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ABSTRACT

Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of
reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional
direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this
case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a
random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by
embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based
design optimization framework is developed. Regarding the low-cycle fatigue reliability-based design optimization
of aeroengine turbine disc as a case, the effectiveness of the presented framework is validated. The reliability-
based design optimization results exhibit that the proposed framework holds high computing accuracy and
computing efficiency. The current efforts shed a light on the theory/method development of reliability-based design
optimization of complex engineering structures.
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Nomenclature

MCS Monte Carlo simulation
RF Random forest
RF-I RF with random subspace strategy
RF-II RF with random subspace strategy and weight allocation technology
QP Quadratic polynomial
SVR Support vector regression
ANN Artificial neural network
ω rotational speed
T temperature
E elastic modulus
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ρ material density
λ thermal conductivity coefficient
α coefficient of thermal expansion
b fatigue strength index
c fatigue ductility index
σ f

′ fatigue strength coefficient
εf

′ fatigue ductility coefficient
σ max maximum stress
�εt strain range
σ m mean stress

1 Introduction

Aeroengine structures like turbine discs usually operate in harsh multi-physics environments for
long amounts of time and must fulfill a number of strict requirements like long service life and high
fatigue reliability [1–3]. At present, the anti-fatigue design of modern high-reliability structures has
become a barrier in the aeroengine industry that needs to be addressed. For instance, under the
ground-air-ground operating cycles, the turbine disc is prone to incur low-cycle fatigue damage in the
complex thermal-structure coupling environment, which seriously affects the service life and structural
reliability of aeroengine turbine [4–6].

Currently, extensive efforts have been carried out to boost the resist fatigue performance of
aeroengine structures [7–10], including fatigue reliability modeling under random loads [11–15],
probabilistic fatigue life evaluation considering material variability [16–19], constitutive response-
based fatigue failure accounting for model uncertainties [20–24], stochastic randomness-based fatigue
failure evaluation [25–27], and so forth. During the above investigations, the disperse characteristics of
fatigue life were sufficiently studied, laying the groundwork for fatigue reliability degree assessment.
However, few works simultaneously consider the multiple uncertainties like load fluctuations [28–31],
material variabilities [32–35] and model uncertainties [36–39], which disrupts the correlations between
multisource uncertainties and therefore causes significant computational discrepancies in fatigue
reliability assessment [40–42]. To consider multisource uncertainties in anti-fatigue design, various
probabilistic analysis techniques are widely applied. For instance, Nguyen et al. [43] determined
the Monte Carlo based-failure probability of planar steel frames considering the uncertainties of
materials and cross-section parameters. Zhu et al. [44] proposed a first order reliability method-based
hybrid intelligent approach to solving high-dimensional engineering problems. Bouledroua et al. [45]
employed the second-order reliability method to assess the reliability degree of corroded pipelines.

Apart from the consideration of multiple uncertain factors, the modeling methods and/or solving
algorithms are other key problems for performing reliability-based design optimization. Up to now,
plenty of progress in this field has been succeed [46–49]. For example, Karar et al. [50] presented
a sensitivity/elasticity factor-driven reliability modeling technique for robust design optimization.
Hao et al. [51] proposed a sequential single-loop optimization and confidence analysis method for
reliability-based design optimization, and its computing efficiency and accuracy were validated to
be improved significantly. To simultaneously deal with the probabilistic, uncertain-but-bounded, and
fuzzy parameters, Meng et al. [52] proposed a unified high-performance computation method for
the reliable optimization of complicated structures. Meng et al. [53] developed a decoupling-assisted
evolutionary/metaheuristic algorithm for expensive optimal problems, and its superior performance
was demonstrated over other comparative algorithms. In these researches, the reliability-based design
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optimization problems of general engineering structures were adequately studied, and correspondingly
established a solid foundation for more complex engineering structures like aeroengine structures.

For the reliability-based design optimization of aerospace structures, the mapping relationships
between structural responses and random variables always show complex high-nonlinearity traits,
leading to the traditional Monte Carlo methods or moment-based methods incur the issues of insuf-
ficient computing efficiency or computing accuracy. As one valuable computing method, surrogate
modeling methods have emerged and attracted much attention in reliability design fields [54–57]. In
the surrogate modeling method, the tremendous computing tasks of real limit state functions can
be avoided by establishing a surrogate mathematical model, which is conducive to alleviating the
computing burdens and improving the computing efficiency [58–60]. For instance, Meng et al. [61]
proposed an enhanced collaborative optimization method based on the adaptive surrogate model
for the design of high-dimensional nonlinearity systems. Wang et al. [62] built an extremum Kriging
surrogate for dynamic probabilistic analysis of complex structures. Nannapaneni et al. [63] presented
a probability-space surrogate for uncertain multidisciplinary design optimization. Gu et al. [64]
embedded the random forest models into the framework of the evolutionary algorithm as surrogates
to improve the approximation accuracy of discrete optimization problems. Unfortunately, although
conventional surrogate models like response surface models and Kriging models have proven their
accuracy and efficiency in general engineering optimization problems, for the fatigue reliability-based
design optimization of aeroengine structures, multiple repeated calculations of reliability degree are
always involved in each optimization cycle, and the large-scale calls of implicit limit state function are
further nested in each calculation of reliability degree, these traditional surrogate modeling method
still faces with insufficient generalization performance issues when evaluating the reliability degree in
optimization cycles. By constructing multiple base decision trees as one random forest regressor, the
random forest ensemble models are developed to perform the regression and classification problems
efficiently. Given the benefits of assembling multiple models in terms of computing accuracy and
efficiency, the random forest is chosen to analyze the fatigue reliability degree during the design
optimization of aeroengine structures in this study.

In this paper, to perform high-accuracy and high-efficiency fatigue reliability-based design
optimization of aeroengine structures, by fusing the random subspace strategy and weight allocation
technology into bagging ensemble theory [65,66], an assigning weight technique-based random
forest (RF) surrogate model is first presented, and the RF-assisted fatigue reliability-based design
optimization framework is further developed by embedding the RF model into the multilevel opti-
mization model [67,68]. The presented framework is verified by the low-cycle fatigue reliability-based
design optimization of aeroengine turbine disc considering the multisource uncertainties. In what
follows, Section 2 investigates random forest modeling with basic thought and mathematical mod-
eling. Section 3 establishes the RF-based framework for fatigue reliability-based design optimization.
Section 4 validates the effectiveness of the presented framework by considering aeroengine turbine disc
as a case. Section 5 summarizes some conclusions.

2 The Proposed RF Method
2.1 Random Forest Modeling

Due to the reliability degree, regression always involves the complex computations of high-
nonlinearity and high-complexity, and establishing one individual model is frequently insufficient
to achieve satisfactory regression accuracy in the fatigue reliability-based design optimization of
aeroengine structures. In this case, by integrating several individual basis models into the integrated
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framework, ensemble models like random forests have emerged and are widely applied in probabilistic
analysis [69], classification [70] and regression [71], etc. However, because only the mean values of each
individual decision tree are examined, generalization accuracy issues concerns may arise when utilizing
typical random forests in complex regression tasks.

In this case, by merging random subspace strategy and weight allocation technology, an assigning
weight technique-based RF approach is presented to map the input variables to output response
accurately. The basic thought of the presented method is: firstly, multiple sets (D1, D2, . . . , DM) of
independent sample subsets are established using bootstrap sampling techniques; then, regarding the
random subspace strategy-based parallel bagging framework, the basic architecture of RF is estab-
lished; moreover, instead of simply averaging of all decision trees, the weight allocation technology is
employed to assign different weights for each decision tree, the RF model is accurately mathematical
modeled, to enhance the generalization accuracy and regression performance. The schematic diagram
of the presented assigning weight technique-based RF model is illustrated in Fig. 1.
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Figure 1: Basic thought of the proposed RF model

2.2 Mathematical Modeling
Considering the extracted sample D = {xij, yij( xij)}, the sample space R is decomposed to M sub

sample spaces R1, R2, . . . , RM by random subspace strategy, the basis decision tree f (x) is termed as

f (x) =
M∑

m=1

cmI (x ∈ Rm) (1)
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During the training process of the above decision trees, it is necessary to consider how to select
and measure segmentation features and points. To find the best segmentation variables and points,
the quality of segmentation features and points are measured by the weighted sum of impure degrees
G (xi, vij) of each sub node, i.e.,

G
(
xi, vij

) = nleft

Ns

H
(
Xleft

) + nright

Ns

H
(
Xright

)
(2)

where xi indicates the segmentation feature of a node; vij the segmentation value for segmentation
features; nleft, nright the sample number in the left sub node, and the right sub node, respectively; Ns and
the current node; X left, X right the training samples in the left, right sub node, respectively; H(X ) the
node impure function, which is calculated by the Mean Square Error (MSE), i.e.,

H (Xs) = 1
Ns

Ns∑
i=1

(
yi − ys

)2
(3)

where X s represents the samples in the current node; ys the feature mean value in the current node.

By substituting the Eq. (3) into the Eq. (2), the weighted sum of impure degrees G for any
segmentation point can be rewritten as

G (x, v) = 1
Ns

⎛
⎝( nleft∑

i=1

(
yi − yleft

))2

+
(nrighe∑

i=1

(
yi − yright

))2
⎞
⎠ (4)

Regarding the dividing method, assuming the nl example (xi, yi) falls into the l-th leaf node (with
indices from a set Dl, i.e., i ∈ Dl), the corresponding output z is acquired as

z = f (x) = 1
nl

∑
i∈Dl

yi (5)

Furthermore, assuming the RF consists of T trained trees, by averaging the predicted values zt

across all of the decision trees, the output zRF is acquired as

zRF = 1
T

T∑
t=1

zt (6)

By assigning the weight wt to the t-th decision trees with the weight allocation technology, the
weighted average of the tree results is gained as

z′
RF =

T∑
t=1

ztwt = wz (7)

where w = (w1, . . . , wT) indicates the weight vector, z = (z1, . . . , zT)T the output vector corresponding
to example x. The node impure function H(Xs) is rewritten as

H (Xs) = 1
ns

ns∑
i=1

(yi − wzi)
2 (8)

By calculating the mean values of the output results in each decision tree, the distributed output
response of the j-th stage i-th level sub-model is acquired and the nonlinear mapping between the
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random input variables and the j-th stage i-th level response can be realized as

ŷij =
Ti∑

t=1

w {y (xi, θ t)} (9)

where θ t indicates the independent random variables; y(xij, θ t) is the output response of the decision
tree based on xij and θ t.

3 RF-Assisted Fatigue Reliability-Based Design Optimization Theory

For fatigue reliability-based design optimization problems of aeroengine structures, each opti-
mization cycle involves multiple repeated calculations of reliability degree, and each calculation of
reliability degree also contains large-scale calls of implicit high-nonlinearity limit state function,
resulting in expensive computing cost and unsatisfactory optimization accuracy when using the direct
Monte Claro Simulation and traditional surrogate methods [72]. In this study, by introducing the
proposed RF model into the design optimization theory, an efficient RF-assisted fatigue reliability-
based design optimization framework for aeroengine structures is established, i.e., (1) by imposing the
boundary conditions into finite element simulation, the deterministic fatigue evaluation of aeroengine
structure is performed; (2) a small batch of input samples are extracted, and be imposed into the
deterministic simulation to generate the training samples; (3) by applying the developed bagging
architecture and training algorithm, the RF models are established for replacing the complex reliability
calculations; (4) by regarding the high-sensitivity parameters as the design variables, the RF-surrogate
reliability degree as constraint, fatigue life as optimal objective, the fatigue reliability optimization
model is established; (5) after several repeated optimization cycles in solving the fatigue reliability-
based design optimization model, the best design variables for aeroengine structures are obtained.
The basic modeling process is summarized as follows.

By employing the presented random forest modeling method, the constitutive responses like mean
stress and strain range of aeroengine structures can be mapped by⎧⎪⎪⎨
⎪⎪⎩

σ RF
m =

Ti∑
t=1

w {y (xi, θ t)}

�εRF
t =

Ti∑
t=1

w {y (xi, θ t)}
(10)

where σ RF
m , �εRF

t indicate the estimated mean stress and estimated strain range obtained by random
forest model, respectively.

For the widespread low-cycle fatigue problems in aeroengine structures, fatigue life is usually
evaluated using the improved Manson-Coffin model [54], i.e.,

�εt

2
= σ ′

f − σm

E

(
2NL

)b + ε′
f

(
2NL

)c
(11)

where σ m indicates the mean stress; NL the low-cycle fatigue life; E indicates Young’s modulus; σ ′
f

the fatigue strength coefficient; ε′
f the fatigue ductility coefficient; b the fatigue strength index; c the

fatigue ductility index. Regarding n0 as the actual number of operating cycles, the fatigue damage D is
termed as

D = n0

NL
(12)
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By regarding the a as the damage strength coefficient (usually set as 1 in aeroengine engineering)
[72], the limit state function Z of the aeroengine structure can be termed as

Z = a − n0

NL
(13)

According to the Monte Carlo simulation thought [73], the fatigue reliability degree is

R̂S = 1
M

M∑
j=1

IS

(
Z j

) = MS

M

IS

(
Z j

) =
{

1, Z j ∈ S

0, Z j /∈ S

(14)

By setting the high-sensitivity variables including operating loads xL, material parameters xM and
life model parameters xP as the design variables, fatigue life N f as optimization objective, reliability
degree R and other boundaries as constraints, the reliability optimization model is established by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find x = (xL, xM, xP)

max Nf = Nf (σm, �εt, xP)

s.t.
1
N

∑N

l=1 Ir

[
G

(
x′′

l (t)
)] ≥ [R0]

x′′ = (σm, �εt, xP)

x′′
a ≤ x′′ ≤ x′′

b⎧⎪⎪⎨
⎪⎪⎩

min σm (xL, xM)

min �εt (xL, xM)

s.t.
x′ = (xL, xM)

x′
c ≤ x′ ≤ x′

d

(15)

Therefore, by fusing the presented random forest model into the reliability optimization model,
the large-scale of the real high-nonlinearity reliability degree calculations can be avoided effectively,
which is conducive to reducing huge computational tasks and enhancing the optimal accuracy for the
fatigue reliability-based design optimization of aeroengine structures. The RF-based fatigue reliability
optimization workflow is constructed in Fig. 2.

Random variables Deterministic analysis Small-scale sampling

Reliability analysisReliability optimization

RF modeling

Fatigue reliability optimization for aeroengine structures

Response simulationReliability simulation

Figure 2: Workflow of RF-assisted fatigue reliability-based design optimization
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4 Fatigue Reliability-Based Design Optimization for Aeroengine Turbine Disc

During the operation of aircraft engines, the high-pressure turbine disc is subjected to complex
environmental loads such as high-temperature, high-pressure and high-speed, resulting in uneven
temperature gradients, large stress loads, and low cycle fatigue damage. To achieve the fatigue
reliability-based design optimization and improve the fatigue reliability performance of aeroengine
turbine disc, the presented RF method is employed, where the RF-I represents the RF method with
random subspace strategy, and RF-II presents the RF method with random subspace strategy and
weight allocation technology. The sketch of aeroengine turbine disc is shown in Fig. 3.

Finite element model1/52 modelGeometric model

Figure 3: Schematic diagram of an aeroengine turbine disc

4.1 Material Preparations
In view of the multisource uncertain factors co-determine the fatigue life of the turbine disc,

we select the physical uncertain parameters as random variables [72–74], whose distribution traits
are shown in Table 1. The dependency between elastic modulus E, thermal conductivity λ, thermal
expansion α and temperature are described in Table 2. Moreover, the model uncertain parameters are
also chosen as random variables, its distribution traits are shown in Table 3. Based on the radial loading
criterion and temperature continuity distribution law, the steady-state thermal analysis is performed
and the temperature distribution is obtained, as shown in Fig. 4a [75,76]. Moreover, by transmitting
the obtained temperature loads to the structural field, the deterministic thermal-structure coupling
analysis is accomplished, and the equivalent stress & strain distributions are derived in Figs. 4b and
4c. As shown in Figs. 4b and 4c [75,76], the maximum stress σ max and strain range �εt appear at the
center of the disc. In this study, the mean stress σ m = (σ max + σ min)/2 and the strain range �εt = εmax

− εmin at the risk section of the turbine disc are considered as the first layer output responses [75]. It
should be highlighted that it takes 23.71 s to carry out one-time thermal-structural analysis, which also
shows that the large-scale finite element simulations for reliability degree calculations are unbearable
in engineering. Based on the constitutive responses at dangerous sites and the model parameters in
Table 3, the low-cycle fatigue life of the turbine disc is acquired as 11592 cycles.
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Table 1: Distribution characteristics of physical random variables

Variables Rotating
speed

Temperature Elastic
modulus

Material
density

Thermal
conductivity

Thermal
expansion

ω/(rad/s) T /oC E/GPa ρ/10−9 (t/mm3) λ/(W/(moC)) α/10−6 (oC)

Mean 1198 650 182 8.21 18.3 13.9
Standard 23.96 13 3.64 0.164 0.366 0.278
Distribution Normal Normal Normal Normal Normal Normal

Table 2: Distribution characteristics of nonlinear parameters

Temperature T /oC 100 200 300 400 500 600 700 800 900

E/GPa 204 193 182 173 163 163 159 141 132
λ/(W/(moC)) 12.1 14.2 16.7 18.8 21.4 23.7 26.2 27.1 28.5
α/10−6 oC 11.6 12.3 12.4 13.3 13.8 14.4 15.1 15.7 16.5

Table 3: Distribution characteristics of input variables such as fatigue model parameters

Variables Fatigue strength
index

Fatigue ductility
index

Fatigue strength
coefficient

Fatigue ductility
coefficient

b c σ f
′/MPa εf

′

Mean −0.08 −0.94 1318 0.976
Standard 0.0016 0.0188 26.36 0.01952
Distribution Normal Normal Normal Lognormal
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Figure 4: Response distributions after thermal-structural coupling
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4.2 Reliability Optimization Modeling
To reduce the dimensionality of design variables and downsize the computing scale of fatigue

reliability-based design optimization, high sensitivity parameters (ω, T , E, ρ, σ f
′, b) [34] are chosen

as the design variables x, their range of variations are shown in Table 4. Based on the proposed
RF-assisted fatigue reliability-based design optimization theory, a multilevel optimization model is
established, i.e., by considering high sensitivity parameters x′ = (ω, T , E, ρ) as design variables, the
constitutive responses (i.e., σ m and �εt) as objectives, and the value span of x′ as constrain conditions,
the first layer optimization model is established; moreover, by regarding the high sensitivity parameter
x′′ = (σ m, �εt, σ f

′, b) as design variable, the fatigue life N f as objective, and the fatigue reliability and
value span as the constrained conditions, the second layer reliability optimization model is established.
The built optimal model is shown in Eq. (16).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find x = (
ω, T , E, ρ, σ ′

f , b
)

max Nf = Nf

(
σm, �εt, σ ′

f , b
)

s.t.
1
N

∑N

l=1 Ir

[
G

(
x′′

l (t)
)] ≥ 0.9987

x′′ = (
σm, �εt, σ ′

f , b
)

x′′
a ≤ x′′ ≤ x′′

b⎧⎪⎪⎨
⎪⎪⎩

min σm (ω, T , E, ρ)

min �εt (ω, T , E, ρ)

s.t.
x′ = (ω, T , E, ρ)

x′
a ≤ x′ ≤ x′

b

(16)

Table 4: Design variables for fatigue reliability-based design optimization

Variables ω/(rad/s) T /°C E/GPa ρ/10−9

(t/mm3)
σ f

′/MPa b

Upper limit 1186.02 643.5 180.18 8.128 1304.82 −0.0792
Lower limit 1209.98 656.5 183.82 8.374 1331.18 −0.0808
Mean 1198 650 182 8.21 1318 −0.08
Standard 23.96 13 3.64 0.164 26.36 0.0016
Distribution Normal Normal Normal Normal Normal Normal

4.3 Distributed Response Simulation
Based on the linkage sampling technique [37] and the probability distribution in Tables 1 and

2, 100 sets of input variables and stress/strain outputs are obtained. Herein, by taking 75% of 100
sets of data as training data and the remaining as testing data, the RF model is established, its
nonlinear response surfaces are drawn. From the Figs. 5 and 6, even for the mapping of the constitutive
responses, the response surfaces also show a highly nonlinear degree. By extracting 10 000 groups of
input variables, the corresponding stress/strain constitutive responses are obtained by running the
built RF model 10 000 times. As shown in Figs. 7 and 8, the mean stress & strain range both roughly
follow normal distributions of mean values (389.93 MPa, 4.406 × 10−3 m/m) and standard deviations
(7.7 MPa, 1.103 × 10−4 m/m), respectively.
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Figure 5: Stress response surface

Figure 6: Strain response surface

Figure 7: Probabilistic distribution of mean stress

Figure 8: Probabilistic distribution of strain range
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4.4 Fatigue Reliability Simulation
According to the stress/strain responses obtained in Section 4.3 and the fatigue model variables

shown in Table 3, 100 sets of input variables and fatigue lives are obtained to build the RF-II model,
their nonlinear mapping surface between high sensitivity input variables and fatigue life is drawn.
From the Fig. 9, it can be observed that the fatigue lives exhibit a high degree of nonlinearity. Based
on the built RF model, the probabilistic distribution characteristics of fatigue life at the dangerous
site of the turbine disc are obtained. It can be found in Fig. 10 that the fatigue life roughly follows
the lognormal distribution. Moreover, the correlation relationships between high-sensitivity variables
(i.e., rotor speed, gas temperature, elastic modulus) and fatigue life are depicted in Fig. 11. To explore
the effect of different application cycles n on fatigue damage, the fatigue damages under different
application cycles n are analyzed, its distribution traits under various application cycles n are acquired.
As shown in Figs. 12a and 12b, we find that the larger the number of application cycles n, the greater
the cumulative damage of the turbine disc. Based on the built RF and reliability degree model, the
fatigue reliability degree is acquired, as shown in Fig. 12c.

Figure 9: Fatigue life response surface

Figure 10: Probabilistic distribution of fatigue life

4.5 Fatigue Reliability-Based Design Optimization
Based on the built reliability-based design optimization model, the fatigue reliability-based design

optimization of the turbine disc is completed by using the presented RF methods (i.e., RF-I, RF-
II). The probabilistic distributions of maximum stress, strain range and fatigue life before and
after optimized by RF-I, RF-II are revealed. In Figs. 13–15, the green curve represents the fitted
probabilistic density curves and cumulative distribution curves of responses before optimization,
whereas the red curve and blue curve reflect the fitted probabilistic density curves and cumulative
distribution curves of responses after optimization. To validate the computing ability of the proposed
method, its optimization results are compared with four state-of-the-art methods, as illustrated in
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Table 5. It should be noted that 10 000 simulations of surrogate models were conducted to calculate
the reliability degree in the optimization cycle.

Figure 11: Scatter diagram between input variables and output response

Figure 12: Cumulative damage and reliability degree of turbine disc

Figure 13: Probabilistic distribution of fatigue life after optimization
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Figure 14: Probabilistic histogram of output responses

Figure 15: Comparison of cumulative distribution optimized by different models

Table 5: Optimization results based on different optimization methods

Methods LCF life/cycle Modeling
time/s

Iterations Optimization
time/s

Before
optimization

After
optimization

Increase

QP 6304 6803 499 35880 156 1.11 × 107

SVR 6304 7067 763 12920 76 4.02 × 105

ANN 6304 7526 1222 8450 56 2.62 × 105

RF-I 6304 8069 1765 2990 25 8.67 × 104

RF-II 6304 9258 2954 2530 23 7.59 × 104

4.6 Discussions
From Figs. 14 and 15, we find that regardless of before and after optimization, the stress and strain

roughly obey the normal distribution and the fatigue lives roughly obey the lognormal distribution; the
stress and strain optimized by RF-II are smaller than that of RF-I, while the life response optimized by
RF-II is greater than that of RF-I. From Table 5, the RF-I method can prolong the fatigue life, which
reaches 1765 cycles, and the RF-I method prolongs the fatigue life by 2954 cycles. Therefore, RF-
II holds better optimization effects than RF-I. The main factors are (i) instead of merely averaging
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all decision trees, the weight allocation technology is employed to assign different weights for each
decision tree, which contributes to enhancing the model regressing ability; (ii) the random subspace
strategy in RF model increases the diversity and difference of decision trees, which can elevate the
generalization ability of the surrogate model.

As shown in the iteration times and optimization time in Table 5, the modeling time of the RF
method is shorter than that of the QP, SVR and ANN methods, and the RF-II method requires the
least number of iterations and optimization time, followed by the RF-I method. The main reasons
are (i) the RF method and parallel processing technique enable the model regression calculations to
be simultaneously carried out, largely elevating the optimizing speed; (ii) embedding the RF model
into a multilevel optimization model realizes the distributed parallel computing, which is conducive
to simplifying the computing tasks and improving computing efficiency.

Therefore, the presented RF-II method can greatly reduce optimal iterations and save computa-
tional time while keeping the solving accuracy in fatigue reliability-based design optimization problems
for aeroengine structures.

5 Conclusions

To perform high-efficiency and high-accuracy fatigue reliability-based design optimization for
aeroengine structures, a random forest (RF) surrogate model is first presented by fusing the random
subspace strategy and weight allocation technology into bagging ensemble theory; by embedding the
RF surrogate into the multilevel optimal model, the RF-based fatigue reliability optimization frame-
work is further developed. The presented framework is verified by the low-cycle fatigue reliability-
based design optimization of aeroengine turbine disc considering the multisource uncertainties. Some
conclusions are summarized as follows:

(1) From the fatigue reliability-based design optimization of turbine disc, the presented RF model
is validated to be efficiently converged to the accurate reliability results, which can greatly accelerate
the solving process in optimal models.

(2) Through the method comparisons, it has been confirmed that the RF-based reliability
optimization framework that has been created has the computational benefits of high accuracy and
high efficiency when it comes to designing aeroengine structures.

(3) The current work offers a brand-new RF-assisted fatigue reliability-based design optimization
framework for aeroengine structures and thereby promoting the development of modeling and
methodology for fatigue optimization design of aeroengine structures.

The work in this study proposed a feasible and effective method for fatigue reliability-based design
optimization of aeroengine structures (i.e., Random Forest (RF) method). However, this method
still has limitations regarding accuracy deviating from actual engineering. This deviation is mainly
attributed to the incomplete factors considered in this study. According to current research, to further
apply the proposed method framework in the future, the following issues need to be addressed:

(1) In the current reliability design of aeroengine structures, further improvement is needed to
determine the random variable coefficients of model uncertainty and material randomness parameters.

(2) More sensitivity parameters that have a significant impact on the fatigue life should be further
considered, the more accurate fatigue reliability optimization design should be performed.

(3) More accurate fatigue mechanics, such as creep-fatigue, and high-low cycle composite fatigue,
etc., should be considered to improve the engineering application value of aerospace structures.
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