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ABSTRACT

In a network environment composed of different types of computing centers that can be divided into different
layers (clod, edge layer, and others), the interconnection between them offers the possibility of peer-to-peer task
offloading. For many resource-constrained devices, the computation of many types of tasks is not feasible because
they cannot support such computations as they do not have enough available memory and processing capacity. In
this scenario, it is worth considering transferring these tasks to resource-rich platforms, such as Edge Data Centers
or remote cloud servers. For different reasons, it is more exciting and appropriate to download various tasks to
specific download destinations depending on the properties and state of the environment and the nature of the
functions. At the same time, establishing an optimal offloading policy, which ensures that all tasks are executed
within the required latency and avoids excessive workload on specific computing centers is not easy. This study
presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,
Graph Neural Networks (GNN) and Deep Q-Network (DQN). It applies the alternatives on a well-known Edge
Computing simulator called PureEdgeSim and compares them with the two default methods, Trade-Off and Round
Robin. Experiments showed that variants offer a slight improvement in task success rate and workload distribution.
In terms of energy efficiency, they provided similar results. Finally, the success rates of different computing centers
are tested, and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.
These novel ways of finding a download strategy in a local networking environment are unique as they emulate the
state and structure of the environment innovatively, considering the quality of its connections and constant updates.
The download score defined in this research is a crucial feature for determining the quality of a download path in
the GNN training process and has not previously been proposed. Simultaneously, the suitability of Reinforcement
Learning (RL) techniques is demonstrated due to the dynamism of the network environment, considering all the
key factors that affect the decision to offload a given task, including the actual state of all devices.
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1 Introduction

Various computing centers can be found in a local networking environment, with possible
interconnections. In the Edge Computing paradigm, this interconnection facilitates the transmission
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of information is of particular interest. In many cases, when resource-constrained devices are allocated
to solve computationally expensive tasks, they can become overloaded and not powerful enough
regarding processability and memory availability. In this way, weaker computers can alleviate their
computational load by assigning different tasks to more powerful devices nearby. These devices can
vary depending on their complexity and proximity to these end-user devices. This variation of possible
destinations is appropriate to distinguish different layers in an architecture, dividing it into the cloud,
fog/edge, and IoT (Internet of Things) layers. The cloud tier comprises remote network servers rich in
general resources with the capacity to store, manage, and process data. This general computer is the
richest regarding processability and resource availability and often acts as a network orchestrator. In
contrast, at the lowest level, it can find sensors, gadgets, and other IoT devices equipped with restricted
computing capabilities but offer immediate responses to users. Its function is to collect information
from the environment and act on environmental changes, among others. Meanwhile, other layers can
be defined, such as the Fog and Edge layers, with greater capacities than the previous ones but with
less processing and memory capacity than the cloud, being a valuable alternative for different types of
computations.

Management and decision-making tools based on Artificial Intelligence (AI) algorithms have
great potential to offer new and more efficient services that improve people’s living conditions. These
services could be of various types, from the classification of multiple classes of land cover [1] to systems
where pollution forecasts are made [2]. These tools are possible thanks to the collection of information
from the physical environment in real-time (RT) and the subsequent use of this data in complex
Machine Learning (ML) and Deep Learning (DL) models. The models require high computability
for the training phase and a large amount of available memory to store their parameters for the last
inference. Consequently, IoT devices cannot store such an amount of data or train deep models, so
they need to adjust the data and model sizes or send these mappings to more powerful devices. This
could alleviate the problem of lack of resources faced by IoT devices, but a drop in accuracy would
be inevitable. When end-user devices intend to perform certain calculations but are not equipped
with sufficient resources or are overloaded, they have the opportunity to transmit their assigned
tasks to other devices over the network given the interconnectivity between different nodes. A proper
offloading strategy is crucial to avoid situations where certain nodes in an architecture absorb all tasks
from nearby end devices. As a result, load balancing between nodes must be ensured and all tasks must
be executed successfully.

In addition, depending on the environment in which this paradigm is located or in which the
application is intended to be used, some alternatives will be more beneficial. For example, if there are
latency requirements for tasks, streaming to the nearest nodes will be more appropriate than streaming
to the cloud, although cloud servers are unlimited in memory and offer the highest processing
capabilities. The weakness of using this alternative is that transmitting information from end-user
devices to the cloud involves some delay and possible loss of information over the network. This loss
could result from connection loss or other erroneous message information. The information can be
vulnerable to intrusion attacks and inaccurate or incomplete. Transferring confidential information to
the cloud is not the right decision because the vulnerability grows with increased information exposure
over the network.

In contrast, IoT devices do not expose information over the network when they perform a task,
making them the most secure option. The latency required by many applications also prevents using the
cloud as a final computing center due to increased delay. The essential requirement of RT computing
is immediate response, which is impossible to achieve using cloud computing. On the other hand,
end-user devices offer immediate feedback, but their limitations can lead to a lack of model accuracy.
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Excessively reducing the size of the models and the data needed to represent them leads to a severe
drop in the performance of the resulting models. For example, a simple actuator has to give a specific
response depending on the values in the environment. In order to obtain the answer, it can be necessary
to apply an ML model that would not be feasible to compute on the IoT device or not with its original
structure. However, the interconnectivity between different computers at different layers offers the
possibility of computing these models in other computing centers, alleviating the computational load
of these tiny devices.

In order to solve the problems mentioned above, it is essential to establish an appropriate task
offloading policy. This would indicate in each case if it is necessary to carry out the download process,
and if so, what the most appropriate destination will be in each case.

There are many alternatives intended to help with the task offloading decision problem. Some
researchers opted for optimization algorithms. Other studies have chosen methods based on AI. Other
alternatives, such as population-based and control theory methods, are outside the research interest.

This study applies Graph Neural Networks (GNNs) and Deep Q-Networks (DQN) to decide
if it is feasible to offload a task from an end-user device to a richer computing center in terms of
processability and available memory in each situation and to determine which is the best destination
available in the area. It represents the local network structure in which different types of devices can be
found in the Graph structure where each node is a computer, and the edges are the interconnections
between them. This architecture can be extrapolated to an area of local networks where different IoT
devices are interconnected with each other and with more powerful Edge Datacenters that offer the
possibility of offloading tasks from small devices to Datacenters such as a Smart Home with small
gadgets and a central router. In addition, the agent learns the network environment in the DQN
learning process, where each action will be a decision to offload the task to one of the potential
destination computers surrounding the source computer originating the task. Each state will represent
each situation where all the characteristics of computers will be reflected. In each scenario, this
research establishes a general remote cloud server that will serve as the orchestrator of the offload
strategy and a fixed number of Edge Computing data centers and end-user devices or Edge devices.
The proposed methods are evaluated by observing the success rate of the generated tasks, workload
balance, and energy consumption. Finally, This study analyzes which computing nodes are most
suitable for downloading the success rates of each device type.

The main contributions made in this work are the following. We offer a novel alternative to
establish a task offloading strategy in a local network environment. The network architecture is almost
replicated in the GNN architecture and the quality of a network connection for download issues has
been rated with a novel parameter called download rating. Furthermore, environment updates are fully
considered in the DQN learning process. Our methodology offers an innovative way to offload tasks
in a local network environment, ensuring load balancing and completion of tasks within the desired
latency. An overview of the procedure is given in Fig. 1.

The rest of the paper is organized as follows. Section 2 reviews some of the most representative
works published in the literature. Section 3 specifies the new algorithms proposed by this work.
Section 4 presents the materials and methodology applied in this work. In Section 5, we carry out
different experiments of the task offloading paradigm using a known simulator and the results are
presented. In Section 6, these results are analyzed and conclusions are reached.
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Figure 1: Overview of the entire process

2 State of the Art

Over the last decade, several researchers have found the task offloading paradigm a conflict
of interest. The opportunity to transfer tasks from resource-constrained devices to resource-rich
computing data centers can alleviate the computational load on end-user devices and complete tasks
that were not feasible to complete at the source due to processing and memory constraints.

Those techniques have been widely used in different areas. Different techniques have been used
in virtual reality (VR) applications, such as fog computing-based radio access networks (F-RAN)
[3] or ML-based intelligent programming solutions [4]. In autonomous vehicle applications, task
offloading techniques have been used to improve performance by reducing latency and transmission
cost, as was done in [5]. Real-time traffic management was feasible by distributing decision-making
tasks to Edge devices [6]. In the area of robotic task offloading, new paradigms have emerged, in [7],
they presented an approach to simultaneous localization and mapping (SLAM) for RGB-D cameras
like the Microsoft Kinect, and in [8], a novel Robot-Inference-and-Learning-as-a-Service (RILaaS)
platform for low-latency and secure inference serving of deep models that could be deployed on robots
was introduced. Nonetheless, there are already commercial solutions for offloading tasks in robotics
[9–11]. Similarly, cloud-based solutions can be found in video streaming applications [12,13]. However,
offloading Edge should improve performance as in [14,15], by enabling gateways and facilitating
caching and transcoding mechanisms, respectively. The challenge of transferring computationally
expensive tasks to Edge nodes has been addressed in [16–18] in the area of disaster management,
but is still underexplored in this field. In the IoT field, task offloading has been of special interest
since its inception, since these devices with limited resources often face this drawback. Due to the long
delays involved in network transfer between IoT devices and the cloud, edge offloading needs to be
considered. The collaboration between IoT devices and Edge devices could be useful in the area of
smart health, being a good alternative to help paralyzed patients [19]. However, due to the growing
number of IoT devices, the best option would be the collaboration between the Edge and Cloud
servers as they did in [20] proposing a paradigm that foresees an IoT Cloud Provider (ICP)-oriented
cooperation, which allows all devices that belong to the same public/private owner to participate in
the federation process.

Different strategies have been proposed to solve the problem of task offloading. Optimization
algorithms have become a very useful and frequently used solution for this paradigm. Mixed integer
programming (MIP) has become a useful tool for resource allocation problems, addressing network
synthesis and allocation issues [21]. In other words, they opted for greedy heuristic solutions [22–24] to



CMES, 2024, vol.139, no.3 2653

solve the task offloading problem. The main advantage of these is that they offer a low execution time,
they do not require specialized optimization tools for their resolution and rather they can be expressed
as pseudocode, easily implementable in any programming language. These become much more efficient
when the task offloading problem is modeled as a nonlinear constrained optimization problem, or
when the scale of the scenario is large enough [25]. In this case, a greedy heuristic could estimate
the exact solution [13,22,24]. In other words, game theory was chosen, formulating the problem of
partial task offloading in a multi-user infrastructure, Edge Computing and multi-channel wireless
interference environment as an offloading game [26]. The Cloud-Edge game could be seen as an
infrastructure game in which the players are the corresponding infrastructures [27]. Contract theory
[28–30] and local search [31,32] are another type of optimization solutions for the task offloading
problem.

Another interesting approach to solving the problem of task offloading is the use of methods
based on AI. This branch includes all ML methods, including Supervised Learning, Unsupervised
Learning, DL, and Deep Reinforcement Learning (DRL) methods. The download destination could
be chosen following the simplest models, such as a regression model [33] or regression trees [34].
However, given the dynamism of network environments, modeling has been performed with the
support vector regressor [35] and the nearest neighbor regressor [36] for future load prediction and
energy efficient utilization of the Edge servers, respectively. In [37], a resource-aware offloading video
analysis in Mobile Edge Computing and a resource-aware offloading (ROA) algorithm using the
radial basis function networks (RBFN) method to improve reward were proposed under the resource
deadline constraint. Taking into account unsupervised models, clustering models are useful tools to
group resources depending on the distance between computing nodes [38] and task demands [39] and
analyze the allocated resources [40].

DL can be an accurate tool for making task offloading decisions, based on the resource usage of
the processing Edge nodes, the workload, and the quality of services (QoS) constraints defined in the
Service Level Agreement (SLA) [41]. In [42], a new multi-objective strategy based on biogeography-
based optimization (BBO) algorithm for Mobile Edge Computing (MEC) offloading was proposed
to satisfy multiple user requirements (execution time, power consumption, energy, and cost). In [43], a
task offloading model based on dynamic priority adjustment was proposed. Second, a multi-objective
optimization model for task scheduling was constructed based on the task offloading model, which
optimizes the time delay and energy consumption. In [44], they proposed an Improved Gorilla Troops
Algorithm (IGTA) to offload dependent tasks in MEC environments with three objectives: minimizing
the application execution latency, the power consumption of light devices, and the used cost of MEC
resources. DL models have been used to minimize the computational load under dynamic network
conditions and constrained computational resources [45]. A model that also considers the challenges
of speed, power, and security, while satisfying QoS with dynamic needs, has been proposed to
determine the combination of different computing nodes [46]. In [47], they developed a novel calibrated
contextual bandit learning (CCBL) algorithm, where users learn the computational delay functions of
micro base stations and predict the task offloading decisions of other users in a decentralized manner.
At [48], they presented a novel federated learning framework for GAN, namely Collaborated g Ame
Parallel Learning (CAP), which supports parallel training of data and models for GAN and achieves
collaborative learning between edge servers, devices, and Cloud. Furthermore, they proposed a Mix-
Generator (Mix-G) module that splits a generator into the sharing layer and the personalizing layer.

DRL techniques have emerged as an interesting alternative to typical task-offloading policies.
Deep Q networks have been used to solve the task offloading problem [49] and have been optimized by
introducing a short-term memory (LSTM) [50] into them. An intelligent partial offloading scheme was
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proposed in [51], namely digital twin-assisted intelligent partial offloading (IGNITE), which combines
the improved clustering algorithm with the digital twin (DT) technique, in which unreasonable
decisions can be avoided by reducing the size of the decision space and finding the optimal offloading
space in advance. In the same field, reference [52] proposed a mobility-dependent task offloading
(MESON) scheme for urban vehicle edge calculation (VEC) and developed a DRL-based algorithm to
train the offloading strategy. To improve the training efficiency, a vehicle mobility detection algorithm
was further designed to detect the communication time between vehicles and Road Side Units (RSUs).
In this way, MESON was able to avoid unreasonable decisions by reducing the size of the action
space. Finally, the DRL algorithm was used to train the offloading strategy. In [53], they used the
Markov decision process (MDP) that minimizes the total completion time. In [54], they considered a
wireless MEC system that governs a binary offloading decision to execute the task locally on the Edge
devices or on the remote server, proposing a Reinforcement Learning-based Intelligent Offloading
online (RLIO) framework that adopts the optimal offloading policy.

Other approaches that differ from those mentioned above include population-based methods
and control theory-based methods. Swarm Intelligence methods [55,56] and Evolutionary Algorithms
[57,58] are the two variants of population-based methods that have been proposed to address the
problem. Solutions based on control theory include optimal control [59,60], state feedback control
[61] and Lyapunov optimization processes [62] among others.

Most of the mentioned studies implemented using an outdated methodology that has been
surpassed by recent models such as deep models or Reinforcement Learning (RL) models, or those
that chose to use these techniques are single objective and/and do not care about task’ features and the
actual workload of the destinations. In contrast, this study applies a simplistic approach that considers
the nature of the tasks and the updated status of potential download destinations, facilitating user
understanding while achieving high accuracy and competitive performance. It provides a methodology
representing the network architecture in a graph and an RL technique that considers all the key factors
when determining the optimal download decision. The research proposes a novel feature to evaluate
the goodness of a download destination, which is a critical factor in determining whether a potential
download route is valuable for a given task. Table 1 compares the latest and most relevant works,
specifying the methodology proposed in each work.

Table 1: Comparative of current works on edge computing

Work Proposed method Field

[24] Heuristic greedy offloading scheme Multi-access mobile edge
computing

[28] Contract theory. Negotiation between task publisher
and fog nodes as an optimization problem

Fog computing

[33] Multi-task regression problem & Multi-task learning
based feedforward neural network (MTFNN) model

Multi-access edge computing

[34] Module placement method by classification and
regression tree algorithm (MPCA) & Probability of
network’s resource utilization in the module offloading
(MPMCP)

Mobile fog computing

[37] Radial basis function networks-based resource-aware
offloading

Video analytics in mobile edge
computing

(Continued)
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Table 1 (continued)

Work Proposed method Field

[38] Balanced clustering and joint resources allocation
(BCJRA)

Mobile fog computing

[39] Dynamic mobile cloudlet cluster policy (DMCCP) Fog computing
[40] Server partitioning algorithm based on clustering.

Multi-user game with Nash equilibrium
Mobile edge computing

[41] Neural networks for mapping quality of service required
levels and (expected) application workload to concrete
resource demand

Edge computing

[42] Multi-objective strategy based on the
biogeography-based optimization (BBO) algorithm

Mobile edge computing

[43] Task unloading model based on dynamic priority
adjustment & Multi-objective optimization model

Task offloading & Real-time
scheduling

[44] Improved Gorilla troops algorithm (IGTA) Multi-access edge computing
[46] Deep learning-based dynamic task offloading in mobile

cloudlet (DLDTO)
Mobile computing

[47] Novel calibrated contextual bandit learning (CCBL)
algorithm

Mobile edge computing into
an ultra-dense network
(UDN)

[48] Collaborated game parallel learning (CAP) for GANs &
Mix-generator module (Mix-G) that divides a generator
into the sharing layer and personalizing layer

[49] Deep Q-learning approach for designing optimal
offloading schemes, jointly considering selection of
target server and determination of data transmission
mode

Mobile edge computing

[50] DRL & LSTM network layer and the candidate network
set

Mobile edge computing

[51] Digital twin-assisted intelligent partial offloading
(IGNITE)

Vehicle edge computing

[52] Mobility-aware dependent task offloading (MESON)
scheme for urban VEC and a DRL-based algorithm to
train the offloading strategy

Vehicle edge computing

[53] Markov decision process IoT & Edge computing
[54] Reinforcement learning based intelligent online

offloading (RLIO)
Mobile edge computing

[55] Fuzzy clustering Mobile edge computing

3 Proposed Algorithms

This study proposes a well-known DRL technique using GNN and DQN to solve the task
offloading problem. Brief descriptions of both architectures are given in this section. Finally, the
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training processes of both algorithms are explained utilizing Fig. 2, showing the complete architecture
procedure.

Figure 2: Training procedure of the entire architecture divided in different steps

3.1 Graph Neural Network
Graphs are a data structure representing a collection of elements (nodes) and their connections

(edges). A GNN is a type of neural network (NN) that works directly with the graph’s structure. In the
used case, each node in the network represents a computing center that can be an IoT/Edge device, an
Edge server, or a cloud server. Graphs are a data structure representing a collection of elements (nodes)
and their connections (edges). The edges between these nodes represent the connections between the
different computing centers, which can be the download paths of the tasks that must be completed to
meet their requirements.

Each node represents each computing device, a potential destination for the download task in
question. Furthermore, the edges represent the connection between these devices, whose characteristics
are as follows. The characteristics of each node are determined by the computing device’s available
RAM, millions of instructions per second (MIPS), central processing unit and memory, and the desired
task latency and file size in bits associated with the task. The characteristics of Edge are determined by
the offload classification defined in this work, that is, the number of tasks successfully executed using
the offload path divided by the total number of tasks offloaded using the path.

The output size of the network will be determined by the number of possible destinations of the
task initially assigned to the IoT/Edge device. The number of output neurons will be equal to those
possible destinations. The output would be binary, downloading/not downloading to each possible
destination.

To train the network, we apply the real data produced by the architecture following two well-
known offloading algorithms, Trade-Off and Round Robin. The download destinations for each task
obtained following any of the mentioned algorithms would be the actual data used to train the network.
Once the network is trained, the input would be the task with its characteristics and the output would
be a binary decision of the possible download destinations. A brief description of our algorithm is
provided in Algorithm 1.
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Algorithm 1: GNN
Nodes ←Available computing centers
Edges ←Connection between computing centers
NodeFeatures ←RAM, Mips, CPU, latency, file size
for NTasksExecuted Satisfactory do

Destinynode ← TradeOff /Round − Robin(task)

EdgesSuccessfullyExeceutedTasks ← EdgesSuccessfullyExeceutedTasks + 1
end for
for NEdges do

EdgeFeature ←EdgesSuccessfullyExeceutedTasks/NTasksOffloadedbyEdge
end for
for Ntasks do

Output ← GNN(task)

Loss ← CrossEntropyLoss(Output, Destinynode)
end for
for Ntasks do

OffloadingDestiny ← GNN(task)
end for

3.2 Deep Q-Network
RL is a framework in which the agent attempts to learn from its environment by obtaining different

rewards on each action performed in that environment. The agent’s objective is to maximize the sum of
rewards obtained by performing consecutive actions following its policy, and by optimizing this policy
the problem in question is solved. After obtaining an observation of its environment (st) the agent acts
at following its policy π(at|st). Consequently, depending on the action performed in that observation,
a reward and the next observation (st+1) are obtained.

DQN was developed by [63]. Deep neural networks (DNN) and replay techniques were used to
optimize the Q-learning process. Q-learning is based on the function Q that measures the expected
return or the discounted sum of rewards obtained from state s by taking action a first and following
policy π . An optimal function Q∗ is defined and, using the Bellman optimization equation (see Eq. (1))
as an iterative update, convergence of the function Q is guaranteed.

Qi+1(s, a) = E[r + γ ∗ maxa′Qi(s′, a′)] (1)

Representing the function Q by combining all possible actions and states is not the most practical
option in most cases. For this reason, a function approximator is used for this. Using the NN
approximation can be done using parameters θ and minimizing the loss function.

Li(θ) = Es,a,r,s′ρ[(yi − Q(s, a; θi))
2] yi = r + γ ∗ maxa′Q(s′, a′; θi−1) (2)

In the use case, the actions were the possible decision to download to each of the potential
destinations on the network, given the state of the environment. The state of the environment will
be determined by the task’s characteristics and each device’s state and capabilities. The properties
of the task that conditioned the state of the environment were the maximum allowed latency and
the size of the file in bits belonging to the task. Similarly, each computing device’s available RAM,
MIPS, central processing unit, and memory determined the rest of the state properties. If the task
requirements were successfully met, the reward for downloading to a given computing center would
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be 1, and −1 if the requirements for that action were not met. Following the technique above, the
optimal download policy was obtained. Finally, the optimized policy would determine the optimal
download destination for each task. Algorithm 2 summarizes the method.

Algorithm 2: DQN
for N tasks do

s ←RAM,Mips,CPU,memory,latency and file size
for N possible destinies do

a ← Possible destiny
Calculate L(θi)

end for
a ← maxaQ(s, a; θ)

Qi+1 ← Q(s, a)

end for

3.3 Training Procedure & Orchestration of Tasks
In the case of GNN, it is first necessary to perform a training process following any of the two

default methods available in the simulator. In each iteration, any devices that make up the IoT layer
will randomly create a task. All devices will send a message to the cloud reporting their actual status,
even if they have a task to solve (Step 1 in Fig. 2). In this scenario, the cloud will orchestrate the
download action following the predetermined algorithm by sending a message to the device (Step 2
in Fig. 2), and this will be downloaded to the destination (Step 3 in Fig. 2). After all, if the task has
been completed by meeting the requirements, that will be a positive result for the subsequent training
of the GNN; otherwise, it will be negative. Once the entire training procedure of the default algorithm
is completed, the GNN will use the download decisions and the output generated in the previous step
as ground truth and perform the training process after defining the download rating for each network
connection. As an edge feature. For both training procedures, the graph shape was determined by the
network structure (influenced by the number of IoT devices), the learning rate was 0.001, the optimizer
was Stochastic Gradient Descent (SGD), and 10000 was the number of epochs. The GNN training will
be conducted through the cloud. Finally, the cloud will decide to download after each device sends the
message with the information about its status (Step 1 in Fig. 2), and the cloud will return the message to
the task-generating device informing about the download destination (Step 2 in Fig. 2). After sending
the task to the target device (Step 3 in Fig. 2) and completing the task on this device, the results will
be sent back to the source device (Step 4 in Fig. 2).

In the case of DQN, each device will send information about its status to the cloud (Step 1 in
Fig. 2). There, taking the state of the environment based on the offloading policy, the optimal action
must be taken. If the task was completed meeting the requirements, the reward will be 1, and 0
otherwise. In this way, an optimal offloading policy will be obtained after converging the Q function.

Finally, the Q function obtained will determine the optimal download destination in the cloud
after each device sends its state to the cloud, and it returns the message to the task generator indicating
where to download its assigned task (Step 2 in Fig. 2). After sending the task to the target device
(Step 3 in Fig. 2) and completing the task on this device, the results will be sent back to the source
device (Step 4 in Fig. 2).
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4 Material & Methodology

This section explains the environment in which the methodologies presented in the previous
section were applied in the experimental process. The software and hardware used in the experiments
are also described.

For the experimental processes we chose to use a well-known Edge Computing simulator called
PureEdgeSim [64]. The simulator offers high configurability through its modular design. In this way,
by editing each module and adjusting it to the user’s needs, it is simple and feasible to reproduce the
desired environment in each case.

The hardware environment in which all development of our work took place is a ×64 Ubuntu
20.04.4 LTS Operating System equipped with an Intel Core i7-11850H working at 2.5 GHz ×16
and 32 GB DDR-4 RAM and a NVIDIA T1200 Laptop GPU (driver version: 510.47.03, CUDA
version:11.6).

The study established between 10 and 30 end-user devices in this case, forming the IoT-Edge
layer. It repeated the experiment 3 times and compared the results of applying the abovementioned
algorithms to make task-offloading decisions. These devices were dynamic, and their range of motion
was limited to 200 × 200 units. The Fog-Edge layer comprised four data centers, each located
symmetrically in the coverage area. Each of these Edge Data Centers covered an area of 100 × 100
units. Finally, a resource-rich cloud platform offered greater computing and memory.

Each of the end-user devices was interconnected with each other. In this way, interconnections
between them were feasible. Similarly, each of these end-user devices was connected to the nearest
Edge Datacenters, and all were connected to the cloud.

The orchestrator of the decision to download was the cloud. It was equipped with 200 cores, 40,000
MIPS, 16 GB of RAM, and 1 TB of memory.

The Edge Datacenters were equipped with ten cores, 40,000 MIPS, 16 GB of RAM, and 200 GB
of memory. Its idle power consumption was 100 Wh, with a maximum consumption of 250 Wh.

Finally, the number of Edge devices or end-user devices was 10, 20, and 30 in each experimental
test. Their operating system was Linux and they had an architecture of ×86. These devices had dynamic
behavior in some cases, with a speed of 1.8 m/s. The type of network connection used to interconnect
with the rest of the devices was WiFi with a bandwidth of 1300 Mbits/s, with a latency of 0.005 s. There
were 5 different types of Edge devices and their characteristics are summarized in Table 2.

Table 2: Characteristics of different types of Edge devices

Device type Type 1 Type 2 Type 3 Type 4 Type 5

Speed (m/s) 1.8 0 0 0 1.8
Pause duration (m/s) 100–400 0 0 0 100–400
Mobility duration (m/s) 60–100 0 0 0 60–100
Battery powered Yes No Yes No No
Battery capacity (Wh) 18.75 – 56.2 – –
Initial battery (%) 100 – 100 – –
Idle energy consumption (Wh) 0.2 3.8 1.7 0.4011 0.4011
Max. energy consumption (Wh) 5 5.5 23.6 0.436 0.436
Cores 8 4 8 0 0

(Continued)
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Table 2 (continued)

Device type Type 1 Type 2 Type 3 Type 4 Type 5

MIPS 25000 16000 110000 0 0
RAM (GB) 4 4 8 0 0
Storage (MB) 256 128 256 0 0
Percentage 18 11 11 28 32

Each device could spawn any applications or tasks whose specifications are summarized in Table 3.
Container size refers to the size of the application in kB. The request size refers to the download request
sent to the orchestrator and then to the device where the task will be downloaded in kB. Result size
refers to the downloaded task results in kB.

Table 3: Characteristics of different types of tasks

Application type Hard real-time Soft real-time Non real-time

Generation rate/s 20 30 3
Latency (s) 0.02 0.5 300
Task length (Millions of instructions) 500 5000 30000
Container size (kB) 20 1500 2200
Request size (kB) 20 1500 2500
Results size (kB) 20 50 200
Percentage 20 30 50

This study applied the offload decision algorithms against the default methods provided by the
simulator, Round Robin, and Trade-Off. It introduced different options regarding possible download
destinations by including all devices, Edge devices only, Edge Data Centers only, Edge Data Centers
and cloud-only, Edge devices and cloud-only, and Edge devices and Edge Data Centers only.

In total, there were 6 offloading configurations × 3 number of Edge device possibilities × 4
algorithms = 72 simulation configurations. Each simulation time was established at 200 s.

5 Experiments & Results

In the experimental process, we considered the following parameters: energy consumption, tasks
executed in each layer, and success rate. Additionally, we considered the distribution of the workload
among different devices. Task failure could be due to different reasons, such as lack of available
memory, violation of latency constraints, or network traffic congestion. His explanation is given
below:

• Success rate: The ratio of the number of successfully executed tasks divided by the total number
of tasks.

• Energy consumption: The power consumed by all devices of each type during each experimen-
tation process.
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• Workload distribution: Refers to the number of tasks distributed by each type of device in each
experimentation process.

5.1 Tests with 10 Edge Devices
First, only ten devices were placed in the end-user layer, and these devices were divided into various

types following the percentages shown in Table 2. These randomly generated the three types of tasks
following the percentages and generation rates listed in Table 3. The success rate results are depicted
in Table 4.

Table 4: Success rate of different algorithms including different types of destiny devices (10 Edge
devices)

Algorithm All devices Edge & Edge
DC

Edge &
Cloud

Edge DC
& Cloud

Edge Edge DC

Trade Off 99.9194% 100% 66.0484% 99.9194% 54.5161% 100%
Round Robin 99.8387% 100% 47.1774% 99.8387% 55.4839% 100%
GNN 99.9194% 100% 80.4032% 99.9194% 59.1935% 100%
DQN 99.9194% 100% 82.0968% 100% 65.5645% 100%

As can be seen, the most critical environments were when there were no Edge Data Centers
available as possible download destinations. This could be because the Edge devices were not equipped
with sufficient capabilities to computationally support the rest of the devices’ tasks. Likewise, the cloud
was too far from these end-user devices, so latency requirements were not met in most cases where the
cloud was the download destination. Those problems were solved when tasks were offloaded to Edge
Data Centers, which are computationally less powerful than the cloud platform but still have high
capabilities. In the same way, being located close to these Edge devices, task latency was not an issue.

The energy consumption of Edge devices and Edge Data Centers are shown in Tables 5 and 6,
respectively. Energy consumption was higher in cases where there were no Edge Data Centers available
as possible download destinations, and the algorithm chosen to decide the download destination was
GNN or DQN. In these cases, because the best download destinations were not available, the Edge
devices that can perform the tasks consume more power. However, in the default algorithms, this is
not the case. Most of the tasks could have been offloaded to the cloud, which hurts the success rate,
as seen in Table 4. Edge Data Centers show a similar consumption pattern for all algorithms, slightly
lower for all download policies when they were not potential download destinations.

Table 5: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (10 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 3.1947 3.2359 3.9221 3.1246 3.5854 3.1246
Round Robin 3.1032 3.1246 3.1184 3.1246 3.6223 3.1246
GNN 3.1745 3.2707 4.3367 3.1246 3.6223 3.1246
DQN 3.1487 3.1902 4.5019 3.1246 3.6406 3.1246
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Table 6: Energy consumption in Wh of Edge Datacenters for different algorithms including different
type of destiny devices (10 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.4092 34.7847 33.8889 34.5972 33.6111 34.9722
Round Robin 34.3193 34.9722 33.8889 34.5966 33.8889 34.9722
GNN 34.3577 34.6034 33.8889 35.0087 33.8889 34.9722
DQN 34.4162 34.8765 33.8889 35.0125 33.8889 34.9722

5.2 Tests with 20 Edge Devices
We repeated the experiment from the previous subsection by changing the number of Edge devices

to 20. The results of the success rates are shown in Table 7.

Table 7: Success rate of different algorithms including different type of destiny devices (20 Edge
devices)

Algorithm All devices Edge & Edge
DC

Edge &
Cloud

Edge DC
& Cloud

Edge Edge DC

Trade Off 99.8641% 100% 61.8478% 99.8913% 97.1739% 100%
Round Robin 99.8370% 99.7011% 96.30434% 99.8370% 59.9185% 100%
GNN 99.9185% 100% 84.4837% 99.9185% 97.1739% 100%
DQN 99.9457% 100% 84.3478% 99.9728% 97.1739% 100%

The success rate trend continued when we doubled the number of Edge devices. However, as the
number of free Edge devices must have been higher than in the previous experiment the success rates
were higher when Edge devices were involved and not Edge Data Centers. In cases where Edge Data
Centers were possible destinations, rates are 100% or close to it. In this test, when Edge Datacenters
were not potential destinations, performance degradation was observed when Edge devices were
the only potential destinations for the Round Robin algorithm and when the cloud was also a
potential offload destination for the Trade-Off algorithm. In these cases, the Edge devices would
not be sufficient to respond to the tasks and the cloud would not respond within the desired latency,
respectively.

Tables 8 and 9 show the energy consumption of edge devices and Edge Data Centers, respectively.

Table 8: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (20 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 8.3796 7.7330 8.7102 7.0386 9.3050 7.0386
Round Robin 7.6535 6.9917 8.6272 7.0386 8.0294 7.0386
GNN 7.6113 7.2317 8.7088 7.0386 9.3050 7.0386
DQN 6.6980 7.5004 8.7049 7.0386 9.3286 7.0386
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Table 9: Energy consumption in Wh of Edge Datacenters for different algorithms including different
type of destiny devices (20 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.9217 35.4306 33.8889 36.1160 33.8889 36.6806
Round Robin 34.9298 35.9590 33.8889 35.9284 33.8889 36.6806
GNN 34.9240 36.6409 33.8889 36.1788 33.8889 36.6806
DQN 34.3268 35.7012 33.8889 36.2064 33.8889 36.6806

There is no evident variation in the power consumption of Edge Data Centers when doubling
the number of Edge devices generating tasks. However, the power consumption of the Edge devices
was almost double that in the previous case since more tasks were generated while the number of
Edge Data Centers was fixed. Since computing platforms with higher capabilities were the same for a
larger number of tasks, more tasks were offloaded to devices with limited resources. As in the previous
experiment, Edge device consumption was slightly higher for cases where Edge Data Centers do not
receive any tasks.

5.3 Tests with 30 Edge Devices
Finally, we replicated the experiment from the previous subsections by changing the number of

Edge devices to 30. The results of the success rates are shown in Table 10.

Table 10: Success rate of different algorithms including different types of destiny devices (30 Edge
devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 99.9324% 99.8986% 70.2196% 99.8986% 89.0541% 100%
Round Robin 99.1892% 99.4595% 91.5541% 99.8311% 99.3986% 100%
GNN 99.9493% 100% 92.3142% 99.9324% 93.9696% 100%
DQN 99.9662% 100% 94.0372% 99.9662% 94.5777% 100%

Overall the success rates are better than with 10 Edge devices but comparable to the case of 20
devices.

The power consumption of the Edge devices and Edge Data Centers are shown in Tables 11 and 12,
respectively. The increase was proportional to previous cases, with a low variation in the consumption
of Edge Data Centers and a significant variation in the consumption of Edge devices. Apart from the
lineal increase in consumption due to the higher number of tasks computed in these types of devices, in
the case when Edge devices and Cloud where potential destinies the highest energy consumptions were
reported when DQN and GNN were the applied algorithms, as consequence of a higher number of
tasks offloaded to Edge devices than to the cloud. As in the previous cases, when a greater proportion
of tasks were offloaded to Edge devices (higher energy consumption) the success rates were higher,
due to the latency violation that occurred when the cloud was in charge of performing the task.
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Table 11: Energy consumption in Wh of Edge devices for different algorithms including different types
of destiny devices (30 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 14.1875 11.6458 12.4942 10.6673 13.8637 10.6673
Round Robin 10.7567 12.1466 12.9142 10.6673 13.8015 10.6673
GNN 12.9003 12.0004 13.2908 10.6673 13.8015 10.6673
DQN 11.9993 11.8096 13.4561 10.6673 13.8015 10.6673

Table 12: Energy consumption in Wh of Edge Datacenters for different algorithms including different
types of destiny devices (30 Edge devices)

Algorithm All devices Edge & Edge DC Edge & Cloud Edge DC & Cloud Edge Edge DC

Trade Off 34.8949 36.0532 33.8889 37.1575 33.8889 38.0972
Round Robin 35.6297 36.4035 33.8889 36.9680 33.8889 38.0972
GNN 35.1027 36.3284 33.8889 37.0880 33.8889 38.0972
DQN 35.9075 36.1982 33.8889 37.2137 33.8889 38.0972

5.4 Task Distribution with Varying Edge Devices
Next, this study established all types of computing devices as possible offloading destinations,

and by varying the number of Edge devices between 10 and 30, as in the previous tests, this research
observed the distribution of the download destinations in each case. The algorithms considered were
GNN and DQN.

Fig. 3 indicates that the incremental trend toward computing tasks on Edge devices remains for
both algorithms as the number of Edge devices grows and, consequently, the number of generated tasks
does as well. This agrees with the increase in energy consumption observed in the previous sections.
For both algorithms, the Edge Data Centers cannot attend to more tasks in the case of 30 Edge devices,
relegating the rest of the tasks to the Edge devices, consequently having them attend to more tasks.

Figure 3: Task distribution with different algorithms and number of Edge devices
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5.5 Success Rate of Different Layers
Finally, we established as possible offloading destinies all types of computation devices and varied

the number of Edge devices between 10 and 30 as in previous tests we observed the success rate of
different layers, to determine the optimal destination for computing the tasks generated by end-user
devices. The algorithms regarded were GNN and DQN.

In this case, the worst results were given by the cloud platform. Although in terms of computa-
tional capabilities, it is the best option compared to the rest of the devices, the latency requirements
were more difficult to meet due to the long time required to cross the entire network. This was expected.
However, Edge devices were as good as Edge Datacenters in terms of accuracy for 10 and 20 devices. In
the latter case, where 30 Edge devices were generating tasks, the Edge Data Centers were fully occupied,
so more tasks were offloaded to resource-constrained devices. In isolated cases, the Edge devices were
not able to complete the task, which is the reason why in the last case the Edge devices did not reach
100% accuracy for both algorithms. Fig. 4 shows the success rates for each layer & algorithm with
different numbers of Edge devices.

Figure 4: Success rates with different algorithms and number of Edge devices

6 Discussion & Conclusion

Section 5 presents the results obtained in the experimental process and observes different
parameters.

Regarding success rate, there is a clear trend in favor of cases where Edge Data Centers were
included in the download destinations. This is because they had sufficient computability and were
located close to the Edge devices from where the tasks were generated. The worst results were obtained
when only the cloud was available as a powerful computing center. In this situation, where network
traffic congestion will have caused longer delays in task responses, meeting latency requirements will
have been challenging. Tasks that had been offloaded to other Edge devices cannot be executed due
to the lack of resources. As the number of Edge devices grew, the success rates of cases where Edge
Data Centers were excluded improved significantly due to the increased number of free Edge devices.
In this case, the number of Edge devices with sufficient computability grew, and fewer tasks had to be
transmitted to the cloud.

Considering the differences between the different algorithms regarding success rate, there was a
slightly favorable trend toward DQN, especially when the number of Edge devices was significant. In
this case, there were possible offloading destinations, that is, more possible actions given the state of the
environment. By learning an optimal policy, it will be more feasible to reach the optimal download
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destination with this algorithm. GNN also outperformed the two default simulator methods when
the number of Edge devices was 20 and 30. This was because the graph was complex, and although
optimizing the network would be more difficult, the decision to offload was closer to optimal.

In terms of energy efficiency, there was no big difference between the first 3 tests. Obviously,
in the case of 20 and 30 devices, the power consumption of Edge devices grew linearly from
∼3 to ∼10 Wh and ∼13 Wh, respectively, due to the larger amount of generated and downloaded tasks
to these devices. On the contrary, the energy consumption of the Edge Data Centers almost remained
at ∼34 Wh, even though the number of generated tasks increased. This was because the Edge Data
Centers were full and other types of devices were needed to handle the rest of the tasks. This would
have caused a reduction in the success rate, especially in the case of the 2 default algorithms and when
the cloud and Edge Data Centers were included. In this situation, the rest of the tasks that were not
attended to by the Edge Data Centers would have been offloaded to the cloud, meeting the problems
mentioned in the previous paragraphs.

Regarding the distribution of tasks between different types of devices, we observed that when
the number of Edge devices was not too high (10 or 20 devices), the Edge Data Centers were the
destinations for most tasks. In contrast, when the number of devices grew to 30, they did not have
enough free memory space, or their processors were busy. As a result, more tasks were offloaded to
Edge devices, and a slight increase in the number of tasks offloaded to the cloud was also observed. In
the experiment, this study compared only the proposed algorithms since they had the best performance
in terms of success rate. Among them, DQN decided to download more tasks to Edge Data Centers,
becoming a better alternative due to the better performance when Edge Data Centers were included
in the possible download destinations.

Finally, the success rates of different types of devices were carefully compared. This study
established all types of devices as possible destinations for the two proposed algorithms. It changed the
number of Edge devices to between 10 and 30. There was a clear difference between the performance
of the cloud and the rest of the devices. As mentioned in this section, the violation of the latency
requirement is responsible for such performance degradation, given the high delay caused when
traversing the network to transfer the task to the cloud and return the results to the Edge devices.
Between Edge devices and Edge Data Centers, the latter had the best success rate. The larger capacities
and larger memory were superior in computability compared to Edge devices. However, with an
algorithm good enough to orchestrate all tasks between all possible destinations, offloading the
less demanding tasks to the weakest computation centers, the success rate can be preserved with a
higher number of generated tasks. That is why the proposed algorithms outperform the two default
algorithms: they can offload less demanding tasks to weaker devices and more complex ones to Edge
Data Centers. In this way, the task load was balanced between all available devices, meeting latency
requirements.

We saw that our proposed algorithms outperform the default PureEdgeSim simulator methods in
terms of success rate and load balancing. For example, for the case in which 30 Edge devices generated
tasks, GNN and DQN achieved an improvement of 22.1% and 23.8% respectively concerning the
Trade-Off when the Edge Datacenters were not included as potential destinations. However, GNN
achieved an average improvement of 3.6% concerning Trade-Off and Round Robin, and DQN
achieved an average improvement of 4.1% concerning Trade-Off and Round Robin. In other works,
such as [53], they achieved an average improvement of 20.48%, 16.28%, and 12.36% concerning
random download, higher data rate download (HDR), and the largest computing device (HCD),
respectively. In [51], they achieved a 20% reduction in total computation delay and a 25% reduction in
average computation delay compared to the GK-means DQN-based offloading policy. In our case, the
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rest of the offloading policies analyzed offered a better result since they offered decent behavior in most
cases. However, our methods significantly improved the success rates of the mentioned algorithms offer
quite similar energy consumption, and have more to do with the distribution of tasks in different layers.
Our network environments and experimental setup are completely different compared to those used in
the works just mentioned. Therefore, the comparison cannot be made directly between different works.
The distribution of tasks was different in our two algorithms, with a larger number of tasks being
offloaded to the Edge Data Centers when DQN was applied. This resulted in a slight improvement
in the success rate due to the greater capabilities of this type of computing center. Between both types
of algorithms, the best results were offered by DQN with a slight variation. The ability to obtain the
optimal policy increased when the number of Edge devices and, consequently, the number of generated
tasks was larger. The same was true for GNN: by having more nodes and a broader network structure,
the algorithm was able to reach a near-optimal offloading decision.

These algorithms could be a useful tool to provide proper orchestration in an environment where
many IoT devices are requested to solve complex tasks and the characteristics of the environment
are constantly updated. For example, in a Smart Building, several sensors can be located that detect
different parameters and have to react by activating any other system based on the readings they
obtain. Deciding what action to take may require the use of ML or DL techniques to take the optimal
action. In this situation, these small devices could alleviate the computational burden of these deep
models by offloading them to other powerful devices such as Edge Data Centers.

In this research, the introduction of GNN and DQN to the paradigm of task-offloading in a local
network environment involving IoT, Edge, and Cloud layers is carried out. The similarity between
the architectures of a graph and a local network involving the just mentioned devices favored the use
of GNN to satisfactorily solve the task offloading paradigm. The offloading ratio used as an edge
feature in this study is a good predictor of how good a potential target can be at accomplishing a
task. Furthermore, the use of DQN slightly improved the results obtained with GNN. The learning
process of the latter favors the consideration of the constant updates of an environment. The novelty
offered using the proposed methodology in a local networking environment is the consideration of
constant network updates and the scoring of network connections using the novel offloading rating
parameter, being both GNNs and DQN powerful tools to impose an optimized offloading strategy in
an environment made up of resource-constrained devices.

Among the limitations found during this research work, it is worth highlighting the difficulties
in reproducing other methodologies provided by the literature using the PureEdgeSim simulator. The
complexity of the simulator was an advantage in adjusting the properties of the network environment
to the needs. On the contrary, the reproduction of any algorithm has a high complexity. At the same
time, as other environmental properties can directly impact the state of the network, such as vandalism
attacks, natural disasters, or intrusion attacks, these must be considered in the simulation, applying a
random appearance factor to them.

In future work, more algorithms can be implemented using the simulator to compare them with
those presented in this study. Until now, the only default implementable algorithms for the simulator
in question were tried and tested against our methods, and due to the complexity of the simulator,
no others were implemented. Other types of network structures can be interesting for research and
applicable using the methodology proposed in this work. Furthermore, combining RL techniques with
the graph will open up an exciting research area.
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