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ABSTRACT

Users and edge servers are not fully mutually trusted in mobile edge computing (MEC), and hence blockchain can be
introduced to provide trustable MEC. In blockchain-based MEC, each edge server functions as a node in both MEC
and blockchain, processing users’ tasks and then uploading the task related information to the blockchain. That is,
each edge server runs both users’ offloaded tasks and blockchain tasks simultaneously. Note that there is a trade-off
between the resource allocation for MEC and blockchain tasks. Therefore, the allocation of the resources of edge
servers to the blockchain and the MEC is crucial for the processing delay of blockchain-based MEC. Most of the
existing research tackles the problem of resource allocation in either blockchain or MEC, which leads to unfavorable
performance of the blockchain-based MEC system. In this paper, we study how to allocate the computing resources
of edge servers to the MEC and blockchain tasks with the aim to minimize the total system processing delay. For the
problem, we propose a computing resource Allocation algorithm for Blockchain-based MEC (ABM) which utilizes
the Slater’s condition, Karush-Kuhn-Tucker (KKT) conditions, partial derivatives of the Lagrangian function and
subgradient projection method to obtain the solution. Simulation results show that ABM converges and effectively
reduces the processing delay of blockchain-based MEC.
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1 Introduction

Numerous mobile devices have become the indispensable instruments in people’s work, study,
and living due to the fast development of mobile networks [1]. Intelligent bracelets, smart garbage
disposals, smart signal light controls, smart home appliances, and other intelligent applications have
quickly garnered popularity and public attention. It is widely acknowledged that these intelligent
applications have significantly improved social efficiency, raised human productivity, and improved
people’s quality of life [2,3]. Innumerable innovative applications call for considerable computing
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power, which imposes a significant barrier for the IoT devices with limited resources and energy
[4,5]. Cloud computing offers the users on-demand services through a pool of computing resources.
However, cloud data centers are typically located far from mobile devices (users), and hence mobile
cloud computing faces the issues of high latency, slow channel transmission, etc. [6,7].

Mobile Edge Computing (MEC) [8–10] has been developing to address the issues mentioned above
by offloading computing tasks to edge servers. Therefore, the quality of service for task processing,
including lower energy consumption and reduced execution delay, can be considerably enhanced by
offloading computing workloads from users to edge servers [11,12]. However, the users and edge
servers are not fully mutually trusted [13]. Blockchain is considered as a viable strategy to solve the
problem of trust [14,15]. Blockchain uses community verification to synchronize a decentralized ledger
replicated over several nodes, unlike conventional digital ledger systems that depend on a reliable
central authority [16–18]. Accordingly, both academia and business are paying attention to building
MEC based on blockchain [19].

In the blockchain-based MEC system shown in Fig. 1, each edge server functions as a node in
both MEC and blockchain. As an MEC node, each edge server processes users’ tasks and uploads
the information about each task, e.g., user, time, task workload, results, etc., to the blockchain. As a
blockchain node, the edge server treats the information of each task as a transaction and generates the
blocks, each containing several transactions. Each transaction contains the encrypted file and the hash
of the data and the result related to the task execution. The sources of the transactions in a block are
all the users served by the edge server. That is, the transactions in a block may come from several users.
After creating a block, the edge server propagates it to other edge servers which will verify the blocks.
In this way, blockchain can provide trust between users and edge servers by transparent task-related
information sharing. The transactions recording the information of the tasks are stored in blockchain,
such that they cannot be modified. The anti-tampering characteristics of blockchain guarantee the
authenticity and legitimacy of each transaction, thus allowing the users to check and track the details
of the task related information. Each user can also evaluate the trustworthiness of other users based
on their transaction history on the blockchain. If there is a dispute or controversy over a transaction,
the transactions recorded in the blockchain can be used as a reliable evidence, which is used to resolve
the dispute [20].

In blockchain-based MEC, each edge server runs both blockchain tasks and users’ offloaded
tasks simultaneously. Note that there is a trade-off between the resource allocation for MEC and
blockchain tasks. Therefore, the resource allocation for the blockchain and the MEC is crucial for
the processing delay of blockchain-based MEC. Most of the existing research tackles the problem
of resource allocation in either MEC [21–23] or blockchain [24–26], which leads to the unfavorable
performance of blockchain-based MEC. In this paper, we tackle the problem of how to allocate the
computing resources of edge servers to the MEC and blockchain tasks with the objective of minimizing
the total system processing delay. The contributions of this paper are as follows:

(1) We study the problem of resource allocation for both MEC and blockchain tasks to reduce the
total processing delay of blockchain-based MEC, different from the existing research that focuses on
only one of MEC and blockchain.

(2) We propose a computing resource Allocation algorithm for Blockchain-based MEC (ABM),
which consists of four steps. First, we prove that the problem is convex. Second, we prove that the
problem satisfies the Slater’s condition, and hence the problem and its dual satisfy strong duality. Third,
we use the Karush-Kuhn-Tucker (KKT) conditions and the partial derivatives of the Lagrangian
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function to obtain the solution with the dual variables. Finally, we decide the values of the dual
variables via the subgradient projection method, which obtains the solution to the problem.

(3) Simulation results demonstrate that ABM converges and effectively reduces the processing
delay of blockchain-based MEC.

The rest of the paper is organized as follows. The related work is introduced in Section 2. The
problem is defined in Section 3. Section 4 proposes the algorithm. In Section 5, the experimental
results are presented. The paper is summarized in Section 6.

Figure 1: Blockchain-based MEC system

2 Related Work

In blockchain-based MEC, each edge server executes both MEC and blockchain tasks. Both
of these two kinds of tasks consume computational resources, and there is a trade-off between
the resource allocation for MEC and blockchain tasks. Therefore, the resource allocation for the
blockchain and the MEC is crucial for the processing delay of blockchain-based MEC. Nevertheless,
most of the existing research tackles the problem of resource allocation in either blockchain or MEC.

Some research studied the problem of computing resource allocation for MEC. Ren et al. [21]
proposed a hybrid communication and computing resource allocation approach for delay mini-
mization in a multi-user time-division multiple-access MEC offloading system. Nosrati et al. [27]
proposed a community-based solution for the management of data replication based on the model of
communication latency between computing and storage nodes. Feng et al. [28] proposed a method to
maximize the user utility while reducing the operator’s energy usage in a MEC system with multi-user
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radios, by jointly optimizing the radio power allocation at the base station and the power allocation for
processing users’ offloaded data. Hong et al. [29] proposed an optimal resource allocation strategy that
primarily addresses the issue of assigning MEC computing resources to a group of cars within a time
window, so as to reduce the overall task processing delay. Liu et al. [30] proposed an edge framework
that contains four groups under different locations between mobile edge nodes and users for the
resource allocation problem to reduce the total cost of users and edge servers. Gao et al. [31] built a task
offloading and resource allocation model which uses the overall computational cost as the objective
function. Spallina et al. [22] proposed a deep Q-learning network for the resource allocation problem
to reduce the task offloading energy usage while maintaining users’ quality of service. Guo et al. [32]
developed an online greedy heuristic algorithm for the resource optimization problem with the aim
to maximize the long-term overall performability. Zhang et al. [33] investigated the user association
and offloading decision problems for satelliteaerial integrated computing networks, where users can
offload their tasks to high-altitude platforms (HAPs) and the satellite with edge computing servers.
Zhang et al. [34] proposed a blockchain based containerized edge computing platform for Internet
of Vehicles. The platform was integrated with blockchain to improve the security of the network. A
heuristic container scheduling algorithm was developed to schedule computing tasks to appropriate
edge servers to reduce the computing latency. Gao et al. [35] proposed the resource control algorithm
to improve the system performance under the unstable workload in vehicular networks. The proposed
resource control algorithm adjusts the priority and proportion of the resource utilization according to
the system status obtained from the resource monitor, such as transaction workload or CPU utilization
status. Fan et al. [23] proposed a joint task offloading and resource allocation scheme for MEC.
Aghapour et al. [36] proposed a deep reinforcement learning-based technique that divides the task
offloading and resource allocation problem into two sub-problems, to reduce the delay and power
consumption related to work offloading. Xiao et al. [37] proposed an algorithm to reduce users’
task-offloading overhead, by optimizing the computational offloading choice, the wireless resource
allocation policy and the computational resource allocation strategy.

Some scholars conducted research on resource allocation for blockchain. Xia et al. [38] presented
a three-phase auction method to allocate resources for mobile blockchain, which introduces a group
buying mechanism to encourage edge servers to join the blockchain network. Kang et al. [13] proposed
a reputation-based data-sharing scheme that uses contract technology and federation chains to
accomplish secure data storage and avoid inappropriate data sharing. Toulouse et al. [39] investigated
the problem of balancing workload of account-based blockchains such as Ethereum and proposed the
method to predict transaction processing times. Jiao et al. [40] built an auction-based market model to
determine the computing offloading strategy for miners and the allocation of computing resources to
edge servers. Alfakeeh et al. [41] proposed the algorithms for the resource allocation of mining nodes,
which utilizes the backpack algorithm to allocate the caching space of the mining nodes to resolve
the problem of how to efficiently allocate resources so that data can be placed equitably in these fog
mining nodes while maintaining the prioritization and sensitivity of patient data. Chang et al. [42]
proposed an edge computing based blockchain incentive mechanism for miners to purchase edge
server computing resources, and established a two-stage Stackelberg game between miners and edge
servers. Fan et al. [43] constructed a computation offloading model composed of multiple miners,
multiple ESPs, and a CSP for mobile blockchain and proposed a three-stage Stackelberg game for
optimal pricing-based edge computing resource management. Zhang et al. [24] proposed a group-agent
strategy with trust computing to ensure the reliability of edge devices during interactions and improve
transmission efficiency. Wang et al. [25] proposed an incentive mechanism, in which the client chooses
the amount of computational power allocated to each task via a two-stage Stackelberg game based on
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the rewards. Zhou et al. [44] proposed a blockchain-enabled spectrum trading system to maximize user
benefits and designed a spectrum trading matching method. A Dynamic Credit Aggregate Signature
Byzantine Fault Tolerant (DCABFT) algorithm based on Boneh-Lynn-Shacham (BLS) aggregated
signatures was proposed, which aims to reduce the transaction latency and increase the user quality
of service while addressing the latency and energy consumption of blockchain consensus algorithms.
Zhang et al. [26] proposed two auction mechanisms for the blockchain network to maximize societal
welfare and offer an efficient resource allocation method for edge computing service providers.
Baranwal et al. [45] proposed a distributed auction-based resource allocation system in the context
of edge computing-enabled industrial IoT. The technique eliminates the need of a trustworthy third
party (the auctioneer) using consortium blockchain and smart contracts. Gao et al. [8] proposed a
hierarchical resource scheduling scheme for the Vehicular Internetworking System (VINS) to allocate
the computational resources, in order to increase the flexibility and efficiency of the system’s resource
utilization and to boost the performance of the blockchain-based VINS.

Both MEC and blockchain tasks require computational resources for execution in blockchain-
based MEC. Due to the limited computational capability of each edge server, an imbalance in the
allocation of computational resources to blockchain and MEC will result in a large system processing
delay. However, most of the current research tackles the problem of resource allocation for either
blockchain or MEC, and little research has been conducted on the optimization of resource allocation
for both blockchain and MEC simultaneously. Feng et al. [46] proposed a joint optimization frame-
work for blockchain-enabled MEC by jointly optimizing user offloading decisions and computational
resource allocation to achieve the trade-off between the energy consumption of the MEC system and
the latency of the blockchain system. In the framework, some of the users’ tasks cannot be offloaded
to the edge servers when they are making the choices of what tasks to be processed. However, this
kind of offloading decisions are not reasonable, when the users have to but are unable to process
some computation intensive tasks, e.g., real-time video stream processing, etc. As for the energy
consumption, it is often difficult for the edge to obtain the factors of power, usage time, etc., of the
large amount of heterogeneous users in the applications, which makes it hard to optimize the system
energy consumption [47]. Furthermore, the energy consumption of users has no impact on the edge’s
utility. Therefore, in this paper, we study the problem of how to allocate the computing resources of
edge servers for the MEC and the blockchain tasks with the objective of minimizing the total system
processing delay.

3 Problem Definition
3.1 System Model of Blockchain-Based MEC

There are multiple users (IoT devices, sensors, wearables, etc.) and edge servers in the blockchain-
based MEC system. Each edge server with constrained computing resources serves an area, and the
users in the area can offload the tasks to the edge server. At the same time, the edge servers comprise
the blockchain. After running the users’ tasks, each edge server uploads the information related to
the task execution, e.g., user, time, task workload, result, etc., to the blockchain. Each edge server,
as a blockchain node, treats the task related information as a transaction and generates blocks, each
containing several transactions. Each transaction contains the encrypted file and the hash of the data
and the result related to the task execution. The sources of the transactions in a block are all the users
served by the edge server. That is, the transactions in a block may come from several users. The blocks
are broadcast to all blockchain nodes which verify the blocks. The block generation and verification
are referred to as blockchain tasks. Accordingly, as shown in Fig. 1, each edge server runs two kinds of
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tasks: those offloaded by users and those in blockchain. Table 1 lists the symbols and notations used
in this paper.

Table 1: Table of symbols and notations

Notation Definition

N User set
M Edge server set
Dn Size of the computing task of user (mobile device) n
Cm CPU cycles required for edge server m to process 1 bit data in a user’s computing task
xn,m Indicate whether user n is in the service area of edge server m; 1, yes; 0, otherwise
rn,m Transmission rate from user n to edge server m
Um Total number of users served by edge server m
Pn,m Transmission power from user n to edge server m
gn,m Channel gain between user n and edge server m
θ 2 Noise power consumption
Sb Size of a block on the blockchain
In Size of the transaction related to the task from user n, including the hash of the task

related data and encrypted data
γn,m Noise ratio from user n to edge server m plus channel interference
Jm

max Maximum processing capacity of edge server m
Tn,m Latency of executing the tasks offloaded by user n on edge server m
Tt

n,m Delay of transmitting the task related data from user n to edge server m
TI Latency of generating a new block on blockchain
Tk Latency of task execution in blockchain for block k
B Bandwidth allocated by edge servers to the served users
K Total number of blocks generated by blockchain
E Transfer rate of the link in the blockchain network
Rn Size of the execution result of the task from user n
Qn Size of the encrypted files related to the task from user n
Tv Latency of validating a new block in blockchain
fb,m Frequency of CPU cycles allocated to edge server m for processing block generation

tasks
fn,m Frequency of CPU cycles allocated to edge server m for processing the tasks of user n

3.1.1 Latency of Task Execution in MEC

Denote the sets of users and edge servers as N = {1, 2, · · · , n, · · · , N} and M = {1, 2, · · · , m, · · · ,
M}, respectively. The users offload their tasks to the edge servers using wireless communication. The
system employs a shared frequency multiplexing method, wherein all edge servers can utilize identical
wireless resources. The users adopt orthogonal spectrums for data transmission, with a collective
bandwidth of B Hz. xn,m is a binary variable indicating if user n is in the service area of edge server
m. The execution delay of the task is expressed as:

Tn,m = xn,m

(
Tt

n,m + Tc
n,m

)
(1)
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where Tt
n,m and Tc

n,m represent the delay of transmitting the task related data from user n to edge server m
and the latency of executing the task of user n on edge server m, respectively. Tt

n,m and Tc
n,m are calculated

as follows:

Tt
n,m = Dn

rn,m

(2)

Tc
n,m = DnCm

fn,m

(3)

where Dn is the task size of user n, Cm specifies the number of CPU cycles that edge server m requires
to process 1 bit input data, and fn,m represents the frequency of CPU cycles allocated to edge server m
for processing the task of user n. Note that the variations in the bandwidth and power of the channel
are small, when the user is within the coverage area of an edge server and has low mobility in the
applications. In this case, the transmission rate is fixed [48]. The rate of data transmission from user n
to edge server m can be calculated as:

rn,m = B
Um

log2

(
1 + γn,m

)
(4)

where Um represents the number of users served by edge server m. γn,m is the channel interference plus
noise ratio (CINR) between user n and edge server m:

γn,m = Pn,mgn,m∑
i,j �=n,m Pmaxgi,j + θ 2

(5)

where Pmax indicates the maximum transmission power of each user, and θ 2 denotes the noise power.
Pn,m and gn,m respectively represent the transmission power and channel gain from user n to edge
server m.

3.1.2 Latency of Blockchain Task Execution

The total latency Tk of task execution in blockchain for block k comes from three sources: block
generation delay, block transmission delay and block verification delay:

Tk = TI + Tt + Tv (6)

where TI represents the time required for the blockchain to generate a new block, and Tt denotes the
transmission delay of the block during consensus. Tv denotes the block verification delay, which is a
constant. Therefore, Tv has no impact on the computing resource allocation of edge servers. The time
required for the blockchain to generate a new block is calculated as follows:

TI = 1
K

∑
m∈M

∑
n∈N

xn,mInCm

fb,m

(7)

where fb,m represents the CPU cycle frequency allocated by edge server m to process the block
generation tasks. K is the total number of blocks generated by the blockchain, which is determined
by the consensus round time (block intervals) [49]. In denotes the size of the transaction related to the
task from user n, which is calculated as:

In = Hash (Dn + Rn) + Qn (8)
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where Hash(·) is a hash function that computes the hash value of the task related information. Rn and
Qn denote the sizes of the execution result of the task from user n and the encrypted files related to the
task from user n, respectively.

The block transmission delay Tt is calculated as:

Tt = Sb

E
(9)

where Sb represents the block size, i.e., the number of bytes in the block, and E denotes the data
transmission rate between the edge servers.

3.2 Problem Model
Each edge server executes the tasks in both MEC and blockchain. In this paper, we study how

to allocate the computing resources of each edge server to MEC and blockchain, with the aim to
minimize the total system processing latency. That is, our objective is to

min
fn,m ,fb,m

(∑
m∈M

∑
n∈N

Tn,m +
∑
k∈K

Tk

)

s.t.

C1: fb,m +
∑
n∈N

xn,mfn,m ≤ Jm
max ∀m ∈ M

C2: fn,m > 0, fb,m > 0 ∀n ∈ N , m ∈ M (10)

Constraint C1 stipulates that the computational resources assigned by each edge server must be
within the processing capacity of the edge server. Constraint C2 states that the edge server should
allocate the computing resources to both MEC and blockchain.

4 Algorithm

The variables in the computing resource allocation problem in this paper are fn,m and fb,m, and there
exists capacity constraint C1. The fractional planning problem, a well-known NP-hard problem, can
be reduced to our problem. Therefore, our problem is also NP-hard.

In this section, we propose a computing resource Allocation algorithm for Blockchain-based
MEC (ABM), which consists of four steps as shown in Fig. 2. First, we prove that the problem is
convex. Second, we prove that the problem satisfies the Slater’s condition, and hence the problem and
its dual satisfy strong duality. Third, we use the KKT conditions and the partial derivatives of the
Lagrangian function to obtain the solution with the dual variables. Finally, we decide the values of the
dual variables via the subgradient projection method, which obtains the solution to the problem.

We denote f1 = fn,m and f2 = fb,m. The total system processing delay can be expressed as:

O =
∑
m∈M

∑
n∈N

xn,m

(
Dn

rn,m

+ DnCm

f1

)
+

∑
k∈K

(
1
K

∑
m∈M

∑
n∈N

xn,mInCm

f2

)
+ Sb

E
+ Tv (11)
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where
Sb

E
and Tv are constant. The original problem can be rewritten as:

min
f1,f2

O

s.t.

C1:f2 +
∑
n∈N

xn,mf1 ≤ Jm
max ∀m ∈ M

C2:f1 > 0, f2 > 0 ∀n ∈ N , m ∈ M (12)

Figure 2: Diagram of ABM

The following equations can be obtained by calculating the first-order derivative of objective
function O:
∂O
∂f1

=
∑
m∈M

∑
n∈N

xn,m

DnCm(−f 2
1

) (13)

∂O
∂f2

=
∑
k∈K

1
K

∑
m∈M

∑
n∈N

xn,mInCm(−f 2
2

) (14)

The second-order derivative of objective function O can be calculated as follows:

∂2O
∂f 2

1

=
∑
m∈M

∑
n∈N

xn,m

2DnCm

f 3
1

(15)
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∂2O
∂f 2

2

=
∑
k∈K

1
K

∑
m∈M

∑
n∈N

2xn,mInCm

f 3
2

(16)

The principal subequations of the Hessian matrix for each order have values greater than 0, and
hence we can derive that the Hessian matrix is positive definite. Consequently, according to Theorem
4.1, objective function O is convex. Furthermore, the function in constraint C1 exhibits convexity, and
hence the original problem is also convex.

Theorem 4.1. For a function f (x), if the Hessian matrix of f (x) is positive definite, then f (x) is a
convex function.

Proof. The Hessian matrix H(x) of function f (x) is represented as follows:

H(x) = ∇2f (x) =

⎡
⎢⎢⎢⎢⎢⎣

∂2f
∂x2

1

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1

· · · ∂2f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎦ (17)

where ∇2f (x) represents the second-order partial derivative of function f (x). Given that H(x) is
positive definite, the primary subequations of every order in the upper left corner of H(x) are greater
than 0. The expressions for the first-order and second-order principal subequations are as follows:

∂2f
∂x2

1

> 0,

∣∣∣∣∣∣∣∣
∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

∣∣∣∣∣∣∣∣
> 0 (18)

Consider any two points, denoted as x and y, belonging to the definition domain. Given that H(x)

is positive definite, we can derive the following equation according to Taylor’s equation

f (y) = f (x) + ∇f (x)T(y − x) + 1
2
(y − x)TH(ξ)(y − x) > f (x) + ∇f (x)T(y − x)

where ∇f (x)T represents the transpose of the first-order derivative of function f (x). The inequality
above satisfies the definition of a convex function, and hence we can conclude that function f (x) is
convex.

Lemma 4.1. The resource allocation problem in this paper satisfies the Slater’s condition.

Proof. The Slater’s condition holds for the definition domain of x, if there exists an interior point
(not a point on the boundary)x∗ satisfying the inequality constraints in which the equal sign is taken.
According to the analysis, there must be f1 and f2 in our solution, such that f2 + ∑

n∈N xn,mf1 < Jm
max.

Therefore, the resource allocation problem in this paper satisfies the Slater’s condition.

According to Lemma 4.1, we can derive that the original problem and its dual problem meet
strong duality, since they both satisfy the Slater’s condition and are mutually adequate to satisfy
strong duality. The optimal solution using the KKT conditions can be found, if the original problem
is convex and fulfills strong duality. We find the optimal solution by calculating the partial derivative
of the Lagrangian dual function via the KKT conditions, using dual variables. The original problem’s
Lagrangian function can be written as follows:
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L (f1, f2, μn) = O +
∑
n∈N

μn

(
f2 +

∑
n∈N

xn,mf1 − Jm
max

)
(19)

where μn is a Lagrange multiplier and satisfies μn ≥ 0. The Lagrange dual function is expressed as:

D(μ) = min
f1,f2∈C1,C2

L (f1, f2, μn) (20)

where μ = (μ1, μ2, · · · , μn) ≥ 0. We can relax the original problem as an unconstrained optimization
problem:

min
f1,f2

∑
m∈M

∑
n∈N

xn,m

(
Dn

rn,m

+ DnCm

fn,m

)
+

∑
k∈K

(
1
K

∑
m∈M

∑
n∈N

xn,mInCm

fb,m

)

+ Sb

E
+ Tv +

∑
n∈N

μn

(
f2 +

∑
n∈N

xn,mf1 − Jm
max

)
(21)

Following the definition of KKT conditions, we can derive

∂L (f1, f2, μn)

∂f1

=
∑
m∈M

∑
n∈N

xn,m

DnCm(−f 2
1

) + +
∑
n∈N

μn

∑
n∈N

xn,m = 0 (22)

∂L (f1, f2, μn)

∂f2

=
∑
k∈K

1
K

∑
m∈M

∑
n∈N

xn,mInCm(−f 2
2

) +
∑
n∈N

μn = 0 (23)

We can further obtain

f ∗
1 =

(∑
m∈M

∑
n∈N xn,mDnCm∑

n∈N μn

∑
n∈N xn,m

) 1
2

(24)

f ∗
2 =

(∑
k∈K

1
K

∑
m∈M

∑
n∈N xn,mInCm∑

n∈N μn

) 1
2

(25)

where f2
∗ and f1

∗ denote the optimal values of the CPU cycle frequencies allocated by the edge server
to process MEC tasks and blockchain tasks, respectively. Therefore, we need to determine the dual
variables μn, so as to decide the values of f1

∗ and f2
∗. The dual problem of the original problem is as

follows:

max
μ

D(μ)

s.t. μ ≥ 0 (26)

According to Theorem 4.2, we can obtain the dual variables via the subgradient projection
method, since the objective function and constraints in the original problem are convex.

Theorem 4.2. �μn(t) = Jm
max − (f2 + ∑

n∈N xn,mf1) and μn(t + 1) = μn(t) − i(t) · �μn(t), where t is

the iteration index, i (t) = α

t
is the step size, and α(> 0) is a pre-determined constant.
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Proof. From D(μ), we have the following inequality:

D(μ′) ≥
∑
m∈M

∑
n∈N

xn,m

(
Dn

rn,m

+ DnCm

f ∗
1

)
+

∑
k∈K

(
1
K

∑
m∈M

∑
n∈N

xn,mInCm

f ∗
2

)

+ Sb

E
+ Tv +

∑
n∈N

μn

(
f ∗

2 +
∑
n∈N

xn,mf ∗
1 − Jm

max

)
(27)

After substitution, we have the following inequality:

D(μ′) ≥ D(μ) +
∑
n∈N

(μ′
n − μn)

(
f2 +

∑
n∈N

xn,mf1 − Jm
max

)
(28)

Subgradient means that points x and y belonging to the definition domain of the function satisfy:

f (y) ≥ f (x) + gT(y − x) (29)

where g is the subgradient of f . For D(μ), its subgradient is

f2 +
∑
n∈N

xn,mf1 − Jm
max (30)

Therefore, we can use the subgradient projection method to decide the values of the dual variables.
That is

�μn(t) = Jm
max −

(
f2 +

∑
n∈N

xn,mf1

)
(31)

and

μn(t + 1) = μn(t) − i(t) · �μn(t) (32)

where t is the iteration index and i (t) is the step size.

Algorithm 1: Algorithm of Computing resource Allocation for Blockchain-based MEC (ABM)
Input: Binary value xn,m.
Output: Frequencies of CPU cycles allocated to the MEC and blockchain tasks, i.e., fn,m

∗ and fb,m
∗.

1 Initialize μ, tmax, δ

2 while: t ≤ tmax do
3 Determine the CPU cycle frequency, f ∗

1 , allocated by the edge server for processing the users’
tasks via Eq. (24);

4 Calculate the edge server’s CPU cycle frequency, f ∗
2 , allocated to the blockchain tasks via

Eq. (25);
5 Obtain �μn(t) and μn(t + 1) according to Theorem 4.2;
6 if: ‖μ(t + 1) − μ(t)‖2 < δ then
7 fn,m

∗ ← f ∗
1 , fb,m

∗ ← f ∗
2 ;

8 break;
9 else
10 t ← t + 1;
11 end
12 end
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The users in the service area of edge server m are the inputs of Algorithm 1. The outputs are
the CPU cycle frequencies f ∗

n,m and f ∗
b,m that are allocated by the edge server to process the MEC and

blockchain tasks, respectively. Step 1 initializes μ, tmax, δ. Steps 2−4 use Eqs. (24) and (25) to determine
the CPU cycle frequency f ∗

1 assigned to the MEC tasks and the CPU cycle frequency f ∗
2 allocated to

the blockchain tasks, respectively. Step 5 derives �μn(t) according to Theorem 4.2 and then uses the
subgradient projection method to calculate binary variable μn(t+1) based on step size i(t) and binary
variable μn(t). Steps 6−11 iteratively update the dual variables until the two-paradigm of the difference
between μn(t + 1) and μn(t) is less than the pre-defined threshold δ. In each iteration, the algorithm
updates f ∗

n,m and f ∗
b,m as f ∗

1 and f ∗
2 , respectively.

5 Simulation
5.1 Simulation Setup

In the simulations, there are 60 users and 6 edge servers in the blockchain-based MEC system.
The parameters of the system are listed in Table 2. The performance of ABM is evaluated by utilizing
three benchmark algorithms, namely IADA [46], JCCR [33] and DSRC [24].

Table 2: Table of simulation parameters

Experimental parameters Range of values

Bandwidth B 180 KHz [46]
Noise power θ 2 −174 dBm/Hz [46]
Computing task size Dn 200–1000 KB [33]
Link transmission rate E 15 × 106 bit/s [33]
Edge server’s computing power Jm

max 8 GHz [46]
Transaction size In 700 B [46]
Block size Sb 8 MB [24]
Number of CPU cycles, Cm, required to process 1 bit data 737.5 cycle/bit [46]

(1) IADA [46]: The algorithm first adopts binary search to obtain the resource allocation for
processing MEC tasks, and then solves the stationing point to obtain the resource allocation for
processing blockchain tasks.

(2) JCCR [33]: Each edge server allocates a fixed amount of computing resources to process MEC
tasks.

(3) DSRC [24]: Each edge server allocates a fixed amount of computing resources to process
blockchain tasks.

5.2 Simulation Results
Fig. 3 shows the total latency performance of ABM with different step sizes. ABM converges after

4 iterations, when step size i (t) is
0.1
t

. ABM requires 7 iterations to converge, when step size i (t) is

0.1
2t

. However, ABM cannot converge, when i (t) = 0.2
t

. The results demonstrate that a large step size
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may result in oscillation or even failure to converge during the iteration process, while a too small step

size may lead to slow convergence. Therefore, we set i (t) = 0.1
t

in the following simulations.
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Figure 3: Impact of the initial step size in ABM on the total latency

The convergence performance of the proposed algorithm is illustrated in Fig. 4. It is noteworthy
that the latency of the algorithm exhibits a decreasing trend as the number of iterations increases and
the algorithm converges to a stable value. For example, the total latency decreases by 40.78% from
the first to the fourth iteration, when the user task size is 2 MB. After the fourth iteration, the total
latency stabilizes and does not change with the increase in the number of iterations. Furthermore, the
latency of our algorithm is positively correlated to the computing task size. The total latency rises as
the computing task size increases. For example, the total latency with the task size of 2.5 MB is 62.45%
higher than that with the task size of 1 MB, after 4 iterations.

It can be observed from Fig. 5 that the total latency of IADA, JCCR, and DSRC is higher than
that of ABM with a given number of users. The total latency of ABM is 4.85% and 16.45% lower than
that of IADA, 15.21% and 29.11% lower than that of JCCR, and 17.02% and 15.21% lower than that
of DSRC, when the numbers of users are 60 and 90, respectively. The total computing task size that
the edge server needs to process increases with the increasing number of users. JCCR and DSRC use a
fixed resource allocation strategy. In contrast, ABM utilizes the KKT conditions and the subgradient
projection method to dynamically allocate the computing resources of the edge servers, such that
the computing resources of the edge server can be dynamically allocated for MEC and blockchain
tasks according to the number of users. The dynamic resource allocation is better able to adapt to the
changes in the types and the number of tasks, which leads to improved resource utilization and system
performance. IADA considers dynamic allocation. However, the resource allocation for MEC and
blockchain tasks is performed individually, which results in the inferior performance to our algorithm.
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Figure 4: Convergence performance of ABM
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Figure 5: Impact of the number of users on the total delay

Fig. 6 illustrates the impact of the number of servers on the overall delay, when the number of edge
servers increases from 6 to 10. The total latency of all algorithms reduces with more edge servers. As
the number of edge servers increases, the number of users served by each edge server decreases, which
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reduces the total size of the tasks to be processed by each edge server. Therefore, the overall latency
is reduced. ABM achieves up to 8.15%, 17.39% and 18.64% lower system latency than IADA, JCCR
and DSRC, respectively. ABM jointly optimizes the computing resource allocation for the MEC and
the blockchain tasks, which leads to superior performance.
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Figure 6: Impact of the number of edge servers on the total latency

Fig. 7 demonstrates the impact of the user’s task size on the total delay. We can observe that the
total delay of the four algorithms exhibits an increasing trend with the increase in the user’s task size.
The increase in the user’s task size requires more computing resources and time for processing and
more time for data and block transmission. Consequently, the overall delay experiences an increase.
Fig. 7 illustrates that ABM consistently outperforms IADA, JCCR and DSRC in terms of the total
latency. When the user’s task sizes are 1, 2, and 3 MB, the total latency of ABM is respectively lower
than that of IADA by 13.63%, 6.81% and 8.82%, less than that of JCCR by 20.52%, 25.33% and
25.30%, and lower than that of DSRC by 17.39%, 19.64% and 13.88%. ABM can dynamically allocate
computing resources according to the change in task sizes by jointly optimizing the resource allocation
for MEC and blockchain tasks. Therefore, ABM achieves a notable decrease in the overall system
latency compared to IADA, JCCR and DSRC.

Fig. 8 shows the total latency of the four algorithms with various block sizes. It can be observed
that the total delay increases with the increasing block size. The block with a large size contains
more transactions, which means that the edge server needs more time to aggregate enough MEC
task related information for block generation. A large block size also means that the blockchain
needs more time to transmit and validate the block. ABM jointly optimize the resource allocation
for MEC and blockchain tasks, such that the resource allocation can adapt to various block sizes to
achieve a favorable total latency performance. Our algorithm outperforms IADA, JCCR and DSRC.
Specifically, when the block sizes are 4, 6, and 8 MB, the total latency of ABM is 8.18%, 7.69% and
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9.75% less than that of IADA, 25.65%, 28.57% and 28.84% lower than that of JCCR, and 26.08%,
25.64% and 26.88% less than that of DSRC, respectively.
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Figure 7: Impact of the user’s task size on the total latency
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Figure 8: Impact of the block size on the total latency
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Fig. 9 shows the total latency with different clock cycles required for the edge server to process 1
bit data. The total latency increases with the increase of the number of clock cycles Cm required for the
edge server to process 1 bit data. A large Cm means that each edge server takes long time to process the
MEC and blockchain tasks. ABM uses the KKT conditions and the subgradient projection method
to optimize the allocation of edge servers’ computing resources, which can flexibly adjust the resource
allocation according to the task processing complexity. Fig. 9 indicates that ABM achieves lower total
latency than IADA, JCCR and DSRC. When Cm is 400, 600 and 800, the total latency of ABM is
7.56%, 12.77% and 13.79% less than that of IADA, 17.39%, 18.96% and 18.84% lower than that of
JCCR, and 22.64%, 26.15% and 26.31% less than that of DSRC, respectively.
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Figure 9: Impact of the number of clock cycles to process 1 bit data in the edge server on the total
latency

Fig. 10 depicts the total system delay with different processing capacities of the edge server. The
total latency declines with the increasing processing capacity of the edge server. A higher processing
capacity leads to short processing time of MEC and blockchain tasks. Accordingly, the total delay of
each algorithm reduces, as the processing capacity of the edge server increases. Fig. 10 illustrates that
ABM achieves better total latency performance than IADA, JCCR and DSRC. Specifically, the total
latency of ABM is up to 7.04%, 7.69% and 10.25% lower than that of IADA, 18.51%, 22.58% and
25.53% less than that of JCCR, and 9.58%, 14.28% and 22.21% lower than that of DSRC, respectively.

Fig. 11 illustrates the total latency vs. the transaction size. The total latency rises, as the transaction
size increases. The edge server requires more time to generate the blocks with a large transaction size.
ABM always incurs less total latency than IADA, JCCR and DSRC, due to the joint optimization
of resource allocation for MEC and blockchain tasks. The total latency of ABM is less than that of
IADA by 8.33%, 9.67% and 8.62%, and lower than that of JCCR by 12.38%, 10.34% and 14.52%, and
less than that of DSRC by 14.56%, 13.46% and 15.62%, when the task sizes are 400, 700 and 1000 B,
respectively.
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Figure 10: Impact of the processing capacity of the edge server on the total latency
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Figure 11: Impact of the transaction size on the total latency

6 Conclusions and Future Work

In this paper, we studied how to allocate the computing resources of edge servers to the MEC and
blockchain tasks with the aim to minimize the total processing delay of blockchain-based MEC. For
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the problem, we proposed a computing resource Allocation algorithm for the Blockchain-based MEC
system (ABM), which consists of four steps. First, we prove that the problem is convex. Second, we
prove that the problem satisfies the Slater’s condition, and hence the problem and its dual satisfy strong
duality. Third, we use the KKT conditions and the partial derivatives of the Lagrangian function to
obtain the solution with the dual variables. Finally, we decide the values of the dual variables via the
subgradient projection method, which obtains the solution to the problem. We conducted experiments
through simulations. ABM demonstrates superior performance in terms of the total system latency
under various parameters, including the number of users, user task sizes, block sizes, number of clock
cycles required for edge servers to process 1 bit data, number of edge servers, processing capacity of
the edge servers, block sizes and step sizes.

The users’ tasks may have different priorities, which have a significant impact on the resource
allocation. In our future work, we will work on how to allocate the computing resources of edge servers,
to provide the QoS of different tasks.
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