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ABSTRACT

The escalating need for reliability analysis (RA) and reliability-based design optimization (RBDO) within engi-
neering challenges has prompted the advancement of saddlepoint approximation methods (SAM) tailored for such
problems. This article offers a detailed overview of the general SAM and summarizes the method characteristics
first. Subsequently, recent enhancements in the SAM theoretical framework are assessed. Notably, the mean value
first-order saddlepoint approximation (MVFOSA) bears resemblance to the conceptual framework of the mean
value second-order saddlepoint approximation (MVSOSA); the latter serves as an auxiliary approach to the former.
Their distinction is rooted in the varying expansion orders of the performance function as implemented through the
Taylor method. Both the saddlepoint approximation and third-moment (SATM) and saddlepoint approximation
and fourth-moment (SAFM) strategies model the cumulant generating function (CGF) by leveraging the initial
random moments of the function. Although their optimal application domains diverge, each method consistently
ensures superior relative precision, enhanced efficiency, and sustained stability. Every method elucidated is
exemplified through pertinent RA or RBDO scenarios. By juxtaposing them against alternative strategies, the
efficacy of these methods becomes evident. The outcomes proffered are subsequently employed as a foundation
for contemplating prospective theoretical and practical research endeavors concerning SAMs. The main purpose
and value of this article is to review the SAM and reliability-related issues, which can provide some reference and
inspiration for future research scholars in this field.
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1 Introduction

A saddlepoint refers to a stationary point of a non-local extreme point, which is a singular
point that is stable in one direction and unstable in the other direction [1]. The curves, surfaces, or
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hypersurfaces of the saddlepoint neighborhood of a smooth function are all located on different sides
of the tangent to the saddlepoint. Fig. 1 illustrates a typical example of a saddlepoint.
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Figure 1: Example diagram of saddlepoint

Saddlepoint approximation arises from the approximate statistics of the probability density
function (PDF) and cumulative distribution function (CDF), particularly the latter [2,3]. It stands
as a potent method among various integral approximation techniques, offering distinct advantages of
a straightforward formula, swift computation, and effective approximation. Even in the presence of a
limited sample size, the saddlepoint approximation method (SAM) largely meets application demands
[4–8]. Throughout history, numerous scholars have explored and propelled the advancement of SAM
[9–13]. Hu et al. [14] introduced a saddlepoint approximation technique for reliability assessment,
eliminating the need for additional transformations and approximations to the quadratic function. As
saddlepoint approximation continues to evolve, it finds extensive utility in both physics and practical
engineering fields [15–19]. SAM has been instrumental in developing approximate solutions for robust
convex optimization, leading to more resilient and efficient design strategies in engineering [20]. Its
applications extend to queueing theory, insurance mathematics and statistics [21–23]. In the area of
computational mechanics, the stabilized extended finite elements method for saddlepoint problems has
proven effective for handling unfitted interfaces, enhancing the computational simulation of physical
phenomena [24].

Particularly in reliability analysis (RA) and reliability-based design optimization (RBDO)
domains, SAM can provide an important support. Yuan et al. [25] introduced a reliability-based
multidisciplinary design optimization that combines saddlepoint approximation and third-moment
techniques. Fig. 2 depicts the basic flow chart of RA using SAM in engineering.

The concept of reliability emerged in the 19th century, aligning with the advancements of
the Industrial Revolution. The growing momentum of this era demanded a quantitative approach
to reliability, specifically in factory production and the execution of engineering projects [26,27].
Consequently, reliability became an established integral discipline in engineering.

Let f (x) = 0 be the true limit-state equation, with β representing the reliability, indicating
the distance from the origin to the hyperplane in the standard normal space; then, the geometric
representation of reliability and β can be expressed as in Fig. 3.
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Analyze the composition, function and service environment of the structural 
system. Determine the key components of the system and the corresponding 

failure mode and failure mechanism.

According to the failure mechanism, the relevant variables affecting 
the system failure are determined.

Construct the limit state equation corresponding to the failure mode 
of key components.

Obtain the saddlepoint value  for saddlepoint approximation, and then 
calculate the reliability.

Figure 2: RA based on SAM in engineering

Figure 3: Geometric representation of reliability and β

Numerous researchers have extensively investigated and formulated various reliability meth-
ods tailored for practical engineering applications [28–32]. Relevant progress has been made in
optimization and estimation strategies for system reliability assignment problems, demonstrating
the importance of optimization methods in reliability engineering [33–36]. Machine learning-based
methods are becoming increasingly influential in structural reliability analysis, offering new tools and
perspectives for tackling reliability problems [37–40]. RA has been further developed in the following
specific branches, including foundational and advanced techniques in moment methods for structural
reliability [41–45], computational techniques and machine learning in structural reliability [46–50],
time-dependent aspects and non-probabilistic approaches in RA [51–55] and human factors and
adaptive techniques in RA [56–60].

RA also holds significant importance in ensuring the smooth operation of entire projects across
diverse engineering fields [61–65]. It plays a cornerstone role in the fields [66–70]. Scholars have
developed related techniques for fault diagnosis [71] and studied that dynamic and time-varying RA
can predict system lifetime under fluctuating conditions [72–76]. This is critical for uninterrupted
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infrastructure functionality [77–81]. RA also has important analysis and reference significance for the
sustained performance of power systems and modern technologies [82–85]. Moreover, the integration
of machine learning stands out as one of the primary developmental directions in RA [86–90]. Fig. 4
illustrates the main categories within RA methods, and Fig. 5 depicts the primary categories in
approximation methods.

RA methods

Direct method

Indirect method

Limit state method

Function method

FORM and SORM

Approximation method

Point estimation method

Dimensionality reduction
decomposition method

Experiment design
method

Response surface

Artificial neural network

Support vector machine

Figure 4: Categories of RA

Approximation methods

Sampling-based methods
Most Probable Point-based 

methodsMoment matching methods

Figure 5: Categories of approximation in RA

The first-order reliability method (FORM) is one of the crucial and commonly utilized approaches
within most probable point (MPP)-based methods [15]. Its fundamental logic involves approximating
the actual limit-state function with a plane at the MPP, which occurs on the limit-state surface closest
to the origin in the standard normal space [91,92]. FORM offers the advantage of effectively balancing
efficiency and accuracy [93–95]. Shin and Lee used FORM to evaluate the accident probability and
conducted numerical studies using a single truck model, and obtained results that met the given goals
[96]. According to the characteristics of FORM, its fusion with uncertainty analysis yields significant
benefits, leading to the development of related methods [97–100]. Additionally, FORM is also widely
used in RA across various fields [101–105]. Many researchers focused on enhancing the stability and
accuracy of FORM in RA, including innovative methods to control numerical instabilities and update
failure points [106–110]. They also provided comparative analyses, theoretical insights, and reviews
of FORM within the broader context of reliability methods [111–114]. Advanced integration and
optimization of FORM are important future development directions for this method [115–118].

However, FORM overlooks the nonlinearity of the original limit-state function, often resulting in
substantial errors in many cases. To address this, the second-order reliability method (SORM) was
introduced. SORM involves a quadratic expansion of the limit-state function at the point nearest
to the origin in the standard normal coordinate system. By considering the nonlinearity, SORM
approximates the limit-state function using a parabolic surface, providing more accurate reliability
calculations than FORM [119]. Consequently, SORM commonly utilizes a parabolic approximation
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of the fitted quadratic polynomial surface and its related theories have been well developed [120–
123]. Many related efficient and improved algorithms have been proposed [124–127]. Some novel
approximation and extension methods are also used to enhance SORM [128–132]. As an advanced
iteration of FORM, SORM is also widely used in engineering. The main areas included are geotech-
nical engineering and underground structures [133–136], advanced SORM techniques and sensitivity
analysis [137–140], design optimization of structures [141–144], RA in mechanical and fatigue analysis
[145–147]. Scholars have proven its effectiveness by comparing FORM/SORM with other methods
[148,149]. Fig. 6 illustrates the basic principles and distinctions between FORM and SORM.

Figure 6: Basic principles of FORM and SORM

In the context of RA, there are many analysis methods that are closely related to saddlepoint
approximation [150–152]. Although FORM is commonly applied in RA, its limitations in handling
inaccurate situations for nonlinear problems have prompted the introduction of the SAM, which
offers improved solutions [153]. The utilization of second-order saddlepoint approximation (SOSA)
in component RA has demonstrated enhanced accuracy compared with the traditional SORM [154].

Reliability metrics have led to advancements in RBDO methods [155–157]. Approximate model
technology has important applications in RBDO [158,159]. Many scholars have developed RBDO
by integrating novel algorithms [160–163]. Liu et al. developed a Multi-objective RBDO based on
probability and interval hybrid model [164]. Meng et al. proposed a general fidelity transformation
framework for RBDO with arbitrary precision [165]. Product reliability design optimization aims
to achieve optimal design probabilistically, utilizing product reliability as either a constraint or an
objective and employing appropriate optimization techniques. The effectiveness of RBDO serves as a
critical metric to assess its real-world applicability [166]. However, a prevalent challenge across various
RBDO methodologies is their substantial computational demand [167–169]. In this regard, relevant
scholars have also proposed some Efficient and Robust RBDO Methods [170–172]. Integrating SAM
with RBDO analysis allows for mitigating this issue. Consequently, the fusion of SAM and RBDO has
garnered significant attention in academic investigations [173,174]. Fig. 7 illustrates the relationship
between reliability analysis and optimization. Moreover, other theoretical methods apply to RA [175–
177].

This article offers an overview of the utilization and progression of SAMs in RA and RBDO.
It can serve as a valuable reference and guide for subsequent research in this domain. The article is
structured into five sections. The second section presents the fundamental algorithmic logic of the
general SAM. The third section presents the core algorithmic logic and distinct features of recently
enhanced SAMs. The fourth section discusses the application and performance of various SAMs in
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RA and RBDO engineering examples, summarizing the merits of each approach. Finally, the last
section presents analytical conclusions and outlines potential directions for future studies.

Figure 7: Relationship between reliability analysis and optimization

2 General SAM

SAM is an effective approximation tool, particularly suited for tackling high-dimensional inte-
gration challenges. This section introduces the general process of SAM. Its fundamental logic
lies in obtaining the cumulant generating function (CGF) of a random variable, which enables
approximations of the associated CDF and PDF. Calculating CDFs and PDFs is a crucial aspect
of engineering analysis. Therefore, the primary objective of the general SAM is to facilitate more
convenient computations of CDFs and PDFs.

Table 1 presents some common distributions of CGFs [178].

Table 1: CGFs of some common distributions

Distribution PDF CGF

Normal f (x) = 1√
2πσ

e

(x − μ)2

2σ 2 K(t) = μt + 1
2
σ 2t2

Uniform f (x) = 1
b − a

K(t) = ln
(

ebt − eat

t(b − a)

)

Gamma f (x) = βα

�(α)xα−1e−βx
K(t) = α [ln β − n(β − t)]

Gumbel f (x) = e
x−μ

σ e−e
x−μ

σ

σ
K(t) = μt + ln �(1 − σ t)

(Continued)
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Table 1 (continued)

Distribution PDF CGF

Exponential f (x) = αe−αx K(t) = − ln
(

1 − t
α

)

χ 2 f (x) =
x

n
2 −1e

(
−1

2
x
)

�
(n

2

)
2

n
2

K(t) = −1
2

n ln (1 − 2t)

Let f (xR) be the PDF of the random variable XR; then, the moment-generating function (MGF)
of XR is denoted as:

MXR
(t) =

∫ +∞

−∞
etxRf (xR) dxR (1)

The CGF of XR is expressed as:

KXR
(t) = ln

[
MXR

(t)
] =

∫ +∞

−∞
etxRf (xR) dxR (2)

For XR, the approximation of the PDF of XR can be expressed using saddlepoint approximation:

fXR
(xR) =

[
1

2πK ′′
XR

(t̃)

] 1
2

e[KXR
(t̃)−t̃xR] (3)

where t̃ is the solution of equation K ′
XR

(t) = xR.

Let ϕ(·) and 	(·) be the standard normal distributions of the PDF and CDF, respectively.
Generally, the failure probability FXR

(xR) can be denoted as:

FXR
(xR) = Pr [XR ≤ xR] = 	 (w) + ϕ (w)

(
1
w

− 1
v

)
(4)

or

FXR
(xR) = Pr [XR ≤ xR] = 	

[
w + 1

w
log

v
w

]
(5)

where w is the solution of Eq. (6):

w = sign(t̃)
{
2
[
t̃xR − KXR

(t̃)
]} 1

2 (6)

and v is the solution of Eq. (7):

v = t̃
[
K ′′

XR

(
t̃
)] 1

2
(7)
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sign(t̃) is the sign function:

sign(t̃) =

⎧⎪⎨
⎪⎩

1, t̃ > 0
0, t̃ = 0
−1, t̃ < 0

(8)

Under normal circumstances, we choose the maximum-likelihood point X∗
R as the analysis point,

X∗
R = (x∗

R1, x∗
R2, x∗

R3, . . . , x∗
Rm). The first-order expansion of G = G (XR, j) at X∗

R can be obtained as
Eq. (9) using Taylor’s formula:

G ≈ Ĝ = G
(
X∗

R

)+
m∑

j=1

∂G
∂XRj

∣∣∣X∗
Rj

(
XRj − x∗

Rj

)
(9)

According to the linear relationship above, the CGFs of KXRj
can be expressed in terms of G:

KG(t) ≈
[

G
(
X∗

R

)−
m∑

j=1

∂G
∂XRj

∣∣∣x∗
Rj

x∗
Rj

]
t +

m∑
j=1

KXRj

[
∂G
∂XRj

∣∣∣X∗
Rj

t
]

(10)

The approximation of the CDF of G can be solved using Eqs. (4)–(8). t̃ can be calculated using
Eq. (11):

K ′
G(t) ≈

(
G
(
X∗

R

)−
m∑

j=1

∂G
∂XRj

∣∣∣x∗
Rj

x∗
Rj

)
+

m∑
j=1

∂G
∂XRj

∣∣∣x∗
Rj

K ′
XRj

[
∂G
∂XRj

∣∣∣x∗
Rj

t
]

= g (11)

This section offers a comprehensive review of the conventional SAM. The resultant equations are
highly nonlinear, and the CGFs of XRj are essential to approximate the CDF of G. These limitations
may confine the application of SAMs within engineering contexts. Therefore, there exists a pressing
need to enhance this method to increase its practical value.

3 Improved SAMs

The general SAM features limitations in its application. Utilizing SAM necessitates acquiring
the saddlepoint equation, which relies on tractable variables having existing CGFs. In cases in
which CGFs are nonexistent, the general SAM cannot be applied. Additionally, for most probability
distribution types, the corresponding CGFs tend to be complex, leading to potentially highly non-
linear saddlepoint equations [174]. These factors restrict SAM utilization. To enhance the efficiency
and accuracy of SAM and address the shortcomings of the traditional approach, several scholars
have introduced improvements and demonstrated the effectiveness of these methods in practical
engineering applications. Fig. 8 depicts numerous reliability analysis methods based on saddlepoint
approximation. This article introduces four of these methods in detail. They are mean value first-
order saddlepoint approximation (MVFOSA), mean value second-order saddlepoint approximation
(MVSOSA), saddlepoint approximation and third-moment (SATM) and saddlepoint approximation
and fourth-moment (SAFM).
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Saddlepoint approximation methods

First-Order Saddlepoint
Approximation

Second-Order Saddlepoint
Approximation

Mean Value First-Order
Saddlepoint Approximation

Mean Value Second-Order
Saddlepoint Approximation

Saddlepoint Approximation
and Third Moment

Saddlepoint Approximation
and Fourth Moment

Figure 8: Improved SAMs

3.1 MVFOSA
MVFOSA demonstrates efficiency and robustness comparable to those of the general SAM but

offers superior accuracy. MVFOSA utilizes the first-order Taylor method to linearly expand the
performance function G within the original random space [178].

In MVFOSA, d∗
i and μXRi

are selected as the expansion point. These two variables represent deter-
ministic variables and mean values of random variables, respectively. The first-order approximation
function is as follows:

G ≈ Ĝ = ĝ (d, XR) = g
(
d∗, μXR

)+
n∑

i=1

∂G
∂di

∣∣
di

(
di − d∗

i

)+ n∑
i=1

∂G
∂XRi

∣∣∣μXRi

(
XRi − μXRi

)
(12)

The CGF of XR is denoted as KXR
(t), and it has two useful properties:

Property 1. When XR = (XR1, XR2, . . . , XRn) are independent random variables and the CGFs of

the variables are KXRi
(t)(i = 1, 2, . . . , n), the CGF of Y =

n∑
i=1

XRi can be calculated as KY(t) =
n∑

i=1

KRi(t).

Property 2. Let XR be a random variable, its CGF is KXR
(t). If Y = cXR + d, where c and d are

constants, the CGF of Y can be calculated as KY(t) = KXR
(ct) + dt.

For example, if XR follows χ 2 distribution with CGF KXR
(t) = − 1

10
n ln (3 − 4t), then the CGF of

Y is KY(t) = − 1
10

n ln (3 − 4ct) + dt.

According to the abovementioned two properties, the CGF of G can be calculated using Eq. (13):

KĜ(t) =
(

g
(
d∗, μXR

)+
n∑

i=1

∂�

∂di

∣∣
di

(
di − d∗

i

)−
n∑

i=1

∂G
∂XRi

∣∣∣μXRi
μXRi

)
t +

n∑
i=1

KXRi

(
∂G
∂XRi

∣∣∣μXRi
t
)

(13)

K ′(t) is the first-order derivative of CGF; then, ts is the solution of Eq. (14):

K ′
Ĝ(t) =

(
g(d∗, μXR

) +
n∑

i=1

∂�

∂di

∣∣
di (di − d∗

i ) −
n∑

i=1

∂G
∂XRi

∣∣∣μXRi
μXRi

)
+ ∂G

∂XRi

∣∣∣μXRi

n∑
i=1

K ′
XRi

(
∂G
∂XRi

∣∣∣μXRi
t
)

= 0 (14)
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When both the CGF of G and the saddlepoint ts are obtained, the CDF and PDF can be estimated
via MVFOSA.

As previously highlighted, MVFOSA utilizes comprehensive distribution information, necessi-
tating only a saddlepoint identification process. Owing to these characteristics, MVFOSA achieves
enhanced accuracy.

3.2 MVSOSA
MVSOSA represents an alternative method to MVFOSA [179]. The primary distinction lies in

MVSOSA’s utilization of the mean values of random information as the point for the second-order
Taylor expansion G(XR). It can be denoted as Eq. (15):

G (XR) = G (μ) +
n∑

i=1

∂G
∂Xi

∣∣∣∣∣μ (Xi − μi) + 1
2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

(Xi − μi)
(
Xj − μj

)
(15)

where XR = [X1, X2, X3, . . . , Xi] are the random variables, and μi is the corresponding mean value of
Xi.

Eq. (15) is equivalent to Eq. (16):

G (XR) =
(

G (μ) −
n∑

i=1

∂G
∂Xi

∣∣
μ μi + 1

2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

μiμj

)

+
n∑

i=1

(
∂G
∂Xi

∣∣
μ +

n∑
j=1

∂2G
∂Xi∂Xj

∣∣
μ μj

)
Xi + 1

2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

XiXj (16)

Then, Y can be expressed as:

Y = G(XR) = X TDX + hTX + k (17)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dij = 1
2

∂2G
∂Xi∂Xj

∣∣
μ

hi = ∂G
∂Xi

∣∣∣∣μ +
n∑

j=1

∂2G
∂Xi∂Xj

∣∣
μ

k = G (μ) −
n∑

i=1

∂G
∂Xi

∣∣
μ μi + 1

2

n∑
i=1

n∑
j=1

∂2G
∂Xi∂Xj

∣∣
μ μiμj

(18)

With the assumption that the random design variables XR follow a Gaussian distribution, μ is the
mean value of XR and σ is the covariance of XR. The MGF of Y can be expressed as Eq. (19):

MY(t) = |H|− 1
2 et(μTDμ+hTμ+k)+ t2

2 dTH−1d (19)

where H = I − 2tσ
1
2 Dσ

1
2 and d = σ

1
2 h + 2σ

1
2 Dμ.

According to the two properties of CGF mentioned in Section 3.1, the CGF of Y can be calculated
using Eq. (20):

KY(t) = −1
2

log |H| + t2

2
dTH−1d + t

(
μTDμ + hTμ + k

)
(20)
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Furthermore, the first derivative of Y is

K ′
Y(t) = −1

2
trace

(
H−1H ′)+ μTDμ + hTμ + k + tdTH−1d − t2

2
dTH−1H ′H−1d (21)

and the second derivative of Y is

K ′′
Y(t) = −1

2
trace

(
H−1H ′H−1H ′)+ 2tdTH−1H ′H−1d − t2dTH−1H ′H−1H ′H−1d. (22)

Then, the PDF of Y can be calculated using Eq. (3).

MVSOSA can also provide higher accuracy than MVFOSA and can be applied in a wide range
of practical projects.

3.3 SATM
SATM is a method developed from general saddlepoint approximation [25]. The basic idea of

SATM is introduced below.

When MG(t) exists, MG(0) is equal to 1, and Ml
G(0) is equal to E(Gl). M (l)

G (t) means the lth
derivative of MG(t), l = 1, 2, 3, . . . , n.

Therefore, the first three derivatives of KG(t) are given as:⎧⎪⎨
⎪⎩

K ′
G(0) = μG

K ′′
G(0) = σ 2

G

K ′′′
G (0) = α3G

(23)

where μG is the mean, σ 2
G is the standard deviation, and α3G is the variance of G.

In addition, the standardized form of G can be calculated as GS = G − μG

σG

. The transformation is

linear, ensuring that the nonlinearity of the limit-state function does not increase. This transformation
maintains numerical stability in practical engineering. Then, Eq. (24) can be obtained:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K ′
GS

(0) = 0

K ′′
GS

(0) = 1, α3GS
= α3G

σ 3
G

K ′′′
GS

(0) = α3GS

(24)

Considering that the challenges of solving the saddlepoint equation and obtaining the CGF may
impact the utilization of the saddlepoint method, a simplified version of the CGF KGS

(t) for Gs can be
formulated as follows:

KGS
(t) = d1t + d2t2 − d3 ln

[
(1 − et)2

]
(25)
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where d1, d2, and d3 are determined constants, and e is a prescribed value, which is usually given as

e = α3GS

2
. The derivatives of KGS

can be obtained using Eq. (26):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K ′
GS

(t) = d1 + 2d2t + 2d3e
1 − et

K ′′
GS

(t) = 2d2 + 2d3e2

1 − et2

K ′′′
GS

(t) = 4d3e2

(1 − et)3

(26)

According to Eqs. (23) and (26), the following can be deduced:⎧⎪⎨
⎪⎩

d1 + 2d3e = 0

2d2 + 2d3e2 = 1

4d3e2 = α3GS

(27)

If α3GS
= 0, then d1 = 0, d2 = 0.5, and d3e = 0. KGS

(t) is the CGF of the standard normal variable.

If α3GS
�= 0 and e �= 0, then d1 = −α3GS

2b2
, d2 = 1

2

(
1 − α3GS

2e

)
, and d3e = α3GS

4e3
. Thus, K ′

GS
(t) in Eq. (26)

can be expressed as:

K ′
GS

(t) = −α3GS

2e2
+ 1 − α3GS

2e
t + 2α3GS

4e3 (1 − et)
(28)

The saddlepoint equation K ′
GS

(t) = g can be denoted as:(
2e − α3GS

)
t2 − 2 (1 + eg) t + 2g = 0 (29)

If the value of e is given, it will be simpler to obtain t̃ in SATM than in the conventional SAM.
The PDF of GS can be approximately expressed in terms of t̃:

fGS
(g) =

[
2πK ′′

GS
(t̃)
]− 1

2
eKGS

(t̃)−t̃g (30)

The CDF of GS is similar to Eq. (4); it can be expressed as:

FG (g) = Pr [GS ≤ g] = 	 (wS) + ϕ (wS)

(
1

wS

− 1
vS

)
(31)

or

FG (g) = Pr [GS ≤ g] = 	

[
wS + 1

wS

ln
vS

wS

]
(32)

where wS = sign(t̃)
{
2
[
t̃g − KGS

(t̃)
]} 1

2 , and vS = t̃
[
K ′′

GS
(t̃)
] 1

2
.

According to Eqs. (25) and (26), KGS
(t̃) and K ′′

GS
(t̃) can be expressed as KGS

(t̃) = d1t̃ + d2t̃2 −
d3 ln

[(
1 − et̃

)2
]

and K ′′
GS

(t̃) = 2d2 + 2d3e2(
1 − et̃

)2 , respectively.
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Furthermore, the PDF of G can be approximately obtained according to the linear relationship
between GS and G as Eq. (33):

fG (g) = 1√
2πK ′′

GS
(t̃)σG

eKGS
(t̃)− t̃(g−μG)

σG (33)

Then, the CDF of G can also be calculated using Eqs. (34) or (35):

FG (g) = 	(we) + ϕ (we)

(
1
we

− 1
ve

)
(34)

or

FG (g) = 	

[
we + 1

we

ln
ve

we

]
(35)

where GS = G − μG

σG

, ge = g − μG

σG

, we = sign
(
t̃e

) {
2
[
t̃ege − KGS

(t̃)
]} 1

2 , and ve = t̃e

[
K ′′

GS

(
t̃e

)] 1
2
.

Substituting d1 = −α3GS

2e2
, d2 = 0.5

(
1 − α3GS

2e

)
, and d3e = α3GS

4e3
into KGS

(t̃) = d1t̃ + d2t̃2 −

d3 ln
[(

1 − et̃
)2
]

and K ′′
GS

(t̃) = 2d2 + 2d3e2(
1 − et̃

)2 , then KGS

(
t̃e

)
and K ′′

GS

(
t̃e

)
can be obtained as

KGS

(
t̃e

) = −α3GS

2b2
t̃e + 1

2

(
1 − α3GS

2e2

)
t̃2

e − α3GS

4e3
ln
[(

1 − et̃e

)2
]

(36)

K ′′
GS

(
t̃e

) =
(

1 − α3GS

2e

)
+ α3GS

2e
(
1 − et̃e

)2 (37)

According to the above equations, the CGF of G can be expressed as:

KG(t) =
(
μG − σGα3GS

2b2

)
t + σ 2

G

2

(
1 − α3GS

2e

)
t2 − α3GS

4e3
ln
[
(1 − eσGt)2

]
(38)

Then, the CDF of G can be expressed as:

pf = FG (0) = Pr [GS ≤ −β] = 	 (wr) + ϕ (wr)

(
1
wr

− 1
vr

)
(39)

or

pf = FG (0) = Pr [GS ≤ −β] = 	

[
wr + 1

wr

ln
vr

wr

]
(40)

where β = μG

σG

, wr = sign
(
t̃r

) {
2
[
t̃r (−β) − KGS

(
t̃r

)]} 1
2 , and vr = t̃r

[
K ′′

GS

(
t̃r

)] 1
2
.
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As mentioned above, KG(t) can be obtained solely using the first three moments. Thus, SATM
allows for the derivation of a CGF for a random variable following a specific distribution.

3.4 SAFM
In contrast to SATM, SAFM is an enhanced high-order moment-based SAM [180]. According

to Section 3.3 and Eq. (23), the fourth derivative of KG(t) can be expressed as

K (4)

G (0) = E (G − E (G))
4 = η4G − 3σ 2

G (41)

where η4G denotes the fourth central moment of G.

According to SATM, Eq. (25) can be used to express the CGF in terms of GS; then, the fourth
derivative of KGS

can be obtained using Eq. (42):

K (4)

G (t) = 12d3e2

(1 − et)4 (42)

Then, Eq. (43) can be obtained using Eqs. (23) and (41):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1 + 2d3e = 0

2d2 + 2d3e2 = 1

4d3e2 = α3GS

12d3e4 = η4GS
− 3

(43)

where η4GS
= η4G

σ4
G

.

If α3GS
= 0, then d1 = 0, d2 = 0.5, d3e = 0 and η4GS

= 3. KGS
(t) can be obtained as KGS

(t) = 0.5t2.

If α3GS
�= 0 and η4GS

�= 3, then d1 = − 9α3
3GS

2
(
η4GS

− 3
)2 , d2 = −3α3

3GS
+ 2η4GS

− 6

4
(
η4GS

− 3
) , d3 = 27α4

3GS

4
(
η4GS

− 3
)3 , and

e = η4GS
− 3

3α3GS

.

According to Eqs. (23), (41), and the saddlepoint equation K ′
GS

(t) − g = 0, the saddlepoint
equation can be expressed as:

d1 + 2d2t + 2d3e
1 − et

− g = 0 (44)

The saddlepoint t̃ can be calculated by solving Eq. (44):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t̃1 =
√(

16d2d3 + (g − d1)
2) e2 − 4d2 (g − d1) e + 4d2

2 + 2d2 + (g − d1) e

4ed2

t̃2 =
−
√(

16d2d3 + (g − d1)
2) e2 − 4d2 (g − d1) e + 4d2

2 + 2d2 + (g − d1) e

4ed2

(45)
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Then, substituting d1, d2, d3, and e into Eq. (25) and K ′′
GS

(t) in Eq. (26), KGS
(t) and K ′′

GS
(t) can be

expressed as:

KGS

(
t̃e

) =
−3α3

3GS
ψ 2t̃2

e − 27α4
3GS

ln

((
ψ t̃e − 3α3GS

)2

9α2
3GS

)
+ 2ψ 3t̃2

e − 18α3
3GS

ψ t̃e

4ψ 3
(46)

K ′′
GS

(
t̃e

) = −3α3
3GS

+ 2ψ

2ψ
+ 27α4

3GS

2ψ
(
ψ t̃e − 3α3GS

)2 (47)

where ψ = η4GS
− 3.

According to Section 2, the saddlepoint approximation to the CDF of G can be expressed in the
same form as Eq. (35). Consequently, the failure probability of the structure with G can be expressed
as:

pf = FG (0) = Pr [GS ≤ −β2] = 	

[
wg + 1

wg

ln
vg

wg

]
(48)

where β2 = μG

σG

, wg = sign
(
t̃g

) {
2
[
t̃g (−β2) − KGS

(
t̃g

)]} 1
2 and vg = t̃g

[
K ′′

GS

(
t̃g

)] 1
2
. t̃g is a saddlepoint

determined by Eq. (45); it can be expressed as:

t̃g =
⎡
⎣
√(

16d2d3 + (β2 + d1)
2) e2 + 4d2 (β2 + d1) e + 4d2

2 − (β2 + d1) e + 2d2

4ed2

,

×
−
√(

16d2d3 + (β2 + d1)
2) e2 + 4d2 (β2 + d1) e + 4d2

2 − (β2 + d1) b + 2d2

4ed2

⎤
⎦

(49)

When g = 0, the failure probability of the random structure is estimated at the mean of the
distribution of G; the CDF can be expressed as:

FG (0) = Pr [GS ≤ 0] = 1
2

+ K ′′′
G (0)

6
√

2π
(50)

Under the same condition, Eq. (51) can be applied as an alternative method to estimate the failure
probability:

Pf = Pr [G ≤ μG] = Pr [GS ≤ 0] = 1
2

+ α3GS

6
√

2π
(51)

In SAFM, the first four stochastic moments form the foundation for approximating the CGF.
Employing the general SAM enables the assessment of the failure probability in a random structure
using the approximated CGF. Notably, SAFM offers enhanced accuracy compared with the conven-
tional SAM.
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4 Improved SAMs in Application

As previously mentioned, the demand for reliability in modern engineering design is constantly
increasing. To provide readers with a better understanding of the specific engineering applications
and the value of the aforementioned method, this section presents three engineering-related examples.
These examples encompass all of the methods in Section 3, and some related methods are presented
for comparison. The comparison within these engineering cases will highlight the effectiveness of the
improved SAMs.

4.1 Reliability-Based Optimization for Offshore Structures
The wellhead platform represents an economical solution for offshore oilfield development,

providing a provisional structure that safeguards the wellhead situated on the seabed.

In the given context, wave force-induced damage is the primary factor influencing RA. The core
principle of RBDO involves constructing a probabilistic model to encapsulate inherent uncertainties
in engineering structures. The RBDO methodology allows for addressing prevalent uncertainties in
engineering applications, ensuring that the design aligns with the project’s specified reliability criteria.
Fig. 9 illustrates the concept diagram of the wellhead platform’s appearance, while Fig. 10 offers a
specific schematic. Table 2 presents the random design parameters in this case [179]. According to
the optimization results in Table 3, the optimized volume can be calculated. The minimum volume
obtained through RBDO-MVSOSA calculation is 15.37 m3, which is 9% smaller than that obtained
using the initial scheme, and it is the best result. These results indicate that RBDO with improved
SAMs generates acceptable optimization schemes. Comparative data reveals that RBDO-MVSOSA
tends to produce more conservative results than RBDO-MVFOSA, aligning closer with the results
from RBDO-Monte Carlo simulation (MCS).

This example demonstrates that RBDO-MVSOSA offers superior accuracy and that enhanced
SAMs positively influence reliability-related issues.

4.2 Failure Probability Evaluation of Reinforced Concrete Beam
Reinforced concrete beams, pivotal load-bearing elements in engineering structures such as

buildings and bridges, have widespread applications [181]. Therefore, their reliability is paramount.
Specific data for this example are available in reference [180]. The schematic of a reinforced concrete
beam is depicted in Fig. 11.

The performance function of the concrete beam model can be expressed as Eq. (52):

G = Sxσxσpxh − 0.59
S2

xσ
2
x

σpxd
− W (52)

where Sx represents the area of the reinforcing cross section, σx represents the steel yield strength, σpx

represents the concrete compressive strength, and W represents the total moment produced by the
load. The width and height of the beam are d = 12 in and h = 19 in, respectively.
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Figure 9: Concept diagram of the wellhead platform

Figure 10: Illustration of a wellhead platform
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Table 2: Random design parameters in offshore structures

Parameter Hm Uc VF

Description Wave height Flow speed Wind speed
Distribution Log-normal Log-normal Log-normal
Mean 15.7 m 1.3 m/s 73.0 m/s

Parameter CD CM σy

Description Parameter of drag force Parameter of mass force Yield strength
Distribution Normal Normal Log-normal
Mean 1.90 3.07 1.70 × 108

Table 3: Solutions of RBDO with different methods

Design variable X t
1 X t

2 X t
3 X t

4 X t
5 X t

6

RBDO-MVFOSA 0.027 0.033 0.025 0.023 0.026 2.31
RBDO-MVSOSA 0.026 0.031 0.028 0.027 0.028 2.27
RBDO-MCS 0.026 0.030 0.027 0.026 0.027 2.29
Design with accurate method 0.025 0.025 0.040 0.040 0.040 2.00

Design variable X d
7 X d

8 X d
9 X d

10 X d
11 X d

12

RBDO-MVFOSA 3.67 4.41 11.3 17.7 25 38
RBDO-MVSOSA 3.56 4.43 10.6 17.1 27 39
RBDO-MCS 3.55 4.44 11.0 16.9 28 39
Design with accurate method 3.00 5.00 7.0 9.0 34 37

Figure 11: Reinforced concrete beam
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The distributions of input random variables are shown in Table 4:

The first four moments of the state variable are shown in Eq. (53):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μG = 816.57
σG = 397.54
α3G = 0.059
η4G = 3.095

(53)

Table 4: Distribution of input variables

Variables’ information Sx σx σpx W

Mean 4.08 44 3.12 2052
Standard deviation 0.612 6.6 0.468 307.8
Distribution Normal Lognormal Lognormal Weibull

The results of the failure probability estimate using the different improved SAMs and MCS are
shown in Table 5.

Table 5: Results of RA

Method SATM SAFM MCS

β 2.087 2.076 2.076
Pf

(
10−2

)
1.843 1.894 1.896

RE (%) 2.80 0.12 -

According to the aforementioned results, both SATM and SAFM offer failure probability
estimates that closely align with the results of MCS. This suggests that the refined approximation
methods employed in this study yield high precision. Fig. 11 presents the comparison of estimated
CDF tails derived from different techniques.

According to the results of the comparison, the closer the tail line in the figure is to MCS, the
higher the accuracy of the method. According to the data in Fig. 12, the CDF tail estimated by
SAFM matches the results of MCS better than the CDF tail estimated by SATM, while SATM can
also provide acceptable results. In Table 4, Pf denotes the failure probability calculated by different
methods. Compared with SATM, SAFM yields Pf closer to the MCS results.

This example demonstrates the high practicality of both SATM and SAFM in addressing
reliability issues in engineering.

4.3 Reliability Evaluation of a Roof Structure
The schematic diagram of a typical roof structure in civil construction is shown in Fig. 13, and its

simplified force analysis diagram is shown in Fig. 14.
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Figure 12: Comparison of the CDF tails derived from different methods

Roof Structure

Figure 13: Roof structure

Figure 14: Simplified force analysis of the roof structure

The upper boom and compression bars are made of concrete, while the lower boom and tension
bars are constructed from steel. The vertical deflection of the rooftop’s apex node C can be computed
using Eq. (54):

�C =
(

3.81
SCEC

+ 1.13
SX EX

)
ql2

2
(54)

where SC and SX are the cross-sectional area of the concrete bars and steel bars, respectively. EC and
EX are the elastic moduli of the concrete bars and steel bars, respectively.



CMES, 2024, vol.139, no.3 2349

There are three limit-state functions generated by different conditions of the structure:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1 (X) =
(

3.81
SCEC

+ 1.13
SX EX

)
ql2

2
− 0.015

g2 (X) = 1.185ql − fCSC

g3 (X) = 0.65ql − fSSX

(55)

The first failure mode occurs when the perpendicular deflection �C exceeds 1.5 cm. The second
failure mode occurs when the internal force of bar AD surpasses its own limiting stress. The third
failure mode occurs when the internal force of bar EC exceeds its respective limit stress. fS denotes the
tensile strength of the bar. Specific setting parameters can be found in reference [154].

Table 6 outlines the system failure probability estimated by SOSA and other methodologies.

With the MCS solution as the benchmark, SOSA demonstrates superior accuracy and efficiency,
emphasizing the applicability of saddlepoint approximation in engineering contexts.

Table 6: Probability of system failure

Method SOSA SORM FORM MCS

PSf

(
10−4

)
3.6983 3.6642 3.5714 3.7110

ε (%) 0.34 1.26 3.76 -
Total function calls 243 243 135 107

5 Conclusion

This study comprehensively reviews SAM, explores its enhancement techniques, and provides
examples showcasing each augmented SAM in RA. Following these examples, the merits of each
method are critically evaluated. The primary goal of SAM is to provide efficient and precise fitting
results in RA. Its foundational principles establish a groundwork for effective fitting, adaptable to
further refinement based on specific operational needs. RA often involves extensive datasets, posing
significant challenges. Remarkably, the results of SAM with minimal sample sizes closely resemble
those obtained via MCS with larger sample sizes, indicating SAM’s capability to provide superior
approximations even with limited data. Analyzing large-scale samples significantly increases time
and financial investments. SAM’s efficiency alleviates substantial operational demands and expe-
dites problem-solving in reliability analysis. However, with the evolving landscape of contemporary
engineering, systems requiring RA are growing in size and complexity. An increasing number of
uncertainties are being incorporated to ensure the reliability and robustness of extensive mechanical
systems. Consequently, achieving a balance between sampling efficiency and reliability is becoming
progressively challenging.

In RBDO, challenges arise when the dimensionality of the input information becomes excessively
high. Integrating RBDO with saddlepoint approximation removes the need for the spatial transfor-
mation of random variables. This approach mitigates potential inaccuracies in reliability assessment
caused by amplified nonlinearity in the limit-state function, thereby enhancing the attractiveness of
SAM. Presently, the engineering field associated with reliability increasingly tends to adopt machine
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learning and similar techniques. Utilizing machine learning algorithms enables engineers to construct
models derived from data, thereby facilitating predictive analyses and informed decision-making.

The theoretical foundation and validation of SAM remain a dynamic field for future exploration.
Its mathematical properties, convergence, and method stability offer significant research value. Addi-
tionally, integrating saddlepoint approximation with machine learning models can improve solution
accuracy and efficacy. SAM holds potential for utilization in deep neural network (DNN) training.
The training processes of DNNs are susceptible to encountering numerous local minima interspersed
with saddlepoints, complicating the convergence to a global optimum. SAM can address these
saddlepoint challenges during training. SAM involves an effective search in the saddlepoint area to
find the saddlepoint and continuous optimization until the global minimum is found. Consequently,
SAM can more effectively train DNNs, improving both model accuracy and generalization capabil-
ity. Integrating saddlepoint approximation into conventional machine learning algorithms, such as
support vector machines, logistic regression, and decision trees, enhances model optimization and
predictive performance. The amalgamation of SAMs with genetic algorithms is a promising research
area. Genetic algorithms, rooted in evolutionary principles, leverage mechanisms such as crossover,
mutation, and selection for optimization. Their adeptness at global searching compensates for SAM’s
tendency to favor local optimization in high-dimensional spaces. Moreover, genetic algorithms can
fine-tune relevant parameters within SAM, enhancing its convergence rate and stability. In essence,
combining SAM with these methodologies amplifies its effectiveness in addressing challenges within
RA and RBDO.
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