge, some advanced numerical approaches have been developed
in recent years to predict soil slope instabilities. These include mesh-based methods and particle-
based methods. The particle-based method views a material domain as an assembly of discrete yet
interactive particles or blocks. This encompasses approaches like the discrete element method (DEM)
[6,7], discontinuous deformation analysis (DDA) [8], smoothed particle hydrodynamics (SPH) [9],
and the material point method (MPM) [10]. These methods relieve the restrictions of meshes, thus
theoretically practicable to elucidate the large deformation and discontinuity in slopes [11]. However,
DEM and DDA based on particles or blocks often encounter challenges in determining particle
contact parameters. Regarding SPH and MPM, Bao et al. [12] highlighted their time-consuming nature
compared to FE simulations.

Consequently, the mesh-based method is currently favored in slope stability analysis. Nonetheless,
the conventional finite element method (FEM) cannot directly tackle the issue of discontinuity
arising from crack propagation [13]. To address this issue, advanced re-meshing techniques have been
integrated into FEM, leading to the development of the extended finite element method (X-FEM)
[5,14], embedded finite element method (E-FEM) [15,16], and augmented finite element (A-FEM)
[17], among others. For instance, Vo et al. [18] investigated the desiccation cracking of clayey soil
using FEM incorporating the damege-elastic cohesive fracture law; Wang et al. [5] explained the failure
development process of soil slopes using the improved X-FEM; Barani et al. [19] and Hu et al. [20]
studied the tensile cracking of cohesive soils with varying water contents by using the cohesive-model-
based FE approach; de Maio et al. [21] developed a cohesive FE approach based on a modified
bond-slip law to evaluate the mechanical behavior of nano-modified FRP sheets implemented in
reinforced concrete structures. These three methods introduced additional degrees of freedom (DoFs)
into the cracked element, such that they account for the arbitrary intra-element discontinuities.
Unlike X-FEM and E-FEM, A-FEM strictly adheres to the standard FEM process, encompassing
independent element interpolation, stiffness integration, equivalent force integration, etc. Moreover,
through the application of static condensation, Liu et al. [22] demonstrated the complete condensation
of additional DoFs at the elemental level. Consequently, this approach maintains the advantage of not
requiring additional nodes or nodal DoFs when tracking cracks within an element. Considering these
factors, A-FEM has been chosen for simulating slope stability in this study.

Additionally, numerous field investigations of landslides have confirmed the crucial role of crown
tensile or tensile-shear cracks in determining slope stability (see Fig. 1). However, to our knowledge,
the majority of studies have primarily focused on the compression-shear failure of slopes. The impact
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of tension-shear cracks or an assessment considering both tension-shear and compression-shear effects
on slopes remains significantly underexplored. To address this, an integrated algorithm combining
a coupled cohesive zone model (CZM) considering both tension-shear and compression-shear was
introduced into the A-FEM framework. Subsequently, this study conducted a comprehensive analysis
of a soil slope featuring specific tensile strength to unveil failure mechanisms and scrutinize the
influence of mechanical parameters in soils.

Sliding mass

Crack

(a) (b) (c)
Tensile cracks Crown cracks

Figure 1: Survey investigations conducted on soil slopes featuring tension-shear cracks: (a) a potential
landslide in the Shengzhou region of Zhejiang Province in 2023; (b) a landslide in Liaoning Province
[12] (reprinted with permission from Springer Nature: Springer, Natural Hazards, “Investigation of the
role of crown crack in cohesive soil slope and its effect on slope stability based on the extended finite
element method,” Bao et al., © 2021); and (c) a potential landslide with tensile cracks in Jilin Province
in 2015 [12] (reprinted with permission from Springer Nature: Springer, Natural Hazards, “Investigation
of the role of crown crack in cohesive soil slope and its effect on slope stability based on the extended finite
element method,” Bao et al., © 2021). The arrows in the images indicate the direction of movement of
the sliding mass

2 Numerical Theories and Methodologies
2.1 Governing Equations with Strong Discontinuity

Consider a physical domain Ω with a boundary ∂Ω, as shown in Fig. 2. A body force per
unit area b acts on Ω, and its boundary ∂Ω is decomposed into disjoint regions Γ u and Γ t. The
prescribed displacement u is imposed on Γ u; the external traction t is employed on Γ t. Additionally, a
discontinuity cuts the body into two subdomains Ω+ and Ω−, with the respective discontinuity surfaces
Γ +

c and Γ −
c (i.e., Γc = Γ +

c ∪ Γ −
c ). Suppose the constitutive law σ (u) =D : ε (u) governs the body Ω, while

the cohesive zone model characterizes the discontinuity in this physical domain. Then, the differential
equation for this problem can be written as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ · σ = 0 (inΩ\Γc)

σ · n = t (on Γt)

u = u (on Γu)

t+ = σ · m+ = −t
(
on Γ +

c

)
t− = σ · m− = t

(
on Γ −

c

)
(1)

In the above equations, D represents the isotropic elasticity tensor; n denotes the outward normal
vector of the stress boundary Γ u; u signifies the displacement vector; t− = −t+ = t are the tractions
imposed on the discontinuity surface Γc; m is the outward normal vector of Γc.
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Figure 2: A 2D physical domain with discontinuity (Ω = Ω+ ∪ Ω−, ∂Ω = Γ t ∪ Γ u ∪ Γc)

Using the virtual work principle, the equilibrium equation Eq. (1) is further rewritten as a weak
form,∫

Ω\Γc

δε : σdΩ +
∫

Γ
+
c

δΛu · tdΓ =
∫

Ω

δu · bdΩ +
∫

Γt

δu · tdΓ (2)

wherein the sign ‘δ‘ denotes a virtual value of a variable that follows, and Λu = u+ − u− denotes a
displacement jump vector across the material surface.

2.2 Construction of Displacement Field with N-AFEM
To ensure the numerical tool’s high fidelity and robustness, this study introduces the nonlinear

A-FEM (i.e., N-AFEM). N-AFEM integrates with a constitutive model of geomaterials, specifically
a tension-compression-shear coupled cohesive zone model, to simulate localized failure and fracture
propagation in geotechnical structures. This section provides a concise overview of the fundamental
framework of N-AFEM used to construct displacement fields involving strong discontinuities.

For simplicity, this study employs the typical four-node, quadrilateral plane element based on
the N-AFEM to illustrate the scheme of the two-dimensional displacement field. Fig. 3a provides the
crack propagation within the physical domain, resulting in two basic types of crack configurations
in the discretized meshes: two quadrilateral sub-domains for element ‘A’ (Fig. 3b) and one triangular
along with one pentagonal for element ‘B’ (Fig. 3c). At the discontinuity surface, four internal nodes
(i.e., nodes 1c, 2c, 1′

c, 2′
c) are enriched with regular nodal DoFs (degree of freedom). A cohesive element

based on nodes 1c, 2c, 1′
c, 2′

c links the two subdomains. Consequently, the cracked element is now
augmented into three transitional sub-elements: two regular sub-elements for the solid domain and
one cohesive element for the discontinuous crack. The incremental equilibrium equation for both
cracked configurations can be unified using Eq. (2).

For the regular element Ω+,[
K+

11 K+
12

K+
21 K+

22

] {
Δu+

ext

Δu+
int

}
=

{
Δf +

ext

Δf +
int

}
(3a)

For the regular element Ω−,[
K−

11 K−
12

K−
21 K−

22

] {
Δu−

ext

Δu−
int

}
=

{
Δf −

ext

Δf −
int

}
(3b)



CMES, 2024, vol.140, no.1 1001

For the cohesive element,[
K coh

11 K coh
12

K coh
21 K coh

22

]{
Δu−

int

Δu+
int

}
=

{
Δf coh

int−
Δf coh

int+

}
(3c)

where K±
ij denotes the tangent matrix for regular elements, displaying forms entirely identical to

those found in conventional FEM; K coh
ij denotes the tangent matrix of the cohesive element, with its

components contingent upon the form of the CZM outlined in Section 2.3; Δu±
ext and Δu±

int refer to
incremental displacements of external and internal nodes. Additionally, Δf e

ω
(where ω = ext and int)

signifies the incremental nodal force regarding regular and cohesive elements.

Figure 3: Schematic diagram of arbitrary intraelement cracking for N-AFEM

A condensation scheme that fully condenses the additional DoFs at the elemental level is employed
for the N-AFEM. The condensation procedures of the N-AFEM, as per Eqs. (3a)–(3c), are outlined
herein. Initially, achieving elemental equilibrium along the shared edges of 1c2c and 1′

c2
′
c for both the

regular and cohesive elements is necessary, denoted by:

Δf +
int + Δf coh

int+
∼= 0

Δf −
int + Δf coh

int−
∼= 0 (4)

Next, we substitute Eqs. (3a)–(3c), into Eq. (4), enabling the expression of the internal nodal
displacements in terms of the external nodes, denoted as:{

Δu−
int = (Φ1)

−1 K coh
12 (Φ2)

−1 K+
21Δu+

ext − (Φ1)
−1 Φ3Δu−

ext

Δu+
int = (Φ2)

−1 K coh
21 (Φ1)

−1 K−
21Δu−

ext − (Φ2)
−1 K+

21Δu+
ext

(5)

where Φ1 = K−
22 + K coh

11 , Φ2 = K+
22 + K coh

22 − K coh
21 (Φ1)

−1 K coh
12 , Φ3 = K coh

12 (Φ2)
−1 K coh

21 (Φ1)
−1 K−

21 + K−
21.

Substituting Eq. (5) back into Eqs. (3a) and (3b), and subsequently eliminating Δf +
int, Δf −

int, Δf coh
int−

and Δf coh
int+ , we can obtain the condensed incremental equilibrium equation devoid of internal nodal

forces or displacements,
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[
K−

11 − K−
12 (Φ1)

−1 Φ3 K−
12 (Φ1)

−1 K coh
12 (Φ2)

−1 K+
21

K+
12 (Φ2)

−1 K coh
21 (Φ1)

−1 K−
21 K+

11 − K+
12 (Φ2)

−1 K+
21

]{
Δu−

ext

Δu+
ext

}
=

{
Δf −

ext

Δf +
ext

}
(6)

2.3 Post-Localization Constitutive Model
In this section, a user-defined cohesive element is introduced to characterize the intense deforma-

tion of previously formed discontinuous surfaces, accounting for the coupling between cohesive and
frictional behaviors in geomaterials. Considering the uniformity of the cohesive element’s format and
implementation procedures [23], this section primarily focuses on elucidating the inherent structure of
the coupled cohesive zone model (CZM). This coupled CZM encompasses two modes aligned with the
loading conditions of the localized band: the tension-shear mode and the compression-shear mode.

Regarding the tension-shear mode, an exponential CZM referring to the work of [24] is established
herein, i.e.,

tn = ∂φ

∂δ

∂δ

∂δn

= exp (1) σt

δn

δc

exp
(

− δ

δc

)
(7a)

ts = ∂φ

∂δ

∂δ

∂δs

= β2 exp (1) σt

δs

δc

exp
(

− δ

δc

)
(7b)

where tn and ts are normal and tangential tractions on the slip surface; δn and δs are normal opening and
tangential slip on the crack surface; δc is the critical displacement corresponding to the peak point; σ t

signifies the tensile strength of materials; The term exp(x) signifies ex, while ϕ signifies the free energy
facilitating coupling between cohesive surface deformation and decohesion. This is expressed based
on the formulation established by [25], i.e.,

φ = exp (1) σtδc [1 − (1 + δ/δc) exp (−δ/δc)] (8)

wherein δ represents the effective opening displacement, defined by [26] as δ =
√

δ2
n + (βδs)

2 (where β

is a coefficient weighting the tangential contributions).

To facilitate the comprehension of the tension-shear CZM, we present a 3D schematic diagram. In
Fig. 4a, the normal traction evolves with the normal opening displacement and tangential separation
displacement. Fig. 4b illustrates a similar evolution process for the tangential law. These outcomes
validate the coupled behaviors of the tension-shear CZM as derived from Eqs. (7a) and (7b).

Figure 4: The 3D schematic diagram for the traction separation law under a tension-shear state

Concerning the compression-shear mode, a compression-shear-coupled law, derived from the
Mohr-Coulomb strength theory, is established for the tangential direction of the discontinuous surface,

tsc = β exp (1) τp

δs

δc

exp
(

−β |δs|
δc

)
(|δs| ≤ δsr, for strength softening stage) (9a)
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tsc = rcτp (|δs| > δsr, for residual strength stage) (9b)

where |·| represents the absolute value function; δsr serves as the threshold value distinguishing the
softening and residual stages of the CZM; τ p denotes the peak strength of the discontinuous surface,
defined as

τp = βσt + μs |tn| (10)

rc represents a reduction coefficient applied to the interface peak strength to align it with its
residual strength, while μs denotes the frictional coefficient along the discontinuous surface (Here μs

= tanφp, φp is the peak frictional angle on the crack surface).

Furthermore, the normal expression is formulated based on a penalty stiffness method aimed at
preventing the self-penetration of the cracked surfaces, i.e.,

tn = α exp (1)
σt

δc

δn (11)

wherein α is a factor adjusting the value of the penalty stiffness.

Similarly, Fig. 5 presents a 3D schematic diagram illustrating the traction-separation law under
a compression-shear state. In the tn-δn-δs coordinate system, the normal law is depicted as a plane,
with the normal traction increasing linearly as the negative (or compressive) displacement increases.
In contrast, the tangential law exhibits a nonlinear relation before reaching its threshold value δsr,
resembling those given in Fig. 4. However, the peak traction increases with the rise of compressive
displacement due to the incorporation of Mohr-Coulomb strength theory. Furthermore, the tangential
law transitions to a linear relation once the crack surface enters the residual strength state.

Figure 5: The 3D schematic diagram for the traction separation law under a compression-shear state

3 Model Implementations and Validations
3.1 Model Implementations

In this study, the N-AFEM utilized an ABAQUS user-defined element (UEL). Furthermore, a
zero-thickness 2D linear cohesive element, which is formulated from the coupled CZM (as illustrated in
Section 2.3), is developed as a UEL subroutine within the N-AFEM, enabling effective incorporation
of tension-compression-shear coupling for localized bands in geomaterials into the numerical method.

Concerning crack initiation and growth, this study employs a hyperbolic law in the tn-ts space as
the crack initiation criterion [17,27], represented by Eq. (12).

f (tn, ts) = ts
2 − (c − tn · μs)

2 + (c − σt · μs)
2 (12)

Here tn and ts on the crack plane denote the normal and shear stresses, respectively, of elements on
the specific plane (i.e., crack surface) before cracking. The model parameters c (=βσ t), μs, and σ t, are
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assumed to be consistent with those of the continuum before elements start cracking. Eq. (12) serves
a role similar to the Mohr-Coulomb yield surface in classical plasticity. In simpler terms, when the
averaged stress of the Gauss integration points within an element reaches a certain state f (tn, ts) = 0,
the element initiates cracking in a prescribed direction expressed as Eq. (13).

θ = 45◦ + ϕ ′/2 (13)

where θ represents the angle between the crack surface and the direction of the minimum principal
stress; ϕ ′denotes the angle determined by the tangent direction of the hyperbolic curve based on
Eq. (12) at the crack initiation point.

3.2 Model Validation
In this section, we validate the coupled CZM’s accuracy under compression-shear conditions using

the direct shear test. Additionally, we analyze the correlation between the CZM parameters and the
strength parameters of geomaterials to demonstrate its applicability in geotechnical structures. Tensile
behaviors were previously scrutinized and validated in our prior work based on the clay beam test [20];
therefore, we omit its repetition here.

To emulate the direct shear test conducted by [28], a model is established in this subsection.
As illustrated in Fig. 6, the model measures 60 mm in length and 30.4 mm in height, delineated by
a phantom dotted line into two segments: the upper and lower boxes. The upper box undergoes a
constant normal pressure P (20, 53, 100, and 200 kPa) on its top surface and prescribed displacement
ux on its side surfaces, while the lower box faces fixed and horizontal constraints on its bottom and side
surfaces, respectively. Consequently, under these conditions, the upper and lower boxes slide along the
phantom dotted line (see Fig. 6), inducing soil rupture.

Figure 6: Schematic diagram of the direct shear model

The structured mesh, employing a four-node quadrilateral linear element, was used for both
the upper and lower boxes, while zero-thickness cohesive elements derived from the coupled CZM
were positioned along the phantom dotted line. Material parameters for this model were determined
through the iterative fitting of numerical predictions to experimental data: Young’s modulus E = 1.2
+ 0.6P (MPa), Poisson’s ratio ν = 0.3, β = 1.0, peak internal friction angle φp = 38.66° (μs = tanφp

= 0.176), residual internal friction angle φr = 32.62°(rc = tan(φr)/tan(φp) = 0.8), δsr = 0.566 mm, δc =
1.2 mm. Given the sandy soil nature of this model, the tensile strength σ t was set to zero (i.e., cohesion
c = βσ t = 0). To prevent self-penetration of crack surfaces, a normal contact stiffness of kn = 1.13 ×
109 kN/m3 was assigned to the CZM.

Fig. 7 illustrates the comparison between numerically predicted curves of average shear stress (τ xy)
vs. tangential displacement (ux) and experimental results, where τ xy is an average from the tangential
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stress of all cohesive elements along the shear slip surface. Additionally, Fig. 7 displays the predicted
results based on the CZM without compression-shear coupling. It can be seen that the curves obtained
from the coupled CZM closely resemble the experimental outcomes. In contrast, the four curves
derived from the uncoupled CZM consistently align with the abscissa of Fig. 7, suggesting this model
does not factor in the contribution of normal pressure to the interfacial shear strength of materials.

Figure 7: The comparison between shear stress vs. tangential displacement curves obtained from
numerical simulations and experimental data

Fig. 8 elaborates on the stress evolution within the direct shear model, portraying shear stress
images corresponding to five loading stages identified in Fig. 7 (i.e., stages a to e). The direct shear
model exhibits progressive failure, showcasing evident strain localization. Initially (Figs. 8a and 8b),
both ends of the potential slip surface reach the peak material strength, indicated by shear cracks in
this region. Subsequently, due to the continuous increase in tangential displacement (ux), shear cracks
further propagate from the ends towards the center section of the slip surface (see Figs. 8c and 8d).
By stage e (Fig. 8e), the direct shear model has undergone propagation by the shear crack, entering a
residual state with reduced shear stress observed in this image. Both the response curves and staged
stress images provide preliminary evidence supporting the coupled CZM’s applicability in describing
geomaterial cracking under a compressive-shear state.

(a) (b) (c)

(d) (e)

Figure 8: Stress contours of the direct shear model under undeformed meshes: (a) to (e) corresponding
to five loading stages identified in Fig. 7 (unit: MPa)
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4 Plane Strain Slope Stability
4.1 Model and Parameters

This section employs the N-AFEM to model a two-dimensional soil embankment based on studies
by [16] and [29] (as depicted in Fig. 9). This aims to validate the proposed method’s reliability and
uncover the localized deformation and failure mechanisms within the clayey soil slope. Considering the
embankment’s symmetry, half of it is considered in the calculation model, featuring a rigid rectangular
foundation subject to a vertical displacement uy simulating an external load (F denotes the reaction
force from uy). The model’s geometric dimensions and boundary conditions are outlined in Fig. 9,
where multiple fixed constraints are applied to the model’s bottom, and horizontal forced constraints
are placed on the right edge. The model assumes a plane strain condition, and its material parameters
align with the provided references: E = 10 MPa, ν = 0.4, φp = 10° (μs = 0.176), φr = 1.718° (rc = 0.17),
σ t = 32 kPa, c = βσ t = 32 kPa, δsr = 0.00335 m and δc = 0.05 m. A four-node, quadrilateral plane
element is used in this model, and the total number of elements is 4900 (= 70 × 70), as shown in Fig. 9.

F, uy

10.0 m

20.0 m

4.0 m 6.0 m

Figure 9: The discretized slope model and its boundary conditions

4.2 Validation for Numerical Method
In this section, we validate the effectiveness of the proposed numerical framework by comparing

our predicted results with those from existing numerical models. Fig. 10 presents a comparison of
rupture band trajectories obtained from the A-FEM model (this study), the AES (assumed enhanced
strain) model with no opening-sliding coupling [29], and the AES model with opening-sliding coupling
[16]. The three models exhibit similar rupture characteristics, encompassing overall trajectories,
rupture initiation points, and rupture outcropping points. Notably, the A-FEM model demonstrates
more consistent rupture band trajectories with those from the work of [16]. This consistency can be
attributed to introducing an opening-sliding cohesive model into the AES model, as we also integrate a
similar tension-compression-shear model CZM into the A-FEM algorithm. Additionally, we compare
a quantitative parameter, the maximum reaction force at the loading point (see Fig. 9), among the three
models: Fmax equals 817.64 kPa [29], 805.88 kPa (this study), and 716.43 kPa [16]. Considering both
rupture characteristics and peak reaction force, it is evident that the proposed numerical framework
performs well in simulating the failures of soil slope models and can be employed for subsequent
simulations.
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Figure 10: A comparison of the rupture band trajectories based on the various numerical models

4.3 Failure Mode of Soil Slope with Tension-Shear Considered
This sub-section delves into analyzing the failure mode of a clay soil slope. Figs. 11a–11f

illustrate the evolution of rupture bands within the slope via maximum principal strain contours at
different loading stages. Initially (Fig. 11a), deformation concentrates beneath the foundation surface,
evidenced by a series of strain bubbles. Subsequently, as vertical displacement (uy) continues, a rupture
band initiates at the bottom right of the rigid foundation, resulting in a nearly straight-line slip
(Fig. 11b). Based on the zoomed picture at the right side of Fig. 11b, it is evident that the maximum
principal stress at this stage consistently points downward to the left. This observation implies that soils
neighboring the slip line are predominantly in a tension-shear state. Furthermore, when combined with
the crack growth direction (refer to Eq. (13)), it provides additional insights into the rationale behind
the development of a nearly straight-line slip during the initial crack stage. However, with further uy

increase, the main rupture band’s trajectory shifts from a straight line to an arc, propagating from the
inclined edge of the model (Figs. 11c and 11d). We attribute the rupture band trajectory shift to the
rotation of the maximum principal stress directions. This is evident from the fact that the maximum
principal stress in this area exhibits varying directions (refer to the zoomed picture in Fig. 11d). Besides,
the change in principal stress direction at this stage also signifies soils near the arc-shaped sliding
surface experience compression-shear failure. Stages e and f (Figs. 11e and 11f) show the sliding mass
moving along the cut-through rupture band, displaying evident relative displacement with the sliding
bed. The maximum principal stress near the slip line has undergone a transition from a downward-left
direction to an upper-right direction. This transition results in a further “cocking-up” of the rupture
band at the end (refer to the zoomed picture in Fig. 11f). In summary, the slope exhibits straight-lined
and arc-shaped rupture trajectories under tension-shear and compression-shear states, respectively.

Fig. 12 illustrates the displacement evolution in this model, represented by the symbol ‘U ’
denoting the resultant displacement. Based on the results, the slope deformation is categorized
into three processes: I, II, and III. Process I indicates no rupture on the slope, with displacement
primarily under the rigid foundation (Fig. 12a). In process II, tension-shear failure initiates on the
right side of the foundation, resulting in a notable discontinuity of displacement on the rupture
surface. The resultant displacement focuses mainly on the inverted triangle region to the left of
the slip surface and beneath the foundation (Figs. 12b–12d). This unique displacement distribution
potentially contributes to the rupture band’s propagation under tension-shear loading. Process III
displays a layered displacement distribution gradually increasing from shallow to deep (Figs. 12e and
12f), with the largest displacement observed in the sliding surface, indicating the rigid motion of the
slide body. These findings offer new insights into the distinct deformation and progressive failure
pattern showcased by the slope experiencing a combination of tension-shear and compression-shear
states.
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Figure 11: The maximum principal strain contours of the slope model under various loading stages

Figure 12: The resultant displacement contours of the slope model under various loading stages
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4.4 Effect of Tensile Strength in Soils
This section aims to investigate the impact of soil tensile strength on a clay soil slope by varying the

parameter σ t within the range of 15, 25, 32, 42, and 50 kPa. Fig. 13 displays the propagation trajectories
of rupture bands depicted in principal strain contours. The observations indicate an upward movement
of the rupture band in the slope corresponding to an increase in the tensile strength of the CZM,
accompanied by a proportional reduction in its overall scale. Moreover, these strain contours illustrate
that heightened tensile strength correlates with a weakening of compression-shear deformation, as
evidenced by a shorter compression-shear slip line. This observation aligns with findings associated
with slopes exhibiting tension cracks.

Figure 13: The maximum principal strain contours of the slope model under various tensile strengths

In Fig. 14a, the reaction force is plotted against vertical displacement curves for the slope model
at various tensile strengths, and the peak values of these curves are presented in Fig. 14b. The response
curves demonstrate a consistent trend: the reaction force gradually increases before reaching its peak
with imposed displacement uy, followed by a dramatic decrease after the peak due to complete rupture
band propagation. However, both the peak reaction force and the corresponding displacement increase
with higher tensile strength (see Fig. 14b). These findings suggest that (1) the peak point in the response
curves can help distinguish the slope’s state to some extent, and (2) slopes with higher tensile strength
tend to exhibit improved bearing capacity and stability. Regarding the latter phenomenon, we attribute
it to the implementation of the coupled CZM, wherein the fracture energy of materials is proportionate
to their tensile strength. As the tensile strength increases, the energy dissipation required to form a unit
surface area of the fully separated crack inevitably rises. This suggests that more external energy (or
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work) is necessary for the slope. From a macroscopic perspective, this reflects an enhancement in the
capacity and stability of slopes.

Figure 14: The response curves of the slope model with various tensile strengths: (a) reaction force vs.
vertical displacement curve; (b) peak force (displacement) vs. vertical displacement curve

4.5 Effect of Weighting Factor β

This section presents a comparative analysis of the weighting factor (β) within the coupled CZM to
elucidate the influence of tension-shear and compression-shear cohesive laws on soil slope deformation
and failure patterns. Fig. 15 illustrates a comparison of rupture band propagation paths in slopes with
varying weighting factors: β values of 0.6, 0.8, 1.0, 1.2, and 1.4. Notably, an increase in β from 0.6 to 1.4
corresponds to the downward movement of the sliding surface, an elongation of the total propagation
path, and a reduction in the relative distance between the shear head point and the slope bottom,
decreasing from 5.03 to 1.26 m. Moreover, an escalated weighting factor results in a transition of the
initial propagation section of the slip surface from an approximately straight line to a smoother arc,
which is attributed to the slope failure mode. For models with smaller weighting factors, the initial
slip surface propagation is primarily characterized as pure tension or tension-shear failure. Hence,
the propagation path appears approximately linear. Conversely, larger weighting factors emphasize
the role of tangential CZM, inducing distinct shear failure accompanied by an arc-shaped slip surface.
Fig. 16 further depicts the relationship between the peak reaction force and the weighting factor. As the
weighting factor increases, the slope model exhibits a higher peak reaction force. This finding suggests
that the extension of the compression-shear segment due to increased weighting factors contributes to
greater slope stability.
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Figure 15: The maximum principal strain contours of the slope model under various weighting factors
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Figure 16: The peak reaction force vs. the weighting factor curve of the slope model
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4.6 Effect of Interlayer in Soil Embankment
The highway subgrade is a soil body structure comprising a natural earth foundation and an artifi-

cial fill embankment. These components typically exhibit varying stiffness throughout their depth due
to construction techniques and geostatic stress. Addressing this variability, a simplified embankment,
derived from the previously analyzed soil slope, was extensively studied here by incorporating various
Young’s moduli for the soil layers. Fig. 17 illustrates the embankment models, including homogeneous
soil (model A), stratified soil (model B), soft interlayer soil (model C), and hard interlayer soil (model
D), each identified by their corresponding Young’s modulus in the schematic diagram.

Figure 17: Soil slope model with interlayer: (a) model A with homogeneous soil; (b) model B with
stratified soil; (c) model C with a soft interlayer; (d) model D with a hard interlayer

Fig. 18 presents a comparison of the deformation and failure patterns among four slope models
using principal strain contours at the initial and failure stages. At the initial stage, model A, featuring
homogeneous soil, displays a smoother strain bubble (Fig. 18a). Conversely, models B, C, and D
exhibit strain discontinuities within strain bubbles due to abrupt Young’s modulus interfaces. The
strain bubble in model B diminishes as Young’s modulus increases with depth (Fig. 18b). Contrast-
ingly, model C exhibits strain expansion within the soft interlayer owing to a sharp decrease in Young’s
modulus (Fig. 18c). In model D, the strain bubble gradually disappears along the depth, particularly
at the upper surface of the hard interlayer, suggesting a mitigating effect on soil deformation. These
findings suggest that deformation primarily occurs in layers with lower modulus, while hard interlayers
limit deformation, potentially reducing geohazard risks in slopes.

Additionally, strain contours at the failure stage illustrate notable differences in the failure patterns
of the four slope models. Models B and D exhibit shorter rupture bands, shifting the outcrop location
upward compared to model A (Figs. 18e, 18f and 18h). Model C follows a similar rupture band path
as model A, but within the hard interlayer, its geometric profile diverges notably from models A, B,
and D. For model C, as the rupture band propagates from the initial soil layer to the soft interlayer, its
growth trajectory changes from a downward convex arc to an upward convex arc (Fig. 18g). However,
as the rupture band moves from the soft interlayer to the next soil layer, the trajectory adjusts from an
upward convex arc to a downward convex shape. A similar shift occurs in model D when the rupture
band propagates between the hard and soft interlayers. These characteristics suggest that deformation
parameters, such as modulus, significantly influence slope stability by altering the failure pattern.
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Moreover, the rupture band generally transitions from a downward convex to an upward convex arc
while moving between the hard and soft interlayers, exhibiting the opposite adjustment when moving
from the soft interlayer to the hard interlayer.

Figure 18: The principal strain contours of soil slope at initial and failure stages

5 Conclusions

The study introduces an integrated algorithm within the finite element framework to explore
fracture damage (or cracking) in cohesive materials and the relevant geohazard mechanisms. Demon-
strating the validity of the coupled CZM using existing experimental data, we combined this model
with the N-AFEM to analyze how tensile properties affect soil slope landslides. Key findings are
outlined as follows:

(1) Geohazard development from localized deformation exhibits progressive failure and strong
discontinuities. Integrating CZM and N-AFEM accurately reproduces these features, capturing
complex compression-shear and tension-shear coupling behaviors within rupture bands.

(2) Cohesive soil slopes with tension-shear failures show straight-lined rupture paths, while
compression-shear slopes exhibit arc-shaped paths. Increased soil tensile strength enhances stability
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and bearing capacity, minimally impacting rupture paths. Higher weighting factors lead to more
compression-shear ruptures, improving slope stability.

(3) Soil modulus significantly influences slope stability, altering failure patterns. Slopes with
interlayers show rupture band trajectories that transition from downward to upward convex arcs when
moving from hard to soft layers, and transition oppositely when moving from soft to hard layers.
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