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ABSTRACT

Traditional laboratory tests for measuring rock uniaxial compressive strength (UCS) are tedious and time-
consuming. There is a pressing need for more effective methods to determine rock UCS, especially in deep mining
environments under high in-situ stress. Thus, this study aims to develop an advanced model for predicting the
UCS of rock material in deep mining environments by combining three boosting-based machine learning methods
with four optimization algorithms. For this purpose, the Lead-Zinc mine in Southwest China is considered as
the case study. Rock density, P-wave velocity, and point load strength index are used as input variables, and UCS
is regarded as the output. Subsequently, twelve hybrid predictive models are obtained. Root mean square error
(RMSE), mean absolute error (MAE), coefficient of determination (R2), and the proportion of the mean absolute
percentage error less than 20% (A-20) are selected as the evaluation metrics. Experimental results showed that the
hybrid model consisting of the extreme gradient boosting method and the artificial bee colony algorithm (XGBoost-
ABC) achieved satisfactory results on the training dataset and exhibited the best generalization performance on
the testing dataset. The values of R2, A-20, RMSE, and MAE on the training dataset are 0.98, 1.0, 3.11 MPa, and
2.23 MPa, respectively. The highest values of R2 and A-20 (0.93 and 0.96), and the smallest RMSE and MAE values
of 4.78 MPa and 3.76 MPa, are observed on the testing dataset. The proposed hybrid model can be considered a
reliable and effective method for predicting rock UCS in deep mines.
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Nomenclature

ρ Density
VP P-wave velocity
Is50 Point load strength
UCS Uniaxial compressive strength

1 Introduction

As one of the most critical parameters of rock strength, uniaxial compressive strength (UCS)
is widely used in geotechnical engineering, tunneling, and mining engineering. The reliability of
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acquiring rock UCS in situ directly influences subsequent operations, such as drilling, digging,
blasting, and support. Typically, the UCS value of rock materials can be obtained by following the
well-established regulations of the International Society for Rock Mechanics (ISRM) [1] and the
American Society for Testing Materials (ASTM) [2]. Laboratory testing has strict requirements for
specimen preparation. It is challenging to obtain high-quality rock samples from layered sedimentary
rocks, highly weathered rocks, and fractured rock masses [3–6]. Moreover, the accuracy of laboratory
testing depends on the professionalism of the operators. For this reason, other highly efficient and
straightforward methods for rock UCS prediction have been developed in various studies, such as
statistical methods (single regression analysis methods and multiple variable regression methods) and
soft computing-based methods.

Several studies have employed statistical equations to investigate the relationship between a single
variable and UCS [7,8]. Fener et al. [9] conducted several laboratory tests and developed an equation
for rock UCS prediction based on point load test results, achieving better performance with an R2

value of 0.85. Yasar et al. [10] investigated the relationships between hardness (Shore Scleroscope
hardness and Schmidt hammer hardness) and UCS, revealing that the hardness property showed a
high correlation coefficient with rock UCS. Yilmaz [11] introduced a new testing method to determine
the UCS of rock, called the core strangle test (CST). The UCS prediction results obtained from CST
were more accurate than those from the point load tests. Basu et al. [12] pointed out that point load
strength could be used to predict the UCS of anisotropic rocks, and in their study, the final R2 result
reached 0.86. Khandelwal [13] adopted the linear regression method to fit the relationships between
P-wave velocity (Vp) and rock mechanical properties, indicating that Vp was highly correlated with
UCS. Amirkiyaei et al. [14] developed a statistical model to predict the UCS of building rock materials
after a freeze-thaw operation. The porosity (n) and Vp of the fresh stone were used as input variables,
and the model achieved acceptable accuracy. Moreover, the Schmidt hammer rebound value (SHR),
another nondestructive test index, was widely accepted for rock UCS prediction due to the data
accessibility. Yagiz [15] investigated the correlation between SHR and UCS on nine rock types. The
developed equation showed that SHR was strongly correlated with UCS. Nazir et al. [16] proposed a
new correlation to predict UCS based on L-type SHR, achieving an R2 value of up to 0.91, but the
correlation was not recommended for highly weathered rock. In another study, Wang et al. [17] also
concluded that L-type SHR could be considered an effective parameter for predicting UCS.

However, predicting UCS using a single related factor is not advised because rock strength is deter-
mined by a combination of physical and mechanical properties [5]. Multiple regression models have
shown better performance in rock UCS prediction than single regression methods. Azimian et al. [5]
compared the prediction performance of UCS between the standalone regression model and the
multiple regression method. The R2 values of the single regression equations using only Vp and point
load strength index (Is50) were 0.90 and 0.92, respectively. In contrast, the prediction result obtained
through the multiple regression model was more accurate (R2 = 0.94). Similarly, Minaeian et al. [18]
compared the performance of a multivariate regression model with two single regression models in
estimating rock UCS. Vp and SHR were employed in the multiple regression method, and then used in
the two single regression models, respectively. The variance accounted for (VAF%) for the multivariate
regression model and the two single prediction models were 97.24%, 94.34%, and 94.39%, respectively.
Farhadian et al. [19] developed a simple nonlinear multiple regression method for predicting rock UCS
based on Vp and SHR, and the results showed that the model exhibited strong prediction capability.
In addition, Mishra et al. [20] confirmed that the multiple regression method outperformed the simple
regression model in rock UCS prediction. Although the statistical methods presented above showed
improved prediction performance, their ability to generalize to new datasets is limited.
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In recent years, artificial intelligence (AI) methods have become widely used in engineering to
tackle complex nonlinear problems due to their superior capabilities. They are recommended for
solving other complex problems, such as earth pressure calculation and rock profile reconstruction
[21,22]. Research reviews have revealed that AI-based methods have been successfully applied in areas
such as tunnel squeezing analysis [23,24], rock mass failure mode classification [25], rock lithology
classification [26,27], and rock burst prediction and assessment [28–30]. The outstanding results
achieved by AI-based methods have garnered significant attention in the prediction of rock mechanical
parameters. For example, Ghasemi et al. [31] proposed the M5P model tree method to predict the UCS
of carbonate rocks. SHR, n, dry unit weight, Vp, and slake durability index were considered as input
parameters. Wang et al. [32] employed the random forest algorithm to estimate the UCS value based
on L-type SHR and Vp. The proposed method achieved comparable results to the measured values.
Cao et al. [4] combined the extreme gradient boosting method with the firefly optimization algorithm
to predict rock UCS. Input data included rock dry density (ρ), Vp, and the proportion of crystals
in the rocks (such as quartz (Qtz), biotite (Bi), plagioclase (Plg), chlorite (Chl), and alkali feldspar
(Kpr)). The model achieved high-precision results. Barzegar et al. [6] developed an ensemble tree-
based method to estimate rock UCS using Vp, SHR, n, and Is50. The research results revealed that the
ensemble model outperformed both the standalone machine learning (ML) models and multivariate
regression models. Jin et al. [33] created a hybrid model combining the extreme learning machine
approach with the grey wolf optimization algorithm. Four rock properties (n, Vp, SHR, Is50) were used.
The hybrid model achieved better prediction performance (R2 = 0.951) on the testing dataset than the
other four models. Saedi et al. [34] investigated six input factors, including n, cylindrical punch index,
block punch index, Brazilian tensile strength, Is50, and Vp, and created six prediction models. The
findings revealed that the fuzzy inference system and multivariate regression models outperformed the
single regression technique. Li et al. [35] adopted six optimization algorithms to enhance the random
forest model’s performance for rock UCS prediction, employing five parameters: SHR, Vp, Is50, n, and
ρ. The proposed model achieved excellent performance with an R2 value of 0.9753 after optimization.
Mahmoodzadeh et al. [36] compared six AI-based methods for rock UCS prediction using four input
variables (n, SHR, Vp, and Is50) in the models. Among all predictive models, the Gaussian process
regression model performed the best (R2 = 0.9955). Skentou et al. [37] developed an artificial neural
network model with three optimization algorithms. Three parameters, such as pulse velocity, SHR, and
effective n, were applied in their study, and the best hybrid model obtained outstanding performance
(R2 = 0.9607).

AI-based methods offer distinct advantages over traditional empirical formulas for rock UCS
prediction. Traditional approaches to determining UCS through laboratory testing face limitations.
These include challenges in obtaining high-quality rock samples from certain geological conditions,
such as severely fragmented rock masses, in-situ core disking, and lower efficiency in high-quality
rock sample collection. Moreover, few studies have been conducted on predicting the UCS of rock
materials in deep mines using boosting-based approaches. Therefore, this study aims to develop a
simple and robust rock UCS predictive model tailored for deep mining environments. The Lead-
Zinc mine in Southwest China serves as the case study. Three easily accessible parameters ρ, Vp,
and Is50 are used as input parameters, with UCS considered the output. The main contents are as
follows: (1) constructing a comprehensive database based on previous studies and new field data
obtained from deep mines in southwestern China; (2) developing a straightforward and reliable
model for rock UCS prediction, integrating three boosting-based machine learning methods, adaptive
boosting (AdaBoost), gradient boosting (GBoost), extreme gradient boosting (XGBoost), and four
optimization algorithms: Bayesian optimization algorithm (BOA), artificial bee colony (ABC), grey
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wolf optimization (GWO), and whale optimization algorithm (WOA); (3) systematically comparing
the performance of all hybrid models in rock UCS prediction.

2 Methods

This study considers boosting-based ML methods such as AdaBoost, GBoost, and XGBoost base
models for rock UCS prediction. Boosting, an advanced ensemble method, combines several weaker
learners to create a strong learner, ensuring improved overall performance of the final model. In
addition, four optimization algorithms, namely BOA, ABC, GWO, and WOA, are employed to obtain
the optimal parameters for all the base models. These algorithms are renowned for their robustness and
efficiency in solving complex optimization problems. They excel in multidimensional and nonlinear
search spaces, providing effective solutions in various fields, from engineering to data science. Detailed
descriptions of the Boosting-based approaches and the optimization algorithms are provided in the
subsequent sections.

2.1 Boosting-Based ML Algorithms
2.1.1 Adaptive Boosting

AdaBoost, a typical ensemble boosting algorithm, combines multiple weak learners to form a
single strong learner. By adequately considering the weights of all learners, it produces a model that is
more accurate and less prone to overfitting. The procedure of the algorithm is outlined below:

(1) Determine the regression error rate of the weak learner.

• Obtain the maximum error;

Et = max |yi − ht (xi)| , i = 1, 2, . . . , N (1)

where xi, yi indicates the input data; N is the number of the sample; ht (x) represents the weak learner
of the t-th iteration.

• Estimate the relative error for each sample using the linearity loss function;

εti = |yi − ht (xi)|
Et

(2)

• Determine the regression error rate;

εt =
∑n

i=1
wtiεti (3)

where wti is the weight of the sample xi.

(2) Determine the weight coefficient α of the weak learner.

αt = εt

1 − εt

(4)

(3) Samples weights updation for the t + 1 iteration round.

Wt+1 (xi) = Wt (xi)

Zt

αt
1−εti (5)

Zt =
∑N

i=1
W (xti) αt

1−εti ; Zt is the normalization factor (6)
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(4) Build the ultimate learner.

H (x) =
∑T

t=1
ln

(
1
αt

)
f (x) . f (x) is the median value of αtht (x) (t = 1, 2, . . . , T) (7)

Additionally, the AdaBoost method requires only a few parameter adjustments, such as the
decision tree depth, the number of iterations, and the regression loss function. Consequently, it has
been extensively used in various fields, including rock mass classification [38], rockburst prediction
[39], rock strength estimation [40,41], and tunnel boring machine performance prediction [42].

2.1.2 Gradient Boosting

The GBoost method, another ensemble algorithm, is inspired by gradient descent. It trains a new
weak learner based on the negative gradient of the current model loss. This well-trained weak learner is
then combined with the existing model. The final model is constructed by repeating these accumulation
steps, as shown below:

(1) Initialize the base learner.

H0 (x) = arg minc

∑m

i=1
L (yi, c) (8)

c =
∑m

i=1yi

m
(9)

where L (x) is the squared error loss function; c is a constant; yi is the measured value; m is the number
of the sample; H0 (x) is the initial weak learner.

(2) Calculate the negative gradient. Then, the leaf node region Rtj of the t-th regression tree (J is
the number of leaf nodes of regression tree t) could be obtained based on (xi, rti).

rti = −∂L (yi, ht−1 (xi))

∂ht−1 (xi)
, i = 1, 2, . . . , m (10)

(3) Obtain the optimal-fitted value ctj for the leaf region j = 1, 2, . . . , J, and update the strong
learner.

ctj = arg minc

∑
xi∈Rtj

L (yi, ht−1 (xi) + c) (11)

ht (x) = ht−1 (x) +
∑J

j=1
ctjI ,

(
x ∈ Rtj

)
(12)

where ht−1 (x) is the regression learner obtained after t − 1 iterations; I is the unit matrix.

(4) Finally, a strong learner could be obtained.

f (x) = fT (x) =
∑T

t=1

∑J

j=1
ctjI

(
x ∈ Rtj

)
(13)

An advantage of GBoost is its flexibility in choosing the loss function, allowing for the use of
any continuously differentiable loss function. This characteristic makes the model more resilient to
noise. Due to these advantages, GBoost-based methods have achieved considerable success, resulting
in many improved versions [43–45].

2.1.3 Extreme Gradient Boosting

XGBoost, an extension of the gradient boosting algorithm, was developed by Chen et al. [46].
This model has robust applications in classification and regression tasks. The primary idea behind the
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XGBoost approach is to continually produce new trees, with each decision tree being updated based
on the difference between the previous tree’s result and the target value, thereby minimizing model
bias. Given a dataset D = {(xi, yi)}, where xi is the sample, the prediction result of the well-trained
XGBoost model is calculated as follows:

ỹi =
∑K

k=1
fk (xi) (14)

where xi is the sample; fk (xi) is the prediction result of the k-th tree for the sample xi; K is the number
of decision trees; ỹi is the sum of the prediction results of all the decision trees.

Obj =
∑n

i=1
l (yi, ỹi) +

∑K

k=1
� (fk) (15)

� (fk) = γ T + 1
2
λ
∑T

j=1

(
wj

)2
(16)

where l (yi, ỹi) is the loss function, such as mean square error and cross-entropy loss; yi is the target
value; n is the number of samples; �(fk) is the complexity of the tree; T is the number of leaves; wj is
the L2 norm of leaf scores; γ and λ are the factors that aim to change the complexity of the tree.

The XGBoost method combines the loss function and regularization factor into its objective
function, resulting in higher generalization than other models, as shown in Eqs. (14), (15). Another
distinctive feature of the XGBoost method is its incorporation of a greedy algorithm and an approx-
imation algorithm for searching the split nodes of the tree. The main optimization parameters are
the decision tree depth, the number of estimators, and the maximum features. Chang et al. [47]
developed an effective model for credit risk assessment using the XGBoost method. Zhang et al. [48]
used the XGBoost method to forecast the undrained shear strength of soft clays. In another work,
Nguyen-Sy et al. [49] used the XGBoost method to predict the UCS of concrete. The XGBoost model
outperforms the artificial neural network (ANN) model, support vector machine (SVM), and other
ML methods.

2.2 Optimization Algorithms
Optimization algorithms are usually designed to automatically find the best global solution within

the given search space, shortening the model development cycle and ensuring model robustness. Hence,
four well-performing optimization algorithms, i.e., BOA, ABC, GWO, and WOA, were implemented
in this study to optimize the parameters of the aforementioned boosting-based ML models for the
prediction of rock UCS.

2.2.1 Bayesian Optimization Algorithm

Compared to the commonly used grid search and random search algorithms, the BOA method,
proposed by Pelikan et al. [50], fully utilizes prior information to find the parameters that maximize
the target function globally. The algorithm comprises two parts: (1) Gaussian process regression,
which aims to determine the values of the mean and variance of the function at each point, and (2)
constructing the acquisition function, which is employed to obtain the search position of the next
iteration, as shown in Fig. 1. BOA has the advantages of fewer iterations and a faster processing speed
and has been applied in several fields. Díaz et al. [51] studied the UCS prediction of jet grouting
columns based on several ML algorithms and the BOA method. The optimized model obtained
significant improvement compared to existing works. Li et al. [26] proposed an intelligent model
for rockburst prediction using BOA for hyperparameter optimization. Lahmiri et al. [52] used BOA
to obtain the optimal parameters of models for house price prediction. Bo et al. [53] developed
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an ensemble classifier model to assess tunnel squeezing hazards, with the optimal values of the
seventeen parameters obtained utilizing the BOA method. Additionally, Díaz et al. [54] investigated
the correlations between activity and clayey soil properties. Thirty-five ML models were introduced in
their research to predict the activity using the clayey soil properties, with the BOA method being used
to fine-tune the ML models’ hyperparameters, producing promising results.

Figure 1: Schematic of the Bayesian optimization algorithm [55]

2.2.2 Artificial Bee Colony

The ABC method, developed for multivariate function optimization problems by Karaboga
[56], divides bees in a colony into three groups (employed, onlookers, and scouts) based on task
assignment [57], as illustrated in Fig. 2. Employed bees are tasked with finding available food sources
and gathering information. In contrast, onlookers collect good food sources based on data transferred
from employed bees and perform further searches for food. Scouts are responsible for finding valuable
honey sources around the beehive. In mathematical terms, the food source represents the problem’s
solution, and the nectar level equates to the fitness value of the solution [58]. Parsajoo et al. [59]
adopted the ABC method to tune and improve the model performance for rock brittleness index
prediction. Zhou et al. [60] recommended an intelligent model for rockburst risk assessment and
applied the ABC method to obtain optimal hyperparameters for the model. The results revealed ABC
to be a valuable and successful strategy.



282 CMES, 2024, vol.140, no.1

Figure 2: Schematic of the artificial bee colony method

2.2.3 Grey Wolf Optimization Algorithm

GWO is a metaheuristic method developed by Mirjalili et al. [61]. The algorithm simulates grey
wolf predation in nature, and wolves are divided into four hierarchies: α, β, δ, w, α, β, δ are the head
wolves leading the other wolves (w) moving toward the destination, and the position of wolf w is
updated based on α, β, or δ using the following equations:
→
D =

∣∣∣→
C · →

X p (t) − →
X (t)

∣∣∣ (17)
→
X (t + 1) = →

X p (t) − →
A · →

D (18)

where
→
X p and

→
X (t) are the prey and grey wolf position vectors, respectively; vectors

→
A and

→
C are the

constant coefficients; t is the current iteration.
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The constant coefficients
→
A and

→
C can be calculated as follows:

→
A = 2

→
a · →

r 1 − →
a (19)

→
C = 2 · →

r 2 (20)

where
→
r 1 and

→
r 2 are vectors randomly distributed in [0, 1];

→
a is a convergence factor that drops linearly

from 2 to 0 as iterations increase.

During the iteration process, the best solution can be obtained by the head wolves α, β, and δ, and

the value of
∣∣∣→
A

∣∣∣ > 1 means that the candidate solution is far away from the prey. In contrast, when the

value of
∣∣∣→
A

∣∣∣ < 1 indicates that the candidate solution is close to the prey. The flowchart is shown in

Fig. 3. Several studies highlight the GWO method due to its simple structure, few parameters, and easy
implementation. Golafshani et al. [62] developed a model to estimate concrete UCS, demonstrating
that the GWO-optimized model outperformed the original prediction model. Shariati et al. [63]
reported that integrating the GWO approach can greatly improve the model’s predictive capability.

Figure 3: Flowchart of the grey wolf optimization algorithm
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2.2.4 Whale Optimization Algorithm

WOA, a unique population intelligence optimization method mimicking whale-feeding behavior,
was introduced by Mirjalili et al. [64]. The mathematical modeling process of WOA is comparable
to that of the GWO approach. However, a critical distinction between the two algorithms is that
humpback whales complete their prey behaviors using either random whale individuals or the ideal
individuals, as well as the spiraling bubble-net mode. Zhou et al. [65] applied WOA to obtain
optimal parameters for the SVM model for tunnel squeezing classification, achieving higher prediction
accuracy. In another study, Tien et al. [66] presented a model for predicting concrete UCS using various
optimization techniques, with WOA-based optimization performing the best. Nguyen et al. [67]
combined SVM and WOA algorithms to create an intelligent model for predicting fly rock distance,
demonstrating that the hybrid WOA-SVM model outperformed standalone models.

3 Database
3.1 Data Preparation

Rock samples collected from a deep lead-zinc ore mine in Yunnan Province, Southwest China,
were used as the dataset for developing rock UCS prediction models. The current maximum mining
depth of the lead-zinc ore mine has exceeded 1,500 meters, and field rock sample collection operations
were conducted at different sublevels, including lower and upper plates surrounding rock and ore, as
shown in Fig. 4. All drilling works were done using the KD-100 fully hydraulic pit drilling rig, a small
and easy-to-operate machine propelled by compressed air.

Figure 4: Fieldworks. (a)∼(b) indicate borehole sampling at different sublevels, (c)∼(d) are the collected
samples in-situ, (e)∼(f) are the corresponding high-quality samples
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After that, all the high-quality samples were made into standard specimens with dimensions of
∅50 × 100 mm following the instructions of ISRM and ASTM. Fig. 5 shows the well-processed
standard specimens. Then, the rock parameters ρ, Vp, Is50, and UCS were obtained through laboratory
tests, as depicted in Fig. 6. The rock density ρ = m/V and the value of the P-wave velocity Vp was
measured by the sonic parameter tester. Is50 was obtained through the irregular lump test, and the
irregular blocks were collected from the same sublevels as the drilling, as shown in Fig. 7. The UCS test
was conducted on INSTRON 1346 equipment. Finally, 40 sets of physical and mechanical parameters
of the rock were established from the deep mine, as shown in Table 1. In addition to the field dataset,
66 datasets provided in the study [68] were collected to expand the database, and thus, a total of 106
datasets were integrated as the final dataset to develop the models.

Figure 5: The well-processed standard specimens

Figure 6: Laboratory tests
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Figure 7: In-situ irregular rock blocks collection for point load testing

Table 1: The results of laboratory tests

ID ρ (g/cm3) Vp (m/s) Is50 (MPa) UCS (MPa) ID ρ (g/cm3) Vp (m/s) Is50 (MPa) UCS (MPa)

1 2.83 4401 2.98 72.70 22 2.66 4599 3.68 91.12
2 2.76 3053 4.14 101.11 23 2.72 4207 3.45 91.68
3 2.74 2798 4.03 98.35 24 2.71 3604 2.33 51.89
4 2.76 4208 2.03 49.61 25 2.70 4219 2.75 66.48
5 2.71 4192 2.37 60.25 26 2.86 4205 3.69 92.99
6 2.76 3879 4.08 100.49 27 2.89 3738 3.51 86.90
7 2.96 3883 4.19 102.33 28 2.88 3878 3.78 89.82
8 2.75 4393 2.50 63.26 29 2.88 4043 2.75 67.19
9 2.77 3634 3.28 80.13 30 2.78 4820 4.93 120.31
10 2.70 4393 4.14 100.95 31 2.77 4393 5.34 135.10
11 2.67 4396 4.23 103.11 32 2.68 4821 2.51 63.65
12 2.77 3367 2.42 61.04 33 2.75 4396 3.23 78.90
13 2.73 4595 2.81 71.40 34 2.66 4205 2.84 71.83
14 3.75 3482 2.78 71.24 35 2.66 4211 3.01 73.21
15 4.74 3474 3.11 75.91 36 2.78 4047 2.45 62.12
16 4.85 4823 2.62 63.61 37 2.66 3248 2.38 55.48
17 4.57 3366 3.12 78.63 38 2.78 4206 3.42 85.96
18 4.62 3637 4.89 119.22 39 2.78 3252 4.28 106.99
19 4.93 3599 3.40 82.96 40 2.71 4219 2.78 70.25
20 4.80 4038 3.33 81.18
21 4.85 4209 3.05 74.50
Note: The irregular blocks are collected from the same sublevels as the drilling, and yield the Is50 as the corresponding point load strength
of the standard specimen.
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3.2 Exploration Data Analysis
For regression prediction problems, correlation analysis between independent and dependent

variables is always essential [69]. Fig. 8 shows the analysis results of the correlation between the
variables ρ, Vp, Is50, and UCS. There is a positive correlation between the input variables and the output
parameter UCS, as can be seen in the last line of Fig. 8, where the values of the Pearson correlation
coefficient between ρ, Vp, Is50, and UCS are 0.53, 0.53, and 0.54, respectively. Moreover, the correlation
between independent variables shows lower values, which indicates that the input variables used in
this paper for the prediction model development are reasonable and feasible. Additionally, the data
distribution of each parameter is illustrated through violin plots, as shown in Fig. 9, where the values
of ρ, Vp, Is50, and UCS are evenly distributed.

Figure 8: Correlation analysis between input and output variables
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Figure 9: Violin plot of variables

Furthermore, to balance the quantity of training and testing datasets, half of the randomly selected
field data and data acquired from the literature were used as training data (86 sets of data), while the
remaining field data were used as testing data (20 sets of data). The final ratio between the training
and testing data is approximately 8:2.

Simultaneously, all data were normalized prior to model training due to the different magnitudes
of the variables. The standardization process was as follows:

x∗ = x − μ

σ
(21)

where x is the input variables; μ and σ are the mean value and standard deviation of each variable
parameter.

4 Evaluation Indexes

The performance of all hybrid models was evaluated using four evaluation indices: root mean
square error (RMSE), mean absolute error (MAE), R2, and A-20. Typically, lower values of RMSE
and MAE indicate a better model, suggesting that the model’s predictions are closer to the actual
values. Conversely, a larger R2 value signifies a more robust model, with a maximum value of 1. The
value of A-20 equals the proportion of samples where the mean absolute percentage error between the
predicted and actual values is less than 20 percent, as shown in Eq. (25). A larger A-20 value indicates
more accurate model predictions.

RMSE =
√

1
M

∑M

i=1

(
yi − y′

i

)2
(22)
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MAE = 1
M

∑M

i=1

∣∣yi − y
′
i

∣∣ (23)

R2 = 1 −
∑M

i=1

(
yi − y′

i

)2∑M

i=1 (yi − y)
2

(24)

A − 20 = count
M

count = ∑
(errors < 20)

errors =
∣∣∣∣yi − y′

i

yi

∣∣∣∣ × 100

(25)

where yi, y′
i , and y are the target value, prediction result, and the average of all the target values,

respectively; M is the number of the dataset. errors is the mean absolute percentage error between
the predicted value and the actual value.

5 Development of the Prediction Models

This study used boosting-based ML algorithms, including AdaBoost, GBoost, and XGBoost, to
predict rock UCS. In addition, four optimization approaches, BOA, ABC, GWO, and WOA, were
employed to determine the best parameters for all boosting models, ensuring prediction accuracy. The
hybrid models were then tested on testing data, providing the optimal rock UCS prediction model.
Fig. 10 depicts the flowchart for hybrid model construction.

5.1 Development of the AdaBoost Model
For the AdaBoost method, the default parameters for regression problems include the base

estimator, the number of estimators, the learning rate, and the loss function. The number of estimators
and the learning rate were the optimization parameters. However, the base estimator and the loss
function were set to their default values (CART decision tree and linear loss function). Additionally,
the population size values for the ABC, GWO, and WOA optimization algorithms ranged from 10 to
50, with 5-unit intervals, and the total number of iterations was 100.

To obtain the optimal hyperparameters of the AdaBoost model, the R2 and RMSE values of
different AdaBoost hybrid models during training were summarized, as shown in Figs. 11 and 12.
Fig. 11 shows the R2 values R2 for four hybrid models trained under different population sizes.
The AdaBoost-GWO and AdaBoost-WOA models achieved the highest R2 values at population
sizes of 15 and 40, respectively. The AdaBoost-ABC model performed equally well at population
sizes of 40 and 45 but converged faster at 40. The AdaBoost-BOA model was also trained with
the same number of iterations, as shown in Fig. 11d. Moreover, the RMSE values for all hybrid
models were calculated, and the results are presented in Fig. 12. Based on these results, the optimal
hyperparameters of the AdaBoost model using the four optimization algorithms are listed in Table 2.
The corresponding prediction performances of the four optimized hybrid models on training and
testing datasets are displayed in Fig. 13. The bars with solid color filling indicate the prediction
capabilities of the hybrid models on training data, while the bars with slash-filling represent the model
prediction performance on testing data. The AdaBoost-ABC and AdaBoost-GWO models exhibited
the most robust prediction abilities, with the highest R2 and A-20 values (0.60 and 0.85), and the lowest
RMSE and MAE values (11.45 MPa and 10.30 MPa, respectively) on the testing datasets. Therefore,
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the optimal parameters of the AdaBoost method were determined based on the ABC and GWO
optimization algorithms, with the best learning rate being 0.197 and the optimal number of estimators
rounded to 6.

Figure 10: Schematic of the overall framework for rock UCS prediction

(a) AdaBoost-ABC                       (b) AdaBoost-GWO 

Figure 11: (Continued)
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(c) AdaBoost-WOA                     (d) AdaBoost-BOA 

Figure 11: Fitness values of R2 of the AdaBoost model using four optimization methods, ABC, GWO,
WOA, and BOA, respectively

(a) AdaBoost-ABC                       (b) AdaBoost-GWO 

(c) AdaBoost-WOA                     (d) AdaBoost-BOA 

Figure 12: Fitness values of RMSE of the AdaBoost model using four optimization methods, ABC,
GWO, WOA, and BOA, respectively
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Table 2: Hyperparameters of the AdaBoost model using four optimization algorithms

Hybrid models Hyperparameters

Learning rate (1e-4∼1) Number of estimators (1∼200)

AdaBoost-ABC 0.1973 6.47
AdaBoost-GWO 0.1978 6.15
AdaBoost-WOA 0.1974 11.59
AdaBoost-BOA 0.1978 14.72

Figure 13: Comparison results of the prediction performance of the AdaBoost hybrid models

5.2 Development of the GBoost Model
Compared to the AdaBoost model, the GBoost model required fine-tuning of more hyper-

parameters, including the learning rate, the number of estimators, maximum decision tree depth,
minimum sample split node, and minimum sample leaf node. Similarly, the training process and
the corresponding results of R2 and RMSE for all the hybrid GBoost models were obtained. From
Figs. 14 and 15, it was evident that the hybrid models GBoost-ABC, GBoost-GWO, and GBoost-
WOA achieved satisfactory results in terms of R2 and RMSE at the population sizes of 45, 30, and
20, respectively. The GBoost-BOA model also yielded better results with the increase in iterations.
Subsequently, four different sets of hyperparameters for the GBoost model were obtained. The
prediction capabilities of the four optimized hybrid models were comprehensively analyzed, as shown
in Fig. 16. It could be seen that the R2 results R2 for all the optimized hybrid models on the training
data were excellent, especially for the hybrid models GBoost-GWO and GBoost-WOA, where the
values of R2 were almost equal to 1. However, combined with the results of the other two indicators,
RMSE and MAE, it was found that the hybrid models GBoost-GWO and GBoost-WOA showed poor
generalization performance on the testing data. The hybrid models GBoost-ABC and GBoost-BOA,
on the contrary, performed well on the training datasets and obtained comparable results on the testing
datasets. Moreover, as shown in Fig. 16, the overall performance of the hybrid model GBoost-BOA
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was superior to that of GBoost-ABC. The RMSE and MAE results for the hybrid model GBoost-
BOA were lower than those for GBoost-ABC on the testing datasets. Therefore, the hybrid model
GBoost-BOA was considered the best compared to the other GBoost hybrid models. Table 3 shows
the optimum hyperparameters for the GBoost model using the BOA method.

(a) GBoost-ABC                       (b) GBoost-GWO 

(c) GBoost-WOA                       (d) GBoost-BOA 

Figure 14: Fitness values of R2 of the GBoost model using four optimization methods, ABC, GWO,
WOA, and BOA, respectively

(a) GBoost-ABC                       (b) GBoost-GWO 

Figure 15: (Continued)
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(c) GBoost-WOA                       (d) GBoost-BOA 

Figure 15: Fitness values of RMSE of the GBoost model using four optimization methods, ABC,
GWO, WOA, and BOA, respectively

Figure 16: Comparison results of the prediction performance of the AdaBoost hybrid models

Table 3: The optimum parameters of the GBoost model

Model Hyperparameters Optimal value Search space

GBoost Learning rate 0.49 1e-4∼1
The number of estimators 65 1∼200
Maximum depth of decision trees 15 1∼50
Minimum samples split nodes 20 2∼30
Minimum samples of leaf nodes 24 1∼30



CMES, 2024, vol.140, no.1 295

5.3 Development of the XGBoost Model
Finally, the hyperparameters of the XGBoost method, such as the number of estimators, maxi-

mum decision tree depth, maximum features, tree colsample, regression alpha, and subsample, were
confirmed by using the four optimization methods. Figs. 17 and 18 show the corresponding training
results for the hybrid models. The hybrid models XGBoost-ABC, XGBoost-GWO, and XGBoost-
WOA obtained the best results at 35, 30, and 15 population sizes, respectively. The hybrid model
XGBoost-BOA also performed robustly during the training process. Fig. 19 presents the prediction
performance of each hybrid model on the training and testing datasets. The hybrid model XGBoost-
ABC exhibited the strongest robustness on both training and testing data, with the evaluation index R2

values of 0.98 and 0.93, respectively, on the training and testing datasets. Meanwhile, the RMSE and
MAE values were the lowest on the testing dataset. Thus, the hybrid model XGBoost-ABC was deemed
the best prediction model, with the optimal population size of the ABC optimization method being
35, as shown in Fig. 17a. Table 4 summarizes the hyperparameters of the XGBoost method obtained
through training with the ABC optimization algorithm.

(a) XGBoost-ABC                       (b) XGBoost-GWO 

(c) XGBoost-WOA                       (d) XGBoost-BOA 

Figure 17: Fitness values of R2 of the XGBoost model using four optimization methods, ABC, GWO,
WOA, and BOA, respectively
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(a) XGBoost-ABC                       (b) XGBoost-GWO 

     (c) XGBoost-WOA                       (d) XGBoost-BOA 

Figure 18: Fitness values of RMSE of the XGBoost model using four optimization methods, ABC,
GWO, WOA, and BOA, respectively

Figure 19: Comparison results of the prediction performance of the AdaBoost hybrid models
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Table 4: The optimal parameters of the XGBoost method

Model Hyperparameters Optimal value Search space

XGBoost The number of estimators 168 1∼200
Maximum depth of decision trees 39 1∼50
Maximum features 7 1∼10
Colsample_bytree 1 0∼1
Regression alpha 0.796 0∼1
Subsample 0.493 0∼1

6 Model Prediction Performance Analysis and Discussion

Taylor diagrams [70] were employed to discuss the predictive model’s performance on the training
and testing datasets. In Fig. 20, the markers indicate different models; the radial direction represents
the correlation coefficient; the X-axis indicates the standard deviation, unnormalized; and the green
dotted curves reflect the centered RMSE. The reference point with a black Pentastar indicates the
actual UCS and other markers closer to this point denote better performance. The hybrid AdaBoost
models show poor performance on both training and testing datasets. The hybrid GBoost and
XGBoost models achieve acceptable results on the training datasets. However, hybrid XGBoost models
perform better in the testing stage than GBoost models. In summary, XGBoost-ABC performs best
compared to XGBoost-GWO, XGBoost-WOA, and XGBoost-BOA.

Figure 20: Taylor diagram. (a) Training data, (b) Testing data

Fig. 21 shows the prediction performance comparison of the optimal hybrid model for each
boosting method. The results of the three evaluation indices for AdaBoost-ABC and GBoost-BOA are
0.60, 11.45, and 10.30 MPa; 0.87, 6.59, and 5.25 MPa, respectively. The XGBoost-ABC hybrid model
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achieved the highest R2 = 0.93 and the smallest RMSE and MAE (4.78 MPa and 3.76 MPa). The UCS
prediction results of the hybrid model XGBoost-ABC on the testing dataset are shown in Fig. 22,
where the red solid line represents the model prediction results, and the blue dotted line indicates the
measured values.

Figure 21: The performance comparison of the optimal hybrid model for each boosting method

Figure 22: The prediction results of the hybrid XGBoost-ABC model on the testing dataset

Sensitivity analysis was employed to better understand the intrinsic relationships between the
selected independent variables and rock UCS. The relevancy factor, a commonly used method to
illustrate the sensitivity scale [71,72], was applied in this paper to assess the effect of each variable on
UCS. The greater the absolute value of the relevancy factor between the independent and dependent
variables, the stronger the influence. The calculation process of the sensitivity relevancy factor (SRF)
is as follows:
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SRF =
∣∣∣∣∣∣

∑n

i=1 (xli − xl) × (yi − y)√∑n

i=1 (xli − xl)
2 ∑n

i=1 (yi − y)
2

∣∣∣∣∣∣ (26)

where xl is the mean value of all data for variable l (l includes S/B, H/B, B/D, T/B, Pf, XB, and E); xli

is the i-th value of variable l; n is the number of the variable data; yi and y are the i-th measured value
of variable l and the average value of the prediction results, respectively.

The results showed that the most influential parameter on the UCS is the point load strength index
(Is50) of 1.0, after that is the P-wave velocity (VP) of 0.3, the density (ρ) of 0.03. However, it should be
noted that this importance ranking of all input variables is only for the data used in this study and
cannot be used as a general criterion.

On the other hand, other intelligent algorithms, including random forest and artificial neural
network (ANN), were trained with the same datasets to verify the superiority of the XGBoost-ABC
model. The ANN model structure was 3-7-4-1, i.e., two hidden layers with 7 and 4 neurons, respectively.
The prediction results of the two models are shown in Fig. 23, and the comparison results between the
hybrid model XGBoost-ABC are presented in Table 5. The results demonstrate that the hybrid model
XGBoost-ABC proposed in this paper performs better.

(a)                                 (b) 

Figure 23: Performance of the random forest and ANN models using testing datasets. (a) is the
prediction result of the random forest model, (b) is the prediction result of the ANN model

Table 5: Performance indicators of the predictive models

Predictive models R2 RMSE (MPa) MAE (MPa)

XGBoost-ABC 0.93 4.78 3.76
Random forest 0.88 6.33 5.14
ANN (3-7-4-1) 0.90 5.71 4.73

Based on the findings mentioned above, the proposed model XGBoost-ABC achieved an accept-
able UCS prediction result. Fig. 24 presents the developed Graphical User Interface (GUI), which
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engineers can use as a portable tool to estimate the UCS of rock materials in deep mines. Nevertheless,
it is essential to note that the developed model in this study is designed to address UCS prediction of
rock in deep mining environments with three parameters: rock density, P-wave velocity, and point load
strength.

Figure 24: GUI for the prediction of rock UCS

7 Conclusions and Limitations

In this research, a total of 106 samples are employed to investigate the mechanical properties
of rocks in underground mines. Among them, 40 sets of data are taken from a deep lead-zinc mine
in Southwest China, which can be regarded as a valuable database for investigating the mechanical
properties of rocks in deep underground engineering. Three boosting-based models and four opti-
mization algorithms are implemented to develop intelligent models for rock UCS prediction based on
the established dataset. Based on the comparison results, it was found that the proposed hybrid model
XGBoost-ABC exhibited superior prediction performance compared to the other models, with the
highest R2 values of 0.98 and 0.93, smallest RMSE values of 3.11 MPa and 4.78 MPa, and the smallest
MAE values of 2.23 MPa and 3.76 MPa on the training and testing datasets, respectively.

Overall, the proposed hybrid model achieves promising prediction accuracy on the data presented
in this study. However, it is suggested that the model be fine-tuned on other datasets to ensure model
prediction accuracy. In addition, more real-world data can be supplemented to enhance the robustness
of the model. Finally, other physical and mechanical parameters can also be considered to develop rock
strength prediction models in the future.
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