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ABSTRACT

This paper focuses on the effective utilization of data augmentation techniques for 3D lidar point clouds to enhance
the performance of neural network models. These point clouds, which represent spatial information through a
collection of 3D coordinates, have found wide-ranging applications. Data augmentation has emerged as a potent
solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities.
Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar
point clouds. However, there has been a lack of focus on making the most of the numerous existing augmentation
techniques. Addressing this deficiency, this research investigates the possibility of combining two fundamental
data augmentation strategies. The paper introduces PolarMix and Mix3D, two commonly employed augmentation
techniques, and presents a new approach, named RandomFusion. Instead of using a fixed or predetermined
combination of augmentation methods, RandomFusion randomly chooses one method from a pool of options
for each instance or sample. This innovative data augmentation technique randomly augments each point in the
point cloud with either PolarMix or Mix3D. The crux of this strategy is the random choice between PolarMix and
Mix3D for the augmentation of each point within the point cloud data set. The results of the experiments conducted
validate the efficacy of the RandomFusion strategy in enhancing the performance of neural network models for 3D
lidar point cloud semantic segmentation tasks. This is achieved without compromising computational efficiency.
By examining the potential of merging different augmentation techniques, the research contributes significantly
to a more comprehensive understanding of how to utilize existing augmentation methods for 3D lidar point
clouds. RandomFusion data augmentation technique offers a simple yet effective method to leverage the diversity
of augmentation techniques and boost the robustness of models. The insights gained from this research can pave
the way for future work aimed at developing more advanced and efficient data augmentation strategies for 3D lidar
point cloud analysis.
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1 Introduction

The rapid developments in the field of autonomous driving [1] and 3D detection [2] have fueled
the rapid progression of a series of related technologies. These include 3D lidar point cloud technology
[3,4], 3D object detection technology for autonomous vehicles [5], object detection and activity
recognition in video surveillance [6,7], and offloading technology for mobile edge computing (MEC)
based on the Internet of Vehicles (IoV) [8]. A 3D lidar point cloud is a data structure used to represent
discrete points in three-dimensional space. It consists of a collection of points, each containing its
coordinates in the 3D space. These points can be obtained through techniques such as laser scanning,
cameras, or other sensors. Each point in the point cloud has its attributes, commonly including color,
intensity, normals, and more. These attributes provide additional information about the objects in
the point cloud, such as surface shape, texture, or reflectance properties. 3D lidar point clouds have
extensive applications in various fields, particularly in computer vision, robotics, and autonomous
driving. They can be used for tasks such as object detection and recognition, semantic segmentation,
and so on [3,4]. To process and analyze 3D lidar point cloud data, several preprocessing and
feature extraction techniques are typically employed. These may involve operations such as filtering,
sampling, or voxelization to reduce noise, decrease data volume, or obtain a regularized representation.
Additionally, local features, global features, or descriptors can be computed on the point cloud to
facilitate subsequent tasks and algorithms [9,10]. Fig. 1 displays a visualization of a point cloud,
which is derived from the 000001 scan of the 03 sequence in the SemanticPOSS dataset [11]. From
this perspective, we can observe a traffic road scene where pedestrians are present. Additionally, there
are green vegetation and trees on both sides of the road. We can also see parked cars along the roadside
and the outlines of buildings.

Figure 1: The visualization of a 3D lidar point cloud

Since data collection and labeling is a time and labor-intensive task, it poses a significant challenge
for neural networks that require ample training samples, especially in fields where the applications of
AI for abnormal detection are class-imbalance, insufficiently labeled fault samples, etc. Therefore, data
augmentation plays a crucial role in training deep learning models. It involves generating synthetic
variations of the original data by applying geometric transformations, noise injection, or other
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operations. These augmented samples introduce additional diversity, which helps the model generalize
better and improves its robustness to different real-world scenarios [9,10,12].

There is a wide range of data augmentation methods available for 3D lidar point cloud data.
Given the effectiveness of data augmentation for improving neural network models, we conducted an
extensive investigation into data augmentation strategies specifically tailored for 3D lidar point clouds.
The choice and combination of specific augmentation techniques depend on the characteristics of the
dataset and the target task. It is important to strike a balance between introducing sufficient diversity
to improve generalization and avoiding excessive distortions that might hinder the model’s learning
process.

By conducting a comprehensive study on data augmentation strategies for 3D lidar point cloud
data, we aim to provide insights into effective techniques that can enhance the performance of neural
network models on various tasks involving 3D lidar point clouds. These strategies can contribute to
improving the robustness, accuracy, and generalization capabilities of 3D lidar point cloud models in
real-world applications. Fig. 2 demonstrates the foundational idea of this research study. The objective
is to devise a potent algorithm that can selectively choose one out of N available data augmentation
techniques to enhance any given point in a 3D lidar point cloud. In simpler terms, every point in this
3D cloud is augmented using one of these N methods. To break it down further, the far-left box in
Fig. 2 symbolizes the diverse data augmentation techniques available for 3D lidar point clouds. The
central box signifies the strategic selection of one among these methods. Finally, this chosen method
is applied to augment the data point in question.

Figure 2: Schematic diagram of RandomFusion data augmentation technique. A, B,..., N represent
various data augmentation techniques for the current 3D lidar point cloud. For any point in the point
cloud, a selection algorithm is used to choose one of A, B, ..., N for data augmentation

The main contributions of this research are three-fold, with a particular emphasis on the random
selection process of data augmentation methods:

• RandomFusion Method: We propose a novel strategy called RandomFusion, which involves
the random selection of either PolarMix [9] or Mix3D [10] for augmenting each point within the
point cloud data. This approach introduces a flexible and diverse augmentation scheme, allowing
for the effective utilization of multiple existing augmentation techniques. This innovative strategy
addresses the lack of effective utilization of various augmentation methods in existing research,
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opening up possibilities for further exploration and optimization in the field of 3D lidar point cloud
data augmentation.

• Performance Improvement: We performed experiments on both the SemanticKitti [12] and
SemanticPOSS datasets, the experimental results demonstrate that the RandomFusion method has
achieved state-of-the-art performance. Additionally, our strategy did not introduce a noticeable
increase in computational complexity.

• Potential for Further Exploration: The random nature of RandomFusion’s selection process
allows for the integration of other data augmentation methods beyond Mix3D and PolarMix. The
approach of randomly selecting one augmentation method from a pool of options provides versatility
and potential for researchers to explore and optimize data augmentation strategies for improved
performance and adaptability. This flexibility opens up opportunities for researchers to explore hybrid
augmentation strategies.

The rest of this paper is organized as follows. In Section 1, we provide an introduction to our
research, including a -comprehensive description of our study object–the 3D lidar point clouds, and
a detailed overview of our research topic. In Section 2, we delve into the related work and provide a
detailed review of prevalent techniques for data augmentation in the context of 3D lidar point clouds.
Section 3 is dedicated to a thorough discussion of the proposed random fusion method. We elucidate
its principles and provide an in-depth look at its implementation details. In Section 4, we articulate the
design and execution of our experimental approach, giving a clear understanding of our methodology.
Section 5 presents an extensive analysis and discussion of the results obtained from our experiments,
providing valuable insights and observations. Finally, Section 6 concludes this paper.

2 Related Work

Data augmentation techniques have proven to be effective in enhancing the performance and
generalization of models in the fields of semantic segmentation and object detection. Within this
section, we present a comprehensive survey of data augmentation techniques employed in these tasks,
emphasizing notable methodologies and their respective impacts. By drawing inspiration from these
methodologies, we aim to propose innovative ideas within the domain of data augmentation.

Traditional data augmentation techniques serve as the foundation for augmenting training data
in semantic segmentation and object detection. These techniques typically involve applying random
transformations to input data to increase its diversity. Commonly used transformations include
random scaling, rotation, translation, flipping, and cropping [13–16]. Spatial transformations are
another effective data augmentation technique that applies geometric transformations to images or
regions of interest to simulate various viewing angles and perspectives. These transformations help
models learn invariant features and enhance their robustness to spatial variations [17].

Generative Adversarial Networks (GANs) have shown promise in generating realistic images
and have been leveraged for data augmentation in semantic segmentation and object detection tasks.
GAN-based data augmentation methods aim to generate additional training samples by transforming
existing images into different styles, viewpoints, or domains. Luc et al. proposed Adversarial Data
Augmentation (ADA) for semantic segmentation. ADA employs GANs to generate augmented
training samples by learning the data distribution and generating new samples accordingly. The
generated samples introduce additional variations and help the model generalize better to unseen data
[18]. Gao et al. proposed a new method using numerical simulation and a GAN, the method achieved
better performance on detecting gear faults [19]. Lou et al. proposed a fault diagnosis method using
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domain adaptation to bridge the gap between simulation signals and measured signals, in which the
original simulation fault samples are adjusted using a GAN-based DA network to make them similar
to the measured samples through the adversarial training of the refiner and domain discriminator
[20]. Isola et al. introduced Pix2Pix, a conditional GAN that learns a mapping from input images
to output segmentation masks. Pix2Pix enables the generation of augmented data for semantic
segmentation tasks by synthesizing paired images and labels [21]. Huang et al. proposed AugGAN,
which leverages GANs to generate augmented training samples for object detection. AugGAN learns
the data distribution and generates new samples by transforming existing images into different styles
or viewpoints. The generated samples help the model learn robust representations and improve its
generalization capabilities [22].

Synthetic data generation is a popular approach for augmenting training data in both semantic
segmentation and object detection tasks. Synthetic datasets provide a cost-effective way to generate
large amounts of labeled data with diverse variations, which can help improve model performance [23–
25]. Weakly supervised data augmentation methods aim to leverage weak annotations or supervision
signals to generate additional training samples. These methods help overcome the challenge of
obtaining large-scale fully annotated datasets, which are often time-consuming and expensive to create
[26,27]. Self-supervised learning has also gained significant attention in recent years as a powerful
approach to data augmentation. Self-supervised learning methods aim to learn useful representations
by solving pretext tasks on unlabeled data, which can then be transferred to downstream tasks like
semantic segmentation and object detection [28].

Style transfer and domain adaptation techniques have been employed to augment training data by
transforming images to different styles or adapting them to target domains. In semantic segmentation,
Abhinav Valada et al. introduced the AdapNet framework [29], which leverages domain adaptation
techniques to transfer knowledge from a labeled source domain to an unlabeled target domain. By
adapting the model to the target domain, AdapNet generates augmented training samples that capture
domain-specific variations, leading to improved segmentation performance.

Cutout and patch-based augmentation methods involve occluding or replacing parts of an image
to encourage the model to focus on relevant features and improve its ability to handle occlusions
and partial object appearances. In semantic segmentation, DeVries and Taylor introduced the Cutout
technique, which randomly masks out rectangular regions in an image during training. By occluding
regions, Cutout encourages the model to learn more robust features and improves its performance
in segmenting objects, especially in the presence of occlusion [30]. For object detection, patch-based
augmentation techniques have been explored. Chen et al. proposed the GridMask approach, which
divides the input image into grids and selectively masks out grid regions during training. GridMask
introduces local occlusions and encourages the model to focus on informative regions, improving its
ability to detect objects accurately [31].

Mixup and CutMix are data augmentation techniques that involve combining multiple images
or patches to create augmented training samples. These techniques encourage the model to learn
from mixed samples, enhancing its ability to handle object occlusions, variations, and multi-object
interactions. In semantic segmentation, Zhang et al. introduced the Mixup technique, which linearly
interpolates pixel-wise labels of two images to generate a mixed image and label [32]. Mixup encourages
the model to learn from the mixed samples, improving its generalization to unseen variations and object
configurations. For object detection, Yun et al. proposed the CutMix approach, which combines object
patches from two images to create a mixed image and label. CutMix encourages the model to learn
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from the mixed samples, enhancing its ability to handle object occlusions and improving detection
performance [33].

As the research on 3D lidar point clouds progresses, several new methods for data augmentation
in 3D lidar point clouds have emerged. These methods largely build upon the principles of data
augmentation in the 2D domain, but they also incorporate innovative and customized enhancements
to account for the unique characteristics of 3D lidar point cloud data. This combination of leveraging
2D data augmentation concepts while adapting them to suit the specific requirements of 3D lidar
point clouds showcases the ongoing exploration and refinement of data augmentation techniques in
this field.

PolarMix is another data augmentation method specifically designed for 3D lidar point cloud
data, employing the concept of mixing as well. It enhances point cloud distributions and preserves
their fidelity through two cross-scan augmentation strategies that involve cutting, editing, and mixing
point clouds along the scanning direction. The first step, known as scene-level swapping, entails the
exchange of point cloud sectors between two LiDAR scans. These scans are divided along the azimuth
axis, allowing for the swapping of corresponding sectors. The second step, referred to as instance-level
rotation and paste, involves selecting specific point instances from one LiDAR scan, rotating them
at various angles (resulting in multiple copies), and subsequently pasting these rotated instances into
other scans [8].

Mix3D, similar to previously mentioned methods like Mixup and CutMix, is a data augmentation
technique specifically developed for segmenting large-scale 3D scenes. However, Mix3D incorporates
distinct technical details and approaches that set it apart from other methods. It generates novel
training examples by combining two original scenes. By exposing objects from a single input scene
to the combined context of both mixed scenes, the network learns to disentangle the mixed scene
contexts and gains exposure to a wide range of object arrangements that are typically uncommon.
Implementation-wise, Mix3D involves concatenating batch entries in pairs. Importantly, the order of
points remains unchanged during augmentation, ensuring that the ground truth labels for the mixed
point cloud are obtained through concatenation as well [9].

Previous research in the field of point cloud analysis and data augmentation has explored various
augmentation techniques and their impact on model performance. However, the random selection
process, as proposed in this paper’s RandomFusion method, is a novel contribution that enhances the
robustness, generalization, and versatility of point cloud analysis models. The integration of different
augmentation techniques through random selection opens up new possibilities for further exploration
and tailored augmentation strategies.

3 The Proposed Method: RandomFusion

“RandomFusion” can be understood as “random fusion”. It refers to the process of ran-
domly combining or merging different elements or methods. In the context of data augmentation,
RandomFusion involves randomly selecting and merging various data augmentation techniques or
strategies. In some circumstances, this random fusion approach adds an element of variability and
unpredictability, as it introduces randomness into the selection process. Instead of using a fixed
or predetermined combination of augmentation methods, RandomFusion randomly chooses one
method from a pool of options for each instance or sample. This randomization enables the generation
of diverse augmented data, enhancing the robustness, generalization, and adaptability of models
in various tasks. The random fusion nature of RandomFusion provides flexibility and exploration
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potential, allowing researchers to explore different combinations and variations of data augmentation
techniques for improved performance and effectiveness.

3.1 Problems to Be Solved
The driving force behind the proposal of the RandomFusion method stems from the proliferation

of various data augmentation techniques in point cloud analysis. While numerous methods exist,
there is a lack of research on strategies for effectively integrating and utilizing these methods. Many
approaches simply stack the augmentation techniques without considering their compatibility, result-
ing in increased model size, computational complexity, and limited improvement in the effectiveness
of data augmentation.

To address this challenge, there is a need for a more intelligent and flexible approach to fuse data
augmentation methods. RandomFusion introduces a random selection element where each point in
the point cloud is randomly assigned one data augmentation method. This random selection strategy
allows the model to choose from multiple methods, providing a more diverse set of augmented samples.
Instead of blindly stacking all methods, RandomFusion can yield more significant improvements in
data augmentation while maintaining computational efficiency.

By incorporating RandomFusion, we aim to explore superior strategies for data augmentation,
moving away from simplistic stacking approaches. With the random selection of different data
augmentation methods, we can effectively fuse them to enhance model performance and robustness.

3.2 The Algorithm of RandomFusion
To represent the approach of randomly selecting one augmentation method from a pool of options,

we can use a mathematical formulation that involves probability and a set of augmentation methods.

Let us denote the pool of augmentation methods as:

M = {M1, M2, M3, · · · , Mn}
where each Mi represents a specific augmentation method. In this case, n represents the total number
of augmentation methods available in the pool.

To randomly select one augmentation method from the pool, we can assign a probability to each
method representing the likelihood of it being chosen. Let’s denote the probability of selecting Mi as
P(Mi). The probabilities P(Mi) should satisfy the following conditions: they must be non-negative:
P(Mi) ≥ 0 for all i, the sum of probabilities must be equal to 1:
∑

P(Mi) = 1

where the summation is over all augmentation methods in the pool.

To randomly select an augmentation method, we can use a probability distribution, such as a
uniform distribution or a categorical distribution, which assigns equal or custom probabilities to
each augmentation method in the pool. For example, in the case of a uniform distribution, where
all augmentation methods are equally likely to be selected, the probabilities P(Mi) would be equal for
all methods:

P(Mi) = 1
n

for all i = 1, 2, · · · , n.

Alternatively, if custom probabilities are desired, they can be assigned based on prior knowledge
or experimentation, reflecting the effectiveness or importance of each augmentation method.
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The actual process of selecting a specific augmentation method during training can then be
formulated as a random selection based on the assigned probabilities. This can be achieved using
techniques such as random sampling or using a random number generator to determine the chosen
augmentation method according to the assigned probabilities.

In summary, the approach of randomly selecting one augmentation method from a pool of
options can be represented mathematically by assigning probabilities to each method and using a
random selection process based on these probabilities. The specific choice of probabilities depends
on the desired distribution of augmentation methods and can be uniform or customized based on
requirements.

Algorithm 1: RandomFusion Method
Input: Point cloud data
Output: Point cloud data after data augmentation
Initialize augmentation methods: M = {Mix3D, PolarMix}
1: Procedure RandomFusion(data):
2: /∗ Iterate over each point in the data∗/
3: for each point in data do:
4: /∗ Call a random function for random selection∗/
5: if random.choice ([True, False])
6: /∗Apply Mix3D augmentation to the point∗/
7: point = ApplyMix3D (point)
8: else:
9: /∗ Apply PolarMix augmentation to the point∗/
10: point = ApplyPolarMix (point)
11: end if
12: end for
13: /∗Return the enhanced point cloud data∗/
14: return data
15: End Procedure

Algorithm 1 summarizes the pipeline of the proposed RandomFusion. The pseudo-code demon-
strates one of the simplest strategies to randomly select a data augmentation method for each point
in a point cloud. The code iterates through each point in the point cloud and randomly chooses
between “Mix3D” and “PolarMix” for data augmentation. It employs a loop to iterate through each
point. For each point, the algorithm randomly selects between “Mix3D” and “PolarMix” as the data
augmentation technique. If “Mix3D” is chosen, the point undergoes “Mix3D” data augmentation.
Conversely, if “PolarMix” is chosen, the point undergoes “PolarMix” data augmentation.

The provided pseudocode outlines a procedure called EnhancePointCloud that performs enhance-
ment on point cloud data. The input to the procedure is the point cloud data, and the output is the
enhanced point cloud data.

The pseudocode represents the RandomFusion Method, an algorithm designed to augment
point cloud data, which are sets of points in a 3D coordinate system. The algorithm initializes two
augmentation methods, Mix3D and PolarMix. Within the RandomFusion procedure, it iterates over
each point in the input data. For each point, a random function is called to decide which of the two
augmentation methods to apply. This is achieved using random.choice ([True, False]), which provides
a 50% chance for either choice. If the result is True, the Mix3D augmentation is applied to the point;
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if False, the PolarMix augmentation is applied. This procedure is repeated for each point in the data,
thereby randomly applying one of the two augmentation methods to each point. Finally, the algorithm
returns the augmented point cloud data. The specifics of Mix3D and PolarMix methods are not
detailed in this pseudocode but presumably are defined elsewhere in the program.

4 Experiments
4.1 Datasets Preprocessing

The SemanticKitti dataset is a large-scale point cloud dataset designed for semantic segmentation
and scene understanding tasks. It is derived from the Karlsruhe Institute of Technology and Toyota
Technological Institute (KITTI) Vision Benchmark Suite and provides highly detailed semantic
annotations for each point in the point clouds.

In the SemanticKitti dataset, the points are annotated with 28 different semantic classes, including
car, building, person, vehicle, bicycle, and more. Each point is assigned a class label indicating its
semantic class. We adopted the widely practiced approach of using 19 semantic classes from the dataset
for evaluation, aligning with other researchers’ methodologies.

This dataset was entirely collected from real traffic scenes in Germany. The collection was
performed using the Velodyne HDL-64E S3 lidar (Light Detection and Ranging) mounted on the
vehicle, which rapidly scans the surrounding environment to generate point cloud data. Each full
rotation of the lidar sensor creates a scan. By measuring the time and intensity of the returning laser
beams, the lidar obtains the three-dimensional position information of objects in the environment.
During the data collection process, the test vehicle drove on German city roads at various speeds and
driving modes to capture data from different scenarios. A total of 22 road sequences were collected
and labeled as sequence 00 to sequence 21. Following common practices, sequence 08 was used as the
validation set, while the training set included sequence 00, 01, 02, 03, 04, 05, 06, 07, 09, and 10.

SemanticPOSS dataset was collected at Peking University and consists of 6 road sequences, labeled
as 00 to 05, encompassing a total of 2988 diverse lidar scans in the same data format as SemanticKitti.
Following common practices, sequence 03 is used as the validation set, while sequences 00, 01, 02, 04,
and 05 are used as the training set. The dataset includes 17 classes in total. In our experiments, we
remapped these 17 classes to 14 classes, as shown in Table 1. We excluded the “unlabeled” class in our
experiments and focused on calculating the remaining 13 classes.

Table 1: Mapping relationship for remapping the SemanticPOSS dataset from 17 classes to 14 classes

Class numbers (old) Class numbers (new) Labels

0 0 1 person
4 0 2+ person
5 1 Rider
6 2 Car
7 3 Trunk
8 4 Plants
9 5 Traffic sign 1 (standing sign)
10 5 Traffic sign 2 (hanging sign)

(Continued)
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Table 1 (continued)

Class numbers (old) Class numbers (new) Labels

11 5 Traffic sign (high/big hanging
sign)

12 6 Pole
13 7 Trashcan
14 8 Building
15 9 Cone/stone
16 10 Fence
17 11 Bike
21 12 Ground
22 23 Unlabeled

According to the algorithm principle of Ploarmix, we need to select some instances and rotate
them along the Z-axis by a certain angle before pasting them into the original point cloud [3]. For the
SemanticPOSS dataset, our experiments were conducted using the following instance objects: rider,
car, trunk, pole, building, and ground. As for the SemanticKitti dataset, we followed the conventional
approach in our experiments and selected the following instance objects: car, bicycle, motorcycle,
truck, other vehicle, person, bicyclist, and motorcyclist.

4.2 Visualization Settings
To ensure a clear visualization of the experimental results, we have assigned unique colors to

each class in the SemanticPOSS dataset, as presented in Table 2. The color assignments align with the
official specifications provided by the dataset. These color assignments allow for a visual comparison
between the predicted point cloud and the ground truth point cloud during the visualization of the
3D lidar point cloud data. By examining the color of each point, the accuracy of predictions can be
intuitively assessed. Taking Fig. 3 as an example, this screenshot is from a scan of a 3D lidar point cloud
scene of a campus road at Peking University in the SemanticPOSS dataset. Based on the annotated
colors, we can see the green plants, light pink riders, light orange fences, light blue cars, bright red
people, orange buildings, yellow poles, and so on.

Table 2: Correspondence between classes and colors in the SemanticPOSS dataset

Class numbers Colors (RGB) Colors

0 [255, 30, 30] Bright Red
1 [255, 40, 200] Light Pink
2 [100, 150, 245] Light Blue
3 [135, 60, 0] Dark Brown
4 [0, 175, 0] Green
5 [255, 0, 0] Red
6 [255, 240, 150] Pale Yellow
7 [50, 255, 255] Aqua

(Continued)
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Table 2 (continued)

Class numbers Colors (RGB) Colors

8 [255, 200, 0] Orange
9 [255, 150, 0] Orange
10 [255, 120, 50] Light Orange
11 [100, 230, 245] Light Blue
12 [150, 240, 80] Light Green
23 [0, 0, 0] Black

Figure 3: Illustration of color labels

4.3 The Neural Network Model MinkowskiNet Used for Experiments
MinkowskiNet is a neural network model designed for processing point cloud data. It leverages the

Minkowski engine, which utilizes sparse tensors to efficiently handle point cloud data. MinkowskiNet
enables the extraction of local and global features from point clouds through its custom convolution
and pooling operations. It has been used for tasks such as semantic segmentation, object detection, and
point cloud classification. In our experiments, we will utilize the MinkowskiNet model for training,
employing the SemanticKitti and SemanticPOSS datasets. Before training, we will apply three data
augmentation operations, namely random fusion, polar mix, and Mix3D, to each of these datasets
respectively.

4.4 Hyperparameter Setting and Training
According to the algorithm principle of Ploarmix, we need to select some instances and rotate

them along the Z-axis by a certain angle before pasting them into the original point cloud [3]. For the
SemanticPOSS dataset, our experiments were conducted using the following instance objects:

instance_classes0 = [0, 1, 2,5, 6, 7, 9, 11].

As for the SemanticKitti dataset, we followed the conventional approach in our experiments and
selected the following instance objects:
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instance_classes = [0, 1, 2, 3, 4, 5, 6, 7].

The training process is performed on an NVIDIA Tesla V100-16G GPU, and the model is trained
using Compute Unified Device Architecture (CUDA) version 10.2, Python version 3.8, and PyTorch
version 1.6.0. The specific installation command used to install PyTorch and torchvision is “conda
install pytorch == 1.6.0 torchvision == 0.7.0 cudatoolkit = 10.2 -c pytorch”.

For the SemanticPOSS dataset, the “unlabelled” class has been mapped to class label 23, resulting
in a training criterion of cross-entropy loss with an ignore index of 23. This means that during loss
computation, predictions corresponding to the index 23 are ignored. In contrast, for SemanticKitti, the
“unlabelled” class is conventionally mapped to class label 255, leading to the exclusion of predictions
associated with the index 255 during loss calculation.

The training process utilizes stochastic gradient descent (SGD) as the optimizer, with a learning
rate of 2.4e-1. To prevent overfitting, a weight decay of 1.0e-4 is applied, and faster convergence
is facilitated by a momentum value of 0.9. Nesterov momentum is also employed to accelerate the
optimization process.

To adjust the learning rate dynamically, a cosine warmup scheduler is implemented, gradually
increasing the learning rate initially and following a cosine annealing schedule. This helps optimize
the training process.

5 Experiment Results and Discussion
5.1 Evaluation Metrics

In the context of 3D lidar point clouds, semantic segmentation involves the task of assigning
semantic labels to every individual point within the point cloud. The objective is to classify and
categorize each point into specific classes, such as objects, surfaces, or regions, based on their semantic
meaning or functionality. The outcome of performing semantic segmentation on a 3D lidar point
cloud is a labeled point cloud, where each point is colored according to its assigned class label,
representing its semantic class. This color-based identification allows for a more intuitive visualization
of the segmentation results in our experiments. The purpose of this approach is to provide a clearer
understanding of the segmentation outcomes by associating each point with its desired label class
through the use of corresponding colors. As shown in Fig. 3, different objects have been identified
and colored accordingly. For example, plants and leaves are colored green, tree trunks are colored
dark brown, a person is colored bright red while two people or more are colored light pink. Small
cars are colored light blue. These color labels in Fig. 3 represent the ground truth, which was manually
assigned after human identification of objects. In our experiment, the goal is to predict the class of
each point using a neural network model and assign corresponding colors. The colors corresponding
to different object instances are presented in Table 2.

In the context of 3D lidar point cloud semantic segmentation tasks, Mean Intersection over Union
(mIoU) is a frequently employed metric for assessing the performance of semantic segmentation
models. mIoU is determined by calculating the Intersection over Union (IoU) for each class, followed
by averaging these IoU values to yield the final performance score. For every class, the IoU is
determined by examining the intersection and union areas between the predicted segmentation and
the actual, or ground truth, segmentation. This involves comparing the pixels that are assigned to
a particular class in both the predicted and ground truth results. The intersection and union areas
are then calculated, and the IoU is derived by dividing the intersection area by the union area.
Upon calculating the IoU values for all the classes, these values are averaged to obtain the mIoU.
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The mIoU value can range from 0 to 1, where 1 signifies perfect segmentation and 0 indicates the worst
possible segmentation. A higher mIoU value is indicative of superior segmentation performance across
various classes. As such, mIoU serves as a valuable comparative tool for evaluating the performance
of different semantic segmentation models, thereby guiding the selection and optimization of these
models.

In our experiments, we continue to use mIoU as the primary metric for assessing the quality of
experimental results. Additionally, we provide the IoU results for individual classes, which can be
found in Tables 3 and 4.

5.2 Experiment Results
We conducted separate sets of experiments on both the SemanticKitti and SemanticPOSS

datasets. In Table 3, we present the performance of seven data augmentation methods for semantic
segmentation using the MinkowskiNet model and the SemanticKitti dataset. The results for the
RandomFusion method are obtained from our experiments, while the results for the other methods are
cited from reference [9]. By analyzing the data in Table 3, we observe that the RandomFusion method
outperforms all other methods, showing a significant improvement of 2.2% compared to the previously
best-performing PolarMix method (increasing from 65% to 67.2%). Moving on to Table 4, it displays
the performance of three data augmentation methods, namely RandomFusion, PolarMix, and Mix3D
techniques, for semantic segmentation using the MinkowskiNet model and the SemanticPOSS dataset.
These results are obtained from our experiments. Similar to Table 3, we find that the RandomFusion
method exhibits superior performance compared to the other two methods. It is important to note
that while our experiments yielded better results, it does not imply that the RandomFusion method will
consistently be effective under all conditions and environments. This variability is a normal occurrence
due to the intricacies of deep learning. Therefore, the applicability of these findings to other scenarios
requires specific analysis and experimental verification tailored to those particular situations.

To visually demonstrate the advantages of the RandomFusion strategy, we conducted experiments
on the SemanticPOSS dataset and visualized the results in Fig. 4. We selected a subset of scans from
RandomFusion, PolarMix, Mix3D, and ground truth, capturing them from the same viewpoint. These
screenshots are arranged vertically in the order mentioned above. Fig. 4 displays two of these scans,
with each column representing a scan, these two scans are from 000001 scan and 000127 scan of 03
sequence in SemanticPOSS.

Based on the visual comparison of segmentation results for tree trunks and stones in the initial
scan, it becomes apparent that the RandomFusion method outperforms both PolarMix and Mix3D.
As indicated by the red box in the first image of the first column, the superior performance of
RandomFusion is visible. When examining the results of the PolarMix method, it is clear that the
tree trunk has been inaccurately segmented as plants, and the stone segmentation also appears to be
ambiguous. The Mix3D method demonstrates a similar misclassification, incorrectly categorizing the
tree trunk as plants. In contrast, the RandomFusion method’s segmentation results bear a striking
resemblance to the ground truth, depicted in the last row. This close alignment is particularly evident
when examining the tree trunk segmentation in the second column, as highlighted by the red boxes.
Further examination of the color labels reveals additional disparities among the data augmentation
methods. The PolarMix method displays an incomplete segmentation of the two tree trunks, only
accurately capturing half of each trunk. In contrast, the Mix3D method falsely segments one of the
tree trunks as green plants. On the other hand, the RandomFusion method provides segmentation
results that closely mirror the ground truth.From these two sets of visual comparisons, the superior
efficacy of RandomFusion in data augmentation is unequivocally demonstrated.
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RandomFusion:

Plarmix:

Mix3D:

Ground truth:

Figure 4: Visualization of comparative experiment results



860 CMES, 2024, vol.140, no.1

5.3 Discussion
Based on the ideas presented in this study, we propose three scientific questions that can be further

investigated in future research. The first question pertains to the selection problem encountered when
integrating various existing data augmentation methods. It involves determining which two or more
methods should be chosen for integration. The second question revolves around the strategy employed
for the integration process. Should the integration be based on a specific probability distribution or
random fusion, or are there alternative integration strategies to consider? The third question involves
a labor-intensive task. It entails applying various data augmentation integration strategies to common
datasets and evaluating their performance on popular neural network models. By conducting such
experiments, it may be possible to create a comprehensive table that specifies the most effective data
augmentation integration strategy for a particular dataset and model. This would facilitate the direct
application of the findings in practical scenarios. By delving into these three questions, future research
may provide valuable insights into the selection and integration of data augmentation methods,
ultimately leading to the development of a comprehensive table that guides the application of data
augmentation strategies in specific datasets and models.

6 Conclusion

The rapid development of artificial intelligence technology in the field of 3D lidar point clouds
has driven the advancement of data augmentation techniques specifically tailored for 3D lidar
point clouds. A myriad of methods for augmenting 3D lidar point clouds, including techniques
like PolarMix and Mix3D, have emerged in recent years. Nonetheless, the challenge remains in the
effective and efficient amalgamation of multiple data augmentation methods, which inhibits the full
exploitation of these techniques’ potential. This study’s primary aim is to unearth superior strategies
that facilitate the efficient integration of existing data augmentation techniques. As an initial step,
we mesh the PolarMix and Mix3D methods. Precisely, for each point in a 3D lidar point cloud
dataset, we employ a random selection process between PolarMix and Mix3D for data augmentation,
a technique we term RandomFusion. We undertook comparative experiments on the SemanticKitti
and SemantiPOSS datasets, and the results substantiate the efficacy of our proposed RandomFusion
method. Moreover, the outcomes illustrate the feasibility of efficiently integrating and harnessing
existing data augmentation techniques. Our research serves as a springboard for future investigations
into the integration and utilization of existing data augmentation techniques.

Acknowledgement: None.

Funding Statement: This work is funded in part by the Key Project of Nature Science Research for
Universities of Anhui Province of China (No. 2022AH051720), in part by the Science and Technology
Development Fund, Macau SAR (Grant Nos. 0093/2022/A2, 0076/2022/A2 and 0008/2022/AGJ), and
in part by the China University Industry-University-Research Collaborative Innovation Fund (No.
2021FNA04017).

Author Contributions: All authors took part in the discussion of the work described in this paper.
Bo Liu proposed the innovative ideas, designed all the experiments, and wrote the main manuscript
text. Li Feng is the corresponding author. She takes primary responsibility for communication with
the journal during the manuscript submission and publication process. Her contributions also include
supervision, investigation, and project administration. Yufeng Chen’s contributions include writing-
review & editing, funding acquisition, methodology and resources.



CMES, 2024, vol.140, no.1 861

Availability of Data and Materials: All the datasets in this paper are from the public data sets on the
Internet, which can be easily obtained.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Zhang, Z., Hu, Q., Hou, G., Zhang, S. (2023). A real-time discovery method for vehicle companion via

service collaboration. International Journal of Web Information Systems, 19(5/6), 263–279.
2. Cao, Z., Xu, L., Chen, D. Z., Gao, H., Wu, J. (2023). A robust shape-aware rib fracture detection and

segmentation framework with contrastive learning. IEEE Transactions on Multimedia, 25, 1584–1591.
3. Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. et al. (2020). Deep learning for 3D point clouds: A survey. IEEE

Transactions on Pattern Analysis And Machine Intelligence, 43(12), 4338–4364.
4. Wu, Y., Wang, Y., Zhang, S., Ogai, H. (2020). Deep 3D object detection networks using LiDAR data: A

review. IEEE Sensors Journal, 21(2), 1152–1171.
5. Gao, H., Fang, D., Xiao, J., Hussain, W., Kim, J. (2023). CAMRL: A joint method of channel attention

and multidimensional regression loss for 3D object detection in automated vehicles. IEEE Transactions on
Intelligent Transportation Systems, 24(8), 8831–8845.

6. Payghode, V., Goyal, A., Bhan, A., Lyer, S., Dubey, A. (2023). Object detection and activity recognition in
video surveillance using neural networks. International Journal of Web Information Systems, 19, 123–138.

7. Cao, X., Guo, Y., Yang, W., Luo, X., Xie, S. (2023). Intrinsic feature extraction for unsupervised domain
adaptation. International Journal of Web Information Systems, 19(5/6), 173–189.

8. Gao, H., Wang, X., Wei, W., AI-Dulaimi, A., Xu, Y. (2024). Com-DDPG: Task offloading based on
multiagent reinforcement learning for information-communication-enhanced mobile edge computing in the
internet of vehicles. IEEE Transactions on Vehicular Technology, 73(1), 348–361.

9. Xiao, A., Huang, J., Guan, D., Cui, K., Lu, S. et al. (2022). PolarMix: A general data augmentation
technique for LiDAR point clouds. Advances in Neural Information Processing Systems, 35, 11035–11048.

10. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F. (2021). Mix3D: Out-of-context data aug-
mentation for 3D scenes. 2021 International Conference on 3D Vision (3DV), pp. 116–125. London, UK,
IEEE.

11. Pan, Y., Gao, B., Mei, J., Geng, S., Li, C. et al. (2020). SemanticPOSS A point cloud dataset with large
quantity of dynamic instances. 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 687–693. Las Vegas,
NV, USA, IEEE.

12. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S. et al. (2019). Semantickitti: A dataset for
semantic scene understanding of lidar sequences. Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9297–9307. Seoul, Korea (South).

13. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmen-
tation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, pp. 234–241. Munich, Germany, Springer International Publishing.

14. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. (2017). Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4), 834–848.

15. Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 580–587. Columbus, OH, USA.



862 CMES, 2024, vol.140, no.1

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object
detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788.
Las Vegas, NV, USA.

17. Jaderberg, M., Simonyan, K., Zisserman, A. (2015). Spatial transformer networks. Proceedings of the 28th
International Conference on Neural Information Processing Systems, vol. 2, pp. 2017–2025.

18. Behpour, S., Kitani, K. M., Ziebart, B. D. (2019). ADA: Adversarial data augmentation for object detection.
2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1243–1252. Waikoloa, HI,
USA, IEEE. https://doi.org/10.1109/WACV.2019.00137

19. Gao, Y., Liu, X., Xiang, J. (2021). Fault detection in gears using fault samples enlarged by a combination
of numerical simulation and a generative adversarial network. IEEE/ASME Transactions on Mechatronics,
27(5), 3798–3805.

20. Lou, Y., Kumar, A., Xiang, J. (2022). Machinery fault diagnosis based on domain adaptation to bridge the
gap between simulation and measured signals. IEEE Transactions on Instrumentation and Measurement, 71,
1–9.

21. Isola, P., Zhu, J. Y., Zhou, T., Efros, A. (2017). Image-to-image translation with conditional adversarial
networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976.
Honolulu, HI, USA. https://doi.org/10.1109/CVPR.2017.632

22. Huang, S. W., Lin, C. T., Chen, S. P., Wu, Y. Y., Hsu, P. H. et al. (2018). AugGAN Cross domain adaptation
with gan-based data augmentation. Proceedings of the European Conference on Computer Vision (ECCV),
pp. 718–731. Munich, Germany.

23. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M. et al. (2016). The cityscapes dataset for
semantic urban scene understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223. Las Vegas, NV, USA.

24. Song, S., Yu, F., Zeng, A., Chang, A., Savva, M. et al. (2017). Semantic scene completion from a single
depth image. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–
1754. Honolulu, HI, USA.

25. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W. et al. (2017). Learning from simulated and
unsupervised images through adversarial training. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2107–2116. Honolulu, HI, USA.

26. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. (2016). Context encoders: Feature learning
by inpainting. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–
2544. Las Vegas, NV, USA.

27. Dai, J., He, K., Sun, J. (2015). Exploiting bounding boxes to supervise convolutional networks for semantic
segmentation. Proceedings of the IEEE International Conference on Computer Vision, pp. 1635–1643.
Santiago, Chile.

28. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C. et al. (2021). BiSeNet V2 Bilateral network with guided
aggregation for real-time semantic segmentation. International Journal of Computer Vision, 129, 3051–3068.

29. Valada, A., Vertens, J., Dhall, A., Burgard, W. (2017). Adapnet: Adaptive semantic segmentation in adverse
environmental conditions. 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
4644–4651. Singapore.

30. DeVries, T., Taylor, G. W. (2017). Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552.

31. Chen, P., Liu, S., Zhao, H., Jia, J. (2020). Gridmask data augmentation. arXiv preprint arXiv:2001.04086.
32. Zhang, H., Cisse, M., Dauphin, Y. N., Lopez-Paz, D. (2017). mixup: Beyond empirical risk minimization.

arXiv preprint arXiv:1710.09412.
33. Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J. et al. (2019). CutMix: Regularization strategy to train strong

classifiers with localizable features. Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6023–6032. Seoul, Korea (South).

https://doi.org/10.1109/WACV.2019.00137
https://doi.org/10.1109/CVPR.2017.632

	A Random Fusion of Mix3D and PolarMix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud
	1 Introduction
	2 Related Work
	3 The Proposed Method: RandomFusion
	4 Experiments
	5 Experiment Results and Discussion
	6 Conclusion
	References


