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ABSTRACT

Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.
Notably, most existing methods that combine the strengths of convolutional neural networks (CNNs) and Trans-
formers have made significant progress. However, there are some limitations in the current integration of CNN
and Transformer technology in two key aspects. Firstly, most methods either overlook or fail to fully incorporate
the complementary nature between local and global features. Secondly, the significance of integrating the multi-
scale encoder features from the dual-branch network to enhance the decoding features is often disregarded in
methods that combine CNN and Transformer. To address this issue, we present a groundbreaking dual-branch
cross-attention fusion network (DCFNet), which efficiently combines the power of Swin Transformer and CNN to
generate complementary global and local features. We then designed the Feature Cross-Fusion (FCF) module to
efficiently fuse local and global features. In the FCF, the utilization of the Channel-wise Cross-fusion Transformer
(CCT) serves the purpose of aggregating multi-scale features, and the Feature Fusion Module (FFM) is employed to
effectively aggregate dual-branch prominent feature regions from the spatial perspective. Furthermore, within the
decoding phase of the dual-branch network, our proposed Channel Attention Block (CAB) aims to emphasize the
significance of the channel features between the up-sampled features and the features generated by the FCF module
to enhance the details of the decoding. Experimental results demonstrate that DCFNet exhibits enhanced accuracy
in segmentation performance. Compared to other state-of-the-art (SOTA) methods, our segmentation framework
exhibits a superior level of competitiveness. DCFNet’s accurate segmentation of medical images can greatly assist
medical professionals in making crucial diagnoses of lesion areas in advance.
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1 Introduction

Medical image segmentation is a significant and complex research area [1] that plays a crucial
role in the quantitative analysis of medical images. It encompasses various challenges commonly
encountered in medical applications, such as segmenting polyps, glands, and breast tumors. This
process holds immense importance in medical image-assisted diagnosis as it enables the extraction of
meaningful features from medical images, aiding doctors in making more accurate diagnoses. However,
medical image segmentation continues to face substantial challenges due to factors like blurred
edges, similar morphologies, low contrast, noise interference, texture heterogeneity, and uncertainty in
segmentation regions, as shown in Fig. 1. Additionally, the heterogeneity of tumor cancer further adds
to these challenges [2]. Consequently, the development of automated methods that are both precise
and robust for medical image segmentation has long presented a significant obstacle for medical image
analysts [3]. The topic of image segmentation has gained significant attention due to the advancements
in deep learning [4] technology.

Figure 1: The example images of similar morphology, blurred edges, low contrast, and noise interfer-
ence in polyp, gland, and breast ultrasound

In recent years, the convolutional neural network (CNN) [5] has become the dominant framework
for various models due to its exceptional ability to represent features. The CNN model incorporates a
symmetric encoder-decoder structure, and its success can largely be attributed to the skip connection,
which enhances the feature details in the decoder. Several variant models, such as UNet++ [6] and
MultiresUNet [7], have made significant advancements based on the CNN. Despite these achieve-
ments, CNN variants still have limitations. The inherent locality of convolution operations prevents
them from explicitly capturing long-range dependencies. Additionally, there is a significant disparity
in feature representation between the encoder and decoder, thus compromising the consistency of the
feature representation.

The utilization of the Transformer in natural language processing was initially introduced by
Dosovitskiy et al. [8,9]. Since then, its application in computer vision tasks has garnered significant
achievements. The Transformer-based models, such as the UNEt TRansformers (UNETR [10]) model
proposed by Hatamizadeh, have been successfully employed in computer vision tasks. These models
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utilize the self-attention mechanism to effectively capture the global context feature of medical images.
However, the drawback of Transformers lies in their neglect of local detail features, which consequently
results in high computational costs. To address this issue and enhance both computational efficiency
and image segmentation performance, a novel approach called the shifted window-based hierarchical
vision Transformer (Swin Transformer [11]) has been proposed by Liu et al. This approach leverages
both the neural network’s inductive bias and the self-attention mechanism in the Transformer to
bolster the network structure.

In light of the above, it can be observed that there is a natural complementarity between the
Transformer and CNN methodologies. Various methods, such as TransUNet [12], CTC-Net [13], and
CASF-Net [14], have been devised to merge the capabilities of CNN and Transformer to fully harness
their strengths. Notably, TransUNet [12] employs a CNN to extract low-level features, followed by the
utilization of a Transformer to simulate global interactions. However, it is important to acknowledge
that this implementation merely represents a sequential integration of convolution and Transformer
mechanisms. It failed to effectively produce complementary features. CTC-Net [13] leverages the dual-
branch encoders of CNN and Swin Transformer to generate complementary features. In a similar
vein, CASF-Net [14] integrates global and local features and strategically maximizes the advantages
offered by both CNN and Transformer, leading to feature enhancement. Despite the remarkable
results achieved by these models, they overlook the importance of merging the features from dual-
branch multi-scale encoders to improve the decoding of intricate details.

Based on the analysis conducted, there is a need for further investigation into the seamless
integration of CNN and Swin Transformer, capitalizing on the respective strengths of both models.
To address this, we introduce a groundbreaking network called DCFNet, which leverages a dual-
branch cross-attention feature fusion architecture. The backbone of DCFNet comprises two branches:
CNN and Swin Transformer. The CNN branch is responsible for capturing local features, while the
Swin Transformer branch captures global context features. To enhance the details of the decoder’s
features, it is crucial to effectively aggregate the encoder features across multiple scales. In the
feature cross-fusion (FCF) module, reference is made to the Channel-wise Cross-fusion Transformer
(CCT) mechanism [15] proposed by Wang et al. Subsequently, the feature fusion module (FFM)
is suggested to merge dual branch feature maps to generate complementary features. Furthermore,
channel attention blocks (CAB) are incorporated to emphasize channels that contribute significantly
to the features and suppress low-contribution feature channels, thereby guiding the decoding process.
The ultimate predicted segmentation outcome is obtained through the summation of the CNN branch
and the Swin Transformer branch. The primary contributions of this paper can be summarized as
follows:

• We introduce an innovative network called DCFNet, which incorporates a dual-branch cross-
attention fusion approach. Initially, we utilize the CNN and Swin Transformer dual-branch
backbone networks to extract both local and global context features from the input image.
Subsequently, we employ the Feature Cross-Fusion (FCF) module to merge the context features
obtained from the dual-branch encoders, thereby enhancing the decoder feature details. Lastly,
to further enhance the feature details of the dual-branch decoders, we introduce the Channel
Attention Block (CAB) to guide the decoding process.

• We propose the FCF module to integrate the local and global context features of the dual
encoders. To achieve this integration, we leverage the Channel-wise Cross-fusion Transformer
(CCT) module within the FCF module, allowing for multi-scale encoder feature fusion.
Additionally, we introduce the FFM sub-mechanism within the FCF module for feature fusion.
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By utilizing FFM, dual-branch feature maps can focus on the related feature regions from
a spatial perspective to produce fused features. Moreover, the establishment of long-range
dependencies among the dual-branch feature maps and the salient feature map, generated by
the spatial attention block (SAB) mechanism, contributes to the enhancement of significant
feature information aggregation.

• We developed the Channel Attention Block (CAB) mechanism, which prioritizes the relevant
channel features between the up-sampled decoder feature map and the enhanced feature map
created by the FCF module. This approach suppresses any extraneous channel features and
maximizes the integration of contributing channel features to enhance decoding feature details.

• Extensive experimentation on four segmentation tasks demonstrates that the proposed
DCFNet in this study outperforms the most state-of-the-art models.

2 Related Works
2.1 CNN Based Variants

Convolutional neural networks (CNNs) have become the dominant segmentation frameworks in
the medical image field, with Fully convolutional networks (FCNs) being particularly prominent [5].
Among the FCNs, UNet [16] has garnered noteworthy results in segmenting medical images. Subse-
quently, several CNN-based models, including UNet++ [6], V-Net [17], ResUNet++ [18], Attention
U-Net [19], TransUNet [12], MultiResUNet [7], and UCTransNet [15], have been proposed. These
models have been specially designed and have demonstrated significant segmentation performance
in biomedical images. In conclusion, the application of CNN-based methods has led to significant
advancements in this field.

2.2 Vision Transformer Based Methods
Recently, there has been an increasing prevalence in the application of a Transformer-based [9,20]

architecture in computer vision. This can be attributed to the effectiveness of the multi-head self-
attention mechanism in modeling the interaction between sequential tokens, which is derived from
the origins of Transformers in natural language processing tasks. In the context of computer vision,
the Vision Transformer (ViT) has achieved state-of-the-art performance in ImageNet classification
tasks by utilizing the Transformer to model full-size images with global self-attention. Another notable
development is the Swin Transformer [11], which has also produced state-of-the-art results. In the field
of medical imaging, the Swin-Unet [21] and TransUNet [12] models have successfully incorporated
Transformer architectures to enhance medical image segmentation performance. Additionally, the
Gated Axial-Attention model (MedT [22]) has been proposed to address the challenge of limited data
samples in medical images. Furthermore, the hybrid Transformer architecture (UTNet [23]) integrates
self-attention into the convolutional neural network (CNN) to create a more powerful model. Lastly,
DS-TransUNet [24] utilizes dual-scale Swin Transformer encoders to extract semantic features from
different perspectives and incorporates a Transformer-based feature fusion module to fuse feature
information from different scales.

2.3 Combining CNN and Transformer Methods
Several scholarly works [12,13,25] have made attempts to enhance the performance of medical

image segmentation by combining the advantages of CNN and Transformer. For instance, TransUNet
[12] employs a sequence of Transformer and CNN encoders to capture semantic feature information.
CASF-Net [14] utilizes a cross-fusion module to merge features from dual CNN and Transformer
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branches, thereby enhancing the quality of image semantic segmentation. Additionally, CTC-Net [13]
introduces a feature fusion module that combines CNN and Swin Transformer branches, resulting
in improved complementary feature information. To further enhance the spatial context semantic
information between Transformer decoding features and complementary features, skip concatenation
is implemented. HiFormer [26] consists of a hierarchical CNN-Transformer feature extractor module.
The outputs of the first and last layers are fed through a Double-Level Fusion (DLF) feature fusion
module. However, the encoder feature extraction may ignore the importance of multi-scale feature
information. H2Former [27] combines CNN and Transformer with multi-scale channel attention, but
using same-layer skip connections may not be the best way to improve decoder performance.

The simplified frameworks of our DCFNet and various combinational methods of Transformer
and CNN are depicted in Fig. 2. To provide a clear illustration of the different model structures, we
present the overall architecture. Fig. 2a showcases the approach employed by TransUNet [12], where
the encoder initially utilizes CNN to extract local semantic features. Subsequently, the Transformer
encoder is employed to model the global context, and finally, the feature information is decoded
using CNN. However, this approach fails to fully integrate the advantages of both CNN and
Transformer. On the other hand, as shown in Fig. 2b, TransFuse [25] consists of a CNN encoder,
dual CNN decoders, a Transformer encoder, and a feature fusion module. The dual encoders extract
spatial features and interact with long-range context. The first decoder combines the Transformer
and upsampling features, while the second decoder generates the final fused feature output. As
depicted in Fig. 2c, CTC-Net [13] comprises a Swin Transformer encoder, a CNN encoder, a Swin
Transformer decoder, and a feature fusion module. The CNN encoder is responsible for capturing local
contextual features, while the Swin Transformer encoder focuses on modeling global contextual feature
information. The feature fusion module generates complementary feature maps. However, CTC-Net
does not utilize the CNN to decode features to further enhance the feature details of decoding. To
address this issue and minimize the aggregation differences between the CNN and Swin Transformer,
we propose a novel DCFNet dual-branch cross-attention feature fusion network. In Fig. 2d, DCFNet
employs the CNN and Swin Transformer branches to capture global and local context features,
respectively. The multi-scale feature aggregation mechanism integrates the multi-scale features of the
encoder to generate enhanced features. The dual-stream feature fusion module combines the enhanced
features from both branches to produce complementary features that enhance the feature details of
the dual-branch decoder. The detailed methods of each component will be presented in the Methods
section.

3 Methods

Within this section, we present an overview of our DCFNet framework and the principles of
each component. The motivation behind the dual-branch network is derived from the advantageous
features exhibited by both CNN and Swin Transformer. Specifically, when dealing with biomedical
image segmentation, the CNN architecture may encounter difficulties in accurately segmenting small
or thin objects due to the loss of pertinent features. Conversely, the Swin Transformer proves beneficial
for establishing global context interactions in scenarios involving long and narrow objects, thereby
improving object segmentation performance. By effectively combining local and global features, we
can generate enhanced complementary features that further augment the quality of biomedical image
segmentation. Subsequently, we will proceed to introduce the architecture of DCFNet, along with the
operational principles of each component, encompassing the dual-branch network architecture, dual-
branch feature cross-fusion module, channel-wise cross-fusion Transformer, and channel attention
block mechanism.
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Figure 2: Comparisons of simplified frameworks. (a) TransUNet comprises a CNN encoder, a CNN
decoder, and a Transformer block. (b) TransFuse incorporates a CNN encoder, dual CNN decoders,
a Transformer encoder, and a feature fusion module. (c) CTC-Net integrates a CNN encoder, a Swin
Transformer encoder, a Swin Transformer decoder, and an effective feature fusion module. (d) Our
DCFNet incorporates a Swin Transformer branch, a CNN branch, a multi-scale feature aggregation,
and a dual-stream feature fusion module

3.1 Architecture Overview
The DCFNet is comprised of dual parallel branches (a Convolutional Neural Network (CNN)

and a Swin Transformer), which serve as feature extractors. This architecture is illustrated in Fig. 3.
Given a medical image with a spatial resolution of H × W and a channel number C, denoted as
x ∈ RC×H×W , the first step involves utilizing the dual-branch encoders to extract four pyramidal feature
maps: rfi and sfi, where i ∈ 1, 2, 3, 4. The Feature Cross-Fusion (FCF) mechanism utilizes the same
resolution of the dual-branch encoders, namely rfi and sfi, to obtain the dual-branch enhanced features
ofi and oSi, where i ∈ 1, 2, 3, 4. Within the FCF module, the Channel-wise Cross-fusion Transformer
(CCT) effectively combines the multi-scale features of the dual-branch encoder to generate the dual-
branch enhanced features. Subsequently, the augmented features from the dual-branch network are
streamed into the Feature Fusion Module (FFM) to generate complementary features. The up-
sampled features from the dual-branch decoders and the features produced by the FFM mechanism
are fed into the Channel Attention Block (CAB) to highlight the contributing channels feature,
emphasizing the channels that have a greater impact on the decoding process. Finally, the dual-branch
decoders generate two segmentation results f ∈ R1×H×W and S ∈ R1×H×W of the same resolution. The
ultimate prediction is determined by summing the outputs of both branches.

3.2 Global and Local Feature Extraction
The DCFNet, incorporating both the CNN and Swin Transformer branches, facilitates the

extraction of distinctive features in medical images from diverse vantage perspectives. The CNN
branch adeptly captures localized features, with an emphasis on intricate feature particulars. In
contrast, the Swin Transformer branch excels in capturing global features, prioritizing the acquisition
of interdependencies among spatially long-range components.
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Figure 3: Illustration of the proposed DCFNet. The generated feature maps of each stage of the dual-
branch of CNN and Swin Transformer are streamed separately into the CCT mechanism for multi-
scale feature channel-wise cross-fusion in the FCF module. Then the feature maps from the dual-CCT
are streamed into the FFM mechanism for feature cross-attention fusion. In addition, the up-sampled
feature maps of the decoder and the feature maps generated by the FFM mechanism are fed into the
CAB mechanism for channel enhancement and suppression. Finally, the predicted mask is generated
from the CNN decoder and Swin Transformer decoder

In the implementation, the encoder of the CNN branch utilizes the ResNet34 [28] architecture,
as shown in Fig. 3. The ResNet34 model enables the representation of multi-scale features with
fine-grained, the feature information tends to not disappear as the depth increases. On the other
hand, the Swin Transformer branch combines the benefits of self-attention mechanisms found in the
Transformer with efficient computational resource utilization. Both the Swin Transformer and CNN
dual-branch architectures can be independently applied. However, the optimal approach involves
combining the strengths of both CNN and Swin Transformer to produce complementary feature
representations. This combination ultimately enhances the representation of feature details in the
dual-branch decoder. For CNN and Swing Transformer branches, Assuming rf0 and sf0 denote the
initial input features of dual-branch. Each layer features (rfi ∈ RCi×Hi×Wi , i ∈ 1, 2, 3, 4) of ResNet34
and features (sfi ∈ RCi×Hi×Wi , i ∈ 1, 2, 3, 4) of Swin Transformer can be calculated from the following
Eqs. (1) and (2).

rfi = Relu(Conv(rfi−1)), i = 1, 2, 3, 4 (1)

f̂ = W − MSA(LN(sfi−1)) + sfi−1

f = MLP(LN(f̂ )) + f̂

ŝf i = SW − MSA(LN(f )) + f

sfi = MLP(LN(ŝf i)) + ŝf i (2)
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where W-MSA denotes the window-based multi-head self-attention, while SW-MSA denotes the
shifted window-based multi-head self-attention. LN and MLP denote the Layer normalization, Multi-
Layer Perceptron. Relu and Conv denote the Relu function and convolution operation. rf0 and sf0

denote initial input feature.

3.3 Multi-Scale Channel-Wise Cross-Fusion Transformer
The multi-scale channel-wise cross-fusion Transformer (CCT) involves three main steps: multi-

scale feature embedding, multi-head channel-wise cross attention, and multi-layer perceptron (MLP).
To illustrate this process, we will focus on the CNN branch architecture (note that the Swin
Transformer branch architecture is similar to this). Refer to Fig. 4 in the paper (CCT) for a visual
representation. In this architecture, we are given feature maps, denoted as rfi ∈ RCi×Hi×Wi , i ∈ 1, 2, 3, 4,
which are obtained from the CNN branch network.

Figure 4: Illustration of the channel-wise cross-fusion Transformer (CCT) module. The CCT can learn
the dependencies between the different input feature layers in a Transformer cross-fusion way

Firstly, tokenization is performed to reshape the feature tensor rfi into patch sequence Ti ∈
R

Hi×Wi
i2

×Ci , i ∈ 1, 2, 3, 4 of patch size p,
p
2

,
p
4

and
p
8

. Concatenate the tokens Ti as the key (K) and

value (V): T� ∈ Concat(Ti), i ∈ 1, 2, 3, 4. Then, take the reshaped feature tensor Ti as queries and T�

as a key and value.

Qi = Ti × WQi , K = T� × WK , V = T� × WV (3)

where WQi ∈ RCi×d, WK ∈ RC�×d and WV ∈ RC�×d are the weight values of the different inputs. d is the
sequence length of patches, and C is the channel size. Next, the equation of multi-head channel-wise
cross-attention is generated as follows:

CAi = MiV T = σ

[
ψ

(
QT

i K√
C�

)]
V T (4)

where Mi denotes the similarity matrix, σ(·) denotes the instance normalization and the ψ(·) denotes
the softmax function. Unlike the previous self-attention mechanism, the CCT module performs self-
attention calculations along the channel axis rather than the patch axis. In an N-head attention
situation, the Multi-head Cross-Attention (MCA) is as Eq. (5) and then fed into the MLP structure
to obtain the final output Oi, i ∈ 1, 2, 3, 4.

MCAi = (CA1 + CA2 + · · · + CAN)/N (5)

Oi = MCAi + MLP(LN(MCAi) + Qi) (6)
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3.4 Feature Cross-Attention Fusion Module
The dual-branch network structures enable the extraction of distinctive features from multiple

perspectives in medical images. Specifically, the CNN architecture is adept at capturing local fea-
tures, while the Swin Transformer architecture focuses on modeling global context interaction. The
confusion of these dual-branch feature representations is of utmost importance in enhancing the
accuracy of medical image segmentation. To facilitate the generation of mutually complementary
feature information, we have devised a dual-branch feature fusion module (FFM), illustrated in
Fig. 5a. Overview, The FFM mechanism consists of two steps. First is to send the fr ∈ RC×H×W and
fs ∈ RC×H×W of dual-branch features, which generated by the CCT mechanism, to the spatial attention
block (SAB) mechanism to generate spatial attention feature S ∈ RC×H×W . The second step is to send
the feature S ∈ RC×H×W and the dual branch feature maps: Qr ∈ RC×H×W and Qs ∈ RC×H×W into the
Transformer module, and finally obtain the enhanced feature maps of ∈ RC×H×W and oS ∈ RC×H×W

after residual calculation.

Figure 5: Illustration of the feature fusion module (FFM) module and the sub-mechanism spatial
attention block (SAB) module. By utilizing FFM, dual-branch feature maps can focus on the related
feature regions from a spatial perspective to produce fused features

To further augment the significant regions within the dual-branch feature maps while concurrently
suppressing the irrelevant regions, we have also devised the spatial attention block (SAB). This can be
observed in Fig. 5b. In the initial step, the pixel compression technique is employed to compress fr and
fs, resulting in the acquisition of significant spatial features denoted as k1 ∈ R1×H×W and k2 ∈ R1×H×W ,
respectively. Subsequently, these compressed features undergo activation through the sigmoid function
and are then summed together to generate the single-channel spatial attention feature map S′ ∈ R1×H×W .
This spatial attention feature map is subsequently multiplied with the dual-branch feature maps fr and



1112 CMES, 2024, vol.140, no.1

fs, leading to the production of f ′
r ∈ RC×H×W and f ′

s ∈ RC×H×W . By summing f ′
r and f ′

s , the spatial
attention feature S ∈ RC×H×W is obtained, with a channel dimension of C. The Spatial Attention
Block (SAB) serves to enhance the features related to the CNN and Swin Transformer branch feature
map, while simultaneously suppressing unrelated features. The aforementioned process is detailed as
follows:

k1 = pc(fr), k2 = pc(fs) (7)

S′ = η(k1) + η(k2) (8)

S = f ′
r + f ′

s = S′ × fr + S′ × fs (9)

where pc(·) denotes the pixel compression operation, η(·) denotes the sigmoid function.

In the subsequent stage, to enhance the concentration of the branching feature maps on the
significant regions of the spatial attention feature S ∈ RC×H×W , the significant feature map S is
serialized as Value (V ′) and Key (K ′), while the branching feature maps Qr and Qs are as queries.

The incorporation of the self-attention component is of utmost importance when it comes to
integrating multi-scale features. The underlying attention function is primarily located in the dot
product operation of scaling, which is defined in the Eq. (10). The relevant vectors are as: Q′, V ′,
K ′ ∈ RN×C.

Att(Q′, V ′, K ′) = softmax
(

Q′TK ′
√

C

)
V ′T (10)

Nonetheless, Eq. (10) has a drawback in terms of the computational complexity required for
the materialization of the softmax logits and the attention maps. Specifically, this process incurs a
spatial complexity of O(N2) and a time complexity of O(N2C). However, Eq. (11), inspired by the
findings [14], introduces a factorization of the self-attention mechanism, which effectively reduces the
computational burden associated with the original proportional dot product attention.

Att(Q′, V ′, K ′) = Q′
√

C
(softmax(K ′)TV ′) (11)

In light of this, Eq. (11) is regarded as the self-attention mechanism for the Transformer module
in FFM. By incorporating Value (V ′), Key (K ′), Qr, and Qs as inputs into the Transformer module for
modeling in FFM, the feature maps Qr and Qs can allocate enhanced attention to significant regions
within the salient feature map S ∈ RC×H×W , as illustrated in Eq. (12). Ultimately, the final outputs oS
and of are generated through the residual calculation, as denoted in Eq. (13). This entire procedure
can be summarized as follows:

of ′ = Att(Qr, V ′, K ′) = ϕ(Qr)(ψ(K ′)TV ′)

oS′ = Att(Qs, V ′, K ′) = ϕ(Qs)(ψ(K ′)TV ′) (12)

of = of ′ + fr, oS = oS′ + fs (13)

where ϕ(·) denotes the
1√
C

operation and ψ(·) denotes the softmax function, and Qr and Qs denote

the queries.
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3.5 Channel Attention Block
The proper integration of channel feature information between the up-sampled features and the

FCF-enhanced features plays a critical role in enhancing the segmentation result of DCFNet. Employ-
ing the channel attention block (CAB) mechanism allows for the enhancement of channel features by
highlighting their significant contributions within the up-sampled feature maps of the decoder and
the FCF module-enhanced feature maps, while simultaneously suppressing low-contribution channel
features. This approach is particularly advantageous in enhancing the feature details of the decoder.
To achieve this, we have devised the CAB. To illustrate, we take the Swin Transformer branch as a
representative example (the CNN branch follows a similar pattern), as depicted in Fig. 6. Given the up-
sampled feature map f1 ∈ RC×H×W and the feature map f2 ∈ RC×H×W generated by the FCF module, the
first step is to perform Global Average Pooling (GAP) on f1 and f2, resulting in vectors H1(f1) ∈ RC×1×1

and H2(f2) ∈ RC×1×1. Eq. (14) represents the k-th channel, while the Eq. (15) generates the channel
attention vector w.

Hk(x) = 1
H × W

�H
i=1�

W
j=1x

k(i, j) (14)

w = γ (α1 · H1(f1) + α2 · H2(f2)) (15)

where γ (·) indicates the importance of each channel and w ∈ RC×1×1. α1 ∈ RC×C and α2 ∈ RC×C be
weights of Linear layer. The fusion feature O ∈ RC×H×W resulted in Eq. (16).

O = γ (α1 · H1(f1) + α2 · H2(f2)) · (f1 + f2) = w · (f1 + f2) (16)

Figure 6: Illustration of the channel attention block (CAB) module, which serves for channel enhance-
ment and suppression

4 Experiments

In this section, we present the datasets used in our experiment and provide the corresponding
experimental details. We then compare our method to the current state-of-the-art methods. Addi-
tionally, we conduct ablation experiments to establish the rationality of our network design and the
effectiveness of each component.

4.1 Datasets
We use BUS [29], Gland Segmentation (GlaS) [30], KvasirCapsule-SEG [31] and KvasirSessile-

SEG [32] datasets to evaluate our method DCFNet.
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4.1.1 BUS Dataset

The BUS dataset, consisting of 163 breast ultrasound images taken from numerous female patients
at the UDIAT Diagnostic Center, is detailed in [29]. The average pixel size was 760 × 570, with 110
benign cases and 53 malignant cases included in the dataset. Moreover, the 163 images are divided into
training and testing sets with 120 and 43 images, respectively.

4.1.2 GLAS Dataset

The Gland Segmentation (GlaS) dataset [30] originates from the 2015 challenge concerning gland
segmentation in histology images, offering images of Haematoxylin and Eosin (H and E) stained slides.
The dataset comprises 165 images dispersed between 85 for training and 80 images for testing.

4.1.3 KvasirCapsule-SEG Dataset

KvasirCapsule-SEG [31], an enhanced subset of Kvasir includes polyp images along with their
segmentation ground truth and bounding box information. The polyp class in Kvasir-Capsule com-
prises only 55 images that the author annotated with the assistance of a specialist gastroenterologist.
Additionally, the dataset features an increased number of polyp images with improved annotations for
better accuracy. The polyp class in Kvasir-Capsule comprises only 55 images that the author annotated
with the assistance of a specialist gastroenterologist. 55 images are divided into 44 images for training
purposes and 11 for testing.

4.1.4 KvasirSessile-SEG Dataset

The Kvasir-SEG comprises 1000 polyp images and their corresponding ground truth data from
the Kvasir Dataset. This dataset includes 196 polyps that measure less than 10 mm and have been
classified as Paris class 1 sessile or Paris class IIa. With the assistance of expert gastroenterologists,
this dataset was meticulously selected. It is a subset of Kvasir-SEG, referred to as Kvasir-Sessile [32],
which is particularly challenging for segmentation. Additionally, the images have been divided into
136 for training and 60 for testing purposes.

4.2 Implementation Details
The DCFNet model was constructed utilizing the PyTorch framework and experimented on

a single NVIDIA RTX A5000 24G card. The maximum number of iterations is 2000, while the
optimizer is Adam with a learning rate of 1e − 3. For the training of all models, a composite loss
function (Losstotal = Loss(G, f ) + Loss(G, S)) combining dice loss and binary cross-entropy loss was
utilized. Before training, the dataset containing low-contrast ultrasound images of breast tumors
underwent pre-processing using the histogram equalization technique. To enhance the applicability
of the model and reduce the issue of overfitting, we augment the BUS, GlaS, KvasirCapsule-SEG, and
KvasirSessile-SEG datasets by introducing random vertical flipping, horizontal flipping, and other
similar techniques. The training patch size for all datasets is uniformly set to 6, while the input image
resolution is specifically defined as 224 × 224. To assess the performance of the models, we employ
various evaluation metrics including Dice (Dice Coefficient), IoU (Intersection over Union), F1 score,
and ASD (Average Surface Distance).

The DCFNet’s model parameters can be found in Table 1. The Depth (encoder) and Depth
(decoder) refer to the respective depths of the Swin Transformer encoder and decoder. Similarly,
the Num-heads (encoder) and Num-heads (decoder) indicate the number of attention heads in the
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Swin Transformer encoder and decoder. Furthermore, the Num-heads (FFM) and Num-heads (CCT)
denote the number of attention heads in the FFM and CCT components.

Table 1: Network configuration of DCFNet

Parameters Layer-1 Layer-2 Layer-3 Layer-4

Input size 224 × 224
Resolution 224 × 224 112 × 112 56 × 56 28 × 28
Depth (encoder) 2 2 2 2
Depth (decoder) 2 2 2 2
Depth (CCT) 2 2 2 2
Num-heads
(encoder)

2 2 4 4

Num-heads
(decoder)

2 2 4 4

Num-heads (CCT) 4 4 4 4
Num-heads (FFM) 2 2 2 2

4.3 Comparison with State-of-the-Art Methods
In this subsection, a series of experiments were conducted to evaluate the performance of DCFNet

in comparison to state-of-the-art (SOTA) methods across four medical image segmentation tasks.
Additionally, the experimental results are presented and visual examples are provided to assess the
learning and generalization abilities of DCFNet. The GT denotes GroundTruth, a term utilized to
represent the real labels.

4.3.1 Comparative Result Analysis on the BUS Dataset

The DCFNet is evaluated alongside ten state-of-the-art segmentation general models in the BUS
dataset. It is worth noting that segmenting ultrasound images of breast tumors poses a considerable
challenge due to their indistinct boundaries and poor contrast. Additionally, the DCFNet model
is compared with six different breast tumor segmentation tasks to provide a more comprehensive
assessment of its effectiveness. The quantitative findings from our analysis of the BUS dataset [29]
can be found in Table 2. The utilization of red bold highlights the best performance, while blue bold
highlights suboptimal performance. DCFNet demonstrates superior results in terms of Dice and IoU
metrics, surpassing previous state-of-the-art models in both general and ultrasound breast tumor seg-
mentation tasks. Specifically, compared with sub-optimal general methods: TransUNet, UCtransNet,
DCSAU-Net, and CANet in general medical image segmentation task, DCFNet achieves Dice (IoU)
with an improvement range from 4.643% (3.069%) to 4.754% (4.384%). Although UCTransNet
achieved the best performance in terms of F1 score, DCFNet was only slightly lower by 0.86%.
In the task of ultrasound segmentation, DCFNet demonstrated significant enhancements in Dice
(IoU) performance compared to the suboptimal models MGCC and M2SNet, with improvements of
3.164% (4.716%) and 3.289% (4.533%), respectively. Furthermore, DCFNet showcased improvements
of 1.972% and 1.085% in F1 performance. In the realm of general segmentation tasks and specifically
in the domain of ultrasound segmentation tasks, DCFNet has emerged as the most superior model
in terms of the ASD metric, attaining an impressive value of 24.515%. Furthermore, DCFNet has
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demonstrated commendable performance across all segmentation metrics, showcasing a well-balanced
and comprehensive capability. The aforementioned results demonstrate the potential of DCFNet, our
model that combines dual-branch features, and its superior segmentation proficiency compared to
other state-of-the-art models.

Table 2: Comparative performance analysis of DCFNet and other SOTA models on BUS dataset. The
red bold indicates best performance, blue bold indicates suboptimal performance. ↑ represents higher
scores are better, while ↓ represents lower scores are better

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
AttenUNet [19] 2018 73.091 63.673 77.371 30.195
Swin-UNet [21] 2021 46.441 34.578 52.967 54.502
TransUNet [12] 2021 73.880 64.240 78.986 29.483
MedT [22] 2021 67.021 56.938 72.517 35.969

General UCTransNet [15] 2022 73.935 64.640 80.174 29.307
MT-UNet [33] 2022 45.459 32.783 41.370 58.020
DCSAU-Net [34] 2023 73.859 65.022 76.561 29.300
CANet [35] 2023 73.970 63.707 78.632 29.074
H2Former [27] 2023 70.367 58.812 74.042 32.379
HiFormer [26] 2023 69.050 59.713 77.351 33.385

DAF [36] 2018 70.931 61.036 75.017 31.651
SegNet [37] 2021 70.840 60.828 76.583 31.965

Ultrasound MDANet [38] 2022 71.117 60.511 76.198 31.211
CMUNet [39] 2022 72.810 63.067 70.337 30.765
MGCC [40] 2023 75.449 63.375 77.342 27.185
M2SNet [41] 2023 75.324 63.558 78.229 28.091

DCFNet – 78.613 68.091 79.314 24.515

The DCFNet and other partially superior methods were visualized in Fig. 7. The areas where the
DCFNet outperforms the other methods are highlighted by red boxes or red arrows. The visualization
of the segmentation results effectively showcases the advantages and strong learning capability of our
proposed method.

4.3.2 Comparative Result Analysis on the GlaS Dataset

The quantitative comparative analysis of the GlaS [30] dataset, as presented in Table 3, demon-
strates the segmentation indicators of DCFNet and other state-of-the-art (SOTA) methods. The exper-
imental results highlight the best performance, indicated by red bold, and the suboptimal performance,
indicated by blue bold. Performance comparison and analysis with other suboptimal SOTA models:
TransUNet, UCTransNet, M2SNet and HiFormer, our method DCFNet achieves 3.089% (4.494%),
1.733% (2.723%), 2.932% (4.795%) and 1.614% (2.599%) improvement in Dice(IoU) performance,
respectively. Furthermore, DCFNet showcased improvements of 2.180%, 1.221%, 1.755%, and 1.132%
in F1 performance. The DCFNet’s ASD metric achieved an optimal value of 10.626%, whereas
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the implementation of HiFormer was suboptimal. Compared to other state-of-the-art methods, our
suggested DCFNet attains the most optimal balance between Dice, IoU, F1, and ASD indicators.

DCFNet GTM2SNetMGCCCMUNetMDANetCANetDCSAUNetUCTransNetTransUNetAttenUNetImage

Figure 7: The qualitative comparative results on representative images of BUS dataset. The red boxes
or red arrow highlight regions where DCFNet performs better than the other methods

Table 3: Comparative performance analysis of DCFNet and other SOTA models on GlaS dataset. The
red bold indicates best performance, blue bold indicates suboptimal performance. ↑ represents higher
scores are better, while ↓ represents lower scores are better

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
AttenUNet [19] 2018 88.932 81.491 87.767 13.387
Swin-UNet [21] 2021 84.128 73.573 84.953 16.168
TransUNet [12] 2021 89.020 81.486 87.731 13.341
MedT [22] 2021 83.144 72.678 83.320 17.847
UCTransNet [15] 2022 90.376 83.257 88.690 12.244
MT-UNet [33] 2022 78.382 65.364 80.500 21.232
DCSAU-Net [34] 2023 87.163 78.461 86.733 14.158
CANet [35] 2023 89.003 81.156 87.607 13.107
H2Former [27] 2023 89.084 81.273 87.961 13.264
HiFormer [26] 2023 90.495 83.381 88.779 11.965
M2SNet [41] 2023 89.177 81.185 88.156 12.733
DCFNet – 92.109 85.980 89.911 10.626

The segmentation maps of partially superior methods are visualized in Fig. 8. The areas where
DCFNet outperforms other methods are highlighted with red boxes or a red arrow. Our DCFNet
produces segmentation results that closely match the ground truth in comparison to other state-of-
the-art models. These analyses provide evidence that DCFNet can achieve more precise segmentation
while maintaining accurate shape.
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DCFNet GTM2SNetCANetDCSAUNetUCTransNetTransUNetAttenUNetImage MedT HiFormer

Figure 8: The qualitative comparative results on representative images of the GlaS dataset. The red
boxes or red arrow highlight regions where DCFNet performs better than the other methods

4.3.3 Comparative Result Analysis on the KvasirCapsule-SEG and KvasirSessile-SEG

Table 4 shows the quantitative comparative analysis of the KvasirCapsule dataset. In the Kvasir-
Capsule [31] dataset, compared with the previous state-of-the-art (SOTA) methods, our proposal
method achieves 96.402%, 93.081%, 95.771%, and 4.429% in (Dice, IoU, F1 and ASD) metrics.
Specifically, our results surpass the partial suboptimal models HiFormer, CANet, and the DCSAU-
Net by 0.030% (0.046%), 0.053% (0.078%) and 0.163% (0.254%) in Dice (IoU), respectively. Despite
the slightly lower F1 score of DCFNet compared to DCSAU-Net by 0.068%, DCFNet demonstrates
superior performance with an ASD value of 4.429%. It is worth noting that DCFNet manages to
strike a balance across all performance metrics. The numerical results indicate that DCFNet can
attain superior segmentation performance even with limited polyp datasets. As shown in Fig. 9, even
though the segmentation results of DCFNet, UCTransNet, HiFormer, and M2SNet are very similar
to ground truth, the segmentation maps generated by DCFNet demonstrates smoother edges and a
closer resemblance to the actual segmented image.

Table 4: Comparative performance analysis of DCFNet and other SOTA models on KvasirCapsule-
SEG dataset. The red bold indicates best performance, blue bold indicates suboptimal performance.
↑ represents higher scores are better, while ↓ represents lower scores are better

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
AttenUNet [19] 2018 95.665 91.750 95.122 5.057
Swin-UNet [21] 2021 95.899 92.164 95.449 4.752
TransUNet [12] 2021 95.663 91.813 95.445 5.014
MedT [22] 2021 95.505 91.456 95.100 5.129
UCTransNet [15] 2022 96.204 92.720 95.505 4.685
MT-UNet [33] 2022 95.050 90.753 94.627 5.835
DCSAU-Net [34] 2023 96.239 92.827 95.839 4.541
CANet [35] 2023 96.349 93.003 95.743 4.470

(Continued)
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Table 4 (continued)

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
H2Former [27] 2023 95.771 91.946 95.199 5.030
HiFormer [26] 2023 96.372 93.035 95.747 4.437
M2SNet [41] 2023 95.997 92.347 95.488 4.800
DCFNet – 96.402 93.081 95.771 4.429

DCFNet GTM2SNetCANetDCSAUNetUCTransNetTransUNetAttenUNetImage HiFormerH2Former

Figure 9: The qualitative comparative results on representative images of KvasirCapsule-SEG. The red
boxes or red arrow highlight regions where DCFNet performs better than the other methods

For the KvasirSessile dataset [32], the segmentation performance of the different methods
varies significantly. Table 5 shows the quantitative comparative analysis, and the proposed DCFNet
surpasses the suboptimal state-of-the-art methods M2SNet, HiFormer, and TransUNet in metrics
of Dice, IoU, and F1. Numerically, DCFNet achieves 74.024% (63.762%) on these Dice (IoU)
metrics, respectively, which are 6.654% (6.103%), 6.506% (7.143%) and 6.231% (6.864%) better
than sub-optimal M2SNet, HiFormer and TransUNet while DCFNet has demonstrated a notable
enhancement in F1 scores, with improvements ranging from 4.742% to 5.269%. Moreover, DCFNet
has achieved a commendable ASD score of 29.210%, exhibiting a noteworthy reduction of 5.242%
when compared to the sub-optimal performing model, HiFormer. In addition, in Fig. 10, we present
a visualization of the generated mask image of the partially performer superior models. Although the
KvasirSessile dataset presents a significant challenge, DCFNet achieves more precise segmentation
results by accurately isolating the position of polyps from normal regions. In summary, the qualitative
segmentation performance and numerical results show the excellent segmentation ability and the
successful architecture of DCFNet.

Table 5: Comparative performance analysis of DCFNet and other SOTA models on KvasirSessile-
SEG dataset. The red bold indicates best performance, blue bold indicates suboptimal performance.
↑ represents higher scores are better, while ↓ represents lower scores are better

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
AttenUNet [19] 2018 61.826 53.110 55.365 40.539
Swin-UNet [21] 2021 30.480 19.429 33.478 67.950
TransUNet [12] 2021 67.793 56.898 59.876 34.546
MedT [22] 2021 27.605 17.884 33.874 70.577

(Continued)
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Table 5 (continued)

Methods Year Dice (%) ↑ IoU (%) ↑ F1 (%) ↑ ASD (%) ↓
UCTransNet [15] 2022 60.041 49.060 48.092 41.743
MT-UNet [33] 2022 24.885 16.115 30.498 73.291
DCSAU-Net [34] 2023 53.878 43.124 47.907 47.045
CANet [35] 2023 61.103 50.246 52.989 41.035
H2Former [27] 2023 36.477 25.888 33.235 62.278
HiFormer [26] 2023 67.518 56.619 60.300 34.452
M2SNet [41] 2023 67.370 57.659 59.773 35.309
DCFNet – 74.024 63.762 65.042 29.210

DCFNet GTM2SNetCANetDCSAUNetUCTransNetTransUNetAttenUNetImage HiFormer

Figure 10: The qualitative comparative results on representative images of KvasirSessile-SEG. The red
boxes or red arrow highlight regions where DCFNet performs better than the other methods

5 Ablation Study
5.1 Component Ablation

To demonstrate the soundness of our DCFNet and the comprehensibility of each component,
we conducted ablation studies on BUS, GlAS, and KvasirCapsule-SEG. As KvasirSessile-SEG and
KvasirCapsule-SEG are both part of the polyp segmentation task, we opted for KvasirCapsule-
SEG. Through a comprehensive ablation study, we evaluated the effectiveness of each component in
DCFNet by removing them one by one. Within the study, “CCT” represents the Channel-wise Cross-
fusion Transformer, “FFM” denotes the designed feature fusion module, “CAB” denotes the channel
attention block between decoders, and “w/o” denotes the word “without” for simplicity. DCFNet
represents the complete framework.
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5.1.1 Effectiveness on CCT Component

To investigate the performance of the aggregated multi-scale features of the CCT module on
segmentation, we remove the CCT mechanism from the complete DCFNet. As shown in Table 6,
without the CCT component, the performance of DCFNet w/o CCT is significantly lower than
the complete DCFNet in three datasets. Specifically, without the CCT component, the performance
reduction of Dice (IoU) is 4.588% (6.862%), 0.776% (1.162%), and 0.023% (0.007%) on the BUS,
GLAS, and KvasirCapsule-SEG datasets, respectively. In the BUS and GLaS datasets, the absence
of the CCT component results in F1 (%) lags behind the full DCFNet of 2.112% and 0.789%,
and the ASD (%) performance higher than 4.301% and 0.771%, respectively. On the KvasirCapsule
dataset, lacking the CCT component, the performance metrics for F1 (ASD) despite achieving optimal
performance of 95.789(%) and 4.417(%). However, the DCFNet of incorporating CCT achieves
balance when assessing various performance metrics on the three datasets. The results presented in
this study indicate that the comprehensive DCFNet with CCT significantly improves segmentation
capabilities, thus confirming the effectiveness of CCT. Furthermore, Fig. 11 illustrates that the absence
of CCT results in incorrect predictions for the BUS and GlaS datasets. The results, both numerical and
visual, offer compelling evidence that the integration of multi-scale features through the CCT fused
encoder successfully enhances the performance of segmentation in the decoder.

Table 6: Results of the ablation studies for the different components. The red bold indicates best
performance, blue bold indicates suboptimal performance. ↑ represents higher scores are better, while
↓ represents lower scores are better

Datasets Metrics w/o CAB w/o FFM w/o CCT DCFNet

Dice (%) ↑ 71.422 76.202 74.025 78.613
IoU (%) ↑ 59.811 65.866 61.229 68.091

BUS F1 (%) ↑ 73.795 80.484 77.202 79.314
ASD (%) ↓ 31.299 26.965 28.816 24.515

Dice (%) ↑ 91.394 91.284 91.333 92.109
IoU (%) ↑ 84.809 84.870 84.818 85.980

GlaS F1 (%) ↑ 89.433 89.345 89.122 89.911
ASD (%) ↓ 11.175 11.343 11.397 10.626

Dice (%) ↑ 96.160 96.141 96.379 96.402
IoU (%) ↑ 92.654 92.671 93.074 93.081

KvasirCapsule F1 (%) ↑ 95.602 95.702 95.789 95.771
ASD (%) ↓ 4.556 4.679 4.417 4.429

5.1.2 Effectiveness on FFM Component

To assess the effectiveness of the FFM components integrated into the CNN and Swin Trans-
former branches, we eliminate the FFM mechanism in the entire DCFNet. Connecting the enhanced
features generated by the CCT component directly to the CAB component results in the model
“DCFNet w/o FFM”. The results presented in Table 6 and Fig. 11 reveal that the performance
of DCFNet is inferior in datasets when the FFM component is absent, in comparison to the
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complete DCFNet model. A decline in performance can be observed, indicated by a decrease in Dice
(IoU) scores from 78.613% (68.091%) and 92.109% (85.980%) to 76.202% (65.866%) and 91.284%
(84.870%) for BUS and GlaS, respectively. Except for the BUS dataset, the F1 metric displays inferior
performance compared to the full DCFNet on the GlaS and KvasirCapsule datasets, with values
of 89.345% and 95.702%, respectively. Moreover, the ASD metric of the complete DCFNet model
incorporating FFM exhibits lower values in comparison to the model w/o FFM across all three
datasets. The presented numerical results provide empirical support for the notion that the FFM
mechanism enhances the segmentation capability of the model by effectively integrating spatially
distinct regions with notable features.

w/o CCT w/o FFM w/o CABDCFNetGTImage

Figure 11: Segmentation results for different components applied to the BUS, GlaS, and
KvasirCapsule-SEG datasets. The red boxes or red arrow highlight regions where DCFNet performs
better than the other methods

5.1.3 Effectiveness on CAB Component

To gain a more comprehensive understanding of the detailed information about the enhanced
decoder feature of the CAB mechanism. we replaced the CAB module with the cascade block, which
led to the creation of a new model referred to as “DCFNet w/o CAB”. The results, as presented
in Table 6, demonstrate a significant decrease in the Dice (IoU) metric across three datasets when
comparing DCFNet w/o CAB to the complete DCFNet. According to the findings, the performance
of Dice, IoU and F1 score on the BUS dataset has shown a decrease of 7.191%, 8.280%, and 5.519%.
These results suggest that by incorporating the CAB component, DCFNet can potentially achieve
improved performance.

Moreover, it is evident from Fig. 11, which visualizes the absence of CAB, that there is an increase
in mispredicted normal tissue and missed tumor identification. The findings from both numerical
and visual segmentation analyses substantiate the fact that the CAB mechanism enhances the feature
channels that make significant contributions while suppressing those with low contributions. As a
result, the detailed information of the decoder feature is effectively enhanced.
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In addition, it is noteworthy that despite the absence of the CCT or FFM element, the Dice, IoU,
and F1 scores achieved by “DCFNet w/o FFM” or “DCFNet w/o CCT” surpass the majority of
segmentation models listed in Tables 2–4. This observation implies that our network demonstrates a
resilient segmentation performance, even in the absence of specific components.

5.2 Ablation Study on Dual-Branch Structure
Within this subsection, we conduct ablation experiments on the distinct contributions of both

the CNN and Swin Transformer branches to validate the overall performance resulting from their
combined efforts. We specifically refer to the single branch network of the Swin Transformer as “Model
1”. To evaluate the synergistic potential of CNN in conjunction with the Swin Transformer branch
network, we amalgamate the CNN branch and Model 1, resulting in the creation of “Model 2”.
Subsequently, we designate the collection of all the feature fusion components (CCT + FFM + CAB)
as “CFC”. Similarly, the comprehensive DCFNet is obtained by merging the CFC with Model 2.

The obtained quantitative results of ablation experiments conducted on dual-branch network
architectures are presented in Table 7. The results indicate that the performance of the Swin Trans-
former’s single branch Model 1 is inferior to both Model 2 and the complete DCFNet. Specifically,
in the BUS and GlaS datasets, Model 2 demonstrates a notable improvement of 4.4% (4.497%) and
4.446% (6.924%) in metrics of Dice (IoU) performance, in comparison to the Model 1 network.
Surprisingly, the absence of the CFC mechanism in Model 2 yields a Dice (IoU) performance that
surpasses that of the majority of models presented in Tables 2 and 3 within the BUS and GlaS datasets.
This result can be attributed to the successful synergy between the CNN and Swin Transformer
branches, underscoring the enhanced performance achieved through their combination.

Table 7: Results of ablation studies of different branch networks. The red bold indicates best
performance, blue bold indicates suboptimal performance. ↑ represents higher scores are better, while
↓ represents lower scores are better

Datasets Metrics Model 1 Model 2 DCFNet

Dice (%) ↑ 70.167 74.567 78.613
BUS IoU (%) ↑ 58.330 62.827 68.091

F1 (%) ↑ 71.597 79.845 79.314
ASD (%) ↓ 32.892 27.967 24.515

Dice (%) ↑ 87.261 91.707 92.109
GlaS IoU (%) ↑ 78.356 85.280 85.980

F1 (%) ↑ 86.363 89.542 89.911
ASD (%) ↓ 14.388 10.989 10.626

Dice (%) ↑ 95.000 95.996 96.402
KavirCapsule IoU (%) ↑ 90.618 92.355 93.081

F1 (%) ↑ 94.792 95.398 95.771
ASD (%) ↓ 5.566 4.808 4.429

Furthermore, the comprehensive DCFNet has surpassed Model 1 and Model 2 in terms of
performance. Specifically, in the BUS, GlaS, and KvasirCapsule datasets, DCFNet achieves a Dice
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(IoU) performance of 78.613% (68.091%), 92.109% (85.980%), and 96.402% (93.081%), respectively.
These results are significantly higher than those of Model 2, with improvements of 4.046% (5.264%),
0.402% (0.7%), and 0.406% (0.726%) respectively. These findings provide strong evidence for the
effectiveness of the CFC mechanism fusion dual-branch networks.

6 Discussion

Building upon the favorable outcomes presented in the aforementioned empirical findings, we
proceed to delve into the merits of our model, its inherent constraints, and the future work for its
enhancement.

6.1 Advantages of the Method
The advantages of our work are reflected in the multi-scale feature aggregation of the method

and the efficient fusion of local and global features. In the introduction of a dual-branch backbone
network, it is recommended to incorporate both local and global features. Additionally, in the encoder,
the introduction of a CCT fusion encoder can produce multi-scale features that are more conducive
to enhanced decoding features. Finally, we designed the FFM and CAB mechanisms to fully fuse
the dual-branch network and highlight significant spatial and channel features while suppressing
irrelevant features as much as possible. The experiment’s results also confirmed this point. Meanwhile,
our DCFNet model may need to be optimized and tuned appropriately for different medical image
types. To achieve the best segmentation performance. In comparison to CASFNet [14] and CTC-Net
[13] models, we have implemented the Swing Transformer due to its higher computational efficiency,
instead of the Transformer. This results in a reduction of computational burden. Furthermore,
our model can integrate the multi-scale features of the encoder, surpassing the limitation of solely
incorporating dual-scale feature fusion at the same layer. Similarly, H2Former [27] performs simple
cascading with the encoder at the same level, ignoring the importance of aggregating multi-scale,
feature-enhanced decoders.

6.2 Weakness of the Method
Against our model, our model may have the following limitations. Table 1 showcases our architec-

ture’s implementation of the Transformer in three distinct stages. These stages encompass the encoding
and decoding processes of the Swing Transformer branch, as well as the parameters associated with
the dual-branch CCT and FFM mechanisms. Notably, the CCT effectively integrates features from the
encoder pyramid, while also incorporating the fusion capabilities of the FFM. Despite its impressive
segmentation performance, it does come at the cost of sacrificing certain model parameters.

Despite the relatively competitive segmentation performance of our model, our approach con-
tinues to face difficulties when applied to ultrasonic tumor images and polyp segmentation images.
These challenges arise from the presence of low-contrast images and images with complex structures
and similar textures. A clear illustration of this can be observed in Figs. 7 and 10, where although our
method demonstrates highly similar segmentation results, there remains a notable discrepancy between
the region boundary and the actual label.

6.3 Future Work
After analyzing the limitations of the previous work, we have identified several areas where our

model can be further improved. These areas of improvement can be summarized as follows: Firstly, our
future work will focus on enhancing the balance between model inference efficiency and achieving a
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high-performance segmentation effect. Secondly, if a lightweight model is obtained through model
compression, based on Swing Transformer and CNN, while ensuring the performance of model
segmentation, it has the potential to achieve clinical real-time segmentation in the future by striking
a balance between computational efficiency and performance. Finally, our model has only been
validated on 2D images, lacking validation in the segmentation of 3D medical images. This represents
a direction that necessitates further exploration in our future endeavors.

7 Conclusions

This article presents an innovative approach called the Dual-Branch Feature Cross-Fusion
Network (DCFNet) for medical image segmentation. DCFNet effectively combines the strengths
of Convolutional Neural Network (CNN) and Swin Transformer dual-branch network features. To
integrate the complementary global and local features, we propose the Feature Cross-Fusion (FCF)
module at the dual-branch encoder stage and the Channel Attention Block (CAB) at the dual-branch
decoder stage. Specifically, we utilize the Channel-wise Cross-fusion Transformer (CCT) module in
the FCF to aggregate multi-scale encoder features. Additionally, we introduce the Feature Fusion
Module (FFM) sub-mechanism to merge the dual-encoder features and generate complementary
features that enhance the dual-branch decoder’s capabilities. During the decoder stage, we employ
CAB to capture channel features that significantly contribute to improving feature details. Through
experiments conducted on four publicly available medical image datasets, we provide compelling
evidence that our proposed DCFNet outperforms several state-of-the-art networks in medical image
segmentation. Furthermore, we demonstrate the effectiveness of our network through ablation exper-
iments conducted separately for each component and network structure. Our study establishes that
the proposed DCFNet is a promising method for automatically segmenting medical imaging lesions.
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