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ABSTRACT

Crack propagation in brittle material is not only crucial for structural safety evaluation, but also has a wide-
ranging impact on material design, damage assessment, resource extraction, and scientific research. A thorough
investigation into the behavior of crack propagation contributes to a better understanding and control of the
properties of brittle materials, thereby enhancing the reliability and safety of both materials and structures. As an
implicit discrete element method, the Discontinuous Deformation Analysis (DDA) has gained significant attention
for its developments and applications in recent years. Among these developments, the particle DDA equipped
with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to
failure. The primary objective of this research is to develop and utilize the particle DDA to model and understand
the complex behavior of cracks in brittle materials under both static and dynamic loadings. The particle DDA is
applied to several classical crack propagation problems, including the crack branching, compact tensile test, Kalthoff
impact experiment, and tensile test of a rectangular plate with a hole. The evolutions of cracks under various stress
or geometrical conditions are carefully investigated. The simulated results are compared with the experiments and
other numerical results. It is found that the crack propagation patterns, including crack branching and the formation
of secondary cracks, can be well reproduced. The results show that the particle DDA is a qualified method for crack
propagation problems, providing valuable insights into the fracture mechanism of brittle materials.
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1 Introduction

In the field of engineering and construction, many materials such as ceramics, concrete, and rocks
are classified as brittle materials. Understanding the behavior of crack propagation in brittle materials
is of paramount importance for ensuring structural safety. Numerical simulation plays a crucial
role in advancing the understanding and control of crack propagation in brittle materials, offering
a cost-effective, insightful, and predictive tool for enhancing the safety and efficiency of structures
and materials. The Finite Element Method (FEM) is a continuous numerical method widely used in
solid mechanics and structural analysis. Great progress has been made in dealing with discontinuous
problems such as crack initiation, crack propagation, crack branching, and complex crack interaction.
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Based on the eXtended Finite Element Method (XFEM), Belytschko et al. [1] proposed a method to
deal with the crack tip inside the element and used it to simulate the dynamic crack propagation.
Xu et al. [2] presented another approach to simulate dynamic crack propagation by allowing the
crack to advance along the element edges, which, however, may cause mesh-dependence problems. In
addition, other continuous methods have also been developed to simulate crack propagation problems.
For example, the Rock Failure Process Analysis system (RFPA) [3] simulates the whole process of rock
from the elastic stage to complete failure through element weakening. Peridynamics (PD) [4] is a new
method that describes the mechanical behavior of materials by solving the spatial integral equation
based on the idea of nonlocal action. It has been developed to model the dynamic crack propagation
and crack branching in solid bodies [5,6]. Using the variational framework and drawing inspiration
from Griffith’s classical theory, the Phase Field Method (PFM) has been proven to be a very effective
numerical method to simulate fracture phenomena [7,8]. In addition, some Mesh-free method [9,10]
can adapt to complex crack shape and propagation more freely which makes them especially suitable
for simulating irregular and multi-branch cracks.

Compared with the continuous method, the discontinuous method has the advantage of dealing
with complicated crack problems. At present, the Discrete Element Method (DEM) [11] has been
widely used to study the failure of brittle materials. For example, Particle Flow Code (PFC) has
been used to study crack branching under different stress conditions and compared with the crack
propagation speed simulated by other numerical methods [12]. In addition, other discrete methods
have also been developed to study crack propagation problems. For example, Zhao et al. [13] used the
Discrete Lattice Spring Model (DLSM) to simulate the problem of self-similar cracks and explained
the reason why the simulation results were consistent with the experimental results from the energy
point of view without considering the damage constitutive model. The Numerical Manifold Method
(NMM) [14], established by using the finite covering technique of manifolds, can deal with both
continuous and discontinuous problems and is widely used in the study of crack propagation [15–17].

The Discontinuous Deformation Analysis (DDA) [18] is a discontinuous approach that can be
seen as an implicit variant of the DEM. Compared with explicit DEM, DDA is more stable and
can adopt a much larger time step [19]. DDA applies the principle of minimum potential energy
to minimize the energy of the entire system to obtain a unique solution. Over the years, significant
endeavors have been invested in enhancing its underlying principles, precision, and computational
efficiency [20–23]. For failure simulation, the material is normally discretized into polygons or
triangles, leading to the block-based DDA. This method is especially suitable for discrete blocky
systems and rock failure simulation. For example, Ning et al. [24] and Jiao et al. [25] developed block-
based DDA methods to model the failure of intact rocks.

Besides block-based DDA, there is another form called particle DDA, in which the basic shapes
are disks or spheres [26]. In the literature, particle DDA is also called disk-based DDA [21,27] or
disk DDA [28] in two dimensions, and sphere DDA [29] or spherical DDA [30] in three dimensions.
Recently, a new Bonded-Particle Model (BPM) for particle DDA was developed by Zhang et al. [27] for
rock failure simulation. Compared to block-based DDA, particle DDA is easier to code and has fewer
degrees of freedom. Meanwhile, parameter calibration is also simplified since fewer microparameters
are involved in particle DDA.

Note that FEM has been widely used for modeling crack problems. However, FEM often requires
special techniques (such as the remeshing technique [31] or the technique used in XFEM [32]) to
deal with cracks. It is difficult for FEM to handle the crack initiation, crack interaction and crack
branching. In contrast, DDA is a discontinuous approach that can handle cracks naturally. DDA is
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particularly suitable for complex multi-crack problems, as well as crack initiation, crack branching,
etc. For more details on the comparison of different numerical methods for predicting rock failure,
please refer to reference [33].

In this study, based on particle DDA, a parameter calibration process to match both the elastic
parameters and the strength parameters of brittle material is suggested. Based on the calibrated param-
eters, the ability of particle DDA with the BPM to simulate static and dynamic crack propagation and
crack branching is carefully explored.

2 Fundamentals of Particle DDA

This section will introduce the displacement approximation of particle DDA, the establishment of
the BPM, the assembly of the stiffness matrix of particle DDA, and the solution flow of particle DDA.

2.1 Displacement Approximation
In particle DDA, the interested domain is represented by a set of rigid particles. The displacement

vector Di for particle i with the radius Ri has the form:

Di = [
ui vi θi

]T
, θi = Riθi (1)

where ui and vi represent the x- and y-translations of the rigid body as shown in Fig. 1, θ i is the
incremental rotational displacement component caused by rotation, and θ i is the angular displacement
in the radian system.

Figure 1: Displacements and rotation of particle i

The displacement of any point (x, y) on particle i can be calculated by the following formula:

[
u
v

]
= T iDi, T i =

⎡
⎢⎢⎣

1 0
− (y − yi)

Ri

0 1
x − xi

Ri

⎤
⎥⎥⎦ (2)

where T i is called the displacement transformation matrix.

2.2 Introduction of the Bonded Particle Model
The fracture of brittle material is a transition process from a continuum to a discrete body.

Therefore, the Bonded-Particle Model (BPM) for particle DDA proposed by Zhang et al. [27] is used.
In BPM, the contact particles are bonded by three unique springs, a normal spring, a shear spring,
and a rolling spring, as shown in Fig. 2. To represent the characteristics of brittle material, a simple
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elastic-brittle constitutive model is employed as the bond failure criterion. There are two types of
failure modes for each bond, namely, tensile failure and shear failure. When the normal stress between
a contact pair exceeds the limit, the bond undergoes tensile failure, resulting in micro-scale tensile
cracks, as shown in Fig. 3a. As depicted in Fig. 3b, when the tangential stress between a contact pair
exceeds the limit, the bond undergoes shear failure, leading to micro-scale shear cracks.

Figure 2: Constitutive relation diagram of bonded particle model

Figure 3: Two failure models (a) tensile failure and (b) shear failure

After incorporation of the BPM, there are four states between contact pairs in particle DDA,
namely bonding, opening, sliding, and locking. For a bonding state, all three springs are needed, while
for an opening state, all the three springs are inactive. For a sliding state, the normal spring and friction
are active while for a locking state, both normal spring and shear spring are applied.

2.3 Assembly of the Stiffness Matrix
The system of equations can be derived through the application of the principle of minimum total

potential energy. In the case of a system comprising n particles, the equations can be represented as
follows:⎡
⎢⎢⎣

K 11 K 12 · · · K 1n

K 21 K 22 · · · K 2n

...
...

. . .
K n1 K n2 · · · K n2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

D1

D2

...
Dn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F1

F2

...
Fn

⎤
⎥⎥⎦ (3)

where K 11 is a submatrix of stiffness matrix with the size of 3 × 3, F i is a subvector of force vector
with the size 3 × 1. In a particle system, the total energy encompasses the summation of potential
energy contributions from individual particles and bonded pairs. This includes potential energy arising
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from particle stiffness, external loads, body forces, inertia forces, displacement constraints, and contact
springs. For a convenient description, here we only illustrate the contribution of the body force
(non-contact submatrices) and the normal spring (contact submatrices) in establishing the system of
equations. Other details can refer to related work [26,27].

2.3.1 Submatrices from Body Force

The potential energy of the body force is given by the following equation:

Πb = −Di
T

∫ ∫
T i

T
ρi

[
fx

fy

]
dxdy = −Di

T
[
fxρiAi fyρiAi 0

]T
(4)

where f x and f y are the body forces per unit mass in the x and y directions, �b is the body force potential
energy, ρ i is the density of particle i, and Ai is the area represented by particle i. By minimizing �b with
respect to Di yields:⎡
⎣ρiAifx

ρiAify

0

⎤
⎦ → F i (5)

2.3.2 Submatrices from Normal Springs

Consider a contact pair consisting of particle i and particle j. The radii of the two particles are Ri

and Rj, and the coordinates of the center points of the two particles are (xi, yi) and (xj, yj), respectively.
Then the unit normal vector n (the vector from the center of particle i to the center of particle j) and
the unit shear vector s (the vector perpendicular to n) can be computed as:

n = 1
L

[
xj − xi

yj − yi

]
= [cos α sin α]T (6)

s = [− sin α cos α]T (7)

where L is the distance between the centers of the two particles, and α is the inclination angle of n.

The normal penetration distance dn is written as:

dn = nT

([
uj

vj

]
−

[
ui

vi

])
+ nT

[
xj − xi

yj − yi

]
− Ri − Rj − dgap

= nT
3

(
Dj − Di

) + dn0 (8)

n3 = [cos α sin α 0]T (9)

dn0 = nT

[
xj − xi

yj − yi

]
− (

Ri + Rj + dgap

)
(10)

where dgap represents the reference gap, which serves as the defining distance for contact activity. Note
that this formulation only involves the locations and the degrees of freedom of particles i and j.

The potential energy of the normal springs can be determined using the normal penetration
distance dn,

Πn = 1
2

knd2
n = 1

2
kn

[
nT

3

(
Dj − Di

) + dn0

]2
(11)

where kn is the stiffness of normal springs.
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By minimizing �n with respect to Di and Dj, we obtain the normal contact submatrices associated
with particles i and j,⎧⎨
⎩

knn3nT
3 → K ii, −knn3nT

3 → K ij

−knn3nT
3 → K ji, knn3nT

3 → K jj

kndn0n3 → F i, −kndn0n3 → F j

(12)

2.4 Open-Close Iterations
After each iteration, contact states are assessed based on their positional relationships. Depending

on the changes in contact states between the current and previous iterations, normal springs, shear
springs, rolling springs, or Coulomb frictions may be added or removed. The open-close iteration
is considered to have converged when the contact states remain unaltered between two consecutive
iterations. If there are contact states continuously changing over six consecutive iterations, the current
time step is reduced to one-third, and the iterative process continues until convergence is achieved. The
calculation flow chart of particle DDA is listed in Fig. 4.
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Figure 4: Calculation flow chart of particle DDA

3 Calibration Procedure of Particle DDA
3.1 Calibration Procedure

Parameter calibration in discrete element method simulation is a key task, which aims at selecting
appropriate microscopic parameters to reproduce the macroscopic properties of materials as much as
possible. As a discrete method, the process of parameter calibration of particle DDA is also inevitable.
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In particle DDA, there are six microscopic parameters categorized into two groups: elastic
parameters (comprising the stiffness of the normal spring kn, the stiffness of the shear spring ks, and
the stiffness of the rolling spring kr) and strength parameters (which include the tensile strength σ t,
cohesion strength c, and friction angle ϕ).

The model’s macroscopic parameters were primarily obtained through two tests: uniaxial com-
pression testing and Brazilian disc testing, as illustrated in Fig. 5. The loading velocity of the upper wall
is 0.02 m/s to realize the quasi-static loading. In this study, the particle sizes obey normal distribution
and the ratio of maximum to minimum radius is 2.

Figure 5: Numerical models for calibration

In the uniaxial compression test, four measurement points A, B, C, and D were positioned on the
model, and the applied stress on the model was concurrently recorded. The strain of the model can be
obtained using the following equation:

εx = 1 − xD − xB

x0
D − x0

B

, εy = 1 − yA − yC

y0
A − y0

C

(13)

where εx and εy are the calculated strains in the x and y directions, x and y without superscripts
represent the current coordinates for the measuring points, and x and y with superscript 0 represent
the initial coordinates. Fig. 6a illustrates the stress-strain curve and Poisson’s ratio-strain curve derived
from the uniaxial compression test. Fig. 6b, on the other hand, illustrates the load-displacement
curve obtained from the Brazilian disk test. The peak of the strain-stress curve obtained from
uniaxial compression is considered as the model’s macroscopic compressive strength, while the model’s
macroscopic tensile strength can be determined using the peak of the displacement-load curve as
follows:

ft = 2Fpeak

πD
(14)

where Fpeak is the maximum value of load and D is the diameter of the Brazilian disk.

First, following Jiang’s article [34], we initially set kr/kn = 1/3. By matching the simulated Poisson’s
ratio with the Poisson’s ratio of the material, the value of ks/kn can be determined. Then, by matching
the elastic modulus of the material, kn can be determined. Subsequently, the preliminary determination
of the strength parameters is carried out using both the Brazilian disk test and the uniaxial compression
test. Through iterative adjustments and matching of the actual material’s compressive and tensile
strengths, the final values of the microscale parameters σ t, c, and ϕ can be determined.
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Figure 6: Breakage stage and data of unit test (a) uniaxial compression test, (b) Brazilian disc test

3.2 Verification of the Calibration Procedure
When a material is subjected to tensile or stretching forces, tensile fracture (mode I fracture)

occurs. On the other hand, shear fracture (mode II fracture) occurs when the cross-section of a material
is subjected to parallel forces, which cause one part of the material to slide or move relative to another
part. Both of these fracture types are widely present and are of significant importance in engineering.
If particle DDA can reproduce the above two fracture types properly, it can be considered that the
calibration process is reasonable.

Following Ayatollahi’s experiment [35], the Notched Semi-Circular Bend (NSCB) specimen using
polymethylmethacrylate (PMMA) is used to test the ability of particle DDA for predicting the mixed
mode fracture. As illustrated in Fig. 7, the NSCB specimen comprises a semi-circle with a radius R
and accommodates an edge crack with a length of a. The crack’s orientation is defined by an angle
β with respect to the vertical direction. The specimen is affixed between two lower supports, spaced
at a distance of 2 s, and subjected to a vertical load denoted as P. Different parameter combinations
(a/R, s/R, β) may lead to different combinations of modes I and II fracture. Based on the calibration
process above, the PMMA material was calibrated. The macro-parameters of PMMA are as follows:
the density ρ = 1190 kg/m3, the elastic modulus = 3.24 GPa, the Poisson’s ratio v = 0.35 and the type
I fracture toughness KIc = 2.37 MPa/

√
m. The calibrated micro-parameters of PMMA are listed in

Table 1.
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Figure 7: Model of notched semi-circular Brazilian bend

Table 1: Microscopic properties of the NSCB model

Microscopic properties of the DDA model Value

Density ρ 1190 kg/m3

Stiffness of normal spring kn 4.40 GPa
Stiffness of shear spring ks 0.53 GPa
Stiffness of rolling spring kr 1.54 GPa
Friction angle ϕ 30°
Cohesive strength c 50 MPa
Tensile strength σ t 40 MPa

In this simulation, the radius R is 50 mm, the length of the prefabricated notch a is 15 mm, and
s/R = 0.43. In the NSCB test, the critical stress intensity factor is calculated as follows [35]:

KIf = YI

Pcr

2Rh

√
πa, KIIf = YII

Pcr

2Rh

√
πa (15)

where Y I and Y II are the geometric parameters of the specimen as functions of a/R, s/R, and β. h is
the thickness of the NSCB specimen, and Pcr is the peak load. By varying the inclination angle β from
0° to 10°, 20°, 30°, 40°, 43°, 47°, and 50°, the fracture mode will gradually change from pure type I
fracture to pure type II fracture. For example, when β is equal to 0, Y II will be 0, indicating a pure
type I fracture. As β increases, the type I geometry factor Y I steadily decreases, while Y II increases.
The fracture mode becomes purely mode II until β equals 50°. The values of Y I and Y II at different
angles are given by Lim et al. [36]. For each β, the numerical tests are repeated five times. The average
normalized critical stress intensity factor KIf /KIc and KIIf /KIc obtained by DDA are shown in Fig. 8,
which matches well with the experimental results [35]. Both the computed average load and the average
load from experiments are listed in Table 2. For most cases, the relative errors are less than 5%.

The predicted failure patterns generated by the particle DDA are depicted in Fig. 9. The crack
propagates originating from the crack tip towards the loading wall, closely matching the observed
experimental outcomes [35]. Therefore, it can be inferred that, following appropriate calibration, the
particle DDA can effectively capture the behavior of both mode I and mode II fractures in brittle
materials.
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Figure 8: Comparison of the variation of critical normalized stress intensity factor with different
inclination angle β

Table 2: Comparison of average numerical peak load and the experimental ones

Notch inclination angle β (°) 0 10 20 30 40 43 47 50

Numerical peak load (kN) 2.47 2.52 2.51 2.94 3.62 3.82 4.14 4.19
Experimental peak load (kN) 2.38 2.53 2.45 3.03 3.73 3.63 4.13 4.33
Relative error (%) 3.85 0.53 2.65 3.00 2.93 5.08 0.25 3.41

Figure 9: Comparison of the failure patterns by particle DDA and the experiment
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4 Numerical Examples

In this section, several practical examples are simulated to verify the ability of particle DDA
to model static and dynamic crack propagation of brittle material. Before each simulation, the
parameters are calibrated with the procedure in Section 3. In the following examples, the models are
discretized into randomly distributed particles whose sizes follow the truncated normal distribution.
The maximum to minimum particle size ratio is fixed at 2.

4.1 Crack Branching Test
The first benchmark test is the crack branching test. Crack branching is a phenomenon frequently

observed in brittle materials under sudden stress loading and has been widely studied by other
researchers using different numerical methods [12,37–39]. Consider a rectangular plate with the size
of 0.1 × 0.04 m. It has a horizontal pre-existing notch and is subjected to a pair of remote, symmetric
tensile stresses, as illustrated in Fig. 10. During the dynamic simulation, the tension stress σ is suddenly
applied at time t = 0 and kept constant. This loading produces a rapid stress wave. In the simulation,
the material of PMMA is applied to the particle DDA model. Table 1 lists the calibrated microscopic
parameters of PMMA. The entire model is divided into 125,418 particles. A total duration of 60 μs is
simulated and the time step is set as 0.1 μs. The total time spent is 474.79 s.

Figure 10: Model of crack branching test

First, consider the case of σ = 10 MPa. The simulated crack paths at various time steps are
illustrated in Fig. 11. Initially, the crack propagates horizontally for a period before bifurcating into
two cracks. The crack branching pattern is approximately symmetric. However, at 56 μs, the lower-side
crack undergoes a secondary branching first. It is reasonable to speculate that this may be attributed
to the particle DDA model, which is composed of densely packed particles with random sizes and
distributions. The distribution of these particles can influence the local propagation directions of the
cracks. Note that secondary branching has also been observed in the experiment of brittle material [40].

In Fig. 12, the predicted crack paths are compared with the results of the experiment and other
numerical methods such as peridynamic [38], DEM [12], etc. Good agreements can be observed.
Considering that DDA is a discontinuous method, there exist lots of microcracks along the main crack,
similar to the results by DEM.
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Figure 11: The crack branching process by particle DDA

Figure 12: Dynamic cracking patterns obtained from experiment and other different methods

In the study of crack propagation problems, the velocity at which cracks propagate is of con-
siderable importance. In the context of particle DDA, we continuously monitor and track the crack
tips to compute the crack’s propagation length along its path. The relative crack propagation velocity
is defined as V /CR, where CR represents the Rayleigh wave velocity. In the present example, CR is
set to 2090 m/s. Fig. 13 illustrates the comparison of normalized crack propagation velocities. In the
simulation of particle DDA, once the crack propagation velocity reaches its peak, crack branching
occurs. Subsequently, the crack propagation velocity experiences a decline to some extent and then
fluctuates. Throughout this entire process, it’s noteworthy that the crack speed never surpasses the
Rayleigh wave velocity, which aligns with the experimental results [41].

We explore the influence of loading stress σ on crack branching through an investigation involving
four cases: σ = 7, 8, 9, and 10 MPa. The results are presented in Fig. 14. When σ = 7 MPa, crack
branching is not obvious. As σ increases, crack branching occurs earlier, and the maximum crack
propagation velocity also increases. This means the magnitude of the load will indeed influence
whether a crack bifurcates during its propagation and at what point in time such bifurcation occurs.
Again, all crack speeds are still smaller than the Rayleigh wave speed.



CMES, 2024, vol.139, no.2 2227

Figure 13: Comparison of normalized crack propagation velocity

Figure 14: Comparison of crack path (t = 60 μs) and crack velocity under different σ

4.2 Compact Tensile Test
The compact tension test is a method used to evaluate the toughness and fracture characteristics

of materials. It has been employed to study the mechanical properties of materials such as metals,
plastics, and composite materials.

The model’s dimensions are 0.2 m × 0.2 m, with a groove spanning 0.064 m in width and 0.018 m
in height, as shown in Fig. 15. In the experiment [42], the model is constructed using concrete material
characterized by the following properties: elastic modulus E = 36 GPa, Poisson’s ratio μ = 0.18, tensile
strength f t = 3.80 MPa, and compressive strength f c = 53 Mpa. The left side of the groove is rigidly
fixed, while the right side undergoes rightward motion at a constant loading speed v. In the experiment
[42], three different speeds, 0.0304, 1.3750, and 3.9930 m/s are considered. In the simulation, these
three loading speeds are also used for comparative analysis. First, a randomly packed particle model
composed of 36,000 particles is generated.
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Figure 15: Model of a compact tensile specimen

The material properties of the particles were adjusted through the calibration process detailed
in Section 3, and the results of parameter calibration are displayed in Table 3. The simulation was
conducted with a time step of 1 μs and a total simulation time of 500 μs. The computation for each
case takes about 45 s.

Table 3: Microscopic properties of the compact tensile specimen

Microscopic properties of the DDA model Value

Density ρ 2400 kg/m3

Stiffness of normal spring kn 39 GPa
Stiffness of shear spring ks 16.8 GPa
Stiffness of rolling spring kr 13.7 GPa
Friction angle ϕ 30°
Cohesion strength c 22 MPa
Tensile strength σ t 30 MPa

Fig. 16 illustrates the predicted failure pattern obtained using the particle DDA. The experimental
results [42] are also listed. The simulation results by particle DDA closely matches the experimental
results. The failure modes of the specimens can be categorized into three types: quasi-static failure
(V = 0.0304 m/s), intermediate failure (V = 1.3750 m/s), and dynamic failure (V = 3.9930 m/s). At
lower loading speeds, such as 0.0304 m/s, the crack propagation follows the centerline of the specimen,
showing a quasi-static damage pattern. As the loading speed progressively increases, the crack deviates
from the centerline, tilting towards the direction of the applied load. Notably, at this stage, crack
branching is not observed. However, when the loading speed surpasses a certain critical value, an
intriguing phenomenon emerges. The crack first bifurcates within the central region of the concrete
specimen and subsequently undergoes secondary branching near the specimen’s edges. Remarkably,
the simulation results by particle DDA replicate this intricate behavior, providing valuable insights
into the mechanics of concrete failure under varying loading conditions.
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Figure 16: Comparison of crack paths from particle DDA and experiment

4.3 Kalthoff Experiment
The Kalthoff experiment [43] is used to study the dynamic crack propagation and fracture

behavior of materials and has been widely employed to verify the abilities of numerical methods in
predicting dynamic crack propagation [1,15,44].

In Fig. 17, a plate measuring 100 mm × 200 mm with two symmetric preexisting cracks spaced
50 mm apart is impacted by a projectile at a velocity of v0. The plate’s macroscopic material properties
include mass density ρ = 8000 kg/m3, elastic modulus E = 190 GPa, Poisson’s ratio ν = 0.3, and tensile
strength σ t = 300 MPa, along with a fracture toughness KIc = 68 MPa

√
m. The calibrated microscopic

parameters are listed in Table 4. The entire model is divided into 35,015 particles. In the simulation, the
time step and total simulation time are set at 1 and 50 μs, respectively. The total time spent is 19.21 s.

Figure 17: The model of the Kalthoff experiment
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Table 4: Microscopic properties of the Kalthoff experiment

Microscopic properties Value

Density ρ 8000.00 kg/m3

Stiffness of normal spring kn 270.00 GPa
Stiffness of shear spring ks 40.50 GPa
Stiffness of rolling spring kr 94.50 GPa
Friction angle ϕ 30.00°
Cohesion strength c 1000.00 MPa
Tensile strength σ t 540.00 MPa

Fig. 18 illustrates the predicted crack paths at various stages. When subjected to the impact load,
microcracks initially emerge at the tips of pre-existing cracks, propagating at an angle relative to the
horizontal plane. In the simulation, the angle of propagation continuously varies, generally oscillating
within the range of 60° to 70°. This trend closely aligns with the experimental results.

Figure 18: Predicted crack paths at different stages
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Fig. 19 displays the predicted crack path by particle DDA along with experimental result. Initially,
the crack propagation angle is approximately 60°, which subsequently decreases—a trend that closely
mirrors the experimental observations. It is worth noting that simulations using other methods exhibit
cracks on the right side of the plate, a phenomenon absent in the experimental data. This may be
related to the impact velocity and the strength of the material itself [8]. Additionally, in the later stages
of the crack propagation, a distinctive zigzag cracking pattern is observed.

Figure 19: (a) Kalthoff experiment and (b) crack path from particle DDA

4.4 Rectangular Plate with a Prefabricated Crack and a Hole
In the previous examples, the cracks propagate within a uniform and homogeneous environment

without accounting for the influence of the material’s configuration on crack propagation. Therefore,
in the final example, a simulation involving a rectangular plate containing a crack and an off-center
circular hole is conducted. As shown in Fig. 20, this plate is subjected to uniform normal traction
applied along its upper edge and its bottom edge is fixed [45]. In this configuration, we denote the
distance from the pre-existing crack to the lower end of the plate as H. The distance from the center
of the pre-existing hole to the left edge of the plate is 12 mm. The tensile stress σ exerted on the upper
end of the rectangular plate is 26 MPa. The macroscopic characteristics of the material are described
by the following properties: mass density ρ = 2700 kg/m3, elastic modulus E = 71.4 GPa, Poisson’s
ratio μ = 0.25, and tensile strength σ t = 34.5 MPa. The plate is discretized into about 32,000 particles.
The calibrated microscopic parameters are listed in Table 5. The time step is 0.01 μs and the total
simulation duration is 50 μs. The total time spent is 556.39 s.

Figure 20: Model of the pre-notched rectangle plate with a hole
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Table 5: Microscopic properties of the rectangle plate

Microscopic properties of the DDA model Value

Density ρ 2700.00 kg/m3

Stiffness of normal spring kn 75.00 GPa
Stiffness of shear spring ks 25.00 GPa
Stiffness of rolling spring kr 25.00 GPa
Friction angle ϕ 30.00°
Cohesion strength c 60.00 MPa
Tensile strength σ t 50.00 MPa

To investigate the impact of the location of the pre-existing crack, we consider three values of
H: 5, 10, and 15 mm. The results by particle DDA and peridynamic [46] are presented in Fig. 21. It
can be observed that the distance of the pre-existing crack from the hole influences the initial crack
propagation angle (defined as the angle between the initial crack propagation direction and the pre-
existing crack). For instance, according to the simulation results from the particle DDA, when H
is set to 5 mm, the initial crack propagation angle is approximately 38°. As the crack continues to
propagate, the angle of the crack gradually decreases until it reaches the right side of the rectangular
plate. Throughout this process, the crack never intersects with the hole. When H is increased to
10 mm, the initial crack propagation angle becomes approximately 50°. Similar to the case when
H = 5 mm, the angle of the crack decreases gradually, and throughout the entire process, the crack
does not intersect with the hole. However, when H is set to 15 mm, the initial crack propagation angle is
approximately 66°, and the crack angle gradually increases until it intersects with the hole. The failure
mode significantly differs from the previous two cases. It can be deduced that the relative positioning of
pre-existing cracks plays a crucial role in determining the path of crack propagation. This phenomenon
has also been observed in the other simulation, as shown in Fig. 21.

Figure 21: (Continued)
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Figure 21: Variation in crack propagation path under different H

5 Conclusions

This paper extends the particle DDA with a bonded-particle model to simulate the phenomenon
of static and dynamic crack propagation and branching. A calibration procedure is presented based
on the Brazilian disk test and uniaxial compression test, and its effectiveness is verified through the
notched semi-circle bend test.

Using the calibrated parameters, four numerical experiments were conducted to assess the
capability of particle DDA in quantitatively analyzing static and dynamic crack propagation behaviors.
Additionally, these experiments provide valuable insights into the intricate mechanisms governing
brittle material crack propagation and branching under diverse conditions. In the case of the crack
branching test, particle DDA demonstrates its excellent ability to simulate crack branching phenomena
without the help of complex crack propagation criteria. The magnitude of dynamic loads affects
whether cracks bifurcate and the location of crack bifurcation. Through the compact tensile test, it
is found that the predicted crack paths by particle DDA match well with the experiments and other
numerical methods. The propagation and branching of the cracks heavily depend on the loading rates.
In the Kalthoff problem, the crack propagation angle observed in the experiments is well reproduced
and is in good agreement with those from existing numerical results. The simulation of the pre-notched
rectangular plate with a hole indicates that the relative positioning of prefabricated cracks determines
the crack’s propagation path.

In summary, after careful calibration, the particle DDA provides a reliable tool for modeling
dynamic crack propagation and branching in brittle materials. We anticipate extending the application
of this methodology to address more intricate tests and engineering challenges in our future work.
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42. Ožbolt, J., Bošnjak, J., Sola, E. (2013). Dynamic fracture of concrete compact tension specimen:
Experimental and numerical study. International Journal of Solids and Structures, 50(25), 4270–4278.
https://doi.org/10.1016/j.ijsolstr.2013.08.030

43. Kalthoff, J. F. (2000). Modes of dynamic shear failure in solids. International Journal of Fracture, 101(1),
1–31. https://doi.org/10.1023/A:1007647800529

44. Zhou, X., Wang, Y., Qian, Q. (2016). Numerical simulation of crack curving and branching in brittle
materials under dynamic loads using the extended non-ordinary state-based peridynamics. European Journal
of Mechanics-A/Solids, 60, 277–299. https://doi.org/10.1016/j.euromechsol.2016.08.009

45. Rashid, M. M. (1998). The arbitrary local mesh replacement method: An alternative to remeshing for
crack propagation analysis. Computer Methods in Applied Mechanics and Engineering, 154(1–2), 133–150.
https://doi.org/10.1016/S0045-7825(97)00068-6

46. Ni, T., Zhu, Q. Z., Zhao, L. Y., Li, P. F. (2018). Peridynamic simulation of fracture in quasi brittle
solids using irregular finite element mesh. Engineering Fracture Mechanics, 188, 320–343. https://doi.org/
10.1016/j.engfracmech.2017.08.028

https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
https://doi.org/10.1002/1097-0142(19931101)72:9<2746::aid-cncr2820720936>3.0.co;2-w
https://doi.org/10.1016/j.ijrmms.2023.105381
https://doi.org/10.1002/nag.498
https://doi.org/10.1016/j.msea.2005.11.002
https://doi.org/10.1016/0013-7944(93)90030-V
https://doi.org/10.1007/s00466-007-0210-x
https://doi.org/10.1016/j.engfracmech.2010.11.020
https://doi.org/10.1016/j.cma.2014.06.036
https://doi.org/10.1007/BF00017967
https://doi.org/10.1016/j.ijsolstr.2013.08.030
https://doi.org/10.1023/A:1007647800529
https://doi.org/10.1016/j.euromechsol.2016.08.009
https://doi.org/10.1016/S0045-7825(97)00068-6
https://doi.org/10.1016/j.engfracmech.2017.08.028

	Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
	1 Introduction
	2 Fundamentals of Particle DDA
	3 Calibration Procedure of Particle DDA
	4 Numerical Examples
	5 Conclusions
	References


