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ABSTRACT

Multimodal sentiment analysis utilizes multimodal data such as text, facial expressions and voice to detect people’s
attitudes. With the advent of distributed data collection and annotation, we can easily obtain and share such
multimodal data. However, due to professional discrepancies among annotators and lax quality control, noisy labels
might be introduced. Recent research suggests that deep neural networks (DNNs) will overfit noisy labels, leading
to the poor performance of the DNNs. To address this challenging problem, we present a Multimodal Robust
Meta Learning framework (MRML) for multimodal sentiment analysis to resist noisy labels and correlate distinct
modalities simultaneously. Specifically, we propose a two-layer fusion net to deeply fuse different modalities and
improve the quality of the multimodal data features for label correction and network training. Besides, a multiple
meta-learner (label corrector) strategy is proposed to enhance the label correction approach and prevent models
from overfitting to noisy labels. We conducted experiments on three popular multimodal datasets to verify the
superiority of our method by comparing it with four baselines.
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1 Introduction

Sentiment analysis detects people’s attitudes, emotions, moods, and other subjective information
[1–3] which can benefit many applications, such as emotional care service, mental health test and
depression detection. The advent of distributed data collection and annotation has ushered in a new
era, enabling the acquisition of extensive multimodal sentiment datasets from diverse sources such as
search engines, video media, and social platforms like WeChat, Twitter, and Weibo [4]. This abundance
of data sources has greatly accelerated progress in the field of multimodal sentiment analysis.
Regrettably, the inherent differences in annotators’ proficiency levels have led to the introduction of a
significant number of noisy labels [5–7]. Recent unimodal research reveals that deep neural networks
(DNNs) will overfit to noisy labels leading to a poor performance [8]. So, it is a challenging problem
for multimodal sentiment analysis with noisy labels.

To address this challenging problem, numerous unimodal methods are proposed to explore the
robust training of DNNS in the presence of noisy labels, such as sample selection methods [9–12]
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which adopt a clean sample selection strategy to identify and discard noisy data before DNN training,
and label correction methods which attempt to find correct labels for noisy data [13–16]. Although
these noisy label learning methods reach promising performance with unimodal data, they cannot
simultaneously tackle multimodal scenarios, such as multimedia data.

Moreover, existing multimodal sentiment analysis methods are not explicitly tailored to address
noisy labels, potentially leading to overfitting the noisy data [17,18]. We conducted an empirical study
on an existing multimodal sentiment analysis method tensor fusion network (TFN) [19] trained with
noisy labels. Fig. 1 illustrates the accuracy of TFN on different training epochs. We can observe that
the accuracy on the training dataset has been increasing, but the accuracy on the validation dataset is
declining which shows the DNNs tend to memorize the noisy labels rapidly, leading to a deterioration
in performance. Hence, it is valuable and significant to explore how to train a robust multimodal
sentiment analysis model with noisy labels, but as far as we know, there has been little related literature
in this direction over the past years.

(a) Results on training dataset (b) Results on validation dataset

Figure 1: We train an existing multimodal sentiment analysis model TFN on the Yelp-5 dataset with
clean labels and 80% symmetric noisy labels (introduced in Section 4.1). The accuracy on different
epochs is shown in the figures: (a) accuracy for the clean and noisy training dataset; (b) accuracy for
the clean validation dataset

In fact, given a multimodal dataset with noisy labels, to design a noise-tolerant label multimodal
sentiment analysis method, two sub-tasks should be carefully considered, i.e., how to correct the noisy
labels? and how to conduct multimodal sentiment analysis?

In this paper, we introduce the Multimodal Robust Meta Learning (MRML) framework designed
to enhance multimodal sentiment analysis by mitigating the effects of noisy labels across different
modalities while concurrently establishing correlations between them. The framework optimizes the
whole procedure of label correction and network training through a three-stage process. In the first
stage, we propose a two-layer fusion net to correlate the different modalities deeply. Inspired by the
attention mechanism [20], we first use feature fusion where we calculate the weight for each modality
feature and then average them. Second, instead of simply concatenating the two feature vectors,
we use modality early fusion where we apply two linear layers to calculate the attention weights
for each modality feature. Compared with the unimodal feature, the multimodal fused feature has
complementary information for label correction and network training.

In the second stage, we present a multiple meta-learner strategy to automatically correct the noisy
labels iteratively by using the multimodal fused feature. Similar to the recent noisy label learning work
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called Co-teaching [10], we use two meta-learners and exploit the different information from multiple
models during the label correction procedure to increase the quality of the generated correct label and
prevent the model from overfitting to noisy labels. After label correction, we train the learner with
the corrected labels generated by the meta-learner. In the third stage, we update the meta-learner by
minimizing the loss of clean validation data. Such a three-stage optimization process is expected to
train a faithful meta label corrector and a robust learner by leveraging the clean validation data.

The main contributions of our paper are as follows:

• We propose a robust multimodal sentiment analysis framework with noisy labels that can
robustly train the network with multimodal noisy labels.

• We introduce a two-layer fusion network that effectively integrates information from diverse
modalities. This integration enhances the quality of extracted multimodal data features, thereby
contributing to improved label correction and network training outcomes.

• A novel multiple meta-learner strategy is proposed to robustly map noisy labels to the corrected
ones by using the different information from multiple meta-learners.

• We implement experiments on three popular multimodal sentiment analysis datasets with
varying noise levels and types to demonstrate the robust performance of our method.

The organization of the forthcoming sections of this paper is as follows: Section 2 outlines the
standard unimodal meta label correction network, while Section 3 delves into the comprehensive
implementation details of MRML. In Section 4, we provide an account of the outcomes attained from
our experimental evaluation. The examination of relevant research is presented in Section 5, with the
final summary and conclusions offered in Section 6.

2 Preliminaries

In this section, we briefly summarize the typical unimodal meta label correction net [16,21]. For
an unimodal sentiment analysis task, (x, y) is the input and the corresponding label. Given a noisy
training dataset D = {(xi, yi), 1 ≤ i ≤ N}, where xi is the i-th sample and yi is the original (potentially
noisy) label. Let Dv = {(xv

i , yv
i ), 1 ≤ i ≤ M} be the clean validation dataset where M � N. We denote

the meta-learner (label corrector) which generates corrected labels as ȳi = gφ(h(xi), yi), where h(xi) is a
feature representation of input xi and ȳi is the corrected (pseudo) label outputted by the meta-learner,
yi denotes the original label and φ denotes the meta-learner parameters.

Meanwhile, we denote the learner (classifier) as ŷi = fθ (xi), where ŷi is the predicted value, θ

denotes the parameters of learner. The training objective (goal of learner) is to get a minimal loss on
the training dataset D as

θ ∗(φ) = arg min
θ

N∑

i=1

L (ŷi, ȳi) (1)

where L (ŷi, ȳi) denotes the training loss function to measure the difference between corrected label ȳi

and predicted value ŷi.

For given a φ, we can get the optimal θ ∗(φ) through Eq. (1). So there is a functional relationship
between θ and φ, we denote the relationship as θ = θ ∗(φ). To this end, the meta-training objective
(objective of meta-learner) is to get a minimal loss on the validation dataset Dv as
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φ∗ = arg min
φ

M∑

i=1

Lv(yv
i , fθ∗(φ)(xv

i )) (2)

where the Lv denotes the meta-training loss on clean validation dataset.

Bi-Level Optimization. There is a dependence between learner θ and meta-learner φ. So it requires
updating the optimal θ ∗ whenever φ updates which has been defined as a bi-level optimization
procedure. Recently, Ren et al. [22] proposed a one-step stochastic gradient descent (SGD) method
to approximate the optimal θ ∗ for φ updating once. Specifically, at the t-th iteration, method updates
θ as

θ ′
t+1 = θt − η∇θL (gφt(xi, yi), fθt(xi)) (3)

where η is the step size for θ . Then it uses gradient descent to update φ as

φt+1 = φt − η∇φLv(yv
i , fθ ′

t+1
(xv

i )) (4)

where η is the step size for φ. Then it uses φt+1 to update θ as

θt+1 = θt − η∇θL (gφt+1
(xi, yi), fθt(xi)) (5)

where θt+1 is a better parameter than θ ′
t+1.

Finally, the method uses Eqs. (3)–(5) to optimize θ and φ until convergence.

Analysis. The effectiveness of employing an uncontaminated validation dataset to steer model
training in the presence of noisy labels is evident. The bi-level optimization approach is well-suited for
implementing this strategy, enabling the framework to be trained seamlessly from start to finish.

However, the aforementioned description shows the current two shortcomings of the existing
unimodal meta label correction net. First, the current framework can only handle unimodal data and
is not suitable for multimodal application scenarios. Another, due to the inherent uncertainty and
inconsistency introduced by the noisy data, the predictions of the single meta-learner can fluctuate
greatly during training with noisy labels which will further degrade the correctness of the corrected
label ȳ [23].

3 MRML Implementation

Fig. 2 shows our novel Multimodal Robust Meta Learning (MRML) framework for multimodal
sentiment analysis with noisy labels where we treat the whole procedure of label correction and network
training as a three-stage optimization process, i.e., Multimodal Data Fusion, Label Correction
and Learner Training, Meta-Learner Optimization. The corresponding pseudo-code is provided in
Algorithm 1.

3.1 Notations
This section provides several notation definitions for clarity. Given a K-category multimodal

training dataset with noisy labels as D = {xi, yi}N
i=1 where xi = {(xj

i, yi)
m
j=1} is the i-th data, xj

i is the
j-th modality from the i-th data and yi is the original label (potentially noisy). In this paper, we treat
text and image as two modalities and each modality contains a single sample. Similarly, given a K-
category multimodal clean validation datasets Dv = {xiv , yiv}n

i=1 where xiv = {(xj
iv , yiv)

M
jv=1} is the j-th data

where M � N, xj
iv is the j-th modelity from the i-th data and yiv is the clean label.
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Figure 2: Overview of MRML architecture and computation flow. Here is the model’s operational
flow: (1) Noisy training data input: it inputs the noisy training data into the learner and then obtains
the logits and fused features from the learner. (2) Label correction: subsequently, the fused feature is
fed into the meta-learner, which generates corrected labels. (3) Training loss computation: the next
step involves the calculation of the training loss by using the logits and corrected labels to update the
learner. (4) Validation loss computation: the updated learner then receives clean validation data and
calculates the validation loss. (5) Meta-learner parameter update: finally, the gradient of the meta-
learner’s parameters is calculated through the validation loss to update the meta-learner

Algorithm 1: The pseudocode of MRML
Input: Training dataset D = {xi, yi}, Clean validation dataset Dv = {xiv , yiv}, Meta-learner parameters

φ, Learner parameters θ , Training batch size bt, Validating batch size bv, MaxEpoch T .
Output: Robust learner parameter θ ∗.

1 Initialize learner parameters θ and meta-learner parameters φ;
2 for t = 0 to T − 1
3 (xi, yi) = SampleBatch(D, bt);
4 (xiv , yiv) = SampleBatch(Dv, bv);
5 h(xi) ←− Two-layer fusion net θf (xi);
6 ȳi ←− Gφ(h(xi));
7 ŷi ←− Fθ (xi);
8 Update θ on training dataset by ∇θL (ȳi, ŷi) to θ ′;
9 Update φ on validation dataset by ∇φL (yiv , Fθ ′(xiv))

10 end

3.2 Overview
For a clear understanding, we first briefly introduce MRML architecture and the three-stage

optimization process. Three models are involved in the framework, one learner and two meta-learners.
The learner is defined as
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ŷi = Fθ (xi)

θ = (θc, θf )
(6)

where θ is the parameters of learner, in which θc and θf denote the parameters of classification net and
two-layer fusion net, respectively. And the two meta-learners are defined as

ȳi = Gφ(h(xi))

φ = (φ1, φ2)
(7)

where h(xi) is the fused feature of input xi, φ is the meta-learner parameters and ȳi denotes the corrected
label.

The three-stage workflows of MRML are:

Stage 1: Multimodal Data Fusion. The primary objective of this stage is to construct the input for
Stage 2, facilitating label correction and learner training. For this purpose, we introduce a two-layer
fusion network that individually represents text and image data, followed by the amalgamation of
these features.

Stage 2: Label Correction and Learner Training. In this stage, we propose a multiple meta-learner
strategy to generate corrected labels by using the fused feature h(xi). Then, we compute the training
loss with the logits of learner fθ (xi) and the corrected label ȳi to update learner θ to θ ′.

Stage 3: Meta-Learner Optimization. This stage uses a clean validation dataset Dv for meta-learner
optimization. Specifically, we input the multimodal validation data to the updated main learners θ ′ and
compute the validation loss, then compute the gradient of the validation loss of the parameters to meta
learner to update the meta learner.

3.3 A Two-Layer Fusion Net
As shown in the right part of the Fig. 2, the two-layer fusion net θf is the main component of

learner θ and it will correlate each multimodal data as the input for Stage 2 that could augment the label
correction with more information through the fused feature. The quality of the fused feature extracted
by the two-layer fusion net is crucial for the label correction, where the fused feature generates the
corrected label. First, we use BERT [24] and ResNet [25] to represent text and image data as follows:

Text representation. We use the mean pooling to all tokens’ hidden states from the BERT to
represent text data as h(xtext

i ) = Bert(xtext
i ).

Image representation. Image representation is based on ResNet model. We use the final output
vector of the ResNet after the global pooling layer. The output size of the last convolutional layer in
ResNet is 14 × 14 × dr, where 14 × 14 denotes 196 block regions Ii,j(i, j = 1, 2 . . . , 14) in an image. Each
regional feature representation can be defined as Vi,j = ResNet(Ii,j). The extracted features of block
regions Vi,j

14
i,j=1 are arranged into an image block embedding sequence b1 = V1,1W r, ..., b196 = V14,14W r,

where Vi,j ∈ R
1×dr and W r ∈ R

dr×dBERT to match the embedding size of BERT, and dr = 2048 when
working with ResNet-50.

h(ximage
i ) =

nr∑

i,j=1

Vi,j

nr

(8)

where nr is the number of regions and is 196 in this paper. Hence, each modality’s representation feature
can be defined as
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H(xi) = (h(xtext
i ), h(ximage

i )) (9)

After representing two modalities, we use two fusion strategies namely feature fusion and modality
fusion to combine the features h(xtext

i ) and h(ximage
i ).

(1) Feature fusion. Inspired by attention mechanism in multimodal tasks [20,26], feature
fusion aims to utilize multimodal information to refine representation features of all modalities
h(xtext

i ), h(ximage
i ). The key is to calculate the weight for each h(xj

i)j. The weighted average then becomes
the new representation h(xj

i) of modality j. For the j-th modality, we calculate two weights wjj′ from
the different modalities j′. The final reconstruction weight is the average of the weights wjj1

.

wjj′ = W2 · tanh(W1 · [h(xj
i); h(xj′

i )] + b1) + b2 (10)

wjj′ = softmax(wjj′) (11)

wj =
∑

j′∈{image,text} wjj′

2
(12)

h(xj
i) = wjh(xj

i) (13)

where j, j′ ∈ {image,text} denotes modalities; wjj′ is the weight for the modality j under the guidance of
modality j′; wj is the final reconstruction weight for the modality j; W1, W2 are weight matrices and b1,
b2 are biases. After feature fusion, h(xj

i) is now considered feature vectors of each modality and ready
to serve as inputs of the next layer.

(2) Modality early fusion. Motivated by the work of [27], we perform modality early fusion instead
of simply concatenating the different modalities’ feature vectors. We implement two linear layers to
calculate the attention weights for each modality feature h(xj

i).

ŵj = W ′
2 · tanh(W ′

1 · h(xj
i) + b′

1) + b′
2 (14)

ŵj = softmax(ŵj) (15)

h′(xj
i) = tanh(W ′

3 · h(xj
i) + b′

3) (16)

h(xi)fusion =
∑

j′∈{text,image}
ŵjh′(xj

i) (17)

where j denotes the modalities, ŵj is the weight for the modality j; W ′
1, W ′

2, W ′
3 are weight matrices and

b′
1, b′

2, b′
3 are biases and h(xi)fusion is the fused feature.

3.4 Multiple Meta-Learner Strategy
Multi-network strategies and ensemble learning have been shown their efficient for numerous

different deep learning problems [10,28,29]. The main goal is to enhance the performance of the DNNs
against noise. Hence, we add a second meta-learner to increase the quality of label correction which
can be defined as

Gφ = (gφ1
, gφ2

) (18)

ȳi = gφ1
(h(xi)fusion) + gφ2

(h(xi)fusion)

2
(19)

where ȳi is the corrected label.

The utilization of a multiple meta-learner strategy offers two significant viewpoints [30]. The initial
aspect of introducing a second meta-learner is aimed at enhancing label correction, leading to more
accurate labels. This corrective measure mitigates the potential of overfitting by refining labels not
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solely reliant on a single model. The second perspective involves enhancing the learner’s knowledge
through additional information derived from these improved labels. On the contrary, a good learner
will generate a high-quality fused feature which is crucial for the meta-learner to correct the noisy
label. We demonstrate these two perspectives in the ablation study. The meta-learner and learner will
help each other to learn with noisy labels.

3.5 Bi-Level Optimization
As mentioned in Section 2, the bi-level optimization in MRML can be defined as

min
φ

E(xv ,yv)∈Dv L (yv, Fθ∗
φ
(xv))

s.t.θ ∗
φ

= arg min
θ

E(x,y)∈D L (G(h(x)fusion), Fθ (x))
(20)

where L is the loss function for classification, i.e., cross-entropy, and h(x)fusion is the fused feature.

One-step SGD method for bi-level optimization. Outside of meta label correction research, various
other studies [31–33] also have used a similar bi-level problem. Instead of updating the optimal θ ∗ for
each φ, a one-step SGD optimization method has been employed to update the θ and approximate the
optimal learner for a given ϕ

θ ∗
φ

≈ θ ′(φ) = θ − η∇θLD(G(h(x)fusion), Fθ (x)) (21)

where η is the learning rate of the learner. Since the loss of meta-learner can be defined as LDv(Fθ (x), y),
the bi-level optimization problem with one-step SGD now becomes

min LD(θ − η∇θLD(G(h(x)fusion), Fθ (x))) (22)

4 Experiments

In this section, we describe the extensive experiments performed to evaluate the effectiveness of
MRML and compare it with the baselines under different noisy types and ratios.

4.1 Datasets and Noise Settings
Datasets. In a manner that does not compromise the breadth of applicability, we assess the

performance of MRML using three extensively employed datasets for multiple sentiment analysis,
as detailed in Table 1. We briefly introduce them as follows:

• Yelp-5, a dataset of online reviews scraped from Yelp.com in the food and restaurants category
[34]. Altogether, the dataset comprises over 44,000 reviews paired with corresponding images.
Each individual review is associated with a single image.

• Twitter-15, a dataset consists of image-text reviews, where each multimodal sample contains
text, a corresponding image, and an emotion target [35]. It contains 3179 training samples,
1122 testing samples and 1037 development samples.

• Multi-ZOL, a dataset of online reviews about shopping, economy, society, people’s livelihood,
news, etc. [36]. The dataset encompasses 5288 multimodal reviews, with each of these reviews
containing both textual content and a set of images.
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Table 1: The statistics of datasets used

Dataset Yelp-5 Twitter-15 Multi-ZOL

#Classes 5 3 10
Train 31K 3K 4K
Test 10K 1K 1K
Dev 4K 1K 0.5K

Noise settings. Following the related work [13], as shown in Fig. 3, we corrupt the label of training
data with two settings:

• Symmetric noise: At noise ratio is p, a clean sample’s label is corrupted to other labels with

probability
p

n − 1
and is kept in original label with probability 1 − p, where n is the number of

classes.

• Asymmetric noise: At noise ratio is p, a clean sample’s label is corrupted to one of the other
n − 1 labels with probability p and is kept in original label with probability 1 − p, where n is the
number of classes.
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Figure 3: Examples of the noise transition matrix for symmetric and asymmetric noise (taking 6 classes
and noise ratio p = 50% as an example)

4.2 Baselines and Experiment Details
Baselines. Since it is rarely touched on previous methods about multimodal sentiment analysis

with noisy labels, we evaluate our method against the following baseline methods in multimodal
sentiment analysis:

• MIMN, the multi-interactive memory network incorporates a pair of interactive memory
networks. These networks are designed to oversee both textual and visual information, guided
by the provided aspect [36].

• VistaNet, a framework that harnesses both textual and visual elements, utilizing visual cues to
align and highlight essential sentences within a document through the application of attention
mechanisms [34].

• HFIR, a hybrid fusion method based on the information relevance (HFIR) for multimodal
sentiment analysis [27].

• ITIN, a novel Image-Text Interaction Network to explore the intricate relationship between
affective image regions and textual content for multimodal sentiment analysis [37].
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Data preparation. Since our method needs additional clean validation data, we follow related work
[13,22] to randomly select 100 samples per class from the training dataset before adding noise as clean
validation data.

Model preparation. (1) For data representation, we use BERT (the mean pooling to all tokens’
hidden states) and ResNet-50 (the final output vector after the global pooling layer) to represent text
and image data, respectively. (2) For two meta-learners, as shown in Fig. 2, we use the same 3-layer
fully connected networks with dimensions of (768, 128), (128, 128), (128, label_numbers) initialized
with different parameters for label correction. And we apply the linear activation function ReLU and
the nonlinear activation function Tanh to enhance the model learning ability and use a classification
layer to output corrected label distribution. (3) For the classification net in the learner, we use a simple
4-layer fully connected network for classification given as Table 2.

Table 2: The classification net in learner

Input 768-dimensional data representation

(768, 768) linear layer, ReLU
(768, 128) linear layer, ReLU
(128, 10) linear layer, Tanh
(10, size of labels) linear layer

Training details. (1) In early training epochs, the meta-learner has a poor ability to correct
labels resulting in producing more error labels. We began to correct labels at a later 5 epochs as an
initial warm-up. (2) In all conducted experiments, we utilize the ADAM optimizer [38] to train our
approach. We set a maximum of 100 epochs for each dataset, initializing the learning rate to 0.0001.
Additionally, we follow a consistent practice of saving testing results when the best outcomes are
achieved on the development set across all methods. Our experimentation was carried out using Python
3.8 and PyTorch 1.8, executed on an RTX 3090Ti GPU. The reported results are averaged over five
separate runs.

4.3 Comparison with the Baselines
We perform multimodal sentiment analysis across three distinct datasets to assess both MRML

and the baseline methods. The accuracy results of our experiments are presented in Tables 3–5 for the
respective datasets. Our method MRML achieves the best performance on all test cases. For example,
MRML outperforms HFIR by up to 24.1%, 31.4% and 23.9% on Yelp-5, Twitter-15 and Multi-ZOL
datasets, respectively. It shows that our MRML is more robust to noisy labels and could provide
guidance for future multimodal sentiment analysis with noisy labels.

One similar trend that can be derived in the three tables is that the performance of all baselines
degrades as the noise ratio goes up which confirms the noisy labels remarkably influence the
performance of existing multimodal sentiment analysis methods. On the contrary, our method has
no such issues. MRML achieves 30.8% on the Multi-ZOL dataset under 80% symmetric noise, which
is significantly higher than that obtained by VistaNet (8.3%), MIMN (19.6%) and HFIR (6.9%), ITIN
(21.46%). Especially, the degrading speed for VistaNet is even faster (from 45.5% to 6.9% with 20%-
symmetric to 80%-symmetric). This is because VistaNet has no specified mechanism for dealing with
noisy labels. On the other hand, we can observe that MIMN and ITIN have certain noise-tolerant
abilities. For example, on the Multi-ZOL dataset with 80%-symmetric noise, MIMN achieves 19.6%
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which is obviously higher than 8.3% of VistaNet and 6.9% of HFIR. Similarly, ITIN outperforms
VistaNet, MIMN and HFIR by up to 12.6%, 1.5% and 10.7% on Twitter-15 dataset with 80%-
symmetric noise, respectively. The main reason behind this may be that they use a multiple model
strategy (i.e., MIMN uses two memory networks for text and image data and ITIN a novel image-text
interaction network) like our MRML, thus indicating the superiority of our multiple meta-learner
strategy.

Table 3: Test accuracy (%) of all baselines on Yelp-5 dataset under different noise ratios and types

Dataset Yelp-5

Noise-type Symmetric Asymmetric

Method\Noise-ratio 20% 40% 60% 80% 10% 20% 30% 40%
VistaNet 48.4 42.9 35.6 17.8 53.7 49.6 46.5 43.2
MIMN 52.5 47.2 40.3 24.5 59.8 53.2 50.4 49.1
HFIR 50.6 41.9 38.1 12.4 58.3 51.4 47.0 42.8
ITIN 57.8 48.3 37.5 19.6 62.1 58.5 53.2 50.7
MRML 64.2 58.9 49.6 36.5 65.5 64.8 63.2 59.4

Table 4: Test accuracy (%) of all baselines on Twitter-15 dataset under different noise ratios and types

Dataset Twitter-15

Noise-type Symmetric Asymmetric

Method\Noise-ratio 20% 40% 60% 80% 10% 20% 30% 40%
VistaNet 78.4 56.8 47.5 25.2 79.6 78.9 61.5 57.3
MIMN 79.6 60.9 56.0 36.3 81.5 79.2 73.4 65.1
HFIR 80.9 61.2 50.1 27.1 66.0 65.1 63.2 61.6
ITIN 81.8 67.4 54.3 37.8 82.4 81.9 76.3 68.5
MRML 82.6 81.3 76.1 58.5 84.2 83.3 82.5 81.9

Table 5: Test accuracy (%) of all baselines on Multi-ZOL dataset under different noise ratios and types

Dataset Multi-ZOL

Noise-type Symmetric Asymmetric

Method\Noise-ratio 20% 40% 60% 80% 10% 20% 30% 40%
VistaNet 43.1 36.6 25.3 8.3 48.3 43.9 39.2 37.4
MIMN 47.2 40.9 32.7 19.6 53.4 48.7 45.6 41.3
HFIR 45.5 32.4 21.1 6.9 51.5 46.3 43.2 34.9
ITIN 50.3 42.1 31.5 21.46 55.6 52.3 45.9 43.1
MRML 59.1 53.7 43.3 30.8 60.2 59.8 58.4 54.6
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Observing the data presented in Table 5, it is evident that the performance of all methods is
comparatively lower on the Multi-ZOL dataset in comparison to the other two datasets, particularly
in instances of elevated noise ratios. This phenomenon highlights the influence of class count on the
ability to counteract interference caused by noisy labels. Notably, the robust fitting capabilities of
DNNs can lead to a higher susceptibility to overfitting in more challenging tasks, particularly those
involving a larger number of classes and the presence of noisy labels.

4.4 Ablation Study
MRML introduces two main components which are the two-layer fusion net and a second meta-

learner. Therefore, it is necessary to conduct further experiments for an in-depth analysis of the
contributions of each component.

(1) Two-Layer Fusion Net. We implement MRML with one, multiple modalities and a concat
fusion strategy.

• Text. Text vectors after the mean pooling to all tokens’ hidden states of BERT are inputs of the
classification net and meta-learner.

• Image. Image vectors after the pooling layer of ResNet are inputs of the classification net and
meta-learner.

• Concat. Previous research concats multimodal feature vectors. We implement this concatenation
strategy to fuse multimodal data [39].

(2) Multiple Meta-Learner Strategy. We conduct experiments by using a single meta-learner for
label correction and others remain the same.

Tables 6 and 7 show the results in terms of classification accuracy on Yelp-5 and Multi-ZOL
datasets. In general, we can see that both components provide an improvement over other methods.
Moreover, the collaborative integration of the two components within MRML results in a more
effective synergy, leading to enhanced classification accuracy through their combined efforts. The most
significant improvements are gained on Multi-ZOL under 20%-symmetric noise with up to 13.5%
increase in accuracy.

Table 6: Test accuracy (%) of ablation study on Yelp-5 dataset under different noise ratios and types

Dataset Yelp-5

Noise-type Symmetric Asymmetric

Method\Noise-ratio 20% 40% 60% 80% 10% 20% 30% 40%
Text + single meta-learner 60.5 55.6 46.6 32.9 62.3 61.9 58.7 56.5
Text + two meta-learners 60.8 56.0 47.1 33.5 62.4 62.2 59.3 57.1
Image + single meta-learner 52.4 48.1 43.4 30.8 53.9 52.7 46.0 48.8
Image + two meta-learners 52.5 48.7 44.2 31.7 54.3 52.9 46.5 49.2
Concat + single meta-learner 61.4 55.9 47.0 32.9 62.6 61.9 59.2 56.3
Concat + two meta-learners 61.6 56.5 47.7 34.6 62.7 62.3 59.7 56.9
Two-layer fusion net + single meta-learner 63.9 58.4 49.1 35.7 65.4 64.5 62.8 58.7
MRML 64.2 58.9 49.6 36.5 65.5 64.8 63.2 59.4
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Table 7: Test accuracy (%) of ablation study on Multi-ZOL dataset under different noise ratios and
types

Dataset Multi-ZOL

Noise-type Symmetric Asymmetric

Method\Noise-ratio 20% 40% 60% 80% 10% 20% 30% 40%
Text + single meta-learner 55.2 50.4 40.5 27.2 56.9 56.5 54.2 50.8
Text + two meta-learners 55.4 50.9 41.3 28.4 57.1 56.8 54.6 51.5
Image + single meta-learner 45.6 41.7 37.2 25.3 47.5 45.9 44.5 42.1
Image + two meta-learners 45.8 42.4 38.5 26.5 47.8 46.3 44.9 42.7
Concat + single meta-learner 56.1 51.2 41.1 28.6 57.5 56.6 55.3 52.4
Concat + two meta-learners 56.5 51.6 41.8 29.7 57.6 57.1 55.9 52.8
Two-layer fusion net + single meta-learner 58.6 53.1 42.9 30.1 59.9 59.3 58.0 54.1
MRML 59.1 53.7 43.3 30.8 60.2 59.8 58.4 54.6

Another, the feature based only on the image modality does not perform well, while text performs
much better, demonstrating the important role of text modality. Compared with the concat fusion
strategy, our proposed two-layer fusion net further improves the classification performance, revealing
that our fusion net leverages features of two modalities in a more effective way.

Fig. 4 shows the results in terms of label correction accuracy on Yelp-5 dataset. Similar to the
above classification results, the two meta-learners with the fused feature generated by our two-layer
fusion net achieve the best label correction performance, indicating that the high quality of multimodal
features and a second meta-learner are beneficial for label correction. Based on this insight, it is
reasonable to anticipate that the introduction of a third network could potentially lead to additional
performance enhancements. However, since the huge computation for bi-level optimization, we only
consider the addition of more models when the computation resources are sufficient.

(a) 40%-symmetric (b) 60%-symmetric

Figure 4: (Continued)
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(c) 20%-asymmetric (d) 40%-asymmetric

Figure 4: The corrected label accuracy of ablation study on Yelp-5 dataset with different noise types
and noise ratios. “concat + two” denotes “concat + two meta-learners” and “fusion + single” denotes
“two-layer fusion net + single meta-learner”. (a) The accuracy of corrected label on 40%-symmetric
noise. (b) The accuracy of corrected label on 60%-symmetric. (c) The accuracy of corrected label on
20%-asymmetric. (d) The accuracy of corrected label on 40%-asymmetric

5 Related Work

In this section, we describe the related works about unimodal learning with noisy labels methods
and multimodal sentiment analysis methods.

5.1 Learning with Noisy Labels
Few methods have been revealed by far on how to effectively conduct multimodal sentiment

analysis with noisy labels. However, many unimodal methods with noisy labels have been proposed
which can be divided into three parts.

Sample selection. Sample selection methods focus on using a data selection method to identify
and discard noisy samples before training the model. Confident learning [11] calculated the confidence
value of data and discarded the noisy data from the training dataset. Co-teaching [10] simultaneously
trained two networks, and each model chooses the data with less loss to each other. Elkan [40] estimated
the noisy data through positive-unlabeled learning. SELF [41] proposed a noisy data filtering method
through model ensemble learning which utilizes the model’s predictions in different epochs to remove
the noisy samples. AUM [9] identified the noisy data by measuring the mean difference between the
logits of the sample’s assigned class. These methods have a common shortcoming in that a large amount
of data would be discarded which reduces the robustness of the model when the noise ratio is high.

Sample reweighting. Many existing methods aim to reweight the noisy data. Ren et al. [22] used a
meta-reweighting method to assign small weights to the noisy data which could reduce the model’s
negative impact. Wang et al. [42] reweighted the model’s noisy data through a weighting scheme.
Shu et al. [43] also used a meta-reweight framework with a clean validation dataset and learned
a loss-weighting function. All of these methods need a clean validation dataset to reweight noisy
data. Xue et al. [44] estimated the noisy probability of data by using a probabilistic local outlier
factor. Jiang et al. [12] proposed a model named MentorNet which leverages lesson plans by learning
samples that are likely to be correct and dynamically learns data-driven lessons through StudentNet.
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Harutyunyan et al. [45] reduced the memorization of noisy labels through the mutual information
between weights and updated the weights of data based on the gradients of the last layers. These
sample reweighting methods always assign small weights to noisy data which would cause a waste
of data information and degenerate the robustness of the model.

Sample relabeling. The sample relabeling methods aim to correct the noisy labels which could
leverage all the training data. Mixup [46] corrects the noisy labels by using data augmentation
techniques. Hendrycks et al. [13] estimated the label corruption matrix, and then trained the network
leveraging this corruption matrix. Mixmatch [47] used data augmentation and a single model’s
prediction to relabel data. DivideMix [48] first identified the noisy training data through the Mixture of
Gaussians. Then it utilizes two networks based on the co-teaching mechanism to correct noisy labels.
Finally, it used the Mixmatch strategy [47] to train the two networks. Recently, many methods based on
meta-learning [16,21,32,49,50] have been proposed. They adopt the meta-process as label correction,
which aims to generate corrected labels for noisy data. All these methods use a clean validation dataset
to guide the network training with noisy labels.

5.2 Multimodal Sentiment Analysis
Given the widespread use of diverse user-generated content, such as text, images, and speech,

sentiment analysis has expanded beyond just text-based analysis. The field of multimodal sentiment
analysis is dynamic, involving the automated extraction of people’s sentiments from various forms of
communication channels.

Multimodal data often comprises both text and image information, which can synergistically
enhance and complement each other. Early research primarily focused on feature-based approaches.
For instance, Borth et al. [51] introduced textual features derived from English grammar, spelling, and
style scores, alongside visual features obtained through the extraction of adjective-noun pairs from
images. More recently, the advancement of deep learning has led to the emergence of numerous neural
network-based techniques for multimodal sentiment analysis. An example is the work by Yu et al. [52],
where they pre-trained models for text and images to individually capture their respective feature
representations. These features were subsequently combined and used to train a logistic regression
model. Some work [53,54] concatenated features from different multimodal data and input it into
the model. Another, some works applied late − fusion methods that combine the predicting values
from the individual unimodal models through a learning model [55,56] or an ensemble strategy like
voting scheme [57–59]. In Salur et al. [60], a soft voting-based ensemble model was proposed that
takes advantage of the effective performance of different classifiers on different modalities. However,
these methods ignore the connection between modalities. In response to these challenges, numerous
researchers have employed LSTM cells and gating mechanisms to capture interaction dynamics within
multimodal data [61–64]. Han et al. [65] employed a gated control mechanism within the Transformer
architecture to further enhance the ultimate output. Zadeh et al. [66] introduced a multiview gated
memory unit to capture and forecast cross-modality interactions. Zhu et al. [37] presented a novel
Image-Text Interaction Network (ITIN) for exploring the intricate connection between emotional
image regions and textual content. While these techniques significantly enhance performance, their
intricate architectures and substantial computational demands impede model interpretability. To
address these limitations, our paper introduces an innovative fusion approach based on lightweight
attention mechanisms.
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6 Conclusion

This paper offers a concise examination of the challenge of multiple sentiment analysis involving
noisy labels. Recent advancements in unimodal meta label correction have showcased promising
potential in mitigating the impact of noisy labels. Building upon this foundation, we introduce a novel
approach named Multimodal Robust Meta Learning (MRML) framework for multimodal sentiment
analysis. This framework aims to counteract the influence of noisy labels in multimodal scenarios and
simultaneously establish correlations across distinct modalities. Our MRML framework encompasses
a three-stage optimization process.

In the initial stage, we propose a two-layer fusion network to merge multimodal features. The
subsequent stage involves a multiple meta-learner strategy, responsible for generating corrected labels
and training the learner using these improved labels. In the final stage, we leverage a clean validation
dataset to fine-tune the meta-learner. Through comprehensive experiments across three widely-utilized
datasets, we validate the efficacy of MRML. Looking ahead, our future endeavors are centered around
enhancing the MRML framework and extending its application to diverse domains.
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