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ABSTRACT

Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine
learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using
ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning
techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository.
The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and
extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest
neighbor (KNN) imputer is utilized to deal with missing values while synthetic minority oversampling (SMOTE) is
used for class-imbalance problems. To ascertain the efficacy of the proposed model, a comprehensive comparative
analysis is conducted with various machine learning models. The proposed TrioNet using KNN imputer and
SMOTE outperformed other models with 98.97% accuracy for detecting CKD. This in-depth analysis demonstrates
the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.
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1 Introduction

Precision medicine emerged as a potential field concept that offers personalized medical care.
Precision medicine is especially helpful for accurate diagnosis, offering effective treatment and timely
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intervention for special subgroups of patients. Precision medicine is particularly helpful for chronic
kidney disease (CKD). The kidneys, which resemble fist-sized beans, are positioned just below the rib
cage on both sides of the spine [1]. Each day, they filter as much as 150 quarts of blood, resulting
in the production of nearly 2 quarts of urine. Primarily functioning within the excretory system, the
kidneys carry out the vital task of expelling excess water and waste from the body through the process
of urination [2]. This intricate process encompasses a series of excretion and re-absorption steps that
are crucial for maintaining a stable equilibrium of body chemicals [3]. The kidneys are essential for
maintaining the right levels of salt, potassium, and acidity in the body. They also produce hormones
that affect other organs. For example, these hormones help control blood pressure, make red blood
cells, and manage calcium levels, among other important tasks.

CKD earns its “chronic” classification due to its gradual onset and enduring impact on the
functionality of the urinary system. Factors that elevate the risk of CKD encompass high blood
pressure, diabetes, and cardiovascular disease [4]. Individuals affected by CKD, particularly during its
advanced stages, may encounter unfavorable effects on their neurological and immunological systems.
In less developed nations, certain patients may progress to a stage where the utilization of dialysis
becomes imperative as they approach the end of their lives. The Glomerular Filtration Rate (GFR),
a pivotal measure of kidney function, is derived from considerations such as results from blood tests,
gender, the patient’s age, and other relevant criteria [5]. Several factors can elevate the probability
of CKD, such as diabetes, high blood pressure, genetic conditions, autoimmune diseases, medication
misuse, exposure to toxins, and family history, often progressing silently before symptoms appear [6].

The primary culprits behind CKD are diabetes and high blood pressure. Diabetes, marked by
elevated blood sugar levels, can lead to kidney damage as well as affect blood vessels, the heart, and
eyes. Additionally, inadequately managed hypertension can significantly contribute to heart attacks,
strokes, and the development of chronic kidney disease. Other factors that can impact kidney health
include dysplasia, kidney stones, metabolic diseases, genetic diseases, tumors, recurrent urinary tract
infections (UTIs), glomerulonephritis, fatness, and aging [7]. CKD is often considered a silent disease
due to being asymptomatic until normal functions of the kidneys are reduced by 80%–85% to awfully
low levels of 15%–20% [8]. As CKD reaches its advanced stages, several prominent symptoms become
evident, including fatigue, decreased appetite, reduced energy levels, swelling in the legs and ankles,
difficulties with concentration, dry skin with intense itching, sleep disturbances, nocturnal muscle
cramps, puffiness around the eyes, and frequent urination, particularly during the night [9].

Presently, CKD is rapidly becoming a major health issue, resulting in millions of deaths worldwide
due to the lack of timely and affordable treatment. Particularly affected are individuals from low and
middle-income countries [10]. As of 2013, approximately one million people lost their lives due to
CKD [11]. Developing nations bear a more substantial burden of this disease, with a total of 387.5
million CKD patients in low to average-income countries, comprising 177.4 million males and 210.1
million females [12]. These figures highlight the growing prevalence of CKD in developing countries.
However, efforts are being made to improve early detection of the disease to enable timely treatment
during its initial stages.

Reshma et al. [13] employed a feature selection approach on the CKD Dataset. To perform this
selection, they used the Ant Colony Optimization (ACO) method, a metaheuristic algorithm employed
specifically for feature selection, categorized as a Wrapper method. Initially, the dataset comprised 24
attributes. However, through the application of the feature selection algorithm, they narrowed it down
to 12 pertinent features, which formed the basis for constructing their model. Notably, the model was
built using the Support Vector Machine (SVM) classification algorithm. Another study [14] focused on
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predicting CKD using the same dataset. This dataset encompassed 24 attributes along with a singular
target variable. To construct their predictive model, they employed two ML algorithms, namely K-
Nearest Neighbors (KNN) and Naïve Bayes. Impressively, KNN yielded the highest accuracy at 97%,
while Naïve Bayes achieved a commendable accuracy of 91%. Until now, various feature selection
algorithms have been used to identify the most effective algorithm for extracting the most important
features for predicting chronic kidney disease. Since many datasets have imbalanced classes, class
balancing is necessary to improve the performance of classifier models. Additionally, missing data
values in datasets must be addressed to improve the classification task. In this study, synthetic minority
oversampling (SMOTE) is used for data balancing and K-Nearest Neighbors (KNN) imputer is used
to handle missing values for CKD detection. Recently, Nimmagadda et al. [15] also analyzed KNN,
SVM and regression models to detect CKD. The ensemble model has been employed by researchers
in disease diagnosis [16,17].

In this scenario, computer-aided diagnosis (CAD) can play a vital role in achieving the initial
stage prognosis of the disease. Machine learning (ML), a subdomain of artificial intelligence (AI) can
be of great help in its diagnosis [18]. Such systems aim to assist clinical decision-makers in accurately
classifying diseases. In this study, an ML-based method is introduced for diagnosing CKD. The
primary contributions of this study as

• This study offers an accurate prediction model for the precision model to help kidney disease
patients. An ensemble model using extreme gradient boosting (XGB), random forest (RF), and
extra tree classifier (ETC) called TrioNet offers highly accurate prediction of CKD.

• The proposed model provides point-of-care testing to help medical experts make faster diag-
noses and timely treatment which greatly improves the chances of patients’ survival.

• KNN imputer in the proposed approach resolves the missing values problem while SMOTE
helps equalize the class-imbalance problem.

• Machine learning models such as decision tree (DT), RF, gradient boosting machine (GBM),
Gaussian Naive Bayes (GNB), ETC, support vector classifier (SVC), logistic regression (LR),
and stochastic gradient descent (SGD), have been employed to conduct a comparative analysis.
The proposed model’s effectiveness is evaluated by contrasting its performance with state-of-
the-art techniques, considering metrics such as accuracy, precision, recall, and F1 score to
comprehensively analyze its capabilities.

The remaining sections of the paper follow this structure: Section 2 discusses related works that
utilize ML in the context of CKD health conditions. Section 3 elaborates on the methods and the
dataset employed for analysis. Section 4 presents the proposed appraoch. Section 5 is dedicated to
presenting and discussing the study findings. Section 6 provides the conclusion and outlines potential
future directions.

2 Related Work

Currently, there is a growing interest in developing procedures and equipment for predicting and
monitoring different diseases. In this section, recent works are explored that have utilized ML methods
for forecasting the risk of CKD.

For example, in [19], ML models were employed for predicting CKD. The pre-processing phase
involved handling missing values and selecting relevant features. The study utilized a total of 11 ML
models, including tree-based, regression-based, and statistical models. Notably, among these models,
five achieved an impressive 100% accuracy on the University of California, Irvine (UCI) dataset.
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These high-performing models were DT, AdaBoost (ADA), ETC, XGB, and RF. For CKD diagnosis,
Zahid et al. [20] proposed an ML model that incorporated selected predominant features. Similar to the
previous study, this research also implemented pre-processing and feature selection steps. The results
revealed that the KNN model outperformed other learning models, achieving an impressive accuracy
score of 99.50%.

The study [21] introduced a hybrid model designed for predicting CKD. The authors effectively
tackled challenges related to missing values and class imbalance by leveraging the capabilities of RF.
The study incorporated a variety of ML models, including GNB, GBM, Naive Bayes (NB), RF, DT,
and their hybrid model. These models were applied to the UCI chronic kidney disease dataset. Notably,
the hybrid ML model achieved a remarkable accuracy score of 100%. Another hybrid ML model
aimed at CKD prediction, built upon Apache Spark, was proposed by Abdel-Fattah et al. [22]. The
authors conducted experiments using both full feature sets and features selected through Relief-F. The
outcomes demonstrated that the machine learning models DT, SVM, and GBM achieved an impressive
accuracy of 100%.

Venkatesan et al. [23] unveiled an ML-based system for the early detection of CKD. In the pre-
processing step, the authors applied a class imbalance technique and handled missing values using the
K-NN imputer. The results of the study revealed that the ML model XGBoost achieved an impressive
accuracy score of 98% for detecting CKD at an early stage. For kidney disease prediction using image
data, Kumar et al. [24] proposed a system that employed ML models for recognition and prediction.
The approach combined a fuzzy deep neural network with a deep learning approach. The proposed
system achieved a high accuracy score of 99.23% for accurately predicting kidney diseases using image
data. Dritsas et al. [25] utilized a variety of ML models for the timely prediction of CKD. With
the application of pre-processing techniques, the authors addressed the issue of non-uniform class
distribution using the SMOTE oversampling technique. Among the 15 ML models used in the study,
the rotational forest model stood out with an accuracy score of 99.2% for predicting CKD.

In [26], the experiments were conducted using a CKD dataset comprising 25 attributes sourced
from the UCI ML repository. To diagnose CKD, three machine learning models were employed
DT, RF, and SVM. These models achieved prediction accuracies of 99.16%, 94.16%, and 98.3%,
respectively. In reference to the discoveries outlined in [27], the CKD dataset sourced from the UCI
repository was also employed to assess a range of classifiers. The classifiers utilized in this investigation
encompassed artificial neural network (ANN), chi-square automatic interaction detector, linear SVM
with both L1 and L2 penalties, LR, C5.0, and random tree (RT). Notably, the linear SVM, when
utilizing the L2 penalty and integrating SMOTE for input data, achieved an accuracy of 98.86%.
By employing a combination of SMOTE and lasso techniques for feature selection, the linear SVM
obtained a similar accuracy of 98.46%. Furthermore, employing a deep neural network on the same
dataset resulted in an outstanding accuracy of 99.6%.

Swain et al. [28] proposed a robust approach for CKD classification, incorporating several data
pre-processing techniques. For feature selection, the authors utilized the Chi-square test and addressed
class imbalances using SMOTE. The classification phase involved two ML models SVM and RF. The
results represented the highest accuracy of 99.33% for CKD classification by the SVM model. In the
research conducted by Almasoud et al. [29], the primary emphasis was placed on the identification
of CKD through the utilization of minimal predictor variables within ML algorithms. Four distinct
ML models were utilized RF, GB, LR, and SVM. Among these, the GB algorithm exhibited superior
performance, boasting an impressive accuracy of 99% for the precise detection of CKD.
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In the work presented in [30], Yashfi et al. introduced an approach for predicting risks associated
with CKD using ML algorithms. The analysis involved data from CKD patients, and they employed
ANN and RF for predictions. By selecting 20 features from a total of 25, ANN and RF were
implemented, with RF achieving the highest accuracy of 97.12% for CKD risk detection. In a
comparative study by Rady et al. [31], diverse algorithms, including SVM, radial basis function (RBF),
multilayer perceptron (MLP),and probabilistic neural networks (PNN), were examined for predicting
stages of kidney disease. Despite working with a limited dataset and a restricted feature set, the
results highlighted that PNN outperformed other algorithms, achieving the highest accuracy of 96.7%.
Furthermore, in [32], the authors utilized an ML technique for the prognosis of CKD. The study
incorporated three ML models LR, DT, and SVM, with the application of the bagging technique to
enhance the prediction accuracy. The findings demonstrate that the DT model achieved a noteworthy
accuracy of 97.23% in predicting CKD.

The prior works in the field of CKD prediction using ML techniques have made significant
contributions, but they also face several challenges and limitations. Many CKD datasets suffer
from class imbalance, where the number of positive CKD cases is significantly lower than negative
cases. This imbalance can lead to biased models and reduced predictive performance. Inherent issues
with data quality, such as missing values, outliers, and inconsistencies, can affect the accuracy of
predictive models. Handling missing data is a common challenge that prior works have had to address.
Addressing these challenges and limitations is essential for advancing the field of CKD prediction
using ML, as it would lead to more reliable and clinically relevant models. This paper addresses both
challenges to get improved results in detecting CKD. For a comprehensive overview of the related
studies, a comparative summary is shown in Table 1.

Table 1: Related work brief summary

Ref. Classifiers Dataset Year Accuracy
achieved

K-NN
imputer

SMOTE

[19] DT, XGB, RF, ETC,
ADA, K-NN, NN,
SVC linear, LR, SVC
RBF, GNB

UCI 2020 100% DT, RF,
XGB, ETC, ADA

No No

[20] K-NN, SVM, RF,
Bagging

UCI 2023 99.50% K-NN No No

[21] GNB, GBM, NB, RF,
DT and Hybrid model

UCI 2023 100% hybrid
model

No No

[22] SVM, RF, DT, GBM,
LR,NB

UCI 2022 DT 100% GBM
100%

No No

[23] LR, RF, K-NN, DT,
SVM, XGBoost

UCI 2023 98% XGBoost Yes Yes

[24] Hybrid on Fuzzy Deep
Neural Network,
Traditional
Radioimmunoassay
Method

Changhua
Christian
Hospital,
Taiwan

2023 99.23% Hybrid
on Fuzzy Deep
Neural Network

No No

(Continued)
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Table 1 (continued)

Ref. Classifiers Dataset Year Accuracy
achieved

K-NN
imputer

SMOTE

[25] SDG, NB, MLP,
K-NN, J48, LR model
tree, RF, RT, SVM,
DT, RotF, ADA, LR,
Stacking, Soft Voting

UCI 2022 99.2% Rotation
Forest

No Yes

[26] RF, DT and SVM UCI 2019 99.16% RF No No
[27] LR, C5.0, ANN, linear

SVM with penalty L1
and L2, chi-square
automatic interaction
detector, and random
tree (RT).

UCI 2021 98.86% linear
SVM with
penalty L1 and
L2 99.6% DNN

No Yes

[28] SVM and RF UCI 99.33% SVM No Yes
[29] LR, SVM, RF, GB UCI 2019 99% GB No No
[30] RF, ANN UCI 2020 97.12% RF No No
[31] PNN, MLP, SVM, and

RBF
UCI 2019 96.7% PNN No No

[32] LR, DT, SVM UCI 2022 97.23% DT No No

3 Materials and Methods

This section of the research delineates the materials and methods employed in predicting kidney
disease. It encompasses a succinct overview of the chronic kidney disease dataset, the data pre-
processing steps, a description of ML models utilized, the proposed methodology, and the evaluation
parameters employed for assessing the performance of the ML models.

3.1 Dataset
This research utilizes a dataset containing information on patients diagnosed with CKD, which

was collected from India’s Apollo Hospital over a two-month period in 2015. This dataset originates
from the UCI data repository [33]. The dataset consists of 400 observations, which may include
instances with incomplete or missing values. Among these observations, there are records for 250 CKD
patients and 150 individuals without CKD. This breakdown represents 62.5% associated with CKD
cases and 37.5% with non-CKD cases. The age of the individuals in the dataset ranges from 2 to 90
years. The CKD dataset consists of 24 features, which include 11 numeric features and 13 nominal
features. Moreover, the 25th feature serves as an indicator for CKD classification. As demonstrated
in Table 2.

3.2 Data Preprocessing
The CKD dataset presented challenges related to outliers and missing data, which necessitated

a thorough cleaning during the preprocessing phase. Additionally, the model’s performance is biased
due to an inherited imbalance in the dataset class. The pre-handling phase involved addressing these
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issues through missed imputation and estimation values, removing outliers that introduced noise, and
balancing the dataset [33,34]. The problem of class imbalance is addressed through the implementation
of SMOTE. Initially, the dataset contained numerous missing values, with only a complete record
for 158 patients available. During the preprocessing stage, significant attention is given to imputing
these missing values, primarily through the utilization of the KNN imputer. After the completion of
this imputation process, the dataset is carefully balanced. It encompassed 250 instances of patients
with CKD and 150 instances of patients without CKD, resulting in an uneven distribution that could
potentially affect the performance of the model. To mitigate this, dataset balancing is carried out as a
crucial preprocessing step.

Table 2: Attributes details of the dataset

Attribute Symbol Unit Descritption Type Missing Valid
number

Number Percentage

Age age years Patient’s age Numerical 9 2.3% 391
Anemia ane Yes, No Does patient

has anemia or
not

Nominal 1 0.3% 399

Albumin al 0,1,2,3,4,5 level of
Albumin in the
blood

Nominal 46 11.5% 354

Appetite appet Good, poor Patient’s
appetite

Nominal 1 0.3% 399

Blood
pressure

bp mm/Hg Patients’BP Numerical 12 3.0% 388

Blood glucose bgr mgs/dl blood glucose
random count

Numerical 44 11.0% 356

Blood urea bu mgs/dl Urea level in
patients’ blood

Numerical 19 4.8% 381

Bacteria ba Present, not
present

Bacterial
presence in the
blood

Nominal 4 1.0% 396

Coronary
artery disease

cad Yes, No Does the
patient has
coronary
artery disease
or not

Nominal 2 0.5% 398

Diabetes
mellitus

dm Yes, No Is a patient
diabetic or not?

Nominal 2 0.5% 398

Hemoglobin hemo gms hemoglobin
level in the
blood

Numerical 52 13.0% 348

Hypertension htn Yes, No Does the
patient has
hypertension
on not

Numerical 2 0.5% 398

Pus cell pc normal,
abnormal

pus cell count
of patient

Nominal 65 16.3% 335

(Continued)
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Table 2 (continued)

Attribute Symbol Unit Descritption Type Missing Valid
number

Number Percentage

Pus cell
clumps

pcc present, not
present

Pus cell clumps
presence in the
blood

Nominal 4 1.0% 396

Potassium pot mEq/L potassium level
in the blood

Numerical 90 22.5% 310

Packed cell
volume

pcv packed cell
volume in the
blood

Numerical 71 17.8% 329

Pedal Edema pe yes, no Does patient
has pedal
edema or not

Nominal 1 0.3% 399

Red blood
cell count

rc millions/cmm red blood cell
count of the
patient

Nominal 106 26.5% 294

Red blood
cells

rbc normal,
abnormal

Patients’ red
blood cells
count

Nominal 152 38% 248

Specific
gravity

sg 1.005, 1.010,
1.015,
1.020,1.025

The ratio of the
density of urine

Nominal 47 11.8% 353

Sugar su 0,1,2,3,4,5 Sugar level of
the patient

Nominal 49 12.3% 351

Serum
creatinine

sc mgs/dl serum
creatinine level
in the blood

Numerical 18 4.5% 382

Sodium sod mEq/L sodium level in
the blood

Numerical 88 22.0% 312

White blood
cell count

wc cells/cumm white blood
cell count of
the patient

Numerical 106 26.5% 294

Class CKD, not
CKD

Does the
patient has
kidney disease
or not

Nominal

3.3 SMOTE (Synthetic-Minority-Oversampling-Technique)
To handle the class imbalance problems present in the CKD dataset this study makes use of

SMOTE. Oversampling is a technique that entails increasing the number of instances in the minority
class in comparison to the majority class, effectively enhancing the presence and representation of the
underrepresented minority class.

This approach can contribute to enhancing model accuracy by generating a richer set of features
for training purposes [34]. SMOTE is a contemporary methodology specifically designed to address
overfitting concerns within imbalanced datasets. It functions by randomly selecting instances from the
minority class and identifying their K-nearest neighbors within that same class. This process aids in



CMES, 2024, vol.139, no.3 3521

the creation of synthetic samples that contribute to a more balanced representation of classes and,
subsequently more robust model training [35]. Based on these neighbors, new synthetic instances are
constructed, these synthetic instances are the same as the original instances as these synthetic instances
are developed using existing features. This process aims to create a more balanced representation of
the minority class without duplicating existing data.

Although SMOTE proves effective in addressing class imbalance, it may not be the optimal choice
for high-dimensional datasets due to the potential introduction of additional noise. However, in the
context of this study, SMOTE is employed to create a new training dataset, effectively tackling the
class imbalance issue and enabling more robust model training.

3.4 KNN Imputer
In contemporary times, gathering data from various origins forms the bedrock for analysis,

insights generation, theory validation, and other endeavors [36]. Nevertheless, it is crucial to acknowl-
edge the potential for human errors during data extraction, leading to an issue of incomplete informa-
tion. Consequently, efficiently handling missing values becomes a critical step in data preprocessing.
The choice of imputation method to address these gaps significantly influences model performance.
One noteworthy approach for missing values imputation is the KNN imputer provided by sci-kit-
learn. It is the best alternative to orthodox imputation approaches. By powering the Euclidean distance
matrix, the KNN imputer identifies the nearest neighbors to the observations containing missing
values. The imputation process involves weighing available data by discounting the missing values
while computing the Euclidean distance.

3.5 Eliminating Missing Values from Dataset
The subsequent data management technique involves the removal of instances containing missed

values. In the second experimental set, this method is implemented, where all records with any missing
values are excluded from the analysis. This means that any observation in the dataset that has at least
one field with missing information is entirely removed from the dataset.

3.6 Machine Learning Models
ML is of great importance in improving the precision and effectiveness of predicting chronic

kidney disease. Various ML algorithms are available for classifying CKD. Python’s Scikit-learn library
offers a diverse range of freely available ML classifiers, extensively used by a substantial user base,
making significant contributions to the study. In this study, the Scikit-learn library is utilized to
implement a range of machine learning models, including SVM, KNN, XGBoost, Stochastic Gradient
Decent Classifier (SGDC), NB, LR, RF, and DT.

3.6.1 Random Forest

RF, an ensemble classifier, achieves remarkable prediction accuracy by aggregating multiple weak
learners. It utilizes bootstrap bagging to train numerous DTs ( Decision Trees) with different bootstrap
samples [37]. A training set is sub-sampled to a bootstrap sample, during this process, maintaining the
sample size of the original dataset. Predictions are made based on DT by RF and other ensemble
classifiers [38]. Identifying the root node attribute is a significant challenge in constructing these
decision trees at each stage of the tree-building process. Let p be the ultimate decision obtained through
a majority vote from the ensemble of DT, where T1(y), T2(y), T3(y), and Tm(y) represent the number
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of decision trees participating in the prediction process, it is denoted as

p = mode {T1(y), T2(y), · · · , Tm(y)} (1)

p = mode

{
m∑

m=1

[Tm(y)]

}
(2)

3.6.2 Gradient Boosting Machine

GBM classifier is an ML algorithm that combines multiple weak learners to create a powerful
predictive model [39,40]. GBM is loss function-dependent, which can be customized to suit specific
needs. The GBM backs various common loss functions, as long as they are differentiable. In classifica-
tion, logarithmic loss is commonly used, while regression often utilizes squared errors. One advantage
of gradient boosting is that new loss function derivation is not needed each time the algorithm is
employed. Instead, the system can be applied with any differentiable loss function. Higher accuracy
can be achieved with GMB by fine-tuning multiple hyperparameters. For instance, the parameter n =
100 indicates the prediction contributing tree numbers to be 100. The final forecast is the aggregation
of individual forecasts of 100 DTs through voting. Another crucial hyper-parameter is “max depth,”
which is often set to 60, allowing each DT 60 levels of depth at maximum. This control over the tree’s
depth helps prevent overfitting and enhances generalization capabilities.

3.6.3 Logistic Regression

LR stands out as the most prevalent technique employed for binomial classification tasks [41].
This method is distinguished by its utilization of the logistic equation or sigmoid function. An S-
shaped curve denoting a Sigmoid function effectively transforms any input value into an output value
that ranges between 0 and 1.

f (x) = 1
(1 + e−value)

(3)

The base of the natural logarithms is denoted as e, and the variable ‘value’ represents the actual
numerical value that needs to undergo conversion. The following graph displays the transformation
of numbers ranging from –5 to 5 using the logistic function, resulting in values within the range of 0
to 1.

y = eb0+b1×x

(1 + e(b0+b1×x))
(4)

In the given context, b0 represents the intercept or bias, y stands for the projected performance,
and b1 represents the single input value x associated coefficient. Each raw data column possesses
a corresponding coefficient b, interrelated with it (a constant actual value) and prerequisites to be
learned from the training data.

3.6.4 Extra Tree Classifier

Extremely Randomized Trees, abbreviated as ETC, is an ensemble learning technique primarily
employed for classification tasks [42]. Much like the RF classifier, ETC also employs the strategy of
creating multiple decision trees and then aggregating their predictions to enhance the model’s precision
and resilience. Yet, what sets ETC apart from RF is its approach to constructing decision trees [43].
Unlike RF, which picks a subset of features and evaluates the optimal split point at each node, ETC
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takes a distinct path. ETC chooses split points randomly across the feature space, resulting in quicker
training times and reduced susceptibility to overfitting [44].

3.6.5 Support Vector Classifier

SVC is a popular ML technique that aims to identify a hyperplane in N-dimensional space for
classifying data points [45]. The primary goal of this algorithm is to find the hyperplane that maximizes
the margin between classes. The dimensionality, represented by N, varies depending on the number of
features. While comparing two features is relatively straightforward, dealing with multiple features for
classification can be more complex. By maximizing the margin, the accuracy of prediction is enhanced
by SVC. Fuzzy SVC has been utilized by researchers in pathological brain detection [46].

3.6.6 Decision Tree

DT is a widely acclaimed ML algorithm used comprehensively for solving classification and
regression tasks [47,48]. The key challenge in constructing a decision tree lies in selecting leveler root
nodes, which is known as ‘attribute selection’. Two prominent techniques commonly used for attribute
selection include ‘information gain’ and ‘Gini index (GI)’. The GI can be calculated using the following
equation:

Gini = 1 −
classes∑

i=1

p(i|t)2 (5)

The DI is a metric utilized to measure the impurity of data within a dataset.

3.6.7 K-Nearest Neighbour

KNN is an ML model that does not rely on a dependent variable to make predictions for a given
dataset [36]. Instead, the model is provided with ample training data, and it determines a data point’s
neighborhood. The KNN model calculates the distance between the nearest neighbors of a new data
point and the data point itself. The ‘K’ value specifies the number of nearest neighbors to consider,
and it determines the majority of the neighbors’ votes. For instance, if ‘K’ = 1, the new data point is
assigned to the class of the closest neighbor.

3.6.8 Gaussian Naive Bayes

The GNB model utilizes Bayes’ theorem. The output of an event is predicted using uncondi-
tional probabilities in GNB [49,50]. If a sample is classified into k categories represented by k =
{c1, c2, ..., ck}, the resulting output is denoted as c. The GNB function is expressed as under, where the
class is represented by c and the sample by d

P(c|d) = (P(c) × P(d|c))/P(d) (6)

In the above equation, the probability of class c is represented by P(c|d), given the sample d. The
prior probability of class c is denoted by P(c) while the likelihood of observing sample d of a given
class c is by P(d|c) and P(d) is the probability of observing sample d.



3524 CMES, 2024, vol.139, no.3

3.6.9 Stochastic Gradient Decent Classifier

SGDC functions by amalgamating concepts from both LR and SVM [34]. It adopts the convex
loss function characteristic of LR, endowing it with robust classification capabilities. Particularly well-
suited for multiclass classification tasks, SGDC employs the one vs. all (OvA) strategy to combine
multiple classifiers. One of SGDC’s noteworthy advantages lies in its proficiency in handling large
datasets, processing one example per iteration. Due to the regression-based approach, SGDC is both
straightforward to implement and comprehend. However, achieving optimal performance necessitates
careful parameter tuning for SGDC. Additionally, it is important to note that SGDC is highly sensitive
to feature scaling, which should be taken into account for improved results.

3.6.10 XGBoost

XGBoost stands as a rapid supervised learning algorithm, chosen for its precise and reliable
classification capability [42]. Its efficacy in this task is attributed to the presence of regularized learning
capabilities, which aid in achieving smoother final weights and prevent overfitting issues.

3.7 Evaluation Metrics
ML model’s effectiveness is measured based on metrics such as precision, accuracy, recall, and the

F1 score.

Accuracy is a metric that represents the proportion of correct predictions made by the classifiers
compared to the total predictions on the test data. Its highest possible value is 1, which indicates that
classifier predictions are 100% correct, while the lowest possible value is 0, meaning all the predictions
are false. It is calculated as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(7)

where TN is a true negative, TP is a true positive, FP is a false positive and FN is a false negative.

A positive predictive value, commonly known as precision, measures the value of True Positive
(TP) instances among all the instances that are classified as true positives and False positives (FP). A
precision score of 1 indicates that all instances considered as positive are actually positive. However, it
is noteworthy that this metric does not affect positive instances mistakenly predicted as positive, even
if they are labeled as negative.

Precision = TP
TP + FP

(8)

Recall, often referred to as sensitivity, signifies the proportion of positive classified instances out
of all the actual positive instances. The recall metric is defined as follows:

Recall = TP
TP + FN

(9)

Classifiers’ performance is not evaluated as a definitive representation by “recall” and “precision”
results, so the F1 score is of utmost importance because it combines both recall and precision,
providing a balanced evaluation with a value between 0 and 1. It is calculated using the harmonic
mean of recall and precision and is calculated using

F1 score = 2 × Precision × Recall
Precision + Recall

(10)
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4 Proposed Approach

Missing values play a vital role in assessing learning models’ performance. For any research aiming
for good performance, it is necessary to handle missing values. In this study, we utilized KNN imputer
to handle this problem. For the experimentation, the dataset is divided into the ratio of 70:30, this
means that 70% of the data is used for the training of the models and the remaining 30% used for the
testing of the models. For the efficient prognosis of kidney disease, this study proposed an ensemble
learning technique that consists of three machine learning models (RF, ETC, and XGB). We called this
model TrioNet. In the ensemble learning approach predictions from the different models are combined
together to attain a higher value of accuracy. In this ensemble learning framework, each model has its
own strength and weakness that plays a vital role in increasing the efficiency of the prediction. The
proposed system architectural diagram is shown in the Fig. 1.
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(XGB+RF+ETC)
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70% Training30% Testing

Trained Model

Evaluation

Accuracy
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F-score

Kidney Disease
Dataset

Preprocessing

SMOTE
KNN Imputer

Ensemble
Model

(XGB+RF+ETC)

Train Test Split

70% Training30% Testing

Trained Model

Evaluation

Accuracy
Precision

Recall
F-score

Kidney Disease
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Figure 1: Workflow of TrioNet for chronic kidney disease detection

The TrioNet works by aggregating predictions from three different machine learning algorithms.
In general, building such an ensemble entails training numerous models on the same dataset and
then combining their predictions. This process requires individually training the XGB, RF, and ETC
models on the same dataset. Each model generates an estimated probability for the target variable’s
various classifications. These probabilities may be added together to provide the final prediction for
each instance in the dataset. A popular method for combining predictions is to take an average of
all predicted probabilities. To create accurate and robust predictions, the proposed ensemble model
capitalizes on the particular characteristics of three separate machine-learning algorithms. We can
increase the model’s generalizability and decrease overfitting by training all models on the chronic
kidney disease dataset and integrating their predictions. The following is an outline of Algorithm 1,
which offers a full explanation of how the proposed ensemble model operates:

p̂ = argmax

{
n∑
i

XGBi,
n∑
i

RFi,
n∑
i

ETCi

}
. (11)
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Algorithm 1: Ensembling of XGB, RF, and ETC.
Input: input data (x, y)N

i=1

MXGB = Trained_XGB
MRF = Trained_RF
METC = Trained_ETC
1: for i = 1 to M do
2: if MXGB �= 0 & MRF �= 0 & METC �= 0 & training_set �= 0 then
3: ProbXGB − 1 = MXGB.probability(CKD − class)
4: ProbXGB − 2 = MXGB.probability(NonCKD − class)
5: ProbRF − 1 = MRF .probability(CKD − class)
6: ProbRF − 2 = MRF .probability(NonCKD − class)
7: ProbETC − 1 = METC.probability(CKD − class)
8: ProbETC − 2 = METC.probability(NonCKD − class)

9: Decision function = max(
1

Nclassifier

∑
classifier

(Avg(ProbXGB−1,ProbRF−1,ProbETC−1)

, (Avg(ProbXGB−2,ProbRF−2,ProbETC−2)

10: end if
11: Return final label p̂
12: end for

Within the proposed ensemble model, the prediction probabilities for individual test samples,
denoted as

∑n

i XGBi,
∑n

i RFi, and
∑n

i ETCi, originate from the XGB, RF, and ETC models, respec-
tively, as shown in Fig. 2. Subsequent to acquiring these probabilities from the XGB, RF, and ETC
models for each test case, they undergo assessment using the soft voting criterion. This procedure is
elucidated in the illustration of the voting architecture presented in the figure outlining the proposed
approach. The ensemble model computes the greatest average probability among the classes to get the
final class prediction. This entails combining the estimated probabilities from the XGB, ETC and RF
classifiers. Eq. (12) defines that the class that has the high probability score will be considered as the
final label:

VC(XGB + RF + ETC) = argmax(g(x)) (12)

5 Results and Discussions

This section discusses the results and discussions on CKD detection. This section of the study also
contains a comparison of the recent state-of-the-art models with the proposed approach.

5.1 Experimental Results of Learning Models by Removing Missing Values
During the initial phase of the experiments, the main focus is on dealing with any missing values

present in the dataset. These occurrences of missing data are removed from the dataset. Following this,
the adjusted dataset is employed to train machine learning models. Table 3 displays the outcomes of
ML models using the dataset with missing values removed.

Results indicate that the XGB, ETC, and RF classifiers achieve a high accuracy score by attaining
83.14%,82.89%, and 81.34%, respectively. RF displayed precision, recall, and F1 scores of 90.56%,
89.52%, and 90.54%, respectively. ETC demonstrated 90.52% precision, recall, and F1 score. In a
similar vein, XGBoost attained 89.58%, 89.88%, and 89.67% for precision, recall, and F1 scores,
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respectively. In contrast, LR demonstrated lower effectiveness, yielding an accuracy rate of 73.74%, a
precision of 86.33%, a recall of 88.45%, and an F1 score of 87.14%. On the other hand, the proposed
TrioNet outperformed other models, attaining an accuracy of 89.39%, a recall of 95.12%, a precision
of 93.63%, and an F1 score of 94.46%. The superior performance of TrioNet, an ensemble model
using XGB, RF, and ETC, can be attributed to its ability to combine the diverse strengths of these
three models, reduce overfitting, improve robustness, balance precision, and recall, and create a more
comprehensive understanding of the data. This ensemble approach effectively predicts kidney disease,
making it a reliable and accurate choice for such medical applications.

XGB

P(Disease)

P(Normal) = (P XGB + P RF+ P ETC)/3

 P(Disease)  = (P XGB + P RF+ PETC)/3

Final Prediction= argmax{P(Normal), P(Disease)}

Training
Features

ETC

P(Disease) P(Normal)P(Normal)

RF

P(Disease) P(Normal)

Figure 2: Ensemble architecture

Table 3: Classification report of all learning models by removing missing values (in %)

Model Accuracy Precision Recall F1 score

LR 73.74 86.33 88.45 87.14
DT 77.41 87.14 89.53 88.76
RF 81.34 89.52 90.56 90.54
SGD 78.94 86.72 88.87 87.65
ETC 82.89 90.52 90.52 90.52
XGB 83.14 89.58 89.88 89.67
SVC 79.52 86.42 91.43 88.42
GNB 75.82 84.43 85.20 84.33
TrioNet 89.39 93.63 95.12 94.46
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5.2 Experimental Results of Learning Models Using KNN-Imputed Values
The KNN imputer is used to tackle the issue of missing values that are present in the CKD dataset.

The presence of missing values in the dataset is detected during the data preprocessing phase and this
thing greatly affects the performance of all learning models. KNN imputer imputes the missing values
by calculating the Euclidean distance of neighboring values. After applying the KNN imputer, the
resultant dataset is used to train and evaluate the machine learning models. ML model’s performance
is shown in the Table 4.

Table 4: Classification report of all learning models using KNN imputer (in %)

Model Accuracy Precision Recall F1 score

LR 70.24 77.45 79.17 78.26
DT 70.37 75.48 76.37 75.18
RF 75.59 78.61 79.99 78.36
SGD 72.28 75.32 76.52 75.43
ETC 78.29 81.49 80.19 80.87
XGB 79.64 83.63 82.63 82.07
SVC 73.48 79.08 81.28 80.34
GNB 70.25 76.48 78.42 77.45
TrioNet 85.84 89.78 87.64 88.34

The experimental findings indicate that XGB, ETC, and RF achieved accuracies of 79.64%,
78.29%, and 75.59%, respectively. However, the suggested voting classifier surpassed all of them,
achieving an impressive accuracy rate of 85.84%. Furthermore, TrioNet achieves a precision of 89.78%,
a recall value of 87.64%, and an F1 score of 88.34%. The regression model LR shows an accuracy of
70.24%, which is lower than all models.

5.3 Experimental Results of Learning Models Using SMOTE Dataset
In the third set of experiments, the class imbalanced problem that is present in the dataset is

treated using the SMOTE. In the preprocessing of the dataset, it has been observed that there is a class
imbalanced problem. There are a total of 400 instances in the dataset and out of these 250 belong
to the CKD patients class and 150 belong to the non-CKD class. it is clear from the fact that came
from the preprocessing of the dataset that 62.5% instances belong to the CKD class and 37.5% belong
to the non-CKD class. This class imbalanced problem is handled with the SMOTE. SMOTE is a widely
used method used for the oversampling of data. training of the machine learning models done on the
dataset obtained after applying SMOTE. Performance of the machine learning models using SMOTE
balanced data is shown in the Table 5.

Table 5: Classification report of all learning models using SMOTE (in %)

Model Accuracy Precision Recall F1 score

LR 86.58 89.21 93.27 92.24
DT 87.28 90.34 94.57 92.44

(Continued)
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Table 5 (continued)

Model Accuracy Precision Recall F1 score

RF 92.85 94.34 96.16 95.58
SGD 88.99 93.48 95.19 94.37
ETC 93.54 95.37 97.12 96.24
XGB 93.34 94.27 94.18 94.24
SVM 89.72 90.28 91.29 90.88
GNN 86.48 89.55 90.24 90.13
TrioNet 94.88 97.27 98.59 97.96

The results of the learning models show that the proposed stacked ensemble model outperformed
other models in terms of accuracy value and achieved an accuracy score of 94.88%. Similarly, the
performance of the individual learning model also improved as, ETC achieved 93.54%, RF 92.85%,
and XGB achieved a 93.34% accuracy score on the balanced dataset. Tree-based model DT achieved an
accuracy value of 87.28%. The two low performers on the balanced dataset are probability-based and
regression-based methods which are GNB and LR achieved accuracy scores of 86.58% and 86.48%,
respectively. Nonetheless, TrioNet outperforms using the upsampled dataset, showing its efficiency in
detecting CKD.

5.4 Experimental Results of Learning Models Using KNN-Imputed Features and SMOTE
In the final set of experiments, SMOTE is used to tackle the class imbalance problem, and KNN

imputer is used to handle the missing values. Results of this set of experiments are shown in the
Table 6. using both SMOT and KNN imputer handles the class imbalanced problem and missing
values concurrently. this will potentially increase the efficacy of the learning models. Subsequently,
machine learning models are trained and evaluated after the implementation of KNN imputer and
SMOTE.

Table 6: Classification report of all learning models using KNN-imputed features and SMOTE (in %)

Model Accuracy Precision Recall F1 score

LR 94.29 93.45 95.79 94.67
DT 92.38 95.29 96.24 95.69
RF 96.49 97.29 98.49 97.98
SGD 94.68 96.27 97.68 97.15
ETC 96.58 96.94 97.58 97.46
XGB 97.32 97.65 98.48 98.10
SVM 94.29 93.29 93.86 93.58
GNN 91.15 90.32 91.28 91.08
TrioNet 98.97 98.92 99.84 99.76

Experiment findings indicate that using KNN imputer and SMOTE enhances model performance.
For example, the proposed voting classifier outperforms all other learning models with an accuracy
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of 98.97%. Furthermore, with 98.92% precision, 99.84% recall, and F1 score of 99.76%. The trioNet
model achieves the greatest values in terms of all evaluation metrics. GNB has the worst performance
with an accuracy score of 91.15%.

It is clear that TrioNet, which combines XGB, RF, and ETC, performs admirably and is especially
successful for CKD diagnosis, resulting in higher accuracy and evaluation metrics when compared to
other models, including the GNB.

5.5 Comparison of ML Models
To evaluate the effectiveness of the KNN imputer and SMOTE, we conducted a comparison across

four scenarios: (i) deletion of missing values, (ii) application of the KNN imputer, (iii) utilization
of SMOTE for up-sampling, and (iv) a combination of both SMOTE and the KNN imputer. Our
assessment revealed that the fourth scenario, involving the initial use of the KNN imputer followed
by SMOTE for up-sampling, exhibited significant improvement over the other three experiments. For
a comprehensive performance analysis and clarity, please refer to Table 7 which displays the results of
the machine learning models in all scenarios.

Table 7: Performance comparison of all four scenarios (in %)

Model KNN imputer Deleting missing values SMOTE KNN imputer + SMOTE

LR 70.24 73.74 86.58 94.29
DT 70.37 77.41 87.28 92.38
RF 75.59 81.34 92.85 96.49
SGD 72.28 78.94 88.99 94.68
ETC 78.29 82.89 93.54 96.58
XGB 79.64 83.14 93.34 97.32
SVC 73.48 79.52 89.72 94.29
GNB 70.25 75.82 86.48 91.15
TrioNet 85.84 89.39 94.88 98.97

5.6 Comparison with State-of-the-Art Techniques
In this section, a comparison with state-of-the-art CKD detection models is performed. This

review took into account a number of recent research from the literature that served as comparative
points. In the study by [30], an accuracy of 97.12% was achieved. Reference [32] demonstrated that
a tree-based model, DT, achieved an accuracy of 97.23%, whereas in [31], the PNN model was
employed, resulting in a 96.7% accuracy. Furthermore, references [23] and [27] reported impressive
accuracy scores of 98% and 98.86%, respectively. Despite the high reported accuracy in these studies,
the proposed models displayed commendable results, as outlined in Table 8. The results indicate
the competitive performance of our proposed approach compared to the state-of-the-art models,
underscoring its effectiveness in CKD detection.
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Table 8: Performance comparison TrioNet with existing techniques (in %)

Ref. Classifiers Accuracy achieved

[23] XGBoost 98%
[27] linear SVM 98.86%
[29] GB 99%
[30] RF 97.12%
[31] PNN 96.7%
[32] DT 97.23%
Proposed approach TrioNet 98.97%

5.7 Challenges and Future Directions
The research discusses the development of TrioNet, an ensemble learning technique for the prog-

nosis of kidney disease. The study does not extensively address external validation or transferability of
the proposed model. One direction for future research involves conducting clinical validation studies
in collaboration with healthcare institutions. Real-world testing of TrioNet within clinical settings can
provide valuable insights into its effectiveness and practical utility. It enables the model to be evaluated
in the context of real patient cases and healthcare workflows, allowing us to assess its impact on
clinical decision-making and patient outcomes. Consider integrating various data types (e.g., imaging,
genetic, clinical notes) for a more comprehensive patient profile, which may lead to more accurate
predictions. In Future research, TrioNet’s performance will be evaluated on diverse datasets to ensure
its applicability in different clinical settings. Real-world testing can provide insights into the model’s
effectiveness and practical utility.

6 Conclusions

Kidney disease, a prevalent health concern, encompasses a range of conditions affecting the vital
filtration and regulatory functions of the kidneys. The growing incidence of kidney disease underscores
the need for comprehensive research aimed at early detection, accurate diagnosis, and effective
management strategies. This research introduces a comprehensive framework designed to accurately
diagnose chronic kidney disease in patients, comprising two distinct segments. The initial phase
involves dataset normalization through the utilization of KNN-imputed and SMOTE techniques.
The proposed TrioNet model encompasses XGB, RF, and ETC models. The exceptional accuracy
of 98.97% observed in the results underscores the capability of ensemble models to furnish a potential
solution for the early identification of chronic kidney disease. A comparison against state-of-the-
art models further highlights the superiority of the proposed model. The forthcoming trajectory
of this research aims to extend the approach by creating a stacked ensemble that combines both
machine learning and deep learning models. This expansion seeks to elevate the model’s performance
in handling datasets of greater dimensionality, thus yielding more generalized and robust outcomes.
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