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ABSTRACT

The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the
guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary
counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition
rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model,
designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural
networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the
assembly condition classification to derive graph data inputs for the ResGAT regression model, which is capable of
predicting gyroscope counterweights under small-sample conditions. The results of our experiments demonstrate
the effectiveness of the proposed approach in predicting dynamic gyroscope counterweight in its assembly process.
Our approach surpasses current methods in mitigating repetition rates and enhancing the assembly efficiency of
gyroscopes.
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Nomenclature

SDAE-GPC A gyroscope assembly condition classification model based on Stacked denoising
Autoencoder and Gaussian Process Classification

ResGAT A modified graph attention network model designed for dynamic gyroscope counter-
weight regression

1 Introduction

The dynamic balance performance of a gyroscope within a dynamic-gyro coordinator profoundly
influences its precision in guidance [1]. In a rotating 3-DOF (3 Degrees of Freedom) gyroscope,
dynamic balance over-proof results in unbalanced forces. This occurs when the barycenter devi-
ates from the rotation axis, leading to mechanical vibration, compromised connection reliability,
reduced bearing lifespan, and diminished positioning accuracy [2]. With high performance precision
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requirement and complex process, the manual assembling and debugging in the gyroscope production
can prove inefficient when the dynamic balance capability is unstable.

As seen in Fig. 1, in the assembling process of gyroscope, the debugging of dynamic balance
utilizes counterweights attached to the front and rear counterbalance-surfaces separately.
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Figure 1: The gyroscope dynamic balance debugging

To counteract the unbalanced forces, the centrifugal forces produced by two counter weight-
blocks should be kept in the direction opposite to the resultant unbalanced force [3], as shown in
Eq. (1):
mlyl(l)z + l/nz)/ZCl)z = KR (1)
where m, and m, are the counterweights. ¥, and y, are the rotation radiuses, R is the resultant
unbalanced force, and K is the sensitivity coefficient of dynamic balancing instruments;

Meanwhile, the moments produced by m, and m, should counteract each other to keep the balance:
my Ly = myy,L, (2)
where L, and L, are the axial distances between barycenter and counterweight-blocks.

Thus, in the assembling process of gyroscope, empirical formulas are summarized from production
experience to calculate the counterweights:

m, = k| G (3)
m, = k,G 4)
where G is the initial dynamic balance figure measured by instruments and should be proportional to
the counterweights theoretically, k£, and k, are the counterweight-coefficients.

In this paper, we regard the rear counterweight m, as the counterweight figure we research on
while the front counterweight m, is determined by m, in engineering design.

Empirical formulas may exhibit suboptimal performance in dynamic balance debugging,
attributed to unquantifiable machining errors in components and manual assembly-induced
assembling errors. Fig. 2 illustrates substantial disparities between counterweights determined by
empirical formulas and those mandated by the actual dynamic balance requirements of the gyroscope.
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Figure 2: Calculated counterbalance and the real counterbalance required

Inaccurate counterweights leading to poor dynamic balance performance necessitate repetitive
assembly and disassembly of counterweight-blocks, gimbals, and flanges. This results in inefficiencies
and errors in manual assembly processes [3]. Our research on various gyroscope types indicates that
inaccurate counterweight predictions from empirical formulas elevate the assembly repetition rate by
more than 50%, consequently escalating man-hours and production costs. Thus, there is a critical
need for more precise counterweight predictions to enhance the one-time fitting acceptance rate and
improve gyroscope productivity.

To obtain more accurate counterweights, an analysis of factors underlying the dynamic balance
capability of gyroscopes is essential. Due to the intricate structure of gyroscopes, constructing a precise
physical model is impractical [4]. However, based on engineering experiences, assembly parameters
of gyroscope components have been identified as potentially relevant to the required counterweights
and can be examined through association analysis. The results of linear correlation analysis between
assembly parameters and counterweights are presented in Table 1.

Table 1: Coefficient of determination of assembly parameters

Parameters R Parameters R
Flange edge height —0.0233 Dynamic balance 0.3795
Bearing clearance —0.0041 Magnetic flux 0.0242
Curing coaxiality —0.0447 Running-in current —0.0349
Inner ring clearance 0.0009 Nutation amplitude 0.0391
Outer ring clearance —0.0793 Flange clearance —0.0091

Where R is the coefficient of determination (Pearson coefficient), which is the square of multiple
correlation coefficient. Generally, linear fitting results better when R is closed to 1 [5].

As indicated in Table 1, the assembly parameters exhibit negligible linear correlations with the
counterweight [6]. This implies that there may exist nonlinear couplings between these variables,
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rendering it impractical to establish functional relationships solely based on dynamic theories. More-
over, traditional feature selection techniques such as principal component analysis (PCA) and linear
discriminant analysis (LDA) may no longer be appropriate for association analysis, given the absence
of significant linear correlations.

Multivariate Analysis of Variance (MANOVA) is a statistical method employed for association
analysis, evaluating the significance of associations through variance comparisons and hypothesis
testing [7]. MANOVA is suitable for data with nonlinear couplings, as it examines the overall variation
of the counterweight concerning assembly parameter variations. Additionally, MANOVA accounts
for potential interactions between different parameters, even when their relevance is not explicitly
established [8]. The concurrent probability (P), derived from the F distribution table, is compared to
the level of significance («). If P < «, it signifies a significant impact of assembly parameter variation
on the counterweight; otherwise, the parameter is deemed irrelevant [9]. Results of MANOVA are
presented in Table 2.

Table 2: Results of MANOVA

Assembly parameters Concomitant probability Assembly parameters Concomitant probability

Flange edge height 0.015221 Interaction 3 0.556132
Bearing clearance 0.362988 Inner ring clearance  0.936603
Curing coaxiality 0.001556 Outer ring clearance  0.987012
Interaction 1 0.000281 Running-in current 0.924306
Interaction 2 0.010172 Nutation amplitude  0.154096

Where Interaction 1 is the interaction between flange edge height and bearing clearance, Inter-
action 2 is the interaction between bearing clearance and curing coaxiality, and Interaction 3 is the
interaction between flange edge height and curing coaxiality.

As shown in Table 2, the parameters which have significant impact are flange edge height, bearing
clearance, and curing coaxiality. Meanwhile, Interaction 1 and Interaction 2 also badly affect the
counterweight of gyroscope.

In summary, in the acquisition of accurate gyroscope counterweight, the following problems exist:

1. The empirical formulas commonly used for counterweight calculation in the complex system
of gyroscope assembly have been found to be inaccurate due to the potential assembly deviation.
Dynamic theory has been found to be inadequate in establishing accurate functional relations in this
context.

2. Deep neural networks have gained widespread popularity in nonlinear analysis and perfor-
mance prediction [10]. In particular, a deep neural network may be employed to model the intricate
relationships between assembly parameters and counterweight. However, due to limited availability of
historical assembly data resulting from small batch production of dynamic gyroscopes, the size of the
training set may lead to under-fitting results when using traditional neural network models.

3. Interactions among assembly parameters in gyroscope assembly are influenced by unquan-
tifiable factors such as manual operating errors and fitting errors between gyroscope components.
Analysis reveals that parameter interactions significantly impact the counterweight, with the associ-
ation’s significance varying with the gyroscope assembly sequence, as detailed in Section 4.2. These
complexities in interactions can lead to poor learning effects and low fitting accuracy in the model.
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In recent decades, numerous studies have been conducted on dynamic gyroscope performance
analysis and compensation, with many utilizing dynamic modeling and simulation. One related work
was proposed by Fang et al. [11], which employed a non-dimensional time-position dynamic model
for the performance analysis of micro electro mechanical system (MEMS) gyroscope. The model was
capable of simulating gyroscope trajectory and estimating parameters. Tu et al. presented an applying
autoregressive moving average (ARMA)-based digital twin for gyroscope dynamic modeling and drift
compensation [4]. Luo et al. revealed the nonlinear dynamics of gyroscope, reconstructed trajectories,
and derived dynamical equations [12]. However, these methods are limited to MEMS gyroscope, the
dynamic balance of which are not significantly affected by the vibration from manufacturing and
assembly errors, and are therefore not applicable to complex system analysis in dynamic gyroscope
assembly. Xu et al. employed prior knowledge of gyroscope multibody dynamics and support vector
regression (SVR) to forecast the drift performance of dynamic gyroscopes [13]. Nonetheless, the
proposed dynamic model simplified the gyroscope to a sphere, neglecting the impact of assembling
and manufacturing errors. Such oversimplification may lead to significant prediction deviations in
the context of gyroscope assembly. Another supervised learning method for gyroscope performance
prediction was introduced by Zhang et al., who combined gyroscope estimation model with radial basis
function (RBF) neural network to improve the approximation accuracy of the compound nonlinearity
[14]. Meanwhile, Cao et al. presented a neural network model combined with time-frequency peak
filtering (TFPF) and mind evolutionary algorithm (MEA) to predict the gyroscope drift compensation
[15]. These traditional methodologies are categorized in Table 3.

Table 3: Methodologies for gyroscope modeling

Model Author Gyroscope type Publishing
ARMA digital twin Tu et al. MEMS 2020
Non-dimensional time-position model Fang et al. MEMS 2021
IT2FLS for trajectory reconstruction Luo et al. MEMS 2021
Multibody dynamics and SVR Xu et al. Dynamic Gyro 2019
RBF gyroscope estimation model Zhang et al. Dynamic Gyro 2021

Although neural-network-based models are capable of achieving high-precision compensation,
they require e a large amount of training data due to the limited feature extraction ability of traditional
neural networks. This renders them unsuitable for the small sample size condition of gyroscope
counterweight prediction. Insufficient training data can cause neural network models to perform
poorly in terms of feature extraction, leading to overfitting or under-fitting, which is commonly known
as the few-shot learning problem. Meanwhile, it has been demonstrated in academic literature that
the self-attention mechanism can significantly improve the ability to extract important features by
adjusting the weights of inputs in each layer of the model [16]. Despite the potential use of self-
attention mechanisms to tackle small-sample conditions in constrained training sets, it is crucial to
acknowledge that self-attention-based models, such as transformers, exhibit a similar structure where
all inputs are treated as relatively independent. This structure can result in suboptimal learning of
interactions among input parameters, especially with limited-sized datasets, thereby compromising
the model’s robustness.

Furthermore, graph neural networks (GNN) have been proposed as a promising alternative to
traditional neural networks for modeling relevance between nodes, as they are capable of capturing
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both the property and interaction features of input parameters [17]. For instance, a recent study
by Hong and colleagues applied a graph neural network model to learn patterns of relations from
materials properties and chemical structural data and demonstrated high prediction accuracy in the
context of melting temperature [18]. However, this model employed an integrated architecture of
30 graph and residual neural networks, and was trained on a database consisting of approximately
10,000 compounds. Therefore, the GNN model proposed in this study with massive weights requires
a large quantity of training samples, making it infeasible for the small sample condition associated
with counterweight prediction. Velickovic et al. proposed graph attention networks (GAT) by com-
bining graph neural network with self-attention mechanism, which can efficiently process arbitrarily
structured graphs [19]. Despite its success in various graph-related tasks, GAT may still suffer from
the overfitting issue due to the duplicated structure and weights of small-sample assembly graph data,
thus limiting the model’s ability to fit the data. Moreover, in-time graph structural data, such as the
adjacency matrix of the parameters is needed when the model is adapted to gyroscope counterweight
prediction. In practical gyroscope assembly production, gyroscopes are assembled and debugged in
small batches, typically numbering no more than 20. Deriving accurate adjacency matrices through
correlation analysis on such limited assembly data batches is not feasible.

To tackle these problems, the contribution of this paper is described as below:

1. A data-driven method for gyroscope dynamic balance counterweight prediction is proposed,
which enables latent feature extraction from assembly parameter data in the nonlinear complex system
of gyroscope assembly. Our method demonstrates exceptional precision at 95.68% and an assembly
repetition rate as low as 5%, surpassing all existing literature methods. These results signify substantial
enhancements in production efficiency.

2. To support counterweight prediction with parameter interaction information in situations
where accurate association analysis is challenging with small-batch gyroscope samples, we introduce a
modified model combining stacked denoising autoencoder and Gaussian process classifier (SDAE-
GPC) for assembly condition classification. This model provides assembly parameter data with
interaction features based on assembly conditions for the subsequent counterweight regression model.

3. To mitigate fitting inaccuracies resulting from variable interactions among assembly parameters
in gyroscope assembly, we introduce a Multi-head Residual Graph Attention Network (ResGAT)
model. This model integrates residual connections into graph attention networks and adjusts attention
scores to enhance fitting effectiveness under small-sample conditions. Leveraging the assembly condi-
tion matrices from the SDAE-GPC model, our ResGAT model achieves heightened learning efficiency
with limited weights and more precise counterweight regression.

The remainder of the paper is structured as follows:

In Section 2, we design a graph data structure to represent discrete assembly sequence data.
Section 3 introduces the SDAE-GPC model for assembly condition classification to provide graph
data support for counterweight prediction. The proposed ResGAT counterweight regression model
utilizes condition matrices, achieving higher regression accuracy. Section 4 presents controlled exper-
iments on assembly condition classification and counterweight regression models using practical
gyroscope assembly production data, demonstrating the effectiveness and superiority of the proposed
methods. Finally, in Section 5, we draw conclusions based on the research findings, emphasizing the
significance of our approach in gyroscope dynamic balance counterweight prediction and discussing
potential avenues for future research in this area.
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2 Graph Data Structure for Assembly Condition

In assembly processes, we observe a significant influence of the gyroscope counterweight due
to interactions among assembly parameters. The strength of these interactions, as determined by
MANOVA analysis, varies with specific assembly sequences (detailed in 4.2).

Acknowledging the impactful variable and its potential interference in the modeling process, we
propose leveraging association status information between interactions and counterweight as an input
for the model. To facilitate this, we introduce a novel data structure for assembly parameter inputs,
designed to precisely capture the impact of interactions and enhance predictive performance.

The utilization of graph data in the analysis of assembly processes, as suggested by Kipf and
Welling, proves beneficial. Graph data effectively encodes information in a structured and meaningful
manner, representing both properties and relationships between parameters [20].

Fig. 3 depicts an attributed relational graph that represents partial assembly parameters, where
changes in interactions can be interpreted as changes in relationships between nodes.

Dynamic balance Curing
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Figure 3: Attributed relational graph of partial assembly parameters

The nodes correspond to assembly parameters while the edges indicate the interactions among
these parameters. The assembly parameter dataset X = {X}, X,,..., X,} is presented in the form of a
property matrix X,, v, wherein the individual elements signify the attribute values associated with each
node. P denotes the parameters in assembly sequences of N gyroscope samples. Adjacency matrix is
utilized to represent the interaction relationships between parameters. As shown in formulas (3) and
(4), the element A, represents the existence of significant interactions. When A4; = 1, the interaction
of assembly parameter X; and X; shows strong impact on the counterweight.

0 A Ays - Ay,
Ay 0 Ay oo Ay,
A= Ay An 0 e A, (5
Anl AnZ An3 Tt 0
_ [0, Sig, > 0.05
Ay = {1, Sig.u < 0.05 ©

where Sig,; denotes the concomitant probability of interaction between X; and X; on the counterweight
in MANOVA. The interaction is considered significant when Sig,; < 0.05. Meanwhile, to prevent
nodes property information loss, we employ a self-loop mechanism for the adjacency matrix, as shown
in formula (7).
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A=A+1 (7)
where 7 is an identity matrix with the same shape as adjacency matrix 4.

Then the adjacency matrix can be represented as A, as shown in formula (8).

1 4, As - A,
Ay 1 Ay - Ay,
;1 — | 4n Az 1 e A, (8)
Anl AnZ An3 e 1

We propose an approach to represent traditional assembly data in the form of an assembly
parameter graph dataset G = (4, X), which is composed of an interaction matrix 4 and a property X
matrix. This approach provides a structural framework for training graph neural network models for
generative and regression tasks.

3 Model for Counterweight Prediction

In this section, we present a novel ResGAT model adapted for few-shot gyroscope counterweight
prediction. Our approach incorporates an SDAE-GPC for precise assembly condition classification,
enabling accurate forecasting of gyroscope counterweight in small-batch scenarios. The entire process-
ing diagram of the counterweight prediction method is shown in Fig. 4.
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Figure 4: Processing diagram of the counterweight prediction method

Counterweight

As depicted in Fig. 4, the SDAE-GPC model utilizes assembly parameter features from various
gyroscope production batches for pattern recognition. It furnishes the ResGAT with an assembly
condition matrix, capturing the intricate interplay among parameters. Both assembly parameters and
condition matrices are then fed into ResGAT for counterweight regression.

Fig. 5 illustrates the training and prediction process in our proposed model. The SDAE-GPC
model is trained with labeled data and used for condition selection. In the Multi-head ResGAT
model, both property and interaction features are extracted from the inputs to enhance counterweight
prediction accuracy, especially in small-sample conditions.
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Figure 5: Gyroscope dynamic counterweight prediction model

3.1 SDAE-GPC for Assembly Condition Classification

Stacked Denoising Autoencoder (SDAE) is an unsupervised neural network comprising multiple
layers of autoencoders, each incorporating random input corruption [21]. Its architecture is akin to the
stacked autoencoder (SAE), where the output of each encoder serves as input for the subsequent one,
and the final encoder’s output is directed towards a sequence of decoders. This design enhances the
autoencoder’s capacity for dimensionality reduction and feature extraction. Additionally, the random
input corruption aids the model in developing denoising capabilities, thereby improving its accuracy
in data reconstruction.

The encoding process of SDAE filters essential features from the inputs. Stacked layers of encoders
extract crucial information from assembly parameter data by mapping them to low-dimensional latent
vectors.

In traditional SAE architecture, a single encoder layer of can be represented as formula (9).
V=0 Wx+b) ()]
where W, and b, are the weights and bias of layer /, and o is activation function Sigmoid.

Meanwhile, a corruption process for the inputs is adopted for denoising ability training, where
the initial input x is zeroed to a scale in stochastic mapping ¢y, as is shown in formula (10).

X = qp(X]x) (10)

where X is the corrupted input.
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With this process, model can learn to extract features useful for denoising when reconstructing
the inputs during training. The corrupted inputs are then mapped to low dimensional latent features
with encoders.

The forward propagation of SDAE encoder layers can be represented as formula (11).
=0 (Wi +b) (11)
where z, is the output latent feature of layer /.

In this paper, we adopt a stacked architecture composed of three autoencoders for dimensionality
reduction. The hidden output of each encoder layer is utilized as the input of the next encoder, as
shown in formulas (12) and (13).

Zi1 =0 (VVH;C + bl—l) (12)
zy=0 (WiZz_, +b) (13)
wherel </ <3

The decoder of SDAE attempts to achieve the reconstruction of assembly parameter graph data
with the latent variables derived from the encoders, utilizing corresponding stacked layers. As is shown
in formulas (14) and (15).

zZa=0 (W_z+1,)) (14)
X=o0 (I/I//Zl,l +b;) (15)
where X is the reconstructed assembly parameter data, W, and b, are the weights and bias of layer /,
1<l1<3.

In small-sample training conditions, the under-fitting problem is prevalent due to data noise.
To address this, we adopt a pre-training and fine-tune strategy in training the SDAE for improved
denoising efficiency.

In the pre-training phase, the SDAE is trained using unlabeled assembly parameter data to acquire
denoising and dimension reduction capabilities. During this process, the corruption mechanism
compels the model to discern distinctions between corrupted and original inputs, enhancing its
denoising capability.

The pre-training process of the SDAE-GPC condition classification model is shown in Fig. 6.
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x’
Assembly
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Figure 6: Pre-training process of SDAE-GPC model

As shown in Fig. 6, The encoder in the SDAE generates low-dimension latent variables that
extract higher-level features from the assembly parameter data. These variables aim to capture the
most important information and provide a more condensed representation of the inputs.
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We adopt MSE for the loss function in pre-training, as shown in formula (16).
loss = MSE (%,x) = | X — x||2 (16)

During the fine-tuning process, the model’s learned features undergo further refinement using
original assembly parameter data and corresponding assembly condition labels to enhance overall
performance. Fine-tuning with denoised features and initialized weights contributes to a more effective
convergence.

The finetune process of SDAE is shown in Fig. 7.
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Figure 7: Fine-tuning process SDAE-GPC model

The forward propagation of the fine-tuning process is shown in formulas (17) and (18).
2.1 =0 (VI/]U,IX + b;/,l) (17)
=9 (VV;/ZI—I + b;/) (18)

where z; is the output of SDAE, ¢ is activation function softmax, W, and b, are the weights and bias
oflayer /, 1 <[ < 3.

The resultant latent features are fed into a Gaussian Process Classifier (GPC) for assembly
condition classification. Unlike deterministic classifiers such as logistic regression or support vector
machines, GPC models the decision boundary between different classes as a probability distribution
over functions, capturing both the mean and the uncertainty of predictions. This advantage renders
GPC suitable for uncertain interaction feature extraction in assembly parameter data. With an
unstationary kernel function like the polynomial kernel, GPC can effectively handle high-dimensional
nonlinearity issues such as assembly condition classification. Hence, we employ the dot product kernel
for the GPC classifier, with the kernel function depicted in formula (19).

K(,x)=(x-x,+ 1’ (19)
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whered =1,2,...,N.

The SDAE architecture’s denoising, dimensionality reduction, and feature extraction capabilities
facilitate the transformation of assembly parameter data into higher-level latent features, enhancing
accuracy in classification by the subsequent classifier.

The loss function in the fine-tuning process is expressed in formula (20). Cross-Entropy function
is employed to quantify the residual in assembly condition classification.

loss = CrossEntropy (3,y) = —% Zylogj/ —(=plog(1-37) (20)

where y is the output of SDAE-GPC assembly condition classification model, y is the actual condition
label of the corresponding assembly parameter, NV is the number of gyroscopes in an assembly sequence
when calculating the residual of each epoch of training.

The model becomes proficient in predicting the gyroscope assembly condition based on the
assembly parameters. Consequently, we acquire the corresponding adjacency matrix for each assembly
condition, serving as the input for training the ResGAT counterweight prediction model proposed in
this study.

3.2 Residual Graph Attention Network for Counterweight Regression

GAT operates on graph data and extracts property and relation features of nodes with hidden
masked self-attentional layers [20], leveraging attention mechanisms to handle variable inputs and
focus on the most relevant parts. Assembly parameter graph data can be processed by graph attention
architectures for the acquisition of higher-level features. Furthermore, to address the overfitting prob-
lem under small-sample condition, residual net structures are brought to graph attention mechanism
to enable skip connects in the calculation of attention coeficient and the forward propagation of the
model.

As shown in Fig. 8, the ResGAT network is constructed with residual feature extraction modules
and graph attention modules. Essential property features from the assembly parameter data are
expressed through layers with residual connection. Meanwhile, the attention module provides learning
focus based on the interaction information of the parameters, which allows the nodes to attend over
their neighborhoods’ features.

The inputs of our model include the normalized assembly parameter data X = {x,, x,,...,X,}
and the corresponding adjacency matrix 4 = {4,, 4,, ..., A,,} from different assembly condition, as
described in Section 2, where n is the number of parameter nodes and m is the number of assembly
conditions.

In attention modules, assembly parameters are firstly utilized for the calculation of attention
coefficient e. In this paper, we modified the definition of the attention coefficient to control the weight
quantity of the model, as shown in formula (21).

e = leakyReLU ((x x a) + (x x a)") (21)

where x is the assembly parameter inputs, « is the trainable attention weight, and leakyReLU is the
activation function shown in formula (22). The plus sign here stands for the broadcast add of matrices.

y = max (0, x) + leak - min (0, x) (22)

where leak is an adjustable constant ensuring the negative values.
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Furthermore, an attention matrix A¢¢ is constructed with the attention coeficient e and zeros,
based on the adjacency matrix 4, as shown in formulas (23) and (24).

" {8” i 23)
‘ exp (att;
Att; = soft max (attij-) = Lf) o4

T o ()
where a; is the element of the adjacency matrix A4, Att; is the element of attention matrix A¢t, and N,
is the neighborhood amount of node i in the graph.

As shown in Fig. 8, residual connections are appended to the layers to avoid degradation in
training and derive more accurate regression. After nonlinear transformation, the hidden variables
are then multiplied with the attention matrix obtained from the attention module for the output, as
shown in formula (25).

h=Att x o (x+0 (x x wy)) X w, (25)

where w, and w, are the weights and o is the activation function ReLLU shown in formula (26).

y = max (0, x) (26)
In this paper, we also employ multi-head architecture for the best effect of attention mech-

anism. Outputs of independent ResGAT network structures are concatenated and represented in
formula (27), to derive the final output of the multi-head ResGAT model.
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K
output = o’ ( I hk) (27)
k=1
where || represents the concatenation process, K is the number of heads, and o’ is the activation function
CELU shown in formula (28).
CELU (x) = max (0, x) + min (0, « - (exp (x/a) — 1)) (28)
where « is a hyper-parameter, in this paper @« = 0.9 is taken for the best training effect.

The loss function of the ResGAT model is shown in formula (29). The root mean square error
(RMSE) cost is adopted to measure the residual in counterweight regression.

i —3) (29)

where y and p are the label and prediction of the gyroscope counterweight value and » is the amounts
of samples.

During training, the model incorporates attention mechanisms based on assembly graph data and
residual connection structures to prevent overfitting and degradation, especially with a small-sized
training set. Weighted feature aggregation is achieved through the multi-head output unit for effective
regression. Consequently, the model is readily applicable to predicting gyroscope counterweights using
assembly parameter graph data.

4 Experiments and Discussion
4.1 Gyroscope Assembly Data Preparation

In this study, assembly datasets were gathered from historical data of a specific type of dynamic
gyroscope, encompassing assembly and debugging parameters from 1000 in-line gyroscope assembly
samples. The dataset for assembly condition classification includes key parameters from prior dynamic
gyroscope assembly processes, such as gimbal assembly, magnetization, and preliminary dynamic
balance surveys.

Simultaneously, the dataset for counterweight prediction includes assembly parameters selected
via MANOVA due to their substantial impact on the corresponding counterweights (as detailed in
Section 4.2).

All training parameters were initially normalized to ensure model stability and accuracy. Nor-
malization, as shown in formula (30), is crucial for bringing features to a common scale, facilitating
balanced weighting during model initialization.

X — Xuin

Xn()rm = = < 30
Xmax - X min ( )

where X is the original parameter sample from the assembly sequences, X, is the maximum sample
of X and X,,, is the minimum. Partial normalized parameter data is shown in Table 4.

The threshold range of the assembly parameters is shown in Table 5.
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Table 4: Partial normalized data

Samples Flange Bearing Curing Dynamic  Magnetic Flange Counter-
e-height clearance  coaxiality balance flux density clearance weight
1 0.0092592  0.9473684 0.5714285 0.0498848 0.2692307  0.0824951 0.0077821
2 0.0740741 0.4210526 0.2857142 0.0260930 0.3461538  0.0530244 0.0321011
3 0.0493827 0.3157894 0.8571285 0.3092862 0.3846153  0.2287631 0.0607976
4 0.0462962 0.6315789 0.5714285 0.3630084 0.0769230  0.1001993 0.3584630
5 0.1327160 0.3157894 0.5714285 0.1465848 0.2692307  0.0984495 0.3307393
6 0.0370370 0.3157894 0.8571428 0.0322333 0.3846153  0.0505006 0.0408560
7 0.0987654 0.8421052 0.5714285 0.2977743 0.1923076  0.2051097 0.4338521
8 0.1080246 0.8421052 0.2857285 0.1327705 0.2692307  0.0864392 0.1264591
9 0.0617283  0.5263157 0.5714285 0.0445126 0.3461538  0.0809780 0.0374513

—_
o

0.0586419 0.6315789 0.2857142 0.4320798 0.3076923  0.3420244 0.9445525

Table 5: Threshold range of the assembly parameters

Assembly parameters  range unit  Assembly parameters  range unit
Flange edge height 0.6~0.7 mm  Outer clearance 1~4 um
Bearing clearance —6~2 pm Dynamic balance 10~150  pm
Curing coaxiality 0.002~0.01 mm  Flange clearance —1~1 pum
Inner clearance 1~4 pm

The dataset was divided independently for the assembly condition classification model and the
gyroscope counterweight prediction model. Both the training and test sets were split in a 4:1 ratio
[22]. For the SDAE-GPC classification model, the training set encompassed parameter data for both
the pre-training and fine-tuning processes. The ResGAT regression model utilized the training set
for learning the fitting of counterweights. Simultaneously, the test sets were employed to validate the
proposed models.

4.2 Validation of Assembly Parameter Interactions Based on MANOVA

To explore the influence of data size on MANOVA results, we conducted experiments within
the same dataset scope, varying the sample volumes. These experiments assessed the scalability of
the analysis regarding the interaction of assembly parameters. Table 6 displays the significance of the
association between parameters and the corresponding counterweight.

Table 6: MANOVA result samples in variable data size

Parameters  SIZEOl (n=500)  SIZE02 (n=200)  SIZE03 (n=100)  SIZEO04 (n = 20)

P1 0.00356 0.02301 0.15075 0.32744
P2 0.03713 0.04076 0.37776 0.41863

(Continued)




2540 CMES, 2024, vol.139, no.3

Table 6 (continued)
Parameters SIZEO1 (n = 500) SIZEO02 (n = 200) SIZEO03 (n = 100) SIZE04 (n = 20)

P3 0.00138 0.00694 0.08531 0.67370
I1 0.44329 0.12115 0.45316 0.70834
12 0.00364 0.00103 0.05586 0.07602
I3 0.03082 0.03655 0.20229 0.86997

Where P1-P3 are the assembly parameters and I1-I3 are the interactions between parameters,
as in shown in Table 7. n stands for the number of samples in different data sizes from a same scope
of assembly parameter data, where data from SIZE m is contained in SIZEm — 1. The variation of
assembly parameters causes significant impact on the counterweight when P < 0.05. Otherwise the
parameter is essentially irrelevant in traditional theory.

Table 7: IDs of the assembly parameters

Assembly parameters ID  Assembly parameters ID

Flange edge height P1  Dynamic balance P6
Bearing clearance P2 Flange clearance P7
Curing coaxiality P3  Interaction 1 I1
Inner ring clearance P4  Interaction 2 12
Outer ring clearance P5  Interaction 3 I3

Where Interaction 1 is the interaction between flange edge height and bearing clearance, Inter-
action 2 is the interaction between flange edge height and curing coaxiality, and Interaction 3 is the
interaction between dynamic balance and bearing clearance.

As illustrated in Table 6, the statistical significance pertaining to the counterweight and associated
parameters exhibits considerable variation based on the size of the assembly data under analysis.
Notably, the observed significance levels tend to decline as the quantity of available data for the
parameters becomes limited: the relevance value P increases when the data size approaches at 200 and
become implicit when the data size reached 100 and below. The proportion of relevant parameters in
the total dispersion square sum may become inapparent under small size nonlinear data.

This deterioration of the analysis precision leads to the infeasibility of the association study on the
assembly parameter data in practical application for the small batch assembly production of dynamic
gyroscope. Given that the number of samples in each assembly batch is less than 20, conducting a
MANOVA on in-line assembly data is infeasible. Therefore, it becomes imperative to predict the real-
time assembly conditions to acquire information regarding the interactions of assembly parameters.

Furthermore, we conducted MANOVA on adequate historical assembly data to validate the inter-
action changing in assembly sequences and select relevant parameters for counterweight prediction.
The dataset was partitioned into five subsets, each comprising 200 samples, in order to facilitate the
subsequent analysis. The relevant significance between the parameter (with interactions included) and
the counterweight is shown in Table 8.
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Table 8: MANOVA result samples in different assembly conditions

Parameters CONDITION 01 CONDITION 02
D1 D2 D3 D4 D5
P1 0.02244  0.03598  0.00726  0.00250  0.00351
P2 0.03931  0.02327  0.01499  0.03317  0.04405
P3 0.00318  0.00951 0.00461 0.01778  0.05214
P4 0.08587  0.09446  0.13654  0.38499  0.09981
P5 0.07921  0.09829  0.38364  0.74238  0.89920
P6 0.00132  0.00382  0.00148  0.00247  0.00475
P7 0.37834  0.53728  0.35048  0.38004  0.79456
I1 0.01585  0.00375  0.00290  0.17537  0.32004
12 0.02937  0.01160  0.04351  0.00217  0.00462
I3 0.56910  0.08682  0.75415  0.00204  0.04091

Where P1-P6 are the assembly parameters and I1-I3 are the interactions between certain
parameters, as in shown in Table 7. D1-D5 are the subsets of gyroscope assembly sequences, covering
parameter data from 200 gyroscopes in each batch.

As shown in Table 8, certain parameters shows significant relevance with the counterweight label
in the assembly data subsets. Parameter P1, P2, P3 and P6 possess stable correlation with the label
regardless the diversity of datasets. Meanwhile, the figure of interaction I1, 12 and I3 shows apparent
variation in different assembly conditions: comparing to CONDITION 01, the relevant significance of
I1 becomes implicit in CONDITION 02, in which interaction I3 shows a more remarkable association.

Unquantifiable deviation between the geometry and rotation center of gyroscope caused by
manufacturing and assembling error, the interactions of assembly parameters are changing with the
assembly sequences remarkably. We select the flange edge height, bearing clearance, curing coaxiality,
preliminary dynamic balance and interactions in different assembly conditions as the input parameters
for counterweight prediction.

In this study, the changing impact resulting from interactions is considered a form of parameter
relation information and is input into the models to enhance learning ability under limited data for
small-sample training. Therefore, for counterweight prediction in small-batch gyroscope assembly
production, we initially introduce the assembly condition classification model. The training labels for
this model are constructed through MANOVA analysis of historical assembly data, providing support
for interaction data.

When historical data is scarce, the evaluation of the scalability of MANOVA for parameters should
be conducted to confirm the minimal effective size for data analysis, such as the test in Table 8. We can
still conduct effective MANOVA (or other data analysis methods) in few production batches, providing
the minimum data we need.

4.3 Validation of the Dynamic Gyroscope Counterweight Prediction Method
In this paper, most common indicators are employed for the evaluation of the counterweight
regression based on the ResGAT model. RMSE, mean absolute error (MAE), mean square error
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(MSE), mean absolute percentage error (MAPE), and coefficient of determination (R-Squared) are
adopted to assess the prediction precision of the counterweight regression model [23].

In practical production processes, the internal standard for gyroscope dynamic balance debug-
ging, in the specific gyroscope model under investigation, dictates that the error of the assembled
counterweight should not exceed 10% of the actual counterweight value required by the gyroscope’s
balance capability. Consequently, a predicted counterweight value within a +10% residual of the actual
required value is deemed a correct prediction. Therefore, the accuracy of the counterweight regression
model can be expressed using formulas (31) and (32).

100%
A = C, 31
ccuracy " ; (ry) (3D
|, ifr, <01y
C (o) = {O, other (32)

where r, is the residual of the predicted counterweight value and y; is the required value.

In this study, we conducted a series of comparative experiments to validate the advantages of the
proposed counterweight prediction method. The ResGAT model was trained for 500 epochs using the
Adam optimizer. Subsequently, the model was tested with the dataset samples, and the counterweight
regression results are presented in Fig. 9a.
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Figure 9: Counterweight regression result of the ResGAT model

The predictive value is remarkably close to the true value of counterweight, which proves the
effectiveness of the Multi-head ResGAT model.

To validate the superiority of the proposed counterweight prediction model comparing to tra-
ditional gyroscope counterweight empirical formulas, test results were contrasted with the empirical

computed results based on corresponding primary dynamic balance figures, as seen in Fig. 9b and
Table 9.
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Table 9: Counterweight prediction evaluation comparing to benchmark approaches

Evaluation = RMSE MAE MsE MAPE  R-Squared  Accuracy
Empirical 24.8324  18.4969  616.6481  0.1865 0.5744 0.250
ResGAT 4.3137 3.0892 18.6078 0.0311 0.9872 0.950
ResNet 18.8432 149369  355.0677  0.1520 0.7549 0.475
MLP 25.2293  20.8078  636.5218  0.2191 0.5607 0.225
GCN 22.2136 18.2574  493.4454  0.1925 0.6594 0.425
GAE 19.4067 157849  376.6191  0.1660 0.7401 0.475

Compared to the traditional approach using empirical formulas, our proposed counterweight pre-
diction model demonstrates significantly lower errors across all evaluation indicators. The consistently
lower RMSE figure and higher accuracy affirm the superiority of our method, signaling efficiency
improvements in gyroscope assembly.

To further validate the superiority of the GNN-based ResGAT method, comparative regression
experiments are also conducted on the benchmark neural network models.

An ResNet model with similar residual network structure is utilized for comparison. Experiments
are also conducted on traditional graph convolution network (GCN) and graph autoencoder (GAE)
models, which are also GNN-based and capable of utilizing assembly graph data for interaction feature
extraction. A traditional multi-layer perceptron (MLP) with similar neural weight amount is also
utilized. The regression results and corresponding evaluation are shown in Fig. 10 and Table 9.

Asshownin Fig. 10and Table 9, in comparison with the model we propose, the traditional ResNet
model has higher errors in RMSE, MAE, and MAPE, lower values in R-squared and significant
lower accuracy, indicating its mediocre performance in counterweight prediction. The ResGAT
model outperforms all other competing approaches, confirming the superiority of the gyroscope
counterweight prediction method based on ResGAT.
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Figure 10: (Continued)
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Figure 10: Competitive experiment results: (a) ResNet, (b) GCN, (c) MLP, (d) GAE

GNN-based models is capable of utilizing interaction features as an isolated input when the
correlation between input parameters changes with the data batches. These hidden changes is not
easily learned for the traditional neural network, as it can be seen that the MLP is severely affected
and achieves lower accuracy.

However, it is evident that both GCN and GAE also exhibit suboptimal performance in most
indicators, even slightly worse than the ResNet model. When trained with small-sample assembly data,
the graph convolution-based GCN and GAE lack robustness in addressing the overfitting problem, a
challenge effectively mitigated by the attention mechanism and residual connection in ResGAT.

The ResGAT excels at extracting interaction features in the form of neural weights and demon-
strates superior performance in avoiding overfitting under small-sample conditions, as compared to
the graph attention mechanisms in GCN and GAT.

To further assess the model’s limitations under small sample conditions, we conduct additional
controlled regression experiments, varying the size of the training set. For reliability evaluation, we
utilize the type A evaluation of standard uncertainty to estimate regression reliability, as shown in
formula (33) [24].

> _7)2

Uncertainty = *

— 33
n—1 (33)
where r; stands for the RMSE values in reduplicate experiments.

As shown in Table 10, the precision of counterweight regression reduces when the size of training
set get smaller. According to the indicators, the accuracy of our model plunges when the training
set size reaches 100 and shows under-fitting when it is limited to 50. Meanwhile, the uncertainty
figures remain flat in the scope of 300-800 and suddenly rise when the size limited to 200 and below,
which indicates that the model may become less reliable in these scenarios. Thus, in consideration of
precession and reliability, our proposed ResGAT counterweight prediction model requires a minimum
training set size larger than 200.
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Table 10: Evaluation of the ResGAT trained with limited training sets

SIZE RMSE MAE MsE MAPE R2 Accuracy  Uncertainty
800 4.3137 3.0892 18.6078 0.0311  0.9872 0.950 0.6835

500 6.8418 5.0662  46.8098 0.0559  0.9677 0.775 0.7177

400 7.5454 5.7389 56.9332 0.0636  0.9607 0.775 0.8649

300 10.0448  7.4151 100.8995 0.0763  0.9304 0.625 1.1546

200 13.1864 9.6877 173.8809 0.0881  0.8799 0.575 2.2253

100 17.5444 13.1386  307.8045 0.1246  0.7876  0.450 6.2678

50 343502 28.5434 1179.9361 0.3078  0.1857 0.175 10.17627

4.4 Validation of the SDAE-GPC Assembly Condition Classification Model

In view of the fact that the SDAE-GPC model incorporates assembly condition, it is imperative
to select the input parameters of the model from the assembly processes prior to dynamic balance
debugging. In previous assembly processes, parameters exhibiting significant variation characteristics
in assembly sequences are selected for pattern recognition in order to identify the corresponding
assembly conditions, as shown in Table 11.

Table 11: Assembly parameters for condition classification

Stages Assembly processes No.  Parameters
PROCESS 01  Gimbal assembly 1 Flange edge height

2 Bearing clearance

3 Curing coaxiality
PROCESS 02  Flange assembly 4 Inner ring clearance

5 Outer ring clearance

6 Flange clearance
PROCESS 03  Optical debugging 7 Mechanical coaxiality

8 Optical coaxiality
PROCESS 04 Magnetizing 9 Magnetic flux density
PROCESS 05 Initial dynamic 10 Dynamic balance

balance survey

In this paper, we focus on the classification of two main assembly conditions in the historical
assembly data of the certain type of dynamic gyroscope. 1000 gyroscope assembly samples were divided
on a scale of 4:1 to obtain the training and testing datasets. Table 12 describes the assembly condition
classification task for the model.

Evaluating indicators are adopted to measure the classification accuracy of our SDAE-GPC
model. In this paper, we employ accuracy, precision, recall, F1-score and AUC-score to evaluate the
assembly condition classification [25,26].
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Table 12: Dataset deviation for the classification model

Training sample Testing sample Labels
CONDITION 01 450 115 0
CONDITION 02 350 85 1

The hyperparameters of SDAE-GPC play significant roles in the performance of the classification
model. We utilized an SDAE with three hidden layers, where the number of nodes was determined
through experiments and parameter adjustments. The input layer consists of 10 neurons, correspond-
ing to the dimensions of the normalized assembly parameters. The hyperparameters of SDAE-GPC
are detailed in Table 13.

Table 13: Hyperparameters of SDAE

Hyperparameter SDAE
Number of neurons at the input layer 10

Number of neurons at the first hidden layer 6

Number of neurons at the second hidden layer 5

Number of neurons at the first reconstruction layer 6

Number of neurons at the second reconstruction layer 10
Activation function Sigmoid
Corruptions in each layer of the encoder 0.2/0.2/0.1
Kernel function of the GPC classifier Dot product
Loss function for the pre-training MSE

Loss function for the finetune Cross Entropy
Optimizer Adam
Learning rate 0.01

To confirm the SDAE-GPC classification model’s superiority, we conducted experiments with
different classifiers, including SVM, gradient boosting decision tree (GBDT), and MLP. The MLP
used in these experiments had a structure similar to the SDAE in the fine-tuning process, validating
SDAE’s convergence priority. Initially, assembly condition classification experiments were performed
solely on traditional classifiers. Subsequently, each of these classifiers was combined with SDAE for
the same classification task.

SDAE models, with identical parameter settings, were pre-trained for 500 epochs to acquire
denoising ability. Subsequent fine-tuning for 300 epochs was performed with different classifiers.
The models were then tested on the test set and evaluated using the aforementioned indicators. The
confusion matrices of the classification test results are shown in Fig. 11.

As shown in Fig. 11, the number of false samples in methods (a)—(d) is apparently higher than
those in methods (e)-(h): more samples from CONDITION 01 are misclassified as CONDITION
02. When dealing with assembly condition classification, traditional classifier models are more easily
affected by the noises in multiple input parameters and show poor robustness.

The evaluation of classification results are shown in Table 14.
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Figure 11: Confusion matrices of the classification results: (a) GBDT, (b) GPC, (c) SVM, (d) MLP (e)
SDAE-GBDT, (f) SDAE-GPC, (g) SDAE-SVM, (h) SDAE-MLP

Table 14: Evaluation of the classification results

Models Accuracy  Precision  Recall Fl-score  Auc-score
SVM 0.885 0.8995 0.88375  0.8845 0.866241
GBDT 0.89 0.8995 0.888 0.89025  0.872123
GPC 0.925 0.9255 0.92325 0.92725  0.916368
MLP 0.905 0.914 0.902 0.903 0.892839
SDAE-SVM 0.955 0.95425 0.953 0.95575  0.951662
SDAE-GBDT  0.955 0.9575 0.954 0.95575  0.960869
SDAE-GPC 0.985 0.98725 0.98275 0.98575  0.986957
SDAE-MLP 0.945 0.94275 0.9445 0.9415 0.951662

The evaluation results of the SDAE-GPC model in assembly classification significantly outper-
form all other methods across all indicators. SDAE-based classifiers demonstrate higher classification
accuracy in various evaluation methods, confirming the denoising ability of SDAE. The GPC
with a nonlinear kernel also exhibits advantages compared to SVM, GBDT, and MLP methods.
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This outcome underscores the superiority of the polynomial-kernel GPC in small-sample nonlinear
assembly condition classification problems.

Furthermore, in comparison to MLP with conventional training, the SDAE-MLP trained using
the pre-training and fine-tune strategy shows significant advantages in all indicators, affirming the
superior convergence effect of its training procedure.

When historical data is unreliable for data analysis, such as situations when the significance of the
parameter interactions changes with production batches, neural network models (such as the SDAE-
GPC we propose) can be utilized for the prediction of the parameter correlation condition in small
production batches.

Trained with sufficient parameter data and their corresponding correlation conditions (which are
derived from data analysis in the minimal effective size), an efficacious neural network model is capable
of predicting the parameter correlations without the in-time massive data required by traditional data
analysis methods.

4.5 Validation of the Multi-Head ResGAT Counterweight Regression Model

In this paper, we utilized the data of a certain type of dynamic gyroscope with two certain
corresponding assembly conditions. The correlated parameters and the interactions between them are
expressed in form of graph data G = (A4, X), which is shown in Tables 15 and 16.

Table 15: Input parameters of ResGAT model

No. Parameters

1 Flange edge height
2 Bearing clearance
3 Curing coaxiality
4 Dynamic balance

Table 16: Input adjacency matrices of ResGAT model

ADJACENCY MATRIX
CONDITION 01 CONDITION 02
1 1.0 0 1 000
1 1 00 0110
0 010 0110
0 0 0 1 0 0 01

In Table 15, apart from the key parameter “primary dynamic balance” used in the empirical
formulas, parameters No. 1 to No. 3 are all identified by MANOVA in Section 4.2. These parameters
are derived from the gimbal assembly process, reflecting the potential deviation between the barycenter
and rotation center. As shown in Table 16, the interactions among these parameters are illustrated in
the adjacency matrices, which correspond to specific assembly conditions classified by the SDAE-GPC
based on the preceding parameters of certain gyroscopes.
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The precision of the proposed Multi-head ResGAT model is also highly affected by the hyperpa-
rameters we choose. After model structure adjustment based on commissioning tests, the hyperparam-
eters of the regression model are listed in Table 17. The node numbers of the input layers in the feature
extraction module and attention module are both 4, for the four parameter inputs of the assembly
graph data.

Table 17: Hyperparameters of the Multi-head ResGAT model

Hyperparameter Values
Number of neurons at the input layer in attention modules 4
Number of neurons at the hidden layer in attention modules 4
Activation function of the attention coefficient calculation leakyReLU
Negative slope figure for the leakyReLU function 0.2
Number of neurons at the input layer in feature extraction modules 4
Number of neurons at the hidden layer in feature extraction modules 7
Number of neurons at the output layer in feature extraction modules 1
Activation function of the residual architectures RelLU
Activation function of the multi-head concat output ELU
Numbers of the attention heads 4

Loss function for the training RMSE
Optimizer Adam
Initial learning rate 0.05

Key structural parameters are optimized via controlled experiments, in which nodes at the hidden
layer in the feature extraction modules and numbers of attention heads are discussed. For each
hyperparameter setting, 10 runs of repeated experiments were conducted to eliminate the randomness
of algorithms, utilizing the test dataset of assembly parameters and corresponding counterweights.
The results of the experiments are demonstrated in box-plots and shown in Figs. 12 and 13.
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Figure 12: Boxplots of indicators for models over 10 runs in 5 different hidden nodes
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Figure 13: Boxplots of indicators over 10 runs for models in 5 different attention heads

In Figs. 12 and 13, the model’s performance is significantly influenced by both hidden nodes
and attention heads. The counterweight prediction achieves its highest precision when the number of
hidden layer nodes is 7 and decreases when it reaches 8. Similarly, the model’s performance peaks when
attention heads reach 4 but degrades notably when it reaches 5. Both of these performance declines
are attributed to the increased complexity of the models, which can easily lead to overfitting under
small-sample conditions. Therefore, the numbers of hidden layer nodes and attention heads are set to
7 and 4.

Additionally, to affirm the superiority of the SDAE-GPC-ResGAT counterweight prediction
method, ablation experiments are conducted for a comprehensive comparison with benchmark
models. Controlled experiments are carried out on different models, ranging from basic GAT to
our composite SDAE-GPC-ResGAT model. Each innovation in the models is tested individually to
elucidate the capabilities of our proposed model.

The original GAT model we employed has a structure and hyperparameters similar to the Res-
GAT. The two modifications from our model—optimized attention scores and residual connections
for the GAT structure—are tested separately in the experiments.

The adjacency matrix inputs for these models are set to constant identity matrices. On the contrary,
four additional sets of counterweight regression experiments are also conducted on ResGATs based
on different assembly condition classifiers, which provide adjacency matrices for the ResGAT.

The prediction results of the comparative experiments are shown in Fig. 14, and the evaluation of
the counterweight prediction results from competitive methods is presented in Table 18.

Where Modified 1 stands for the GAT model with optimized attention score and without residual
connection, and Modified 2 stands for the GAT model with residual connection and original attention
score calculation. C1 stands for SDAE-MLP, C2 stands for SDAE-GBDT, C3 stands for SDAE-SVM,
and C4 stands for SDAE-GPC.

In Fig. 14 and Table 18, the regression results derived from the SDAE-GPC-ResGAT counter-
weight prediction method demonstrate the best performance in all evaluation indicators. This indicates
that the model outperforms all other competing benchmark approaches, confirming the superiority
of our proposed models.
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Figure 14: Regression results from GAT ablation experiments: (a) GAT-Modified 1, (b) GAT-Modified
2, (c) ResGAT, (d) C1-ResGAT, (e) C2-ResGAT, (f) C3-ResGAT, (g) C4-ResGAT
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Table 18: Evaluation results for the GAT ablation experiments

Evaluation RMSE MAE MSE MAPE R-Squared Accuracy
GAT 18.5530  15.0941 344.3253 0.1523  0.7624 0.350
GAT-Modified 1~ 17.2035 14.0568 295.9607 0.1487  0.7957 0.350
GAT-Modified 2 17.1583  13.5778 294.4069 0.1367  0.7968 0.350
ResGAT 16.3798  13.1043  268.2954 0.1391  0.8148 0.475
C1-ResGAT 149022  11.7396  222.0765 0.1380  0.8467 0.525
C2-ResGAT 14.4812  10.1594 209.7049 0.0977  0.8553 0.575
C3-ResGAT 12.0239  9.5453 144.5735 0.1144  0.9002 0.575
C4-ResGAT 43137  3.0892 18.6078  0.0311  0.9872 0.950

The results of ablation experiments clearly show that GAT models with classification support have
better precision, validating the effectiveness of assembly condition classification for counterweight
prediction. However, the advantages of the ResGAT model are not significant enough due to the
deficiency of interaction information. Further ablation experiments for the GAT models utilizing a
similar SDAE-GPC classification model are conducted, as shown in Table 19.

Table 19: Evaluation results for the SDAE-GPC based GAT ablation experiments

Evaluation RMSE  MAE MsE MAPE  R-Squared  Accuracy
C4-GAT 14.4751  11.6759  209.5278 0.1186  0.8554 0.575
C4-Modified 1 12.8501  10.3043  165.1239  0.1125  0.8860 0.700
C4-Modified 2 7.2802 5.5794 53.0015 0.0271  0.9634 0.825
C4-ResGAT 4.3137 3.0892 18.6078 0.0311  0.9872 0.950

Comparing to the benchmark GAT model, all our modified models exhibit better counterweight
regression precision. Among them, the ResGAT with both attention score and residual connection
modifications shows the best performance. Modified 2 also achieves higher precision compared to
traditional GAT models. The residual mappings capture differences between hidden layers of the
graph neural network and learn residual information during the assembly parameter feature extraction
process.

On the other hand, Modified 1 shows limited superiority but still outperforms the traditional
GAT model. The modification in attention score proves effective in simplifying the graph attention
mechanism, making the model applicable to the small-sample gyroscope assembly situation and
preventing overfitting caused by a large number of neural weights.

As illustrated in Section 4.3, the internal standard for counterweight debugging is that the error of
the counterweight should not exceed 10% of the required figure based on gyroscope dynamic balance.
The over-proofed gyroscope will be disassembled for replacement of counterweight blocks, gimbal,
and flange components. The assembly repetition rate of the experiments from different models is
shown in Fig. 15,

As depicted in Fig. 15, our experimental results on assembly repetition rate reveal an impressive
assembly repetition rate of 5%. Notably, these prediction results surpass the performance of other
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existing methods and signifies a substantial enhancement in production efficiency. Such findings
highlight the potential for enhancing production efficiency in the context of assembly line operations.

Repetition rates of prediction models

60 = 575
Repetition rate
52.5

50 4
42.5

30

Repetition rate (%)

20 4 17.5

5

GAT  Modified 1Modified 2 ResGAT  ResNet GCN
Models

Figure 15: Assembly repetition rate results for models

The proposed model is a versatile method suitable for various gyroscope models; however, there
are a few limitations when applying the method to different assembly settings:

Correlation Analysis Requirement: Correlation analysis is essential to identify relevant assembly
parameters for a new assembly setting. This implies the need for a dataset of minimal effective size for
the association analysis procedure.

Re-Training Necessity: The model requires re-training with new assembly data whenever applied to
a new assembly context. Although designed for small-sample industrial conditions, a certain amount
of historical assembly data is still necessary for the training procedure.

5 Conclusion

In this research paper, we propose an innovative approach for predicting gyroscope counter-
weights during the dynamic gyroscope assembly process. Our methodology involves the development
of an assembly condition classification model using a Stacked Denoising Autoencoder (SDAE) and
Gaussian Process Classifier (GPC). This model generates crucial graph-based data, which serves as
input for our gyroscope counterweight prediction method, employing a Multi-head Residual Graph
Attention Network (ResGAT). Through comparative experiments using real-world assembly data
from practical dynamic gyroscope production, our results underscore the effectiveness of the proposed
method, highlighting its potential to enhance accuracy and efficiency in gyroscope counterweight
prediction during assembly. Our approach offers a promising avenue for reducing labor hours and
production costs in dynamic gyroscope assembly.

Looking ahead, our future work will address the few-shot problem, particularly in scenarios where
historical assembly data is scarce. We aim to design models that leverage general features derived from
assembly data of similar gyroscope models, utilizing transfer learning. Additionally, we plan to expand
our dataset by collecting assembly data from various gyroscope models, enabling a comprehensive
analysis of differences and similarities in their hidden feature space. If feasible, we intend to construct
a general feature library for dynamic gyroscopes, optimizing our gyroscope counterweight prediction
method for enhanced generalization and accuracy.
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