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ABSTRACT

Web application fingerprint recognition is an effective security technology designed to identify and classify web
applications, thereby enhancing the detection of potential threats and attacks. Traditional fingerprint recognition
methods, which rely on preannotated feature matching, face inherent limitations due to the ever-evolving nature
and diverse landscape of web applications. In response to these challenges, this work proposes an innovative web
application fingerprint recognition method founded on clustering techniques. The method involves extensive data
collection from the Tranco List, employing adjusted feature selection built upon Wappalyzer and noise reduction
through truncated SVD dimensionality reduction. The core of the methodology lies in the application of the
unsupervised OPTICS clustering algorithm, eliminating the need for preannotated labels. By transforming web
applications into feature vectors and leveraging clustering algorithms, our approach accurately categorizes diverse
web applications, providing comprehensive and precise fingerprint recognition. The experimental results, which are
obtained on a dataset featuring various web application types, affirm the efficacy of the method, demonstrating its
ability to achieve high accuracy and broad coverage. This novel approach not only distinguishes between different
web application types effectively but also demonstrates superiority in terms of classification accuracy and coverage,
offering a robust solution to the challenges of web application fingerprint recognition.
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1 Introduction

Internet technology has rapidly advanced, leading to a surge of online users and the creation
of numerous websites [1]. The accessibility of various tools, such as open-source and paid website-
building program templates and content management systems (CMSs), has facilitated the process
of website creation and maintenance. Most source recording device identification models for web
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media forensics are based on a single feature to complete the identification task and often have the
disadvantages of long time and poor accuracy [2]. However, this increased ease of website development
has also introduced security risks. Vulnerabilities in web application components can impact all
websites that utilize them [3]. Exploiting such vulnerabilities poses a significant threat to internet
security, allowing attackers to target multiple websites simultaneously [4,5]. Thus, ensuring web
application security is crucial, as effective measures are required to mitigate potential risks.

Web application fingerprint recognition serves as a pivotal security technology for identifying
and classifying web applications by analysing their distinctive characteristics [6,7]. These character-
istics encompass key information such as the application version, framework, backend technology,
and application components, providing unique fingerprints for each target web application. These
fingerprints can assist security testers and evaluators in comprehending the technical architecture and
vulnerabilities of target applications [8].

The significance of web application fingerprint recognition lies in its ability to enhance the
security and performance of applications by helping developers and security researchers understand
their infrastructure, components, and technical architecture [9]. During security testing, fingerprint
recognition facilitates the collection of information, accurate evaluation of target application security,
and identification of vulnerabilities and weaknesses [10]. For enterprises and organizations, web
application fingerprint recognition plays a crucial role in understanding their IT infrastructure,
modelling assets, and addressing vulnerabilities promptly. The system can promptly alert stakeholders
upon detecting high-risk vulnerabilities within specific components, thereby reducing the attack
surface and mitigating the risk of data breaches and hacker attacks [11].

Existing web application fingerprint identification methods can be divided into two primary
categories: supervised learning-based methods and unsupervised learning-based methods [12]. Super-
vised learning requires a labeled training dataset, making it challenging to adapt to the updates of
web applications and the emergence of new frameworks. Wappalyzer, while capable of obtaining
classification labels, faces difficulties when handling niches or emerging web applications. In contrast,
unsupervised learning methods, particularly clustering, offer the advantage of classifying and identi-
fying web applications without requiring manually premarked fingerprint information.

This study addresses the limitations of traditional fingerprint recognition methods and proposes
a novel web application fingerprint recognition method based on clustering algorithms. Leveraging
the Tranco List dataset, the feature selection process is modified based on Wappalyzer, truncated
SVD is applied for dimensionality reduction, and the OPTICS clustering algorithm is employed as
the core approach. The benefits of the proposed method include its adaptability to updates, ability to
cover niches and emerging web applications, and elimination of the need for predefined fingerprint
characteristics. In subsequent sections, our method’s step-by-step process is detailed, experiments are
conducted on a diverse dataset, and the effectiveness and superiority of our proposed approach are
validated. The results demonstrate the accurate classification of different types of web applications,
indicating high classification accuracy and coverage.

2 Related Work

Web application fingerprint recognition is an active research field, and many related studies have
been conducted. This is reflected mainly in the field of open-source projects and academic fields [13].
The specific relevant studies are summarized as follows.



CMES, 2024, vol.140, no.1 889

2.1 Web Application Fingerprint Recognition Open-Source Projects
Several open-source projects use web application fingerprint recognition technology to analyse

and collect feature information from target web services, such as Wappalyzer and WhatWeb. Wappa-
lyzer [8,14] is a regular expression-based tool that identifies web application fingerprints of a single
URL. It sends an HTTP request to a specified URI, obtains the response header and body, and
matches them with fingerprint rules. Wappalyzer can detect various types of web applications, such
as CMSs and e-commerce systems; bulletin boards; JavaScript frameworks; host panels; analytics
and statistical tools; and other web components. Web [15] recognizes web technologies, including
content management systems (CMSs), blogging platforms, statistical/analytics packages, JavaScript
libraries, web servers, and embedded devices. WhatWeb has more than 1800 plugins, each to recognize
something different. The web also identifies version numbers, email addresses, account IDs, web
framework modules, SQL errors, etc.

Existing open-source projects in web application fingerprint recognition, such as Wappalyzer and
WhatWeb, primarily rely on rule-based detection mechanisms. While effective at identifying diverse
web applications, these approaches may encounter limitations in adapting to emerging frameworks
or handling complex, evolving web structures. This highlights the need for more robust and flexible
methods to overcome the shortcomings of rule-based systems.

2.2 Web Application Fingerprint Recognition Methods
There is also ongoing research on web application fingerprint recognition in academia. A common

method is to identify a web application by analysing key information in the application as features.
For example, Kozina et al. [16] proposed a method based on the URL and feature fields in web
source code. Dresen et al. [17] used image file metadata, CSS style attributes, JavaScript functions, and
variables as web application features and constructed a decision tree from the collected feature vectors
for web application detection. Marquardt et al. [18] reported that web application classification can
also be performed based on web page XPath features. By integrating the hash value and XPath path
information of resource files, they could detect minor version information of web applications with up
to 95% accuracy. In addition to analysing the HTTP information of web applications, there are also
several active detection methods for web application fingerprint recognition. Bongard [19] tried to
identify web applications through their different image parsers. Yan et al. [20] proposed a method
that used specially constructed requests to obtain erroneous information from web applications.
Gunalan et al. [21] proposed an enhanced ATM security system using radio frequency identification
(RFID), facial recognition, fingerprint authorization, and web development.

Within academic research, current methods for web application fingerprint recognition often
centre around analysing specific features within applications [22]. However, these methods may face
challenges in adapting to the dynamic nature of web technologies, potentially leading to inaccuracies or
limited coverage. To address these issues, this work introduces a novel approach based on the OPTICS
clustering method. OPTICS offers advantages in handling complex, evolving web structures and
ensuring accurate and adaptable web application fingerprint recognition. The experimental results,
as discussed in the methods and experimental sections, showcase OPTICS’ effectiveness in achieving
precise clustering and, consequently, accurate web application classification.

3 Method Description

In this work, an unsupervised learning method based on clustering algorithms is proposed to
achieve web application fingerprint recognition. The process of the proposed method is illustrated in
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Fig. 1. In detail, the website data is collected, preprocessed, and analysed using automated methods
to obtain features suitable for web application classification. Then, we try to find a machine learning-
based method to classify the web applications used by the websites based on their features.

Figure 1: Algorithm flow

3.1 Dataset Description
The Tranco List is used as our dataset source. For its theory and advantages, please refer to

reference [23]. The latest standard website ranking list is obtained from the Tranco List, which contains
one million websites. To construct a representative collection of websites, we apply the following rules
to select the websites:

S = {1, 2, 3, . . . , 10000} ∪ {N − 9999, N − 9998, . . . , N} ∪ {a1, a2, . . . , a10000} (1)

where N = 1000000 and a1, a2, . . . , a10000 are indices of ten thousand randomly selected data samples
from the middle. These specific ranking domains are selected and the websites are randomly selected
to ensure that our dataset covers different ranking ranges and types of websites. This sampling
strategy helps us obtain diverse and representative website samples, making our research results more
comprehensive and reliable.

Python’s Selenium library is used to collect data from web pages. A Chrome browser is controlled
and operated with a Python script to simulate the behaviour of real users. The advantage of using
Selenium for data collection is that it can automatically browse and access target web pages, obtain
page content, and extract the necessary information. In this way, we can obtain a large-scale web
application dataset that provides enough samples for subsequent feature extraction and clustering
analysis.

However, Selenium does not allow us to access HTTP headers, web page loading resources, or
other content. Therefore, a proxy layer is added between Selenium and web pages are added to perform
a man-in-the-middle attack (MITM), and relevant data is obtained.

The browsermob proxy library is used in Python to access the proxy server and set it as the proxy
option for the chrome driver, intercepting all network requests from selenium. The contents recorded
during the data collection process are shown in Table 1. In the table, the data collection records and
the corresponding data formats are presented.

Table 1: Data collection records

Data collection records Data format

Cookies List, Attribute name: Value
Web source code Text, HTML

(Continued)
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Table 1 (continued)

Data collection records Data format

Window object for Javascript List, Attribute name
Request response header information List, Attribute name: Value
Web resources List, URL: HASH2

3.2 Feature Selection
Several principles are followed when selecting web application features. (1) The features should

be relevant to web application fingerprint recognition, meaning that they can capture important
information from different web applications. (2) The features should be distinctive, meaning that they
can be used to effectively differentiate different web applications and achieve accurate classification
and recognition. (3) The features should be informative, meaning that they can provide rich and useful
information for clustering or classification. (4) The features should be interpretable, meaning that
they have clear meanings and explanations, making it easy to analyse and understand the clustering or
classification results. (5) The features should be computable, meaning that they can be easily calculated
and processed. (6) The features should be stable, meaning that they are consistent across different
datasets and environments, ensuring the stability and generalizability of the model. Considering these
principles comprehensively, the appropriate web application features are chosen to achieve accurate
and effective classification, recognition, and analysis. The open-source tool Wappalyzer and the related
research work mentioned in Section 2 are referred to in the process of feature selection.

Wappalyzer mainly uses key field features for web application recognition. These key field features
include key fields in response headers, key fields in resource file paths (such as default icon names, key
fields in JavaScript file paths, and JavaScript file names), and key fields in HTML source code (such
as comment content and attribute content of meta tags). Based on the data collected in the previous
section, a series of features are tried to extract from the collected data for web application recognition.
It is noted that each website cookie consists of a series of key-value pairs. Since cookies are mostly
used to identify a specific user, The cookie value information is not used. When extracting features,
only the cookie name is retained in the feature vector. For the properties of the JavaScript window
object, a property list is obtained in the previous section. Here, the property name is directly used as
the feature.

The headers of HTTP requests also consist of a series of key-value pairs. Here, the data pairs
composed of attribute names and corresponding values are used as features. For requesting resource
files, the URL and MD5 value of the file are recorded in the previous section.

The file URL is used as a feature, but the protocol and domain name are removed and only their
path features are retained, as shown in Fig. 2. For the MD5 value of the file, a separate feature vector
is used and the MD5 value is directly used as the feature. For the web source code, the XPath paths of
all nodes are used in HTML as features, following the concept of XPath paths mentioned in reference
[24] and the work of Marquardt et al. mentioned in reference [18]. LXML is used to load web page
data into Python, obtain all nodes of the web page, and obtain the XPath path of each node. LXML
is a powerful web data parsing library in Python that supports the parsing of HTML and XML and
has a fast parsing speed and good performance.
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Figure 2: Feature extraction of URLs

Moreover, inspired by the work of Kozina et al. [16] and considering that different web applications
may have different information settings for page elements, the class and id attribute values are also
extracted from the web source code as features. To obtain class and id information from web pages, the
Beautiful Soup library is used. The Beautiful Soup is a common HTML parsing library in Python that
can easily extract data from HTML documents. Using the Beautiful Soup library, HTML documents
are loaded into Python and use the find_all method to find all elements with specific class or id attribute
values and further process these elements to obtain the required information. The bag-of-words model
[25] is used as a reference for setting the feature vectors. The bag-of-words model is a common text
representation method. The text is treated as an unordered collection of words, and the frequency or
weight of each word in the text is counted. The steps are as follows: (1) Glossary building: All the words
are collected from the dataset, and a glossary is constructed. Each word in the glossary is a dimension
of the feature vector; (2) Feature extraction: For each sample, the frequency or weight of each word
in the glossary is counted. (3) Feature vector representation: Represents the feature extraction results
of each sample as a feature vector. The dimension of the feature vector is the same as the number of
words in the glossary, and each dimension corresponds to one word.

Unlike text analysis with bag-of-words vectors, the frequency or weight of a feature is not
considered in a single data point. For the problem, the number of feature occurrences does not matter.
We only consider whether a feature exists. As shown in Fig. 3, a set of feature words is obtained for
each feature. This allows us to obtain a feature vector for each feature similar to the bag-of-words
model. When extracting feature vectors, a minimum document frequency threshold (MIN-DF) is set
to filter out features that have little impact on web application classification or cannot be recognized by
our algorithm. The feature vectors are normalized to avoid the influence of their length on the results.
Eight feature vectors are obtained from Table 2, and are concatenated into one vector for further
dimensionality reduction and clustering.

Figure 3: Example of feature vector generation for class features
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Table 2: Eigenvectors

Feature type Feature vector

Cookies Cookie name
JavaScript window object properties Attribute name
HTTP request headers Attribute name: Attribute value
Request resource file URL File path characteristics
Request resource file MD5 value MD5 value
Web page source code XPath path XPath path
Web page source code class attribute value Class attribute value
Web page source code id attribute value ID attribute value

3.3 Feature Dimensionality Reduction
Two dimensionality reduction algorithms, namely, truncated SVD and t-SNE, are used to process

the data. First, truncated SVD is used to reduce the dimensionality of feature vectors, transform high-
dimensional data into low-dimensional data, and reduce noise and complexity while preserving most
of the information. The data feature dimension is reduced to 50. Then, t-SNE is used to visualize the
data in two-dimensional space to better understand the distribution of the data. The t-SNE algorithm
can solve the crowding problem by rearranging the positions of data points in low-dimensional space,
facilitating the separation and identification of data points for clustering analysis. This work provides
a foundation and support for subsequent clustering analysis.

Truncated SVD is chosen for dimensionality reduction because it is an unsupervised, simple,
and easy-to-set method. It also performs better than other methods in preserving information and
reducing noise. T-SNE for data visualization is used because it can solve the crowding problem,
which is important for clustering analysis. Although t-SNE may lose some information compared
to truncated SVD, it can also make the results easier to cluster and interpret. For example, when the
Euclidean distance between data points is very large, t-SNE creates representations where the global
distance between these data point groups is reduced.

3.4 Cluster Analysis
After constructing feature vectors for web application fingerprint recognition, suitable clustering

algorithms need to be selected to group similar websites into the same cluster. In this study, the K-
means [26] and OPTICS [27] clustering algorithms are compared.

First, the K-means algorithm (Algorithm 1) is used due to it is fast and simple characteristics.
In detail, for each iteration, the distance di between sample xi and each cluster centre Ck needs to be
calculated, sample xi needs to be assigned to the nearest cluster centre, and its cluster label si needs to
be updated. The sum of the distances is defined as follows:

D =
K∑

k=1

∑
xi∈ck

|xi − Ck|2 (2)

However, the K-means algorithm requires us to specify the number of clusters, which is difficult
to determine for unlabelled data. To solve this problem, the K value is adjusted and the contour
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coefficients are compared to determine the optimal number of clusters. The initialization of the
centroids is considered, which may affect the final clustering result. The initial centroids multiple times
are randomized, the K-means algorithm is run, and the best clustering result is chosen.

Algorithm 1: K-means algorithm
Input: Dataset X , Number of Clusters K.
Output: Cluster center C, cluster labels.
1: Initialization: Randomly select K samples from dataset X as the initial clustering center C;
2:
3: while not converging do
4: for each sample xi do
5: Calculate the distance di between sample xi and each cluster center;
6: Assign sample xi to the nearest cluster center and update its cluster label si;
7: end for
8: for Each cluster k do
9: Update the cluster center to the mean of all samples in the cluster:
10: C[k] = mean(X [labels == k]);
11: end for
12: end while
13: return Cluster center C and cluster label labels.

Second, the OPTICS algorithm (Algorithm 2) is used because it can discover cluster structures
of any shape and size without specifying the number of clusters in advance. The OPTICS algorithm
calculates the reachability distance by calculating the reachability distance and core distance, which
can reveal the density connectivity between data points and analyse and identify clusters and outliers.
In detail, the core distance is defined as follows:

Dcore(P) =
{

UNDEFINED if N(P) ≤ MinPts

DMinPtsthinN(P) else
(3)

where N(P) is the number of neighbourhood points of P. The reachability distance is defined as
follows:

Dreach(O, P) =
{

UNDEFINED if N(P) ≤ MinPts

max(Dcore(P), D(O, P)) else
(4)

This approach gives the OPTICS algorithm advantages in handling uncertain cluster numbers and
discovering complex cluster structures.

Algorithm 2: OPTICS algorithm
Input: Dataset X , neighbourhood radius eps, minimum density min_Pts.
Output: reachability, core_distance, cluster labels;
1: Initialization: reachability is infinite, core_distance is undefined, and cluster labels are unclassified;
2: for Each unreachable sample p in dataset X do
3: Mark sample p as accessed;
4: Obtain the sample set within the neighbourhood of p: N = get_neighbourhood(p, eps);
5: if |N| < min_pts then

(Continued)
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Algorithm 2 (continued)
6: Mark sample p as noise point;
7: end if
8: Calculate the core distance of sample p: core_distance;
9: Add sample p to the cluster;
10: for each sample q in N do
11: if sample q not accessed then
12: mark sample q as accessed;
13: Obtain the sample set within the neighbourhood of sample q:
14: N ′ = get_neighbourhood(q, eps);
15: if |N ′| >= min_pts then
16: Set the core distance of sample q to: max(core_distance, dist(p, q);
17: end if
18: end if
19: end for
20: end for
21: return Cluster center C and cluster label labels.

However, the hierarchical clustering algorithm is not used, which is also a common clustering
method because it has several drawbacks. First, this approach does not require us to specify the number
or size of clusters, but this also makes interpreting the clustering results highly subjective. Second, it
is difficult to analyse and evaluate the results of hierarchical clustering, as it does not provide any
objective criteria or measures. Therefore, other clustering methods are preferred that can provide
clearer and more reliable results.

3.5 Results Evaluation
Since lack of the actual labels of the clusters, the majority voting method is used to infer the

actual labels from the reference labels. The pseudocode of the algorithm for clustering label speculation
based on majority voting is shown in Algorithm 3. The inputs are cluster labels, and the outputs are
predicted labels. Speculative labels are used to compute the true positives (TPs), false-positives (FPs),
false-negatives (FNs), and true negatives (TNs) [28]. Then, suitable evaluation metrics (precision and
recall) [29] are applied to measure the accuracy and effectiveness of the proposed method. Precision
refers to the percentage of samples that the model predicts to be positive but are actually positive.
Precision is used to measure the accuracy of the model, i.e., how many of the samples predicted to be
positive are actually positive. The calculation formula for precision is as follows:

Precision = TP
TP + FP

(5)

In addition, recall refers to the proportion of samples that are actually positive and are predicted
to be positive by the model. Recall is used to measure the integrity of the model, i.e., how many of the
samples that are actually positive are successfully predicted to be positive. The formula for calculating
the recall is as follows:

Recall = TP
TP + FN

(6)
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Algorithm 3: Clustering label speculation based on majority voting
Input: Cluster label list: cluster_labels, list of reference labels: reference_labels;
Output: List of predicted labels: predicted_labels;
1: Initialization: predicted_labels = [];
2: for each cluster in cluster_labels do
3: reference_labels_cluster ← [reference_labels[i]foriincluster];
4: majority_label ← FindMajorityLabel(reference_labels_cluster);
5: for Data points in clustering do
6: predicted_labels[datapoint] ← majority_label;
7: end for
8: end for
9: return predicted_labels.

3.6 Alternative Methods
In this section, a theoretical alternative method is proposed for collecting and extracting data

without relying on the HTTP body. Instead, the HTTP header is used and various malformed
requests are sent to the site using the original HTTP client. The original HTTP client is chosen
because it can easily generate malformed requests for different configurations. For example, the
standard HTTP method (such as GET or POST) can be changed to a nonstandard method (such
as “AAA”), or a nonexistent HTTP version (such as “GET/HTTP/99”) or a very long path (such as
“GET/AAAAAAAAAAAAAAA... HTTP/1.1”) can be sent. We assume that different web servers
and frameworks will respond differently to these malformed requests and provide different types of
responses. Then the response data of each request is stored, such as the HTTP status code, the header
name, and the content length. The clustering and dimensionality reduction methods mentioned earlier
are applied to group the collected data.

4 Experimental Results and Analysis
4.1 Experimental Environment

In our experiment, we utilize the Amazon Web Services (AWS) EC2 service to ensure a stable
network connection and efficient data acquisition. AWS EC2 offers scalable computing resources
and robust network performance, aligning perfectly with our requirements for network stability
and throughput. The configuration details of our EC2 instance are outlined in Table 3, featuring
32 vCPUs, 64 GiB of memory, the Ubuntu-Jammy-22.04 operating system, and a network bandwidth
of 12.5 Gbps.

Table 3: EC2 configuration

Attribute Parameter

Region us-east-1 (Virginia)
Operating system Ubuntu-jammy-22.04
Type c6a.8xlarge
vCPU 32
Memory (GiB) 64
Network bandwidth (Gbps) 12.5
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4.2 Analysis by a Wappalyzer
Motivation. In the meticulous configuration of our experiment, careful consideration was given to

setting the durations for the selenium driver (script_timeout and page_load_timeout) at a threshold of
10 s. This delicate equilibrium ensures not only optimal operational efficiency but also accommodates
the typical access speed of websites. The experiment yielded a comprehensive set of results, including
19,127 successful instances, 3802 occurrences of TimeoutException, 402 instances of WebDriverEx-
ception, and 6669 instances of NoEntry/NoValidEntry. It is worth noting that certain domain names
within the Tranco list do not host web services, and various websites impose country and regional
restrictions. Additionally, some websites utilize web application firewalls (WAFs) to hinder data
collection through selenium or AWS network access. These considerations collectively contribute to
the overall validity of our data collection results.

Moving on to feature processing, Table 4 stands as a detailed illustration of the processing
outcomes. Remarkably, after applying MINDF , the sizes of all feature vectors, except for cookies,
consistently fall within the range of 2000 to 4000. This strategic adjustment effectively prevents any
single feature from exerting undue influence on the classification results. Specifically, setting MINDF

thresholds for Cookies, JavaScript Window Object, Headers, File URL, File HASH, XPath, class,
and id results in values of 30, 80, 30, 50, 40, 40, 83, and 43, respectively. Correspondingly, the number
of features for each category is 314, 3188, 2138, 2722, 2291, 3583, 3000, and 2943. This meticulous
feature processing ensures a balanced and informative representation, enhancing the robustness of
our classification model.

Table 4: Feature processing results

Cookies JavaScript window object Headers File URL File HASH XPath class id
MIN_DF 30 80 30 50 40 40 83 43
Number of features 314 3188 2138 2722 2291 3583 3000 2943

Analysis. In the subsequent analysis, the Python Wappalyzer takes center stage as a pivotal tool,
serving as a Python-based implementation of Wappalyzer. Leveraging this tool, we meticulously scruti-
nize the web application fingerprints of the successfully collected website data. This insightful analysis
yields a crucial reference for web application annotation, forming the foundation for subsequent
evaluations of clustering algorithms. A visually intuitive representation of these analysis results is
eloquently presented in Fig. 4.

• Some Common Web Applications. (1) WordPress [30]. An open-source content management
system (CMS) empowering users to create and manage websites, blogs, and online stores.
Renowned for its user-friendly interface and robust features, Wappalyzer identifies a total
of 3880 instances of WordPress (Fig. 5a). (2) Drupal [31]. An open-source CMS enabling
users to build and manage diverse websites and applications. Acknowledged for its power,
flexibility, and scalability, Wappalyzer detects Drupal on 512 websites (Fig. 5b). (3) Shopify [32].
A well-known e-commerce platform facilitating the creation, operation, and growth of online
stores. Identified on 285 websites (Fig. 5c), Shopify offers a suite of tools for professional and
customizable e-commerce websites. (4) Wix [33]. A popular website-building platform allowing
users to create and customize websites without coding skills. Wix is detected on 121 websites
(Fig. 5d) and features an intuitive drag-and-drop editor and rich templates. (5) Magento [34]. A
renowned open-source e-commerce platform empowering users to build powerful and flexible
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online stores. Wappalyzer detects Magento on 68 websites (Fig. 5e), offering features for
personalization and scalability.

• Outliers. A comparative analysis with Wappalyzer results reveals outliers in the context of
Cloudflare (Fig. 6a) and Apache (Fig. 6b). Outliers within Cloudflare are attributed to its
firewall, employing algorithms to detect and intercept potential malicious traffic. Additional
verification and filtering steps, such as human-machine verification or IP address trust eval-
uation, may introduce delays or blocks, manifesting as outliers. This hypothesis is validated
through website visits. Regarding Apache outliers, associated websites are found in a domain
name parking status, presenting challenges in obtaining a clear explanation. These observations
suggest that outliers may arise when features exhibit excessive sparsity. The outliers analysis
underscores the importance of considering specific characteristics of web infrastructure when
interpreting classification results. Understanding the impact of security measures, such as
firewalls, and domain status is crucial in refining and validating the accuracy of web application
classification.

• Special Clusters. Beyond the discussed outliers, an intriguing cluster near outliers emerges
(Fig. 7), labeled as OpenResty 1. An investigation of websites within this cluster reveals predom-
inantly simple web pages. This observation, coupled with the sparse feature values noted in the
previous section, suggests a potential correlation. The identification of the OpenResty cluster
highlights the presence of a distinct web development paradigm, characterized by simplicity
and efficiency. Further exploration of this cluster could provide insights into the preferences
and requirements of web developers utilizing this technology. Additionally, the correlation with
sparse feature values prompts further investigation into the interplay between feature sparsity
and specific web development approaches.

Figure 4: Example of Python Wappalyzer results

In conclusion, this experiment delivers a comprehensive analysis of web applications listed in
Tranco, revealing their distinctive features and behaviors. The detailed examination of common
applications, outliers, and special clusters lays the groundwork for thorough evaluations of subsequent
clustering methodologies. This enriches our collective understanding of the intricate web application
landscape, offering valuable insights for further exploration and refinement in the field of web
development and classification.

1OpenResty is a high-performance web platform based on Nginx, combining Nginx with the Lua programming language for robust web application development and
extension.
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4.3 Analysis of Clusters
Motivation. In our pursuit of effective web application classification, this experiment undertakes

a comparative analysis of two clustering algorithms: K-means and OPTICS. The primary goal is to
assess the suitability of these algorithms for our task and evaluate their outcomes. Notably, the K-
means algorithm, with its requirement for a predefined number of clusters, presents challenges aligning
with our dynamic task objectives. Furthermore, its inclination toward spherical data distribution and
equal cluster sizes has raised concerns, especially given the diverse nature of web applications.

Figure 5: The results of some common web applications
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Figure 6: The results of some common web applications

Figure 7: The special cluster is marked with blue dots, while the remaining dots are marked in red

Analysis. Embarking on a comprehensive exploration of web application clustering, we delve into
the distinctive strengths and limitations of the K-means and OPTICS algorithms. Our discussion
unfolds from the challenges faced by K-means, driven by its preference for spherical data distribu-
tion, to the robust outcomes of OPTICS in handling outliers. This nuanced analysis builds upon
insights gained from the previous experiment, contributing to a more holistic understanding of web
application characteristics. It lays the foundation for informed decisions in subsequent classification
methodologies.

• K-means algorithm results. Employing the contour coefficient method [35], we determine the
optimal clustering parameter for K-means as K = 11. Illustrated in Fig. 8 is the outcome
when setting K = 11 for the K-means algorithm. However, it is crucial to note that K-means
requires a predefined number of clusters, a stipulation that poses challenges in harmony with
our dynamic task objectives. The algorithm’s inclination toward a spherical data distribution
and equal cluster sizes is evident in Fig. 8, attempting to create convex clusters that deviate from
our expectations. Calculating cluster centers and boundaries based on the distance between
data points introduces challenges, especially when faced with noisy data points highlighted
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in Section 4.2. These challenges could potentially impact the accuracy of cluster centers and
boundaries for other data points. In light of these limitations, we conclude that K-means is
unsuitable for our web application classification task. The limitations of K-means underscore
the importance of flexibility in clustering methodologies, especially in the dynamic landscape
of web application classification. The search for alternative algorithms, capable of adapting to
diverse data distributions and noisy environments, becomes imperative for more accurate and
robust clustering outcomes.

• OPTICS algorithm results. Applying the OPTICS algorithm results in the identification of 54
clusters, showcased in Fig. 9. OPTICS excels in mitigating the outlier challenge highlighted in
Section 4.2. The generated clusters exhibit more distinct differences, characterized by minimal
adjacency and no clear boundary space. This positive outcome can be attributed to OPTICS’s
adept handling of clusters with varying densities, prioritizing core points in dense areas and
effectively disregarding data points in sparse regions. The success of OPTICS in handling
varying cluster densities suggests its robustness in real-world scenarios with diverse and complex
data patterns. Further exploration and experimentation with OPTICS could offer valuable
insights into its potential as a go-to algorithm for web application clustering tasks, especially in
the presence of outliers and varied data distributions.

• Clustering evaluation. Given the challenge of ensuring complete accuracy in Wappalyzer’s
results, precision and recall metrics are opted for instead of FMI. Focusing on the OPTICS
clustering results for common web applications, as discussed in Section 4.2, Table 5 provides
insights into the performance metrics, showcasing high precision and recall values for common
applications. Notably, the precision value for Wix stands out as the highest, while Shopify
leads in terms of recall. Examining the details in Table 5, we observe that WordPress and
Drupal exhibit relatively lower recall values, hinting at potential areas for further optimization.
These results prompt considerations for refining the clustering methodology, especially for these
specific applications. The consistently high precision values across all applications signify a
strong ability to correctly identify and categorize instances. The robust precision and recall
values affirm the effectiveness of the OPTICS algorithm in accurately clustering common web
applications. The observed variations in recall values for specific platforms, such as WordPress
and Drupal, underscore the need for continuous optimization. Future endeavors may focus
on enhancing the clustering model’s adaptability to diverse application patterns, ensuring
comprehensive coverage and accuracy in classification outcomes.

In summary, our experiment underscores the limitations of the K-means algorithm in web appli-
cation classification, emphasizing its unsuitability due to rigid assumptions that fail to accommodate
the diverse nature of our dataset. Conversely, OPTICS emerges as a promising alternative, showcasing
effective outlier handling and yielding more coherent and diverse clusters. The precision and recall
metrics further validate the efficacy of OPTICS in accurately classifying common web applications.

4.4 Discussion
Our exploration reveals that the OPTICS clustering algorithm excels in extracting web application

fingerprint features, ensuring accurate and reliable results for web application classification. Notably,
these clustering outcomes remain robust and unaffected by the varying frequency of web applications
in our dataset. This resilience signifies the algorithm’s effectiveness in identifying and clustering web
applications that may appear infrequently.
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Figure 8: K-means algorithm results. Each colour represents the same cluster

Figure 9: OPTICS algorithm results. The black points are the noise points, and the other colours are
the same cluster

Table 5: Clustering results on precision and recall

WordPress Drupal Shopify Wix Magento

Number of occurrences 3880 512 285 121 68
Precision 0.879 0.849 0.938 0.987 0.813
Recall 0.606 0.793 0.947 0.909 0.882

Furthermore, the OPTICS algorithm exhibits proficiency in detecting and appropriately labelling
outliers within our dataset. However, it should be emphasized that the need for additional scrutiny
and attention given to these identified outliers. In future endeavours, enhancing the feature extraction
process by evaluating the complexity of web pages could be a promising avenue. Incorporating metrics
such as the hierarchy of page structures, the depth of nested HTML tags, and the complexity of CSS
styles into the feature set could provide deeper insights into the features and behaviours of clustered
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points. This strategic augmentation can contribute to a more nuanced understanding of the underlying
causes of clustering points, thus refining the overall performance of clustering algorithms.

Moreover, delving into the complexity of web pages allows for the identification of highly specific
web pages, potentially representing emerging web application frameworks or specially designed pages.
Tailoring recognition and classification strategies for these unique web pages could significantly
enhance the accuracy and coverage of web application fingerprint recognition. This holistic approach
aligns with our broader goal of advancing the sophistication and effectiveness of web application
clustering techniques.

5 Conclusion

This work introduces an unsupervised learning approach that utilizes clustering algorithms for
web application fingerprint recognition. Unlike existing methods relying on preannotated fingerprint
features, our proposed approach seeks to overcome limitations tied to feature changes with web
application updates, ensuring adaptability to niches or the latest web application frameworks without
requiring prelabelling information.

The data collection, preprocessing, and feature extraction stages are facilitated using the Selenium
test automation tool. Subsequently, clustering algorithms are applied to group websites sharing similar
features into cohesive clusters. Our results are compared and validated against those of existing
tools, confirming the accuracy and effectiveness of our method. Distinct from traditional supervised
learning, our clustering-based unsupervised approach boasts the following several advantages: it
eliminates the need for prelabelled information and reduces labour costs; it accommodates web
application updates and the emergence of new frameworks; and it achieves a broader coverage range,
encompassing niches and the latest web applications. This study contributes a more flexible, efficient,
and accurate methodology for web application fingerprint recognition.

Acknowledging the inherent limitations and challenges of clustering methods in web application
fingerprint recognition, such as the potential generation of outliers in cases of simple website
structures with insufficiently extracted features, we provide valuable insights. In summary, this study
presents an unsupervised learning methodology for web application fingerprint recognition leveraging
clustering algorithms, offering a novel approach to web application classification and recognition. The
envisaged impact spans information security, network attack and defence, and web application security
assessment, providing more reliable assurances for network security.
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