
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2024.046467

ARTICLE

MPI/OpenMP-Based Parallel Solver for Imprint Forming Simulation

Yang Li1, Jiangping Xu1,*, Yun Liu1, Wen Zhong2,* and Fei Wang3

1School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212016, China
2School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
3Shenyang Mint Company Limited, Shenyang, 110092, China

*Corresponding Authors: Jiangping Xu. Email: jiangpingxu@ujs.edu.cn; Wen Zhong. Email: eqzhong@126.com

Received: 02 October 2023 Accepted: 10 January 2024 Published: 16 April 2024

ABSTRACT

In this research, we present the pure open multi-processing (OpenMP), pure message passing interface (MPI),
and hybrid MPI/OpenMP parallel solvers within the dynamic explicit central difference algorithm for the coining
process to address the challenge of capturing fine relief features of approximately 50 microns. Achieving such
precision demands the utilization of at least 7 million tetrahedron elements, surpassing the capabilities of traditional
serial programs previously developed. To mitigate data races when calculating internal forces, intermediate arrays
are introduced within the OpenMP directive. This helps ensure proper synchronization and avoid conflicts during
parallel execution. Additionally, in the MPI implementation, the coins are partitioned into the desired number of
regions. This division allows for efficient distribution of computational tasks across multiple processes. Numerical
simulation examples are conducted to compare the three solvers with serial programs, evaluating correctness,
acceleration ratio, and parallel efficiency. The results reveal a relative error of approximately 0.3% in forming
force among the parallel and serial solvers, while the predicted insufficient material zones align with experimental
observations. Additionally, speedup ratio and parallel efficiency are assessed for the coining process simulation.
The pure MPI parallel solver achieves a maximum acceleration of 9.5 on a single computer (utilizing 12 cores) and
the hybrid solver exhibits a speedup ratio of 136 in a cluster (using 6 compute nodes and 12 cores per compute
node), showing the strong scalability of the hybrid MPI/OpenMP programming model. This approach effectively
meets the simulation requirements for commemorative coins with intricate relief patterns.

KEYWORDS
Hybrid MPI/OpenMP; parallel computing; MPI; OpenMP; imprint forming

1 Introduction

The field of imprint forming has adopted the numerical simulation method due to the rapid
development of computer technology. For instance, Xu et al. developed a special-purpose simulation
system named CoinForm for the embossing process of commemorative coins and compared it with
the results of Deform-3D software to verify its excellent performance [1]. Zhong et al. extended the
work of Xu et al. to study the mechanism of the flash line of silver commemorative coins by proposing
a novel radial friction work (RFW) model to predict the tendency of flash lines [2]. Li et al. proposed

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2024.046467
https://www.techscience.com/doi/10.32604/cmes.2024.046467
mailto:jiangpingxu@ujs.edu.cn
mailto:eqzhong@126.com

462 CMES, 2024, vol.140, no.1

a multi-point integration-based lock-free hexahedral element for coining simulation in which a new
adaptive subdivision method was applied [3]. The obtained results agreed well with the experiments.
Alexandrino proposed a novel finite element (FE) method to predict and optimize the die stress at the
end of the stroke, aiming to extend the service life of the coining dies [4]. He and his co-workers verified
the feasibility of the finite element method to predict material flow and filling of the intricate reliefs
of coins, and to predict the required coin minting forces before fabricating the actual dies [5]. Afonso
et al. established a bi-material model with a polymer center and a metal ring by using the FE method,
which proved the effectiveness of the mechanical joint resulting from the interface contact pressure
between the polymer and the metal [6]. Peng et al. simulated and analyzed the stress distribution and
material flow in the coining process of single or bi-material with the assistance of Deform-3D, and
analyzed the reason for falling off the inner core of the coin [7]. Almost all finite element programs
used in the above research are based on serial computation, except for Zhong et al. [2] and Li et al. [3]
where open multi-processing (OpenMP) is adopted. Even in the framework of the OpenMP codes,
the data race of calculating internal forces significantly reduces the efficiency of the parallel solver.
Although the professional metal forming software Deform-3D could provide parallel computing, it
limits the number of elements when meshing solid objects, and thus can not satisfy the increasing
requirements for coins with complex tiny features that millions of solid elements are present. In the
present work, parallel programs named CoinFEM for complicated coins are developed for simulating
at least 7 million tetrahedron elements involved in coining modeling.

At present, there are two main parallel programming models, namely distributed memory
processing (DMP) and shared memory processing (SMP) [8]. In the case of DMP, each processor
has its memory and uses message-passing interfaces for communication. The utilization of multiple
address spaces, as in message passing interface (MPI), can enhance portability but can also lead to
increased programming complexity, as stated by [9–11]. On the other hand, in SMP systems, where
several processors share a single address space, programming becomes simpler but portability may
be reduced, as mentioned by [12–15] in the case of OpenMP and Pthreads. The development of
parallel solvers for simulating minting in a single computer has gained significant attention due to
the rapid progress of multi-core technology. As the mint industry is highly confidential, the protection
of newly designed product data is paramount, and implementing simulation procedures in a remote
large-scale cluster poses risks. Therefore, this study investigates parallel technology for carrying out
computations in multi-core computers and local small-scale clusters. Adopting parallel computing
in the coining process offers three key advantages. Firstly, the solver that utilizes the dynamic explicit
central difference algorithm involves a vast number of node and element loops, rendering it suitable for
OpenMP. Secondly, the symmetrical physical structure of commemorative coins allows for partitioning
different regions, making it a viable option for MPI. Finally, multiple computing cores becoming
common for individual and industrial users.

Most high-performance computing (HPC) architectures include multi-core CPU clusters inter-
connected through high-speed networks that support hierarchical memory models, and support
shared memory within a single compute node and distributed memory across different compute
nodes [16–18]. The hybrid MPI/OpenMP parallel programming model combines distributed memory
parallelization on node interconnection and shared memory parallelization within each compute
node. Undoubtedly, at higher parallel core counts, hybrid parallelism has advantages over pure
MPI parallelism or pure OpenMP parallelism. However, the development of numerical analysis for
commemorative coin simulations has been slow due to confidentiality concerns. Therefore, based
on the original commemorative coin dynamic explicit central difference algorithm solver, this paper

CMES, 2024, vol.140, no.1 463

proposes three parallel computing solvers to study the efficiency and accuracy of the mint company,
namely pure MPI, pure OpenMP, and hybrid MPI/OpenMP.

The remaining article is structured in the following manner. Section 2 primarily focuses on
introducing the dynamic explicit central difference finite element method algorithm utilized for
simulating commemorative coins. In Section 3, we discuss the implementation methods of pure MPI,
pure OpenMP, and hybrid MPI/OpenMP modes parallelization for the coining process, with particular
emphasis placed on enhancing parallel efficiency. Section 4 validates the correctness of the parallel
solvers by comparing their results with experimental data and those from serial computations and
also analyzes the speedup ratios of the three parallel schemes. Finally, Section 5 presents a summary
of the findings.

2 Dynamic Explicit Central Difference Algorithm

The process of imprint forming can be considered a quasi-static procedure [1,19,20]. Conse-
quently, we can describe it by using the following governing equation:

σ · ∇ + ρb = ρü + cu̇ (1)

where the boundary conditions are as follows:

(n · σ) |Γt= t̄, u |Γu= ū (2)

Here, σ represents the Cauchy stress, b denotes the body force, ρ indicates the current material
density, u is the displacement, u̇ stands for the velocity, ü represents the acceleration, c is for the
damping coefficient, Γt and Γu denote the traction boundary and displacement boundary, respectively.
Moreover, t̄ signifies the traction acting on Γt, and ū represents the displacement constraint on Γu.
Additionally, n refers to the elemental outward normal of boundary Γt.

By introducing virtual displacement δu, the weak form of the motion equation, Eq. (1), could be
obtained by the weighted residual method, integration by part and divergence theorem,∫

�

ρüiδuid� +
∫

�

cu̇iδuid� +
∫

�

σijδui,jd� −
∫

�

ρbiδuid� −
∫

Γt

t̄iδuidΓ = 0 (3)

where i and j indicate the components of the spatial variables following the Einstein summation
convention.

In this research, the dynamic explicit central difference algorithm for imprint forming is based on
the second-order tetrahedral elements, where each element has ten tetrahedral nodes. The expressions
of its shape functions are given as

r1 = 1 − r − s − t, r2 = r, r3 = s, r4 = t (4)

where r, s and t are the local coordinates of any point in one elemental region. Thus, the expressions
for the interpolation shape functions are given as

N1 = r1 (2r1 − 1), N2 = r2 (2r2 − 1), N3 = r3 (2r3 − 1), N4 = r4 (2r4 − 1), N5 = 4r1r2,

N6 = 4r2r3, N7 = 4r3r1, N8 = 4r1r4, N9 = 4r2r4, N10 = 4r3r4 (5)

The matrix format of the elemental shape function is written as

N = [IN1, IN2, IN3, IN4, · · · , IN10] (6)

where I is an identity matrix of 3 × 3.

464 CMES, 2024, vol.140, no.1

The strain gradient matrix is expressed as

B = LN (7)

where the strain gradient operator is written as

LT =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

∂

∂y
0

∂

∂z

0
∂

∂y
0

∂

∂x
∂

∂z
0

0 0
∂

∂z
0

∂

∂y
∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

The strain vector is expressed as

ε = (
εx, εy, εz, εxy, εyz, εzx

)T = Bu (9)

The coordinate x, displacement u, velocity u̇ and acceleration ü of any point in the element can be
obtained by interpolation of shape function N⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = [x1, x2, x3]
T = Nxe

u = [u1, u2, u3]
T = Nue

u̇ = [u̇1, u̇2, u̇3]
T = Nu̇e

ü = [ü1, ü2, ü3]
T = Nüe

(10)

where xe, ue, u̇e, üe are the coordinate, displacement, velocity and acceleration of each node of an
element e. For example, the coordinate vector xe can be written as

xe = (
xT

1 , xT
2 , · · · , xT

10

)T
, xi = (xi, yi, zi)

T (11)

There are similar expressions for interpolating the other physical quantities of the point (r, s, t).

By inserting Eqs. (6)–(10) into the formula for the virtual work principle (Eq. (3)), the resulting
equation is∫

�

ρNTNd�Ü+
∫

�

cNTNd�U̇ =
∫

�

NTbd� −
∫

�

BTσd� (12)

where

M =
∫

�

ρNTNd�, C =
∫

�

cNTNd�, P =
∫

�

NTbd�, F =
∫

�

BTσd� (13)

Finally, we rewrite Eq. (12) as

MÜ + CU̇ = P − F (14)

where P and F are the external and internal forces, respectively. Ü and U̇ are the global matrices
nodal velocity and acceleration. In the dynamic explicit integration algorithm, a lumped mass matrix
is employed, where M is a diagonal matrix, and the damping matrix C is taken as αM, with α typically
set to 0.1.

Consequently, the momentum equation (Eq. (14)) is decoupled using the lumped mass matrix and
can be explicitly solved by solving the following equation:

CMES, 2024, vol.140, no.1 465

miü + αmiu̇ = Pi − Fi (15)

where mi represents the nodal mass.

Eq. (15) is usually solved by the central difference algorithm. Suppose that the state at time t is n,
the physical quantities at time t and before time t are known. Define t−
t, t−
t/2, t+
t and t+
t/2
as states n − 1, n − 1/2, n + 1 and n + 1/2, respectively. Assume that the increments of the two-time
steps before and after time t are different, that is,
t �=
tn−1. Let β =
tn/
tn−1. The velocity and
acceleration obtained by the central difference method are as follows:

u̇n = β

1 + β
u̇n+1/2 + 1

1 + β
u̇n−1/2 (16)

ün = 2
(1 + β)
tn−1

(
u̇n+1/2 − u̇n−1/2

)
(17)

The displacement at time t +
t can be updated by the following equation:

un+1 = un + u̇n+1/2 ·
tn (18)

Substituting Eqs. (16) and (17) into Eq. (15), we can get

u̇n+1/2 = Bi

Ai

u̇n−1/2 + 1
Ai

Gn (19)

where

Ai = 2mi + αβmi
tn−1

(1 + β)
tn−1

, Bi = 2mi − αmi
tn−1

(1 + β)
tn−1

, Gn = Pn − Fn (20)

Finally, we rewrite Eq. (19) as

u̇n+1/2 = 2 − α
tn−1

2 + αβ
tn−1

u̇n−1/2 + (1 + β)
tn−1

(2 + αβ
tn−1) mi

(Pn − Fn) (21)

Eqs. (18) and (21) offer explicit calculation formats for nodal displacement and velocity when the
displacement and velocity from the previous two steps are known. In the initial step, direct utilization
of Eqs. (18) and (21) is not feasible due to the unknown velocity u̇n−1/2 at the time t −
t/2. However,
the initial conditions for displacement and velocity before the start of the coining process are typically
known, namely

u0 = 0, u̇0 = 0 (22)

Letting
t0 =
t0−1, that is, β = 1. From the above initial velocity conditions Eqs. (22) and (16),
the velocity vector at 0 − 1/2 time can be obtained as

u̇0−1/2 = −u̇0+1/2 (23)

Substituting Eq. (23) into Eq. (19), we can get the calculation expression for nodal velocity in the
first incremental step as

u̇0+1/2 =
t0

2mi

(P0 − F0) (24)

After applying the central difference algorithm, the explicit Eq. (15) is solved to obtain the
velocities of each node. The geometrical shape of the workpiece is then updated based on this solution.

466 CMES, 2024, vol.140, no.1

At each time step, various factors such as internal force, friction force, contact force, velocity, and
displacement of each node, as well as stress and strain of each element and material response history,
are updated through nodal and elemental loop calculations. These calculations are numerous, making
the algorithm ideal for parallel OpenMP computing. Additionally, the initial workpiece’s symmetric
geometry allows for MPI partitioning.

To ensure the stability of calculations, it is crucial to limit the size of the time increment step
t
because of the conditional stability of the central difference algorithm. The time increment step size
that meets the stability condition can be estimated by approximating the minimum travel time of the
expansion wave over any element.

t � γ
Le

n

c
(25)

where γ denotes the reduction factor, taking value of 0.5∼0.8; c is the propagation speed of expansion
wave in the material, defined as c = √

E/ρ, with E being the elastic modulus and ρ as the current
material density; Le

n is the nominal length of the element e at the time step tn. Specifically for tetrahedral
elements, the minimum nominal length of the element can be characterized as the minimum distance
from the four nodes of the element to its corresponding face.

3 Parallel Programming for Coining
3.1 MPI Parallel Programming Technology

MPI is a library for message passing, which facilitates communication and coordination between
multiple processes in a distributed memory system. This enables parallel computing and offers a
range of functions and syntax for programming parallel programs [21–23]. In this work, the parallel
solver utilizes MPICH (a freely available, portable implementation of MPI) to configure the MPI
environment, and uses blocking communication mode for data transmission. The basic idea of the
MPI parallel algorithm for the coining process is as follows.

Initially, all processes commence by invoking the MPI initialization function, and each process
acquires a unique identifier for distinguishing among other processes. Then, the elements of the target
workpiece are divided into np equal parts according to certain rules of load balance (where np is the
number of cores specified by the user). Due to its symmetrical geometry, the initial workpiece can be
easily divided into any divisions with an almost equal number of elements. The partitioned graphic is
shown in Fig. 1.

Secondly, the physical information of each workpiece’s elements (including element connectivity
and node coordinates) within each subdomain is transmitted to its corresponding core. This establishes
a one-to-one mapping between cores and subdomains and allows for the construction of boundary
connections between different cores. For instance, if we consider a model with 6.5 million elements,
Table 1 lists the element numbers found in the relevant cores.

Finally, each subdomain completes a series of calculations, including the computation of nodal
internal and frictional forces, contact determination for each workpiece node, updates to node
information (e.g., coordinates and speed), updates to stress and strain in each subdomain’s elements,
determination of time step, and output of results. The specific steps involved in the MPI parallel cal-
culation for the imprint-forming solver are presented in Fig. 2. The functions performed by each used
core, which include reading input data, initializing, calculating, and outputting, are the same, as shown
in Fig. 2. Additionally, during the partitioning process, adjacent elements are separated into different
cores but share the same tetrahedron nodes (The junction of different colors as shown in Fig. 1).

CMES, 2024, vol.140, no.1 467

However, the physical quantity of these nodes should be accumulated by different elements sharing
the same tetrahedron nodes during the calculation. To ensure the physical quantity’s correctness, MPI
parallel data communicating command MPI_Allreduce needs to be added to facilitate communication
between different cores.

(a) (b)

(d) (e)

(c)

(f)

Figure 1: Partition diagram of the workpiece. Panel (a) represents the workpiece without parallel;
Panels (b), (c), (d), (e) and (f) represent the partitions of the workpiece in cases of np = 2, np = 4,
np = 6, np = 8 and np = 10, respectively

Table 1: Element number in each core (np is the number of opened cores)

np Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

1 6534879 – – – – – – –
2 3268734 3266145 – – – – – –
4 1634119 1634615 1633302 1632843 – – – –
6 1104297 1113761 1068607 1063374 1069365 1115475 – –
8 828035 823985 782443 863335 765513 864178 782300 825090

468 CMES, 2024, vol.140, no.1

MPI-Finalize

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

Yes
Output result

No

Core Core 1 Core 2 ……

Judge whether the node contacts

Program end

Stop

MPI_Allreduce

MPI-Finalize

Yes
Output result

MPI-Finalize

Yes
Output result

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

No

Judge whether the node contacts

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

No

Judge whether the node contacts

MPI_Allreduce MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

Program starts

Read mold information
and initialize data

MPI-Init

divide work areas

Read mold information
and initialize data

MPI-Init

divide work areas

Read mold information
and initialize data

MPI-Init

divide work areas

Figure 2: Flow chart of MPI parallel computing for coining simulation. MPI_Allreduce is used for
message passing between different cores

Assume that the number of MPI processes is np, and the numbers of elements and nodes of the
workpiece after the partition are ni and pi, respectively (the numbers of ni and pi of each process are
different). In this research, the number of nodes per tetrahedron element takes the value of nk = 10
and the dimension of the physical problem takes the value ndim = 3, then the degree of freedom of
each element takes the value of ndof = nk · ndim. The array Map(ndof) maps the local degrees of freedom
in an element into the corresponding global degrees of freedom. Identify all nodes necessitating
communication, totaling nchange, and store these nodes in Pindex1 which holds the global node numbering
of the communication tetrahedron nodes. The sizes of F, Fchange and FchangeT are pi · ndim, nchange · ndim and
nchange · ndim, respectively. F local is an array with the size of ndof that temporarily stores the internal forces
of a single element. The pseudo-code of the MPI parallel process for calculating the internal forces of
elemental nodes is illustrated in Algorithm 1.

CMES, 2024, vol.140, no.1 469

Algorithm 1: MPI parallel algorithm for solving internal forces
1: Fchange = 0d0
2: ndof = nk · ndim

3: for i = 1, ni do �Loop through all elements of the process.
4: F local

(
1 : ndof

) = BTσ
5: for j = 1, ndof do �Loop through ndof freedoms of an element.
6: ii = Map(j)
7: F(ii) = F(ii) + F local(j)
8: end for
9: end for
10: for i = 1, nchange ·ndim do �Loop through all communication tetrahedron nodes.
11: j = Pindex1 (i)
12: if (Whether node j is in this process) then
13: Fchange (i) = F (j)
14: endif
15: end for
16: FchangeT = Fchange �Backup Fchange for MPI_Allreduce.
17: call MPI_Allreduce (FchangeT , Fchange, nchange · ndim, MPI_REAL8, MPI_SUM, NCOMM,ierr)
18: for i = 1, nchange ·ndim do �Loop through all communication tetrahedron nodes.
19: j = Pindex1 (i)
20: if (Whether node j is in this process) then
21: F (j) = Fchange (i)
22: endif
23: end for

Excessive communication can negatively impact parallel efficiency; therefore, optimizing com-
munication between cores is necessary once result accuracy is guaranteed [24]. In this study, the
communication balance is maintained because each core boundary has a similar number of elements,
as shown in Fig. 1.

3.2 OpenMP Parallel Programming Technology
The OpenMP parallel is a programming interface designed for parallel programming in shared

memory systems, which operates using a fork-join model. Upon encountering an OpenMP directive,
the system generates or awakes a new set of threads to execute tasks in parallel regions. Once all the
threads have completed executing the parallel tasks, the parallel computation terminates, and the main
thread resumes continuous operation while the other threads either sleep or shut down [25–28]. The
Visual Studio 2019 integrated with Intel Fortran 2021 OpenMP environment is used to implement this
parallel solver. Here are some specific concepts of OpenMP parallel programming that can be utilized
for coin simulation.

470 CMES, 2024, vol.140, no.1

Firstly, the OpenMP parallel environment is initialized, which enables the primary thread to
obtain information about the mold and workpiece and initialize the relevant calculation data. Unlike
the MPI parallel algorithm, there is no requirement to partition the workpiece target. Subsequently,
any statement containing loops over tetrahedron nodes or elements can be parallelized by using an
OpenMP directive. This includes calculations for internal forces and friction forces of the nodes,
as well as updates to nodal velocity and coordinates, and elemental stress, strain, equivalent stress,
and equivalent strain. Assume that the number of open threads is nnump, and the element and nodal
numbers of the workpieces are n and p, respectively. The pseudo-code of the OpenMP parallel process
for calculating the internal forces of nodes is shown in Algorithm 2.

Algorithm 2: OpenMP parallel algorithm for solving internal forces
1: ndof = nk · ndim

2: ! $ omp parallel num_threads(nnump) private (i, F local, BT, σ , j, ii, jj, · · ·) shared(n, ndof , Fc, Pindex2,
F, · · ·)

3: ! $ omp do
4: for i = 1, n do �Loop through all elements.
5: F local

(
1 : ndof

) = BTσ
6: for j = 1, ndof do �Loop through ndof freedoms of an element.
7: Fc

(
(i − 1) ndof + j

) = F local (j)
8: end for
9: end for
10: ! $ omp end do
11: ! $ omp do
12: for ii = 1, ndof · n do �Loop through ndof · n.
13: jj = Pindex2 (ii)
14: F(jj) = F(jj) + Fc(ii)
15: end for
16: ! $ omp end do
17: ! $ omp end parallel

In this algorithm, the array F is utilized to store the global nodal internal forces, while Fc is an
intermediate array used to hold the internal forces of the local tetrahedron nodes. The definitions of
nk, ndim, ndof and F local are same as those in Algorithm 1. The sizes of F and Fc are p · ndim and ndof · n,
respectively. Pindex2 is used to map internal forces from Fc to F.

During the internal force-solving loop, the initial calculation of the element loop only acquires
the local node’s internal force, which must be mapped to the corresponding global tetrahedron node.
However, introducing parallelism may cause data race problems because different threads read and
write to the same location in a shared array. Such data races can substantially affect parallel efficiency
[25,29].

To mitigate this type of data race, we have introduced a large intermediate array Fc in parallel
computing, which holds the internal forces of local nodes. Once all the internal forces of local nodes
are calculated and passed into Fc, forces in the intermediate array are mapped back to F. This mapping
can be either parallel or serial, depending on the amount of calculation required, but the impact on
code efficiency can be ignored.

CMES, 2024, vol.140, no.1 471

Finally, the computation moves forward, and the outcome is produced by the main thread. Fig. 3
illustrates the OpenMP parallel computing process used for solving other physical quantities in the
imprint-forming solver.

Yes
Output result

Program starts

Program end

Stop

OpenMP Parallel Code

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

No

Judge whether the
node contacts

Read mold information
and initialize data

Fork the main thread

…

…
Join the thread

Fork the main thread
…

…
Join the thread

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

OpenMP Parallel Code

Figure 3: Chart of OpenMP parallel computing process

3.3 Hybrid MPI/OpenMP Parallel Programming Technology
MPI is highly effective for handling coarse-grained parallelism with minimal overhead, while

OpenMP excels in managing fine-grained parallelism. The MPI parallel computing model, focusing
on pure implementation, provides scalability across multiple compute nodes and eliminates data
placement concerns. Nevertheless, it poses challenges in terms of development, debugging, explicit
communication, and load balancing. On the other hand, the pure OpenMP parallel computing
model enables easy parallelism, low latency, and high bandwidth but is limited to shared memory
machines and single compute nodes [30–33]. Thus, it is evident that both MPI and OpenMP have
their respective limitations. To achieve enhanced acceleration effects, this research introduces a hybrid
MPI/OpenMP parallel computing scheme for the dynamic explicit central difference algorithm. The
hybrid MPI/OpenMP parallel solver leverages multiple compute nodes, allowing communication
between MPI processes within the same node or across different compute nodes. The concrete
implementation of the hybrid MPI/OpenMP parallel solver in this article involves employing OpenMP
parallelism for loop statements while building upon the initial MPI parallel solver. This entails creating
or activating OpenMP threads within the loop section of each MPI process. It is important to note that
the communication between MPI processes does not utilize OpenMP parallelism. For further insights
into the implementation, refer to Sections 3.1 and 3.2, as depicted in Fig. 4.

472 CMES, 2024, vol.140, no.1

MPI-Finalize

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

Yes

Output result

No

Core Core 1 Core 2 ……

Judge whether the node contacts

Program end

Stop

Fork the main thread
…

…
Join the thread

Fork the main thread
…

…
Join the thread

MPI-Finalize

Yes

Output result

MPI-Finalize

Yes

Output result

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

No

Judge whether the node contacts

Fork the main thread
…

…
Join the thread

Fork the main thread
…

…
Join the thread

Calculate nodal internal
forces and frictional forces;
Update speed, coordinates
and other information

Calculate the external
force of the node;
Update speed, coordinates
and other information;
Update element stress,
strain and other information

Whether the
calculated forming force
reaches the given force

No

Judge whether the node contacts

Fork the main thread

…

…
Join the thread

Fork the main thread
…

…
Join the thread

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

Program starts

Read mold information
and initialize data

MPI-Init

divide work areas

Read mold information
and initialize data

MPI-Init

divide work areas

Read mold information
and initialize data

MPI-Init

divide work areas

Figure 4: Chart of hybrid MPI/OpenMP parallel computing process

Assuming the number of MPI processes and OpenMP threads are denoted by np and nnump,
respectively, the algorithm employs the same definitions as those in Algorithm 1 for variables such
as ni, pi, nk, ndim, ndof , nchange, F, F local, Fchange, FchangeT , and Pindex1. Additionally, the definitions of Fc, Pindex2,
and F local remain consistent with those in Algorithm 2. The pseudo-code for the hybrid MPI/OpenMP
parallel process, focused on calculating the internal forces of nodes, is presented in Algorithm 3.

Algorithm 3: Hybrid MPI/OpenMP parallel algorithm for solving internal forces
1: Fchange = 0d0
2: ndof = nk · ndim

(Continued)

CMES, 2024, vol.140, no.1 473

Algorithm 3 (continued)
3: ! $ omp parallel num_threads(nnump) private(i, F local, BT, σ , j, ii, jj, k, kk, · · ·) shared(ni, ndof , Fc,
F, Pindex2, nchange, ndim, Pindex1, Fchange, · · ·)
4: ! $ omp do
5: for i = 1, ni do �Loop through all elements of the process.
6: F local

(
1 : ndof

) = BTσ
7: for j = 1, ndof do � Loop through ndof freedoms of an element.
8: Fc

(
(i − 1) ndof + j

) = F local (j)
9: end for
10: end for
11: ! $ omp end do
12: ! $ omp do
13: for ii = 1, ndof · ni do �Loop through ndof · ni.
14: jj = Pindex2 (ii)
15: F(jj) = F(jj) + Fc(ii)
16: end for
17: ! $ omp end do
18: ! $ omp do
19: for k = 1, nchange ·ndim do �Loop through all communication tetrahedron nodes.
20: kk = Pindex1 (k)

21: if (Whether node kk is in this process) then
22: Fchange (k) = F (kk)

23: endif
24: end for
25: ! $ omp end do
26: ! $ omp end parallel
27: FchangeT = Fchange �Backup Fchange for MPI_Allreduce.
28: call MPI_Allreduce(FchangeT , Fchange, nchange · ndim, MPI_REAL8, MPI_SUM, NCOMM,ierr)
29: ! $ omp parallel num_threads(nnump) private(i, j, · · ·) shared(nchange, ndim, Pindex1, F, Fchange, · · ·)
30: ! $ omp do
31: for i = 1, nchange ·ndim do �Loop through all communication tetrahedron nodes.
32: j = Pindex1 (i)
33: if (Whether node j is in this process) then
34: F (j) = Fchange (i)
35: endif
36: end for
37: ! $ omp end do
38: ! $ omp end parallel

4 Two Examples for Testing Parallel Solvers
4.1 Chinese Zodiac Dog Commemorative Coin

Fig. 5 shows the initial setup of the coining process, wherein the upper die moves downwards at a
constant speed of 6 m/s and has a maximum stroke of 0.6 mm. The lower die and collar are stationary
during the process. The finite element model of the zodiac dog, presented in Fig. 6, includes the upper
die, lower die, collar, and workpiece. The workpiece is formed by extruding 2 mm from a regular circle

474 CMES, 2024, vol.140, no.1

with a radius of 16.35 mm, and it is discretized into 7.46 million tetrahedral elements. The upper die,
lower die, and collar are divided into 300,000, 300,000, and 8218 triangular elements, respectively. The
material of the workpiece is white copper, and its parameters are shown in Table 2. The stress-strain
hardening curve is expressed as

σy = (A + Bε̄nh) (26)

where σy represents the effective stress, ε̄ denotes the effective plastic strain. A and B are the initial
yield stress and strength coefficient, respectively. nh is the hardening index.

vUpper die

Low die

WorkpieceCollar H

L

Collar

Figure 5: Schematic diagram of the imprinting model. The upper die moves down with a constant
velocity of ν = 6 m/s. The lower die and collar stay stationary

(a) (b)

(c) (d)

Figure 6: The zodiac dog finite element model of imprint forming. Discretizations of the upper die (a),
the lower die (b), the collar (c), and the initial workpiece (d)

Table 2: Material parameters utilized for the following examples

Material ρ
(
g/mm3

)
E (GPa) ν A (MPa) B (MPa) nh μ

White
copper

0.0086 106 0.42 96 650 0.59 0.2

Brass 0.0085 100 0.34 140 500 0.21 0.2
Notes: ρ is the density, E is the Young’s modulus, ν is the Poisson’s ratio. μ is the friction coefficient.

CMES, 2024, vol.140, no.1 475

Fig. 7 presents the results of this simulation example, where panels (a) and (b) show the stress of
the coin obtained by using CoinFEM, while panels (c) and (d) display the deformed coin after being
subjected to a 100-ton press force in an experimental setting. The black color observed in panels (c)
and (d) is a consequence of mirror reflection in the flat area. However, if the black color appears in the
regions of reliefs, it signifies insufficient filling of cavities in those areas. As illustrated in panel (a), the
simulated stresses of region A are relatively small. This is caused by the fact that the reliefs in region
A are the highest. Thus, the cavities would be filled at the last stage of the coining process. In this
example, there is not enough material to fill the highest cavities sufficiently that both are captured by
CoinFEM (see region A of the panel (a)) and the experiment (see region D of the panel (c)). Similarly,
other insufficient regions also are found by the numerical and experiment methods (see region B of
panel (a) and C of panel (B)) and the experiment (see region E of panel (c) and region F of panel (d)).

(a) (b)

(c) (d)

50.0

188

325

463

600
� (MPa)

A

B

C

D

E

F

Figure 7: Numerical and experimental simulation results with embossing force of 100 tons. Predicted
stress distributions on the positive side (a) and negative side (b) deformed positive side (c) and negative
side (d) by experiment

4.2 Chinese Zodiac Cow Commemorative Coin
Fig. 8 illustrates the finite element model used for the zodiac cow commemorative coin, com-

prising of the upper die, lower die, collar, and workpiece. During the process, the upper die moves
downwards with a constant velocity of ν = 6 m/s, while the lower die and collar remain stationary.
The stroke of the upper die is set to 0.6 mm. The workpiece is created by extruding a height of 2 mm
through a square, which is discretized into 6.53 million tetrahedral meshes. The upper die, lower die,
and collar are discretized into 244936, 244875, and 4656 triangular elements, respectively. The material
of the workpiece is brass, and its parameters are shown in Table 2.

To evaluate the case of the Chinese zodiac cow commemorative coin, simulations are conducted
using pure MPI, pure OpenMP, and hybrid MPI/OpenMP parallel solvers, and their findings are
compared with the results obtained by the serial solver, whose performance was validated in our
previous publications [1,19,34,35]. The comparison of the forming forces obtained from the three

476 CMES, 2024, vol.140, no.1

solvers is presented in Fig. 9. The serial curve in the figure is used as a reference, which shows
an overall upward trend as the stroke of the upper die increases, reaching a maximum value of
11.0 × 105 N at a stroke of 0.14 mm. Curves of forming forces over the stroke are then plotted in
the cases of parallel calculations. As we can see, the curves of pure MPI, pure OpenMP, and hybrid
MPI/OpenMP closely coincide with the serial one. The maximum relative error of the forming forces
between the parallel solvers and serial solvers is about 0.3%, thereby verifying the correctness of the
parallel codes.

(a) (b)

(c) (d)

Figure 8: The zodiac cow finite element model of imprint forming. Discretizations of the upper die (a),
the lower die (b), the collar (c), and the initial workpiece (d)

0 0.05 0.1 0.15
Punch stroke (mm)

0

2

4

6

8

10

12

Fo
rm

in
g

fo
rc

e
(N

)

10
5

Serial
Pure MPI
Pure OpenMP
Hybrid MPI/OpenMP

Figure 9: Comparison of curves of forming forces predicted by the serial, pure MPI, pure OpenMP,
and hybrid MPI/OpenMP solvers

The stress-strain and Z-displacement distributions from the four solvers are presented in Fig. 10.
The panels (a)–(d) in the first row display the results of effective stress for the serial, pure MPI, pure
OpenMP, and hybrid MPI/OpenMP solvers, respectively. Meanwhile, panels (e)–(h) in the second row
depict the effective plastic strain obtained from the four solvers, respectively. The third row, represented
by panels (i)–(l), illustrates the corresponding displacement in the Z-direction.

CMES, 2024, vol.140, no.1 477

(a) (b)

(e) (f)

50.0

150

250

350

450
� (MPa)

0.002

0.202

0.401

0.601

0.800
�

(c)

(g)

(d)

(h)

(i) (j)

-0.395

-0.266

-0.136

0.006

0.123
(k) (l) U (mm)

Figure 10: Effective stresses of the serial (a), pure MPI (b), pure OpenMP (c), and hybrid MPI/OpenMP
(d), solvers. Effective strains of the serial (e), pure MPI (f), pure OpenMP (g), and hybrid
MPI/OpenMP (h) solvers. Displacement in the Z-direction of the serial (i), pure MPI (j), pure OpenMP
(k), and hybrid MPI/OpenMP (l) solvers

Contour plots illustrating the differences in Z-displacements obtained through three parallel
solving methods, as compared to the serial results, are presented in Fig. 11. The plots in the first
row, panels (a)–(c), depict the displacement differences on the positive side, while panels (e)–(h) in
the second row illustrate the differences on the negative side. These subplots clearly show that the
three solvers produce almost the same effective stresses and strains. Once again, the correctness of the
parallel solvers is verified.

The quality of a parallel algorithm is typically measured by its speedup ratio Sp and parallel
efficiency ep [36] which are defined as follows:

Sp = Ts

Tp

, ep = Sp

Nc

(27)

where Ts is the CPU time taken by a serial program to solve the problem on a single core; Tp is the
computational time from multiple cores (or threads) to solve the same problem by parallel solver; Nc

is the number of cores (or threads) used for the calculation.

All the above simulations in this example are carried out by an Intel i7-10700 processor with 8
cores and 16 threads (named Computer 1), and an Intel Xeon Silver 4310 processor with 12 cores and
24 threads (named Computer 2). The computational CPU times over cores/threads obtained by the
two parallel solvers with the two different computers are plotted in Fig. 12. With the increasing of

478 CMES, 2024, vol.140, no.1

cores/threads, all CPU times in panels (a) and (b) tend to decrease faster initially, and then converge to
a steady computational time even with the maximum cores/threads adopted. According to Eq. (27), the
performances of pure MPI and pure OpenMP on two computers are compared, as shown in Fig. 13.

(a) (b)

(d) (e)

(c)

(f)

-0.0078

-0.0042

 0.0005

 0.0031

 0.0068
U (mm)

-0.0086

-0.0046

 0.0006

 0.0033

 0.0073
U (mm)

-0.0086

-0.0047

 0.0008

 0.0031

 0.0070
U (mm)

-0.0078

-0.0042

 0.0005

 0.0031

 0.0068
U (mm)

-0.0086

-0.0046

 0.0006

 0.0033

 0.0073
U (mm)

-0.0086

-0.0047

 0.0008

 0.0031

 0.0070
U (mm)

Figure 11: Displacement differences of the pure MPI (a), pure OpenMP (b), and hybrid MPI/OpenMP
(c) solvers on the positive side of the coin. Displacement differences of the pure MPI (d), pure OpenMP
(e), and hybrid MPI/OpenMP (f) solvers on the negative side of the coin

(b)

0 2 4 6 8 10 12 14 16 20 24
0
5

10
15
20
25
30
35
40
45

50
MPI
OpenMP

C
om

pu
ta

tio
na

l t
im

e
(h

)

Number of used cores/threads in Compute 1 Number of used cores/threads in Compute 2

C
om

pu
ta

tio
na

l t
im

e
(h

)

(a)

0
5

10
15
20
25
30
35
40
45
50
55

0 2 4 6 8 10 12 14 16 20 24

MPI
OpenMP

Figure 12: The CPU times consumed by MPI and OpenMP parallel solvers with Computer 1 (a), and
Computer 2 (b)

According to Fig. 13, we can observe the influence of different computer performances on the
serial/parallel solvers. When the same solver is adopted to solve the same example in serial mode, the
time required by Computer 1 is 10%–15% less than that of Computer 2 (detailed CPU calculation
times in serial cases are not listed). In parallel mode, the parallel performance of Computer 2 is always
better than that of Computer 1 regardless of which parallel scheme is used. In panel (a) of Fig. 13,
the speedup ratios of the two computers in MPI mode are both better than those in OpenMP mode.

CMES, 2024, vol.140, no.1 479

Moreover, the Computer 2 processor performs better than the Computer 1 processor in both parallel
modes. We also notice that the parallel efficiency of MPI illustrated in panel (b) is less than 100%. This
is due to the communication time between different cores and the uneven distribution of calculation
load among cores. In the case of OpenMP, the main reason for parallel efficiency less than 100% is the
occurrence of data races between different threads.

Number of cores/threads
E

ff
ic

ie
nc

y
(%

)
Number of cores/threads

1

2

3

4

5

6

7

8

9

10

Sp
ee

du
p

(a) (b)

2 4 6 8 10 12 14 16 20 240 18 22

Compute 1-MPI
Compute 1-OpenMP
Compute 2-MPI
Compute 2-OpenMP

30

40

50

60

70

80

90

100

20
2 4 6 8 10 12 14 16 20 240 18 22

Compute 1-MPI
Compute 1-OpenMP
Compute 2-MPI
Compute 2-OpenMP

Figure 13: Comparison of speedup ratio (a) and parallel efficiency (b) of two different computers

4.3 Testing of Hybrid MPI/OpenMP Solver
For testing the hybrid parallel solver, we utilize the Tianhe-2 cluster, which offers high-

performance computing capability. The compute nodes in this cluster are equipped with Intel Xeon
E5-2692 CPUs, each containing 24 threads.

In this cluster, we have implemented the hybrid solver for both the Chinese zodiac dog com-
memorative coin (referred to as Example 1) discussed in Section 4.1, and the Chinese zodiac cow
commemorative coin (referred to as Example 2) examined in Section 4.2. Since the correctness of the
parallel solver has already been verified in the previous section, we will now focus on showcasing the
parallel efficiency of the hybrid solver. Fig. 14 presents the acceleration ratio and parallel efficiency
achieved by Example 1 and Example 2 using the hybrid MPI/OpenMP parallel solver in the cluster.

(a) (b)

0 24 48 72 96 120 144 160
0

20

40

60

80

100

120

140

Example 1
Example 2

Number of parallel threads

Sp
ee

du
p

24 44 72 96 120 144 160
50

60

70

80

90

100

Example 1
Example 2

Number of parallel threads

E
ff

ic
ie

nc
y

(%
)

Figure 14: Comparison of speedup ratio (a) and parallel efficiency (b) of two examples in the cluster

480 CMES, 2024, vol.140, no.1

Based on the observations from Fig. 14, it is evident that the speedup ratio of the hybrid
MPI/OpenMP parallel solver exhibits a linear increase, while the parallel efficiency fluctuates within a
specific range. These results indicate that the hybrid MPI/OpenMP parallel solver possesses favorable
scalability. Notably, Example 1 achieves a maximum acceleration ratio of 136 when utilizing 144 par-
allel cores, further highlighting the effectiveness of the hybrid MPI/OpenMP approach. Furthermore,
from Fig. 14, we can also observe that the acceleration effect of Example 1 is better than that of
Example 2, mainly for two reasons. First, because the partitioning method used for parallel regions
in the text cannot achieve complete load balance in a meaningful sense, the symmetry of the physical
structure of Example 1 is better than that of Example 2, resulting in better performance of the former’s
partitions. Second, the number of tetrahedral elements in Example 1 is 7.46 million, while in Example
2, it is 6.53 million. Thus, the former case requires more computational power, leading to better parallel
performance.

5 Conclusions

The goal of this study is to address the challenge of prolonged simulation times associated with the
intricate relief patterns found in traditional serial programs for commemorative coins. To tackle this
issue, we parallelize a dynamic explicit finite element solver designed for simulating commemorative
coins within both a single computer and a computer cluster environment. We develop parallel
algorithm solvers utilizing pure MPI, pure OpenMP, and hybrid MPI/OpenMP approaches to replicate
the coining process. Implementation examples are carried out on a single computer with multiple
cores/threads using pure MPI and pure OpenMP parallel environments. Additionally, simulations are
also performed on the Tianhe-2 cluster with multiple cores using hybrid MPI/OpenMP environments.
This research focuses on addressing the following five key points:

• The CoinFEM programs for commemorative coining simulation incorporate three parallel
schemes: pure MPI, pure OpenMP, and hybrid MPI/OpenMP, to enhance its performance. The
correctness of the parallel solvers is verified by comparing the obtained results with the serial
results and experimental data using the same finite element model.

• During testing on a single computer environment, the pure MPI and pure OpenMP parallel
solvers exhibit notable speedup ratios. Specifically, on the Intel i7-10700 hardware configura-
tion, the pure MPI parallel solver achieves a speedup ratio of 6, while the pure OpenMP parallel
solver achieves a speedup ratio of 3.5. On the other hand, when utilizing the Intel Xeon Silver
4310 hardware configuration, the pure MPI parallel solver achieves a speedup ratio of 9.5, while
the pure OpenMP parallel solver achieves a speedup ratio of 5.7. These results demonstrate
the effectiveness of both pure MPI and pure OpenMP parallelization techniques in improving
computational efficiency on different hardware configurations.

• When employing the hybrid MPI/OpenMP parallel solver for testing purposes in clusters,
remarkable acceleration ratios are achieved for the two examples. Specifically, Example 1
achieves an acceleration ratio of 136, while Example 2 achieves an acceleration ratio of 88. These
significant acceleration ratios demonstrate the capability of the hybrid MPI/OpenMP parallel
solver to meet the simulation requirements for accurately capturing intricate relief patterns on
commemorative coins.

• The pure MPI parallel algorithm is highly suitable for parallelizing the dynamic explicit codes
of the imprint forming solver, leading to reduced resource wastage and improved computing
efficiency, especially on a single computer. In comparison, the pure OpenMP parallel algorithm
may not provide the same level of efficiency. The hybrid MPI/OpenMP parallel algorithms

CMES, 2024, vol.140, no.1 481

exhibit a fluctuating parallel efficiency within a certain range, while the acceleration ratio shows
a consistent linear improvement. These results provide evidence of the good scalability and
effectiveness of the parallel algorithm.

Acknowledgement: We thank anonymous reviewers and journal editors for assistance. We also appre-
ciate the financial assistance provided by the funding agencies.

Funding Statement: This work was supported by the fund from Shenyang Mint Company Limited (No.
20220056), Senior Talent Foundation of Jiangsu University (No. 19JDG022) and Taizhou City Double
Innovation and Entrepreneurship Talent Program (No. Taizhou Human Resources Office [2022]
No. 22).

Author Contributions: YL (Yang Li) performed all of the modelings, collected the research literature
and wrote the draft. JX was responsible for organizing and finalizing the paper. YL (Yun Liu)
performed simulations and made figures. WZ and FW provided experiment data and suggestions.
All the authors discussed the results and contributed to the final paper.

Availability of Data and Materials: All data included in this study are available upon request by
contacting the corresponding author.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper. The
authors also declare that they do not have any financial interests/personal relationships, which may be
considered as potential competing interests.

References
1. Xu, J., Liu, Y., Li, S., Wu, S. (2008). Fast analysis system for embossing process simulation

of commemorative coin-coinform. Computer Modeling in Engineering & Sciences, 38(3), 201–215.
https://doi.org/10.3970/cmes.2008.038.201

2. Zhong, W., Liu, Y., Hu, Y., Li, S., Lai, M. (2012). Research on the mechanism of flash line
defect in coining. The International Journal of Advanced Manufacturing Technology, 63, 939–953.
https://doi.org/10.1007/s00170-012-3952-3

3. Li, Q., Zhong, W., Liu, Y., Zhang, Z. (2017). A new locking-free hexahedral element with adaptive
subdivision for explicit coining simulation. International Journal of Mechanical Sciences, 128, 105–115.
https://doi.org/10.1016/j.ijmecsci.2017.04.017

4. Alexandrino, P., Leitão, P. J., Alves, L. M., Martins, P. (2018). Finite element design procedure for correcting
the coining die profiles. Manufacturing Review, 5, 3. https://doi.org/10.1051/mfreview/2018007

5. Alexandrino, P., Leitão, P. J., Alves, L. M., Martins, P. (2017). Numerical and experimental analysis of coin
minting. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and
Applications, 233(5), 842–849. https://doi.org/10.1177/1464420717709833

6. Afonso, R. M., Alexandrino, P., Silva, F. M., Leitão, P. J., Alves, L. M. et al. (2019). A new type of bi-material
coin. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,
233(12), 2358–2367. https://doi.org/10.1177/0954405419840566

7. Peng, Y., Xu, J., Wang, Y. (2022). Predictions of stress distribution and material flow in
coining process for bi-material commemorative coin. Materials Research Express, 9(6), 066505.
https://doi.org/10.1088/2053-1591/ac7515

https://doi.org/10.3970/cmes.2008.038.201
https://doi.org/10.1007/s00170-012-3952-3
https://doi.org/10.1016/j.ijmecsci.2017.04.017
https://doi.org/10.1051/mfreview/2018007
https://doi.org/10.1177/1464420717709833
https://doi.org/10.1177/0954405419840566
https://doi.org/10.1088/2053-1591/ac7515

482 CMES, 2024, vol.140, no.1

8. Bova, S. W., Breshears, C. P., Gabb, H., Kuhn, B., Magro, B. et al. (2001). Parallel programming
with message passing and directives. Computing in Science and Engineering, 3(5), 22–37. https://doi.org/
10.1109/5992.947105

9. Witkowski, T., Ling, S., Praetorius, S., Voigt, A. (2015). Software concepts and numerical algorithms for
a scalable adaptive parallel finite element method. Advances in Computational Mathematics, vol. 41, pp.
1145–1177. https://doi.org/10.1007/s10444-015-9405-4

10. Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J. et al. (2004). Open MPI: Goals, concept,
and design of a next generation MPI implementation. In: Lecture notes in computer science, vol. 3241, pp.
97–104. Budapest, Hungary. https://doi.org/10.1007/978-3-540-30218-6_19

11. Devietti, J., Lucia, B., Ceze, L., Oskin, M. (2010). DMP: Deterministic shared-memory multiprocessing.
Institute of Electrical and Electronics Engineers Micro, 30(1), 40–49. https://doi.org/10.1109/MM.2010.14

12. Dagum, L., Menon, R. (1998). OpenMP: An industry standard API for shared-memory programming.
Institute of Electrical and Electronics Engineers Computational Science and Engineering, 5(1), 46–55.
https://doi.org/10.1109/99.660313

13. Sato, M. (2002). OpenMP: Parallel programming API for shared memory multiprocessors and on-chip
multiprocessors. Proceedings of the 15th International Symposium on System Synthesis, pp. 109–111. Kyoto,
Japan. https://doi.org/10.1145/581199.581224

14. Pantalé, O. (2005). Parallelization of an object-oriented FEM dynamics code: Influence of the
strategies on the speedup. Advances in Engineering Software, 36(6), 361–373. https://doi.org/10.1016/
j.advengsoft.2005.01.003

15. Fialko, S. (2021). Parallel finite element solver for multi-core computers with shared memory. Computers
and Mathematics with Applications, 94, 1–14. https://doi.org/10.1016/j.camwa.2021.04.013

16. Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L. et al. (2011). High performance com-
puting using MPI and OpenMP on multi-core parallel systems. Parallel Computing, 37(9), 562–575.
https://doi.org/10.1016/j.parco.2011.02.002

17. Song, K., Liu, P., Liu, D. (2021). Implementing delay multiply and sum beamformer on a hybrid CPU-GPU
platform for medical ultrasound imaging using OpenMP and CUDA. Computer Modeling in Engineering &
Sciences, 128(3), 1133–1150. https://doi.org/10.32604/cmes.2021.016008

18. Khaleghzadeh, H., Fahad, M., Shahid, A., Manumachu, R. R., Lastovetsky, A. (2020). Bi-objective
optimization of data-parallel applications on heterogeneous HPC platforms for performance and energy
through workload distribution. IEEE Transactions on Parallel and Distributed Systems, 32(3), 543–560.
https://doi.org/10.1109/TPDS.2020.3027338

19. Xu, J., Chen, X., Zhong, W., Wang, F., Zhang, X. (2021). An improved material point method for
coining simulation. International Journal of Mechanical Sciences, 196, 106258. https://doi.org/10.1016/
j.ijmecsci.2020.106258

20. Kawka, M., Olejnik, L., Rosochowski, A., Sunaga, H., Makinouchi, A. (2001). Simulation of wrinkling in
sheet metal forming. Journal of Materials Processing Technology, 109(3), 283–289. https://doi.org/10.1016/
S0924-0136(00)00813-X

21. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P. (2000). A portable programming interface for
performance evaluation on modern processors. The International Journal of High Performance Computing
Applications, 14(3), 189–204. https://doi.org/10.1177/109434200001400303

22. Nielsen, F. (2016). Introduction to MPI: The message passing interface. In: Introduction to HPC with MPI
for data science, pp. 21–62. Switzerland: Springer Cham. https://doi.org/10.1007/978-3-319-21903-5_2

23. Sairabanu, J., Babu, M., Kar, A., Basu, A. (2016). A survey of performance analysis tools for OpenMP and
MPI. Indian Journal of Science and Technology, 9(43), 1–7. https://doi.org/10.17485/ijst/2016/v9i43/91712

https://doi.org/10.1109/5992.947105
https://doi.org/10.1007/s10444-015-9405-4
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1109/MM.2010.14
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/581199.581224
https://doi.org/10.1016/j.advengsoft.2005.01.003
https://doi.org/10.1016/j.camwa.2021.04.013
https://doi.org/10.1016/j.parco.2011.02.002
https://doi.org/10.32604/cmes.2021.016008
https://doi.org/10.1109/TPDS.2020.3027338
https://doi.org/10.1016/j.ijmecsci.2020.106258
https://doi.org/10.1016/S0924-0136(00)00813-X
https://doi.org/10.1177/109434200001400303
https://doi.org/10.1007/978-3-319-21903-5_2
https://doi.org/10.17485/ijst/2016/v9i43/91712

CMES, 2024, vol.140, no.1 483

24. Zhang, R., Xiao, L., Yan, B., Wei, B., Zhou, Y. et al. (2019). A source code analysis method
with parallel acceleration for mining MPI application communication counts. 2019 IEEE 21st
International Conference on High Performance Computing and Communications, Zhangjiajie, China.
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00034

25. Oh, S. E., Hong, J. W. (2017). Parallelization of a finite element fortran code using OpenMP library.
Advances in Engineering Software, 104, 28–37. https://doi.org/10.1016/j.advengsoft.2016.11.004

26. Ayub, M. A., Onik, Z. A., Smith, S. (2019). Parallelized RSA algorithm: An analysis with per-
formance evaluation using OpenMP library in high performance computing environment. 2019 22nd
International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh.
https://doi.org/10.1109/ICCIT48885.2019.9038275

27. Sefidgar, S. M. H., Firoozjaee, A. R., Dehestani, M. (2021). Parallelization of torsion finite ele-
ment code using compressed stiffness matrix algorithm. Engineering with Computers, 37, 2439–2455.
https://doi.org/10.1007/s00366-020-00952-w

28. Zhang, H., Liu, Y., Liu, L., Lai, X., Liu, Q. et al. (2022). Implementation of OpenMP parallelization of
rate-dependent ceramic peridynamic model. Computer Modeling in Engineering & Sciences, 133(1), 195–
217. https://doi.org/10.32604/cmes.2022.020495

29. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D. H., Laguna, I. et al. (2016). ARCHER: Effectively
spotting data races in large OpenMP applications. 2016 Institute of Electrical and Electronics Engineers
International Parallel and Distributed Processing Symposium (IPDPS), pp. 53–62. Chicago, IL, USA,
Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/IPDPS.2016.68

30. Sziveri, J., Seale, C., Topping, B. H. V. (2000). An enhanced parallel sub-domain generation method for mesh
partitioning in parallel finite element analysis. International Journal for Numerical Methods in Engineering,
47(10), 1773–1800.

31. Jiao, Y. Y., Zhao, Q., Wang, L., Huang, G. H., Tan, F. (2019). A hybrid MPI/OpenMP parallel comput-
ing model for spherical discontinuous deformation analysis. Computers and Geotechnics, 106, 217–227.
https://doi.org/10.1016/j.compgeo.2018.11.004

32. Guo, X., Lange, M., Gorman, G., Mitchell, L., Weiland, M. (2015). Developing a scalable hybrid
MPI/OpenMP unstructured finite element model. Computers & Fluids, 110, 227–234. https://doi.org/
10.1016/j.compfluid.2014.09.007

33. Velarde Martínez, A. (2022). Parallelization of array method with hybrid programming: OpenMP and MPI.
Applied Sciences, 12(15), 7706. https://doi.org/10.3390/app12157706

34. Xu, J., Khan, K., El Sayed, T. (2013). A novel method to alleviate flash-line defects in coining process.
Precision Engineering, 37(2), 389–398. https://doi.org/10.1016/j.precisioneng.2012.11.001

35. Li, J., Yan, T., Wang, Q., Xu, J., Wang, F. (2023). Isogeometric analysis based investigation on material
filling of coin cavities. AIP Advances, 13(3), 035311. https://doi.org/10.1063/5.0139826

36. Jarzebski, P., Wisniewski, K., Taylor, R. L. (2015). On parallelization of the loop over elements in FEAP.
Computational Mechanics, 56(1), 77–86. https://doi.org/10.1007/s00466-015-1156-z

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00034
https://doi.org/10.1016/j.advengsoft.2016.11.004
https://doi.org/10.1109/ICCIT48885.2019.9038275
https://doi.org/10.1007/s00366-020-00952-w
https://doi.org/10.32604/cmes.2022.020495
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1016/j.compgeo.2018.11.004
https://doi.org/10.1016/j.compfluid.2014.09.007
https://doi.org/10.3390/app12157706
https://doi.org/10.1016/j.precisioneng.2012.11.001
https://doi.org/10.1063/5.0139826
https://doi.org/10.1007/s00466-015-1156-z

	MPI/OpenMP-Based Parallel Solver for Imprint Forming Simulation
	1 Introduction
	2 Dynamic Explicit Central Difference Algorithm
	3 Parallel Programming for Coining
	4 Two Examples for Testing Parallel Solvers
	5 Conclusions
	References

