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ABSTRACT

Early screening of diabetes retinopathy (DR) plays an important role in preventing irreversible blindness. Existing
research has failed to fully explore effective DR lesion information in fundus maps. Besides, traditional attention
schemes have not considered the impact of lesion type differences on grading, resulting in unreasonable extraction
of important lesion features. Therefore, this paper proposes a DR diagnosis scheme that integrates a multi-level
patch attention generator (MPAG) and a lesion localization module (LLM). Firstly, MPAG is used to predict patches
of different sizes and generate a weighted attention map based on the prediction score and the types of lesions
contained in the patches, fully considering the impact of lesion type differences on grading, solving the problem that
the attention maps of lesions cannot be further refined and then adapted to the final DR diagnosis task. Secondly,
the LLM generates a global attention map based on localization. Finally, the weighted attention map and global
attention map are weighted with the fundus map to fully explore effective DR lesion information and increase the
attention of the classification network to lesion details. This paper demonstrates the effectiveness of the proposed
method through extensive experiments on the public DDR dataset, obtaining an accuracy of 0.8064.
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1 Introduction

Diabetic retinopathy (DR) is a microvascular disease and a very common complication of diabetic
eye diseases. It is recognized as one of the main factors that endanger human vision worldwide,
which seriously affects people’s production and life [1,2]. According to the International Clinical
DR Protocol [1,3], DR can be divided into two stages according to the severity: non-proliferative
diabetes retinopathy (NPDR) and proliferative diabetes retinopathy (PDR), These two stages can be
divided into five grades, as shown in Fig. 1, which are no retinopathy (grade 0), mild non-proliferative
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retinopathy (grade 1), moderate retinopathy (grade 2), severe NPDR (grade 3), and proliferative
DR (grade 4). The symptoms and signs of DR at different stages are usually different. For non-
proliferative DR patients, many different DR symptoms can be observed in their retinas, including
micro angioma (MA), hemorrhage (HE), and exudation (EX). For patients with proliferative DR,
retinal damage can promote the growth of new blood vessels. In conclusion, as shown in Table 1, DR
classification usually depends on the number and size of different related pathological manifestations
and complications. Therefore, the different types of lesion features in the fundus map are an important
basis for determining DR grading, and an effective diagnosis scheme for diabetic retinopathy should
reasonably consider the impact of the different types of lesion features in the fundus map on grading
diagnosis.

Figure 1: Diagram of various stages of DR: (a) no retinopathy (grade 0); (b) mild non-proliferative
retinopathy (grade 1); (c) moderate retinopathy (grade 2); (d) severe NPDR (grade 3); (e) proliferative
DR (grade 4)

Table 1: Description of each stage of fundus image

Classification category DR severity Lesions

Grade 0 No DR No visible lesions and abnormalities.
Grade 1 Mild DR Only microaneurysms.
Grade 2 Moderate DR Extensive microaneurysms,

hemorrhages, and hard exudates.
Grade 3 Severe DR Venous abnormalities, massive

bleeding, vein beading, etc.
Grade 4 PDR New blood vessels, preretinal

hemorrhage, etc.

Patients with proliferative DR have a 60% chance of developing severe vision loss within five years
[1]. Regular fundus screening can help detect the condition and reduce the risk of blindness. According
to the World Health Organization’s first World Report on Vision (2019) [3], globally, at least 2.2 billion
people are visually impaired or blind, of which at least 1 billion could have been prevented. One of the
main drivers of this is DR [4,5]. Under the requirements of huge screening tasks, the use of computer-
aided diagnosis algorithms can effectively avoid misdiagnosis, save medical resources, and reduce costs.
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Therefore, this paper proposes a diagnosis method for DR based on a multi-level patch attention
generator and a lesion localization module. The method in this paper consists of three parts: Multi-
level patch attention generator (MPAG) extracts local features for lesion detection, at the same time,
the local features are used to generate attention weights and build a multi-level patch weight attention
map; the Lesion localization module (LLM) can indicate the lesions of the fundus map, and build a
global attention weight map containing lesion localization information; the global network uses global
image features for DR classification diagnosis. In this paper, we construct a weighted lesion map that
gives unbalanced attention to different locations in fundus images through the first two modules and
use it to train a global graded diagnostic network. The weighted lesion map is derived from a fundus
map that integrates global lesion-indicative attention as well as multi-level patch attention. In this way,
there will be more attention to the patches where lesions are present, as well as more severely diseased
patches.

The main contributions of this paper are summarized in the following three points:

• This paper proposed a DR diagnostic framework that fuses a multi-level patch attention
mechanism and a lesion location network, which can not only detect, locate, and indicate
lesion information, but also grade the severity of DR. In this paper, we use a staged Deep
Convolutional Neural Network (DCNN) to learn more complete deep features of fundus
images, integrating global lesion localization attention weights and local multi-level patch
attention weights for global and local scale DR analysis.

• This paper proposed a new multi-level patch attention mechanism, which gives more refined
unbalanced attention to lesion regions of different degrees in patch-level images by grading.
To a certain extent, the submersion of relatively fine lesion information in the fundus map is
avoided, and this unbalanced weighting scheme significantly improves the utilization of lesion
information in the DR grading algorithm.

• This paper proposes for the first time the use of lesion target detection results to adapt to the
grading diagnosis of DR fundus map. The ablation study of each module experimentally proves
the contribution of lesion characteristics to the grading of DR severity. The proposed diagnostic
scheme achieves an accuracy of 0.8064, a kappa value of 0.7420, and an area under the curve
(AUC) value of 0.905 in the test on the DDR dataset.

The rest of this paper is organized as follows: In related work, existing methods for intelligent
diagnosis of DR are investigated. In Methods, the paper presents the proposed method explicitly. In the
experimental section, we introduce the dataset used for the experiments and report the experimental
results and the comparison with the results of existing methods. Finally, conclusions are drawn and
future work is described in the conclusions.

2 Related Work

The research on intelligent diagnosis methods for DR is an important task in the field of medical
image analysis, and many researchers at home and abroad have carried out a lot of related work.

2.1 Traditional DR Assisted Diagnosis
The traditional DR-assisted detection method includes two main steps: one is to extract patholog-

ical features. In traditional methods, pathological features such as vessel area and exudate are mainly
extracted by morphological methods [6,7]; the second is to design Classifiers, such as the use of support
vector machine algorithm (SVM) to classify and diagnose DR [7].
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Although traditional methods can achieve certain results, when faced with huge and diverse data,
the extraction process of lesion features will be an extremely complicated task [8].

2.2 Disease Grading with Lesion Detection
In recent years, deep learning technology has demonstrated its important research value and

application value in the field of medical image analysis [8]. Most of the DR detection methods tend
to use ordinary deep learning models. The Convolutional Neural Network (CNN) architecture [9,10]
is often adopted to directly classify the severity of DR fundus images, and train the network model
through image-level annotation to achieve automatic detection. However, the end-to-end approach
mentioned above only learns from a large amount of image-level annotation data, which cannot
guarantee classification accuracy in the case of imbalanced DR data at all levels and low image
resolution. Therefore, adversarial learning has also been adopted in image classification tasks to
solve the problem of imbalanced data at all levels in DR [11]. Wang et al. [12] proposed a multi-
channel-based generative adversarial network (MGAN) model that can generate a series of sub-
peak images including effective local features. All sub-fundus images were then merged to obtain the
most representative features of the entire fundus image. Zhou et al. [13] proposed a DR generative
adversarial network (DR-GAN) to synthesize high-resolution fundus images that can be manipulated
with arbitrary grade and lesion information. The proposed retinal generator is conditioned on
structure and lesion masks and an adaptive grading vector sampled from the latent grading space,
which can be used to control synthetic grading severity.

Furthermore, in the DR grade classification task, attention mechanisms are widely used to extract
lesion salient regions from fundus images while automatically ignoring irrelevant parts such as non-
lesioned regions and background regions [14,15]. Yang et al. [16] designed a two-stage framework
for lesion detection and DR classification using location annotations including MA, HE, and EX
combined with attention weights. Lin et al. [17] introduced a lesion detection model that first extracts
lesion information, and then uses an attention-based network to fuse raw image and lesion features
to identify DR. Wang et al. [18] proposed a deep learning-based upscaling network to simultaneously
diagnose DR and highlight suspicious areas. Bodapati et al. [19] proposed a composite deep neural
network architecture with a gated attention mechanism for automatic diagnosis of DR. Zhou et al. [20]
introduced a collaborative learning framework to optimize the lesion segmentation model and disease
grading model in an end-to-end manner, and proposed a lesion attention classification module to
improve the accuracy of severity grading. Wu et al. [21] performed segmentation and classification
in parallel. The lesion probability map predicted by the segmentation model and the class activation
map of the weakly supervised classification model are combined for joint diagnosis. Yang et al. [22]
proposed a framework that uses patch-level and image-level annotations synergistically, combined with
an attention mechanism for DR severity classification.

Although most of the above-related DR diagnostic studies performed lesion detection and used an
attention mechanism, the accuracy of DR grading was improved in this way. However, this ignores the
hierarchical refinement of the attention weights for specific regions with multiple lesions, resulting in
some lesions with important indications not paying enough attention in the network while the weights
of some noise backgrounds are increased. In addition, the indication of lesions in the fundus map is
of great significance to patients and doctors in the clinical diagnosis process, and most of the above
networks do not locate and display the lesions in the DR fundus map.
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2.3 Lesion Localization
Only a few studies have performed lesion localization in the diagnostic task of DR. Alyoubi et al. [23]

proposed a fundus image classification and lesion localization system for DR using deep learning. The
system includes two models based on deep learning. The first model (CNN512) uses the whole image
as the input of the CNN model to predict classification, the second model uses the adopted YOLOv3
[24] model to detect and localize DR lesions, and finally, the two proposed structures CNN512 and
YOLOv3 are fused to Classify DR images and localize DR lesions. Redmon et al. established an
advanced DR fundus map database and used the YOLO [25] framework to achieve the detection and
localization of lesion targets on the dataset.

Although the above-mentioned methods achieve effective localization and indication of specific
lesions in the DR fundus map, their localization information has not been exploited to contribute to
the diagnosis of DR.

In summary, firstly, traditional DR diagnostic methods are unable to handle large and diverse
image data. Secondly, disease grading based on lesion detection does not fully consider the impact
of lesion type differences in patient fundus images on grading diagnosis. Existing attention schemes
cannot refine the attention weights of image regions containing multiple lesions. Finally, lesion
localization information through target detection has not been effectively utilized. Therefore, this
paper proposes a diagnosis method of diabetes retinopathy that integrates a multi-level patch attention
mechanism and lesion localization. Through the artificial intelligence model based on deep learning,
it can effectively process large and diverse image data. In addition, the proposed multi-level patch
attention mechanism can comprehensively consider the impact of the lesion type differences on the
grading diagnosis, The lesion localization module can effectively utilize the localization results of
target detection and contribute to the final grading task. This paper will elaborate on the details of the
proposed method in the following sections.

3 Methods

This section will present the details of the proposed DR diagnosis method fusing a multi-level
patch attention mechanism and a lesion localization network. As shown in Fig. 2, the proposed
algorithm can be divided into the following parts: (a) Orange part: a multi-level patch lesion attention
generator for exploring the lesion area and generating optimized multi-level patch attention weights;
(b) Green part: a lesion localization module that locates lesions for fundus map and generates lesion-
indicating attention weights; (c) Blue part: a DR grading module for diagnosing DR severity in the
fundus map.

3.1 Multi-Level Patch Attention Generator
The MPAG consists of weight-optimized blocks and a local network that generates patch weight

probabilities, and aims to explore lesion probability maps relevant to the DR classification task. In the
first stage, this paper divides the input original image into patches (first-level patches) through a sliding
window. Through the local network, the four-dimensional probability vector and patch label of the
corresponding patch is generated according to the lesions existing in the first-level patch. The second
stage will judge whether there are multiple types of lesions in the patch according to the probability
of the four dimensions. If it exists, the first-level patches are further segmented through the weight
optimization block to generate refined weights. If there is only a single type of lesion or no lesion,
the weight of the corresponding patch is generated by the maximum probability and the predicted
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patch label. Finally, the weights of the patches at all levels are spliced by index to obtain the global
probability weights.

Figure 2: System framework for the diagnosis of diabetic retinopathy with a fusion of multi-level patch
attention mechanism and lesion localization module

The four dimensions of the probability vector in this paper correspond to the probabilities of
MA, HE, EX, and none of the three types of lesions, respectively. Ideally, the larger the probability
value in the probability vector, the greater the probability that the corresponding lesion exists in
the corresponding patch. Under this mechanism, Yang et al. [16] proposed a two-stage framework
for lesion detection and DR grading that combines attention weight design with lesion location
annotation, and a framework that uses patch-level and image-level annotations synergistically [22],
combined with attention mechanism for DR severity classification. However, the generation of
attention in the above two methods only depends on the largest value in the four-dimensional
classification probability of the patch, ignoring the situation that there may be multiple types of lesions
in the patch. When there are multiple types of lesions in the patch, lesion attention cannot be further
refined to suit the final DR diagnosis task.

In this article, the proposed multi-level patch lesion attention generator consists of a lesion
detection backbone network (i.e., local network) and weight optimization block, which can further
refine the attention maps corresponding to patches with multiple types of lesions by identifying the
types of lesions contained in patches of different sizes (multi-level patches). Details are as follows:
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3.1.1 Detection Backbone Network (Local Network)

In the first stage, this paper divides the input image I ∈ Rd∗d into h × h patches through a h × h
sliding window, which are called first-level patches. The local network is trained to predict the lesion
probability contained in the patch and display it in the form of a four-dimensional probability vector.
At the same time, the patches are divided into four categories and labeled, namely 0 (normal), 1 (MA),
2 (HE), and 3 (EX), which are also the main indicators of NPDR. The construction of a local network
is inspired by the construction of convolutional neural networks in a two-stage framework for lesion
detection and DR grading [16], and a collaborative learning framework for patch-level and image-
level annotation [22]. The local network consists of convolutional layers, max-pooling layers, and fully
connected layers (FC). After the convolution, all batch normalization is added, and the activation
function between the two convolution layers is the Mish activation function. In addition, dropout [26]
is used after the FC layer to prevent overfitting. The labels of the input patches are given by the output
of Soft-max [27] regression. The architecture of the local network is shown in Table 2.

Table 2: Local network structure

0 Input ... ...

1 Convolution 3 × 3 × 64 1
2 Convolution 3 × 3 × 128 1
3 Max-pooling 2 × 2 2
4 Convolution 3 × 3 × 128 1
5 Max-pooling 2 × 2 2
6 Convolution 3 × 3 × 256 1
7 Fully connected 1 × 1 × 512 ...
8 Fully connected 1 × 1 × 1024 ...
9 Soft-max ... ...
10 Output ... ...

3.1.2 Weight Optimization Block

The first-level patch of size h × h obtained by the first-stage segmentation will be input into the
local network, and two values will be obtained. The first is the first-level patch label value L1 (0–3),
and the other is the first-level patch’s four-dimensional lesion probability P1

ij (P1 represents the four-
dimensional probability corresponding to the first-level patch; i is the patches index; the value of j is
1–4, representing the four dimensions). In first-level patches, there may be multiple types of lesions, in
this case, there will be more than one probability value getting relatively high in the four dimensions
of probability predicted by the local network. So in practice, to further subdivide the patches and
generate the weights of multi-level patches. In this paper, a weight optimization block is designed, and
its framework is shown in Fig. 3.

First, the weight optimization block discriminates the four-dimensional probability vector gen-
erated by the previous image patch through the local network. Determine whether there are multiple
probabilities greater than the set probability threshold. Then a series of calculations are performed
according to the discriminant situation to obtain the corresponding weight matrix. The selection
method of the probability threshold is shown in Fig. 4.
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1. When the two predicted probability values are both greater than 0.5 and the distance is within
0.15, this paper considers that the two probabilities are close to each other;

2. In the case where there are multiple probabilities that are close to each other in the predicted
four-dimensional probability, let the smallest value among the probabilities being close to each
other of the patch be x;

3. In addition, this paper sets a y value for whether there are multiple lesions in the lesion patch
label. If there are multiple probabilities in the predicted probability that are close to each other
and there are indeed multiple lesions in the patch, y = 1. There are multiple probabilities in the
predicted probability that are close to each other but there is only one lesion in the patch, then
y = 0.5;

4. Map x and y, and use the K-means algorithm to take the probability threshold;

When only one dimension probability is less than the probability threshold or all four-dimension
probabilities are less than the probability threshold, the maximum output probability mP1

i = max
(P1

i1, P1
i2, P1

i3, P1
i4) of the patch through the Soft-max layer of the local network will be reserved. At

the same time, the label value L1 of the patch is obtained. Based on these two mappings, this paper
constructs the corresponding weighting matrix for the current first-level patch (which becomes the
first-level patch weight): (1) Integrate label mapping and probability mapping into LP1 = (L1 + 1)
· mP1

i , where LP1 represents the weight of the corresponding first-level patches, L1 represents the
patch prediction label value, the symbol · represents the product, and mP1

i represents the maximum
prediction probability of the corresponding first-level patches. (2) Each entry in LP1 is augmented to
an h × h matrix (corresponding to the first-level patch’s size).

When there are multiple probabilities greater than the probability threshold, the first-level patch is
input into the weight optimization block, and the image up-sampling operation is performed through
the amplification algorithm so that the first-level patch is enlarged four times to obtain the second-
level patch. In this paper, the amplification algorithm used in this paper is the cubic convolution
interpolation algorithm. The corresponding four-dimensional lesion probability vector P2

ij and the
second-level patch label value L2 (0–3) can be obtained by passing the second-level patch through the
local network trained with patch data.

Figure 3: Weight optimization block framework



CMES, 2024, vol.140, no.1 417

Figure 4: Probability threshold selection method example. The figure shows how to map the x and y
values described in this article and use the K-means algorithm to take the threshold

Similarly, after obtaining the four-dimensional probability vector of the second-level patch, it is
determined whether there are multiple probabilities that exceed the probability threshold, and if so,
the third-level patch weight is further refined through the weight optimization block in the same way.
If none, construct the corresponding weighting matrix for the current second-level patch (to get the
secondary patch weights).

When constructing the three-level patch weights, this paper does not discriminate the four-
dimensional probability vector generated by the three-level patch through the local network. Further
refinement of the fourth-level patch weight under the current third-level patch weight will result in
the information of some larger lesions being submerged in further segmentation while generating
some redundant weight information, which does not significantly improve the model’s performance.
Therefore, in practice, for the generation of the third-level patch, this paper directly follows the
situation when there is only one dimension in the first-level patch whose probability is less than the
probability threshold or when the probabilities of all four dimensions are less than the probability
threshold. The three-level patch weights are constructed by taking the maximum output of all three-
level patch Soft-max layers and the predicted label value. So far, this paper has made a detailed
introduction to the weight generation process. The process is shown in Fig. 5.

3.2 Lesion Localization Module
In order to indicate the lesion area that is of great significance to patients and doctors in the

process of clinical diagnosis, and to fuse the lesion location information into the attention network to
improve the attention of the lesion area in the classification and diagnosis task, this paper designs a
Lesion localization module of YOLOv3 network [24].

YOLOv3 is a public object detector model that predicts object bounding boxes and predicts their
classes. YOLOv3 contains 53 CONV layers formed in a network named Darknet-53 [24]. In our
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method, we finetune and retrain all YOLOv3 [24] layers using preprocessed images from the DDR
dataset with an input size of 1024 × 1024 pixels to localize and classify all DR lesion types, including
microaneurysms, hemorrhages, hard exudates, and soft exudates. In the predicted localization results,
the lesion type prediction labels are labeled as MA, HE, EX, and SE, respectively. Furthermore, to
predict object boxes [24], YOLOv3 predicts objects from three different outputs of the whole image at
three different scales, namely 13 × 13 feature maps, 26 × 26 feature maps, 52 × 52 feature maps [24].
Considering the excellent performance of YOLOv3 for small object prediction in computer vision and
lesion detection, and inspired by Alyoubi et al. [23] and Sun et al.’s [28] work on DR lesion localization.
This paper proposes to map the 52 × 52 feature map output with rich details back to the input image
size, and weight its predicted probability into the input as a gated attention map to further improve the
network’s attention to lesions. The green area in Fig. 2 shows the implementation steps of the LLM.

Figure 5: The weight generation model diagram

3.3 DR Grading Module
This DR diagnostic grading module is designed to grade the severity of DR according to the

International Scale of Clinical Diabetic Retinopathy Variables Table [2]. At present, most diagnostic
and treatment guidelines for DR grading provide the following recommendations: for patients without
or with mild DR, annual screening should be conducted; for patients with moderate, severe, or more
severe DR, repeated examinations and referral to ophthalmologists should be conducted within a few
months or even weeks [2]. Considering the changes in the recommended DR screening management
method based on the development of the patient’s disease level, we set up two types of classification
modules, including a five-level classification according to the International Table of Clinical Diabetic
Retinopathy Variables [2] and a binary classification task of classifying fundus images into normal
images and referential DR.

Algorithm 1 : Weight Optimization Block
Input: The input fundus image patch D1= {x1, x2, ..., xK}, where K is the total number of patches; the

first-level patch label value L1 (0–3); the first-level patch’s four-dimensional lesion probability
P1

ij, where i is the patches index and j represents the four dimensions); the probability threshold t.
(Continued)
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Algorithm 1 (continued)
Output: the weight attention matrix LP
begin

for k = 1 → K do
If P1

ij <t then
Upsample the D1 to get D2;
Pass it through a local network trained with patch data to get L2 and P2

ij;
else

mP1
i < max (P1

i1,P
1
i2,P

1
i3,P

1
i4);

LP1 < (L1 + 1)∗mP1
i , where LP1 represents the weight of the corresponding first-level

patches
end
k → k + 1

end
end

In this paper, a global network is trained using the lesion information map weighted by the
attention map to test the severity level of the fundus images. Since this paper uses a weighted lesion
map of the same size as the original image, the depth of the global network is deeper than that of the
local network. The detailed structure of the global network is similar to the local network, which is
composed of 23 layers. The first 19 layers of the network are alternately stacked with convolution layers
and maximum pooling layers. The last four layers include three full connection layers and one softmax
output layer. Batch normalization (BN) is used before each rectified linear unit (ReLU) activation and
dropout is used after the fully connected layer.

4 Materials and Experiment
4.1 Datasets

The dataset used in this study is the DDR dataset [29], which contains labels for three different
tasks: severity classification, lesion segmentation, and object detection. The dataset consists of 13,673
fundus images acquired at a 45° field of view (FOV). All images have been desensitized for general
use. This dataset consists of six image categories: no DR, mild non-proliferative DR, moderate non-
proliferative DR, severe non-proliferative DR, proliferative DR, and non-gradable DR. Among them,
there are 1151 non-gradable images, 6266 normal images, and 6256 DR images [29]. There are 757
images to localize all DR lesion types by providing a bounding box for lesions (MA, HM, hard EX,
and soft EX). In the DR grading task label, images are divided into 5 DR stages and divided into
training images, validation images, and test images [29].

The different modules proposed in this article involve multiple detection tasks, including identify-
ing patch types, identifying lesion locations in fundus images, and identifying DR grades. Therefore,
the data required for each module needs to be processed differently. This article will describe the
construction detail and volume of datasets for different models in the following two sections.

4.1.1 Data Used for Local Network

In the training and testing of the local network of the MPAG, our goal is to be able to identify
whether and which lesions are contained in the patches of the fundus map, so the training and testing
data we need are both patch-level image annotation data. According to our literature review, there
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is currently no published independent data with patch-level image annotation of DR fundus maps,
so this paper selects 30 fundus images from the lesion segmentation task under the publicly available
DDR dataset image data. After processing, the training and testing data of the MPAG in this paper
are constructed.

The specific processing method is as follows:

1. First, we resize the selected 30 fundus images and their pixel-level annotated images of three
types of lesions, including MA, HE, and EX, to 1024 × 1024 size by resize operation.

2. Randomly crop the 1024 × 1024 size fundus map and pixel-level annotated images through a
sliding window to obtain 1920 patch images of size 128 ×128 and their corresponding pixel-
level annotation images in three categories.

3. Determine the proportion of lesion pixels in the pixel-level annotated images of the three
categories. The label of each patch image is determined by whether the corresponding pixel-
level annotated image contains lesion pixels. If different pixel-level annotated images contain
lesion pixels, the most severe lesions are labeled accordingly. The severity scale herein is EX >
HE > MA.

The distribution of lesion patch is shown in Table 3. During the experiment, to reduce the
computational overhead and keep the data balanced, this paper controls the training and validation
patches of the four categories to be 700 and 100, respectively.

Table 3: Lesion patch statistics for the DDR dataset

Normal MA HE EX

Raw patches 712 217 385 606
Augmentation 0 524 322 103
Total number 712 741 707 709
Train number 612 641 607 609
Validation number 100 100 100 100

4.1.2 Data Used for Lesion Localization Module and Global Network

In this paper, the data of the LLM is directly adopted from the 757 target detection image data in
the DDR dataset.

There are a total of 9568 fundus images under the disease grading task in the DDR dataset, of
which 805 are ungradable images, and the remaining data are divided into training sets and test sets
with 6260 and 2503 images, respectively. Due to the imbalance in the number of images of each category
in the original training and validation datasets, data expansion processing is adopted in this paper. The
original data set of the DR grading module is taken from part of the data in the expanded image library,
and the specific label distribution is shown in Table 4.

4.1.3 Data Processing Details

Data preprocessing: In this paper, contrast limited adaptive histogram equalization (CLAHE)
processing is performed on all images [30,31] to highlight the lesion details of fundus images. The
clipping limit is set to 3, and the tile grid size is set to 8 × 8.
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Table 4: Fundus image statistics for the DDR dataset

Normal Mild Moderate Severe PDR

Train raw 3133 315 2238 118 456
Validation raw 1253 126 895 47 182
Augmentation 0 461 0 825 438
Total number 4386 902 3133 990 1076
Model train 700 700 700 700 700
Model validation 200 200 200 200 200

Data expansion: In the process of experimental verification, to solve the training problem caused
by data imbalance, this paper also applies some common data augmentation strategies to patches and
fundus images [32,33], including changing image brightness, image rotation (rotation degree 90/180),
horizontal flip, blur operation (applying Gaussian filter), the specific data expansion is shown in
Tables 3 and 4.

4.2 Evaluation Design and Metrics
To fully study the performance of the proposed method, this paper conducts the following

experiments: (1) Study the effectiveness of the local network: the recall and precision are recorded.
Sensitivity and specificity between normal and diseased patches were shown by receiver operating
characteristic (ROC) curves and AUC measures. (2) Study the superiority of the DR diagnostic grading
module: Kappa [34] score and accuracy are introduced. And calculate the ROC curve and AUC of
the grading algorithm to classify normal fundus images and reference DR (moderate or severe DR)
images [16]. (3) To investigate the effectiveness of the LLM, the mean precision (AP) used to evaluate
the performance of YOLOv3 is adopted. Whereas mAP is the average of APs for each class. (4) To
illustrate the effectiveness of the MPAG and the LLM, an ablation study is carried out.

All the experiment was conducted using the PyCharm experimental platform in a Win10, 2.5 Ghz
Intel i5-10300H CPU, 16GB RAM, NVIDIA GeForce RTX 3060 GPU, and 12 GB graphics memory
experimental environment.

4.3 Experimental Results
4.3.1 Lesion Recognition (Local Network)

To evaluate the performance of local network lesion patch recognition, this paper records the recall
and precision of each type of lesion in the test patches. In the specific experimental process, this paper
initially selected all images (divided into training and validation sets) under the lesion segmentation
task in the DDR dataset. The size of the patch is adjusted to 256 × 256, and the number of images
of the four categories reaches about 4000. With such a setting, we found that the loss of training
decreases very slowly and the training time is long. During testing, the training results for patches
of different classes were extremely unbalanced. We believe that the reasons for this situation are:
lack of data preprocessing, which makes it difficult to reduce the loss; inappropriate data structure,
possibly because the patch size is too large, resulting in poor detection results; and inappropriate
adjustment of training parameters. Therefore, our team reselected 30 fundus images from the lesion
segmentation task of the DDR dataset and constructed the dataset according to the method described



422 CMES, 2024, vol.140, no.1

in Section 4.1.1 of this paper. Finally, 2869 patches of 128 × 128 size data were used for training, the
network loss function was the cross-entropy loss function, the Adam optimizer was used, the epoch
was set to 500, and the learning rate was 0.001, batch size was 128.

The specific performance statistics are shown in Table 5. The left and right values in the table
represent recall and precision, respectively. We compare two baseline algorithms: two-stage method
[16], and random forest (RF) [35]. The test of the RF baseline algorithm uses the same input conditions
as the local network in this paper, and the algorithm settings are the same as in [16]. The number of
RF numbers is set to 500. The input of the Two-stages method is set according to [16], using the 256 ×
256 patch data constructed from the fundus image in the DDR dataset as the input. As shown in the
table, the lesion recognition performance of the proposed local network is significantly better than the
baseline algorithm and the method proposed in the literature [16], which indicates that the proposed
lesion recognition method is effective. Furthermore, we show the confusion matrix of the testing effect
of the proposed local network, as shown in Fig. 6. The experimental data shows that the local network
in the proposed MPAG significantly improves the model’s recognition ability for small lesion targets.

Table 5: Local network test recall (left value) and precision (right value)

Methods Normal MA HE EX

RF [35] 0.460/0.386 0.013/0.027 0.288/0.156 0.554/0.275
Two-satges [16] 0.740/0.642 0.650/0.548 0.820/0.775 0.920/0.841
Local net 0.890/0.989 0.990/0.943 0.960/0.950 0.970/0.933

Figure 6: Lesion recognition confusion matrix. The x-axis represents the true labels. The y-axis
represents the predicted classes. And c1-c4 represents four different types of lesion patches: Normal,
microaneurysm, hemorrhage, and exudation. The left diagonal line data annotated in blue represents
the number of correct predictions of lesion patches for each class

To show the importance of the local network in detecting lesions [36], we also trained a binary
classification network to identify lesion-containing patches vs. normal patches. ROC curves based on
sensitivity and specificity are depicted in Fig. 7. For an ROC curve, an important feature is its area
under the curve (AUC). An AUC of 0.5 indicates random classification and a recognition ability of 0.
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The closer the AUC is to 1, the stronger the recognition ability and the area equal to 1 means complete
recognition. The AUC value of the proposed method is 0.959. This indicates that the proposed local
network has a strong ability to identify lesions.

Figure 7: ROC curve (red) of local network for lesion identification

4.3.2 Diagnostic Classification (Global Network)

To show the effectiveness of the DR grading module in grading the severity of fundus images
[37,38], this paper tests the proposed grading global network on the DDR dataset. The five-class
classification Kappa score of the model is 0.6117, the model accuracy is 0.6078, and we also record
the classification precision and recall under the five classification levels. This measures the agreement
between global network predictions and reference scores. The data statistics are shown in Table 6.
This section also trains classifiers of different grading algorithms to perform binary classification on
normal images and referential DR (moderate or more severe DR) images. Its ROC curve and AUC
are shown in Fig. 8. The AUC value can reach 0.882.

Table 6: Global network test recall (left value) and precision (right value)

Methods Normal Mild Moderate Sever PDR

Global net 0.71/0.628 0.43/0.467 0.79/0.76 0.85/0.78 0.7/0.854

4.3.3 Lesion Localization (Object Detection Network)

To study the effectiveness of the LLM, this paper introduced the mainstream evaluation index
mAP (IoU = 0.5) of the YOLOv3 model to measure localization accuracy. mAP (IoU = 0.5) is the
AP measurement value detected by the model when the overlap rate between the predicted target area
and the labeled rectangle is greater than the threshold of 0.5. AP is the average precision index used
to evaluate the performance of YOLOv3, that is, the average of the Precision values on the Precision-
Recall curve (Precision represents the proportion of the real target objects detected by the model in
this paper, and Recall represents all real objects that are proportion detected by the model.)
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Figure 8: ROC curve (red) of the global network for diagnostic grading

The YOLOv3 model was trained on the DDR dataset to locate all DR lesions and draw a bounding
box around each lesion. The number of images for training and validation is 608, and 149, respectively.
In the experiment, we found that the update method of the model weights has a certain impact on the
test effect, and the specific performance is that the global update method is less effective than the
local update method by freezing DarkNet53 [24]. Therefore, we finally adopted the strategy of partial
update of model weights. During the experiment, the Stochastic Gradient Descent (SGD) optimizer
was used, and the training epoch was 400. The learning rate adopts the dynamic learning rate method,
which decreases from 0.001 to 0.00001. Contrasted with [23] and [29], the finetuned YOLOv3 achieves
the highest mAP of 0.256 in locating lesions when a partial weight update strategy, SGD optimizer
and dropout are employed. As shown in Table 7. In this section, we visualize the lesion localization
test results of the model with the optimal mAP in this paper. The lesion localization can be seen in
Fig. 9, which shows the effectiveness of our proposed model.

Table 7: Test results and comparative effects of YOLOv3 on the DDR dataset

Methods mAP

Li et al. [29] 0.092
YOLOv3 + SGD 0.110
YOLOv3 + SGD + dropout 0.171
Alyoubi et al. [23] 0.216
YOLOv3 + SGD + dropout + weights local updated 0.256

4.3.4 Ablation Studies

To illustrate the effectiveness of the proposed MPAG and LLM for disease grading, this paper
conducts an ablation study on the two modules separately under the same implementation setting.
experiment including the testing of the following different frameworks for the diagnosis method:
MPAG + DR grading module, LLM + DR grading module, and MPAG + LLM + DR grading
module.
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Figure 9: Visualization samples of the results predicted by LLM: (a) 1380 × 1382 original image
sample; (b) 1380 × 1382 image predicted by LLM

Kappa value and accuracy were used to evaluate the five-grade classification effect of the global
network combined with each proposed module, respectively. The calculation results are shown in
Table 8. Compared with the global network alone, the multi-level patch attention weighting scheme
combined with the global network achieved significantly improved results. In addition, as shown in
Section 4.3.3 of this paper, although the LLM achieves better results, the effect of the LLM combined
with the global network for DR grading diagnosis has not been significantly improved. This shows
that the localization of lesions in the lesion fundus map and their effective utilization are extremely
difficult, posing challenges to researchers. We believe that the reasons are as follows: the image lesion
labeling is unbalanced, which leads to a decrease in the detection effect; although the current yolov3
has good detection performance for small objects, it is still difficult to detect fundus map lesions
such as microaneurysms. Finally, in ablation experiments, our proposed full scheme (multi-level patch
attention mechanism + LLM + global network) achieves better performance.

Table 8: Ablation study experimental results

Methods Five-grade kappa Five-grade ACC Binary AUC

Global Net 0.6117 0.6078 0.882
MPAG + Global Net 0.6799 0.7760 0.882
LLM + Global Net 0.4400 0.6080 0.837
MPAG + LLM + Global Net 0.7420 0.8064 0.905

Since the DR fundus map may contain both large areas of severe symptoms and scattered small
lesions, this leads to confusion and difficulty in distinguishing lesions. Even licensed physicians’ criteria
for identifying such lesions are not easily unified. Therefore, similar to [16] and [20], we trained a binary
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classification global network to identify normal images and reference DR images and introduced
the AUC metric to detect its performance. As shown in the fourth column of Table 8, the proposed
full scheme (multi-level patch attention weighting scheme + LLM + global network) achieves better
results, further demonstrating the effectiveness of the proposed scheme.

This paper also compared the proposed method with [16]. Following the same experimental setup
as the proposed method, we reproduced the DR detection scheme of Yang et al. [16] and obtained
the results with a kappa value of 0.665, an accuracy of 0.652, and an AUC value of 0.904 (binary
classification between normal images and referable DR) on the adjusted DDR dataset. As shown in
Fig. 10, the kappa value and accuracy of our proposed method in the five-grade test of DR diagnosis
reached 0.742 and 0.8064, respectively, and both indicators were greatly improved. In the normal image
and referable DR binary classification experiments, the AUC value also reached 0.905. This again
demonstrates the robustness of our proposed DR diagnostic scheme.

Figure 10: Histogram of comparative data between the proposed scheme and current related research

5 Discussion

In the step-by-step diagnosis scheme proposed in this paper, the MPAG and global network
proposed in this paper form two complementary parts, which provide clearer, richer, and more valuable
lesion information for ophthalmologists in clinical DR analysis of patients’ fundus images. On the
one hand, the lesion attention map from the MPAG is beneficial for the hierarchical diagnosis of
the proposed global network. On the other hand, the global network can eliminate the misprediction
effect of the local network in the type prediction of the lesion by learning the rich features in the image
weighted by the lesion attention map.

Besides, although the proposed DR diagnosis method achieves decent performance in practical
medical image analysis experiments. This paper also provides a reasonable explanation for the
proposed scheme. But there are still some shortcomings. Limited by the lack of datasets with fine
annotation, especially patch-level annotated datasets, the experimental performance still has room
for improvement [39]. It would be better if more professional annotators could devote themselves to
the annotation work in related fields [40,41]. Limited by current resources, this paper has ensured the
correctness of the samples to the greatest extent and reasonably demonstrated the performance of
the proposed method. In addition, although the performance of the LLM combined with the global
network has not been significantly improved, the work of this paper first reflects the idea of using
lesion target detection to contribute to the grading diagnosis of DR fundus maps. It opens up a way to
establish a complete system for automatic localization of lesions and grading diagnosis in DR fundus
images. For the research that uses lesion target detection to contribute to the grading diagnosis of the
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DR fundus map, we hope to improve the positioning effect by creating a custom detection scheme in
the future. Training and testing the system on a more balanced dataset may also improve.

Questions about the diagnosis of DR still exist. In the future, we plan to conduct more in-depth
research on the detection and diagnosis of lesions in DR, including achieving more accurate detection
of other lesions patches that are not limited to the three types of lesions in this paper, more efficient
localization for lesions in fundus images, and extend the multi-level patch attention mechanism to
other practical applications beyond DR diagnosis.

6 Conclusion

This paper proposes a diagnostic scheme for DR that fuses multi-level patch attention and
lesion localization. In the scheme, the MPAG trained with lesion patches integrates the lesion
information of different types from the DR patches, which solves the problem that the lesion attention
cannot be further refined and then adapted to the final DR diagnosis task. Finally, a more reliable,
more informative lesion attention is provided for the grading network. The research on the lesion
localization module also gives doctors and patients a more intuitive reference for lesion localization
and solves the problem that the black box-like end-to-end DR diagnosis system cannot provide lesion
details. In model testing, the diagnostic accuracy, AUC value, and kappa score of the scheme on
the public DDR data set reached 0.8064, 0.905, and 0.7420, respectively. Comparative experiments
and ablation research results demonstrate the effectiveness of the proposed multi-level patch attention
mechanism and lesion localization module as well as the robustness of the DR diagnostic scheme.
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