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ABSTRACT

In this paper, we present a comprehensive system model for Industrial Internet of Things (IIoT) networks
empowered by Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) technologies.
The network comprises essential components such as base stations, edge servers, and numerous IIoT devices
characterized by limited energy and computing capacities. The central challenge addressed is the optimization
of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing
overall energy consumption. The system operates in discrete time slots and employs a quasi-static approach, with
a specific focus on the complexities of task partitioning and the management of constrained resources within the
IIoT context. This study makes valuable contributions to the field by enhancing the understanding of resource-
efficient management and task allocation, particularly relevant in real-time industrial applications. Experimental
results indicate that our proposed algorithm significantly outperforms existing approaches, reducing queue backlog
by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn

O.
Moreover, the algorithm effectively balances complexity and network performance, as demonstrated when reducing
the number of devices in each group (Ng) from 200 to 50, resulting in a 97.21% reduction in complexity with only
a 7.35% increase in energy consumption. This research offers a practical solution for optimizing IIoT networks in
real-time industrial settings.
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1 Introduction

In recent years, the convergence of Internet of Things (IoT) and edge computing has brought
transformative changes across industries, notably in the healthcare sector. The widespread use of
connected medical devices and the growing demand for real-time data analysis have underscored the
need for innovative solutions capable of efficiently managing and processing the vast volumes of data
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generated by these devices [1,2]. A key strategy in addressing this challenge lies in leveraging edge
computing, where data is processed in proximity to its source, reducing latency and enhancing overall
system performance.

With advancements in wireless communication, the contemporary distributed network offers
expanded coverage, higher capacity, and improved connectivity, facilitating the realization of IoT. IoT
devices are increasingly tasked with computationally intensive and time-sensitive operations, especially
with the development of sophisticated load control and real-time computing. This has given rise to the
need for efficient resource management solutions, given the constraints of limited computation and
storage resources on the device side [3]. While IoT devices can offload tasks to the nearest edge servers
to mitigate delays and conserve energy, the burgeoning number of terminal devices in IoT has made
computational tasks more challenging.

As the demand for communication and spectrum resources continues to surge, the development of
resource allocation and management algorithms has become urgent. Non-Orthogonal Multiple Access
(NOMA) technology presents a practical solution for efficiently using scarce spectrum resources
[4,5]. However, several challenging problems persist. Jointly optimizing resource unit allocation,
computing resource offloading, and task division algorithms is computationally complex due to the
coupling between these entities. Moreover, striking a balance between long-term optimization goals
and real-time decision-making amplifies the computational complexity of the model. The intricacies
of multidimensional task allocation without future data, such as task arrival times and channel state
information, add to the challenge. Additionally, the dynamic interference among devices when the
same resource units are allocated to different devices creates externalities, leading to exponentially
complex resource unit allocation problems.

In response to these challenges, the research explores a multi-time scale multidimensional resource
allocation approach for NOMA-based Mobile Edge Computing (NOMA-MEC) in IoT. The proposed
algorithm aims to minimize long-term device consumption by jointly optimizing resource unit
allocation and task splitting. This approach dissects the long-term stochastic joint optimization
problem into three short-term deterministic problems using the Lyapunov technique. It focuses on
wireless spectrum allocation, task splitting, and task computation. To enhance efficiency and reduce
complexity, IoT devices and resource units are grouped based on clustering schemes [6,7]. Wireless
spectrum allocation is treated as a one-to-many matching problem, resolved on a larger time scale and
executed on the base station (BS) side. The suggestion is to use group-switching matching to allocate
resource units. Devices and resource units are initially categorized into several groups, with switching
matching performed within each group. Task splitting and computing resource allocation are then
handled on the device side in a distributed manner on a smaller time scale [8].

The research presents a novel algorithm for resource unit allocation, which optimizes energy
consumption while taking into account the dynamic nature of IoT device preferences and the scarcity
of spectrum resources [9].

- Task Splitting Efficiency: The study introduces a task splitting approach that improves the overall
system performance by jointly optimizing work partitioning and computing resource allocation,
reducing queue backlogs.

- Multi-Time Scale Solution: By addressing long-term queuing delay constraints, the research
offers a multi-time scale, multidimensional resource allocation strategy for NOMA-MEC in IoT,
striking a balance between complexity and network performance.
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- Group-Based Approach: The proposed approach utilizes clustering schemes to group IoT
terminals and resource units, reducing computational complexity and enhancing efficiency in wireless
spectrum allocation.

2 Related Works

With the advent of Industry 4.0, Industrial IoT (IIoT) has become a pivotal technology, addressing
various challenges in smart factories, including the management of industrial big data, equipment
monitoring, and maintenance [10,11]. IIoT devices generate a substantial amount of data, and
some industries require real-time data processing. Conventionally, industrial data is transferred to
centralized cloud servers for processing due to their powerful computing capabilities [12]. However,
the sheer number of IIoT devices can lead to network congestion, causing delays in data transmission
and impacting real-time tasks. Therefore, a network infrastructure capable of real-time and efficient
data processing is essential for IIoT.

Edge computing is emerging as a valuable complement to cloud computing, utilizing a distributed
computing approach to alleviate network congestion and reduce transmission delays associated with
cloud computing’s centralized processing [13]. By distributing computing tasks across multiple servers
throughout the network, edge computing ensures a quicker response to user requests and tasks [14].
To minimize data transmission delays in long-distance communication, edge servers are strategically
placed closer to the devices.

Several ongoing studies explore the application of edge computing in IIoT environments. These
studies optimize time and energy costs to achieve the efficient distribution of green and energy-saving
computing resources [15,16]. They addressed offloading challenges for multi-hop computing tasks in
hybrid edge cloud computing environments, utilizing game theory to meet service quality requirements
[17]. In [18], authors introduced an innovative approach that integrates Wireless Power Transfer
(WPT) with Mobile Edge Computing (MEC) for efficient computation offloading, achieving real-
time performance in large-scale networks and addressing energy and latency constraints in wireless
environments. In [19], authors optimized task dependencies in IoT edge computing using a directed
cyclic graph model and priority-aware scheduling, outperforming other offloading methods in terms
of throughput and task satisfaction rate. In [20], authors addressed the growing need for data analysis
in the context of IoT systems, where the volume of generated data poses performance challenges.
It introduces the IoT-SCOM model, focusing on minimizing transmission latency in edge-cloud-
hybrid systems. Experimental results show that IoT-SCOM offers improved accuracy and efficiency
compared to existing methods, enhancing data-intensive service element deployment in the edge-
cloud environment. Moreover, a hybrid computing architecture with intelligent resource planning is
proposed to meet real-time requirements [21].

In summary, edge computing offers solutions to meet quality of service demands and reduce
system overhead by deploying at the network edge, closer to field devices, and providing suitable com-
puting resources. This research investigates computing resource allocation and task offloading in IIoT
environments using edge computing and NOMA. It aims to resolve issues related to communication
delay, energy consumption, and system scalability by efficiently allocating computer resources and
offloading responsibilities from edge servers. The contributions of this paper are twofold.

1. Decomposition based on multi-dimensional optimization: Utilizing Lyapunov optimization,
the complex, long-term stochastic multi-dimensional optimization problem is decomposed into three
deterministic problems that can be solved effectively.
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2. Resource Allocation Problem based on group Switching Matching: The proposed resource unit
allocation algorithm, based on group switched matching, provides a more efficient, less complex, and
flexible approach to handle interdependencies among IIoT devices and various resources.

The remainder of this paper is structured as follows. Our system model is introduced in the second
section. The introduction of the problem model, transformation, and queuing delay limitations follows
in Section 3. The proposed algorithm is further explained in Section 4. The simulation results and data
analysis are presented in the fifth section. The paper is finally summarized in the sixth section.

3 System Model

This paper examines a common NOMA MEC-based IIoT example, which includes a base station,
an edge server, and a significant number of IIoT devices with low energy and computing capacities.
The BS is place d where the edge server is, as stated in Fig. 1, and it offers radio access and computing
services for N IIoT devices. The node symbolizes the attack state, and its set is N, with the set being
defined as N = {1, 2, . . . , n, . . . , N}. The IIoT device either partially processes its tasks or offloads
them to the BS. Comparable to [22], we investigate a discrete timeslot form that splits the optimization
process into T time slots, each with a duration τ , as displayed in Fig. 2. The timeslot collection is
indicated by the expression T = {1, . . . , t, . . . , T}. Consider a quasi-static example where the CSI
varies between time slots but stays the same in one time slots. Each subsequent T ′ timeslot is connected
to a time epoch denoted by the symbols s ∈ S, S = {1, 2, . . . , S}. The definition of the s-th time epoch
is T (s) = {(s − 1) T ′ + 1, . . . , sT ′, sT ′ + 1, . . . , (s + 1) T ′}.

The resource is divided into M time-frequency resources units with bandwidth B and a time period
of T ′τ , the union of which is M = {1, . . . , m, . . . , M}. The multi-dimensional resource allocation and
splitting problems are studied. At the start of each time interval, the infinite resource allocation scheme
is optimized over a major timescale. The resource allocation scheme is represented through the binary
indicator y (s) = {

ym
n (s), n ∈ N , m ∈ M

}
, where ym

n (s) = 1 dicates that resource unit m is allocated
to the device n in the s-th time interval, otherwise ym

n (s) = 0. Next, computing resource allocation and
splitting are jointly optimized on a small-time scale based on resource unit allocation strategy in each
timeslot.

Figure 1: System model
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Figure 2: Discrete timeslot model

A. Traffic Model on the Device

The notations used in the mathematical analysis is represented in Table 1 whereas description of
each equation is mentioned in Table 2. The task partitioning system is used in this paper [23], and it
allows for the division of each task into separate sub-tasks of size X0(bit). Assume that amax

n (t) subtasks
reach the device n at the t-th timeslot. The arriving job can be split into an (t) sub-tasks for local
operation and amax

n (t)−an (t) sub-tasks for task offloading, which are two different and parallel models.
Given the foregoing, the task splitting at device n in timeslot t is defined as{

X L
n (t) + X O

n (t) = amax
n (t) X0,

X L
n (t) = an (t) X0, an (t) ∈ {

0, 1, . . . , amax
n (t)

} (1)

which X L
n (t) is the task length of local processing of device n at time t, and X O

n (t) represents the task
length when the device n performs computing offloading at time t.

Table 1: Notations and equations in the system model

Notation/equation Meaning/description

N Set representing the number of IIoT devices, defined as N = {1, 2, . . . , n,
. . . , N}.

T Set representing discrete time slots for optimization, defined as T = {1, . .
. , t, . . . , T}.

τ The duration of each time slot.
CSI Channel State Information, describing the quality of the wireless

communication channel.
S Set representing time epochs, defined as S = {1, 2, . . . , S}.
T (s) The definition of the s-th time epoch, a range of time slots.
M Set representing time-frequency resource units, defined as M = {1, . . . ,

m, . . . , M}.
B Bandwidth of the resource units.
T ′ A time period for resource allocation.
y (s) Binary indicator representing the resource allocation scheme in the s-th

time interval.
ym

n (s) Binary indicator for resource unit allocation to device n in the s-th time
interval.

(Continued)
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Table 1 (continued)

Notation/equation Meaning/description

hn
m (t) Channel gain of the uplink from device n to resource unit m in the t-th

timeslot.
SNRm

n (t) Signal-to-Noise Ratio (SNR) received at the base station for device n and
resource unit m in the t-th timeslot.

Rm
n (t) The transmission rate for device n using resource unit m in the t-th

timeslot.
d0

n (t) The volume of data from a task that can be offloaded by device n in the
t-th timeslot.

E0
n (t) The energy consumption produced by device n during the t-th timeslot

for task offloading.

Table 2: Equations with meanings/descriptions

Equation Meaning/description

(1) Task splitting at device n in timeslot t where X L
n (t) is the task length of local

processing, and X 0
n (t) is n the task length for computing offloading.

(2) The evolution of local operation resource storage QL
n (t) based on task processing and

data departure.
(3) The evolution of offloading resource storage Q0

n (t) based on task processing and data
departure.

(4) Calculation of locally executed data at timeslot t taking into account the number of
CPU cycles allocated.

(5) Calculation of local processing computing delay based on available resources,
minimizing between τ and resource constraints.

(6) Calculation of energy consumption during local processing, considering power
coefficients.

(7) Calculation of Signal-to-Noise Ratio (SNR) received at the base station for device n
and resource unit m at timeslot t.

(8) Calculation of transmission rate for device n using resource unit m based on SNR.
(9) Calculation of the volume of data offloaded by device n in timeslot t.
(10) Calculation of energy consumption during task offloading, considering power

constraints and resource allocation.

QL
n (t) and QO

n (t) are used to store local operation and offloading resource, separately. As shown
in Fig. 1, QL

n (t) and QO
n (t) [12] evolved into

QL
n (t + 1) = max

{
QL

n (t) − dL
n (t), 0

} + X L
n (t) (2)

QO
n (t + 1) = max

{
QO

n (t) − dO
n (t), 0

} + X O
n (t) (3)
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which dL
n (t) and dO

n (t) respectively indicate the amounts of data departure QL
n (t) and QO

n (t).

B. Locally Task Data Processing Scheme

The quantity of locally executed data for the t-th timeslot is defined as

dL
n (t) = τ

fn (t)
ln

(4)

where fn (t) denotes the number of CPU cycles that were allocated to device N during the t-th timeslot,
this is based on the 3GPP channel model. The required number of CPU cycles per bit, or computation
intensity, is ln. At the t-th timeslots, the local processing computing delay and the corresponding energy
consumption generated by device n are defined as

DL
n (t) = min

{
τ ,

QL
n (t) ln

fn (t)

}
(5)

EL
n (t) = κnf 3

n (t) min
{
τ ,

QL
n (t) ln

fn (t)

}
(6)

where the chip structure regulates a constant power coefficient called κn.

C. Based on Task Offloading Scheme

Typically, BS uses successive interference cancellation (SIC) in NOMA-based systems to lessen the
acquired signal’s interference. All other signals are viewed as interference, but the BS decodes signals
from equipment with higher channel gains in the right order. The channel gain of the uplink from
device n to resource unit m in the t-th timeslot is written as hm

n (t), and the signal noise ratio (SNR)
received at BS is given as follows:

SNRm
n (t) = p

∣∣hm
n (t)

∣∣2

∑N

i=1,i �=n

[
ym

i (s) p
∣∣hm

i (t)
∣∣2
]

+ (θ)
2

(7)

The transmission power is p. Intracellular interference caused by other low channel gain devices
makes up the first part of the denominator, while Additive White Gaussian Noise Power makes up the
second. The volume of data from a task that can be offloaded in the t-th timeslot and the transmission
speed of device n using resource unit m are therefore determined below:

Rm
n (t) = Blog2

[
1 + SNRm

n (t)
]

(8)

dO
n (t) = τ

M∑
m=1

ym
n (s) Rm

n (t) (9)

The corresponding energy consumption produced by device n in the t-th timeslot is obtained as
follows:

EO
n (t) = pmin

{
τ ,

QO
n (t)∑M

m=1ym
n (s) Rm

n (t)

}
(10)

4 Problem Definition and Formulation

In this section, the queueing delay constraint is introduced first. Next, the optimization problem
of multi-dimensional resource allocation and task splitting is presented. Later on, the proposed
Algorithm is addressed.
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A. Queued Delay Constraint

The queueing delay constraint is controlled to assure the effectiveness and timeliness of the
offloading task. Little’s Law [24] states that the queuing delay of QL

n (t) and QO
n (t) is calculated as

lim
T→∞

1
T

T∑
t=1

QL
n (t)

MAL
n (t)

≤ DL
n,max (11)

lim
T→∞

1
T

T∑
t=1

QO
n (t)

MAL
n (t)

≤ DO
n,max (12)

where MAL
n (t) and MAL

n (t) are the average data arrival rate of moving time of QL
n (t) and QO

n (t),
respectively. Their corresponding maximum tolerated queuing delays are DL

n,max and DO
n,max.

B. Problem Description

By collectively optimizing resource unit allocation, splitting, and computing task scheduling, in
the case of queue delay restrictions, the goal is to decrease the overall cumulative long-term energy
consumption of all devices. It is possible to express the multidimensional resource allocation and split
optimization strategy as

P1 : max
y,a,f

E = 1
T

∑T

t=1

∑N

n=1
E

{
EL

n (t) + EO
n (t)

}
C1 : an (t) ∈ {

0, 1, . . . , amax
n (t)

}
, ∀n ∈ N , ∀t ∈ T

C2 : 0 ≤ fn (t) ≤ f max
n , ∀n ∈ N , ∀t ∈ T

C3 : ym
n (s) ∈ {0, 1}, ∀n ∈ N , ∀m ∈ M, ∀s ∈ S

C4 :
∑M

m=1
ym

n (s) ≤ 1, ∀n ∈ N , ∀s ∈ S

C5 :
∑N

n=1
ym

n (s) ≤ Nm, ∀m ∈ M, ∀s ∈ S

C6 : ym
n (s) SNRm

n (t) ≥ SNRn, ∀n ∈ N , ∀t ∈ T
where y = {y (s)}, s ∈ S represents the resource unit allocation vector, a = {a (t)}, t ∈ T represents
the radio resource splitting vector, and a (t) = {an (t), n ∈ N }, f = {f (t) = fn (t), n ∈ N , t ∈ T }
represents the computation resource allocation vector. C1 is rhe resource splitting constraint. The
computational resource allocation restriction on the device is indicated by C2. C3 − C5 denote that
each device can use a maximum of one resource unit. The resource unit m can be allocated to devices
up to Nm. According to C6, the resource unit allocated to device n must make sure that the SNR
obtained at BS is more than the required minimum SNRn.

C. Transformation of the Problem

P1 is an non-deterministic polynomial (NP)-hard issue that is challenging to directly solve. By
using Lyapunov optimization [25], the original long term stochastic optimization issue is split up
into several deterministic subproblems in the short term. Formulas (11) and (12) can be transformed
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into the queue stability constraint problem for the virtual queue concept. It is possible to convert the
matching virtual queues �L

n (t) and �O
n (t) into

�L
n (t + 1) = max

{
VQL

n (t) + QL
n (t)

MAL
n (t)

− DL
n,max, 0

}
(13)

�O
n (t + 1) = max

{
VQO

n (t) + QO
n (t)

MAO
n (t)

− DO
n,max, 0

}
(14)

When �L
n (t) and �O

n (t) are average rate stable, the formulas (11) and (12) will be maintained
automatically. So P1 can be converted to

P2 : min
{y(s),a(t), f (t)}

N∑
n=1

{
Vκnf 3

n (t) min
[
τ ,

QL
n (t) ln

fn (t)

]

+Vpmin

[
τ ,

QO
n (t)∑M

m=1ym
n (s) Rm

n (t)

]

+QL
n (t)

[
an (t) X0 − τ

fn (t)
ln

]

+QO
n (t)

[(
amax

n (t) − an (t)
)

X0 − −τ
∑M

m=1
ym

n (s) Rm
n (t)

]

+�L
n (t)

⎡
⎣ QL

n (t)
1
t

[∑t−1

i=1X L
n (i) + an (t) X0

]
⎤
⎦

+�O
n (t)

⎡
⎣ QO

n (t)
1
t

[∑t−1

i=1X O
n (i) + ((

amax
n (t) − an (t) X0

]
⎤
⎦

⎫⎬
⎭ (15)

s.t C1 − C6

It can be concluded that P2 will be decomposed into three optimization sub-tasks, namely SP1:
resource unit allocation sub-problem, SP2: task splitting sub-problem, and SP3: computing resource
allocation sub-problem.

5 Resource Allocation and Task Splitting

In this section, we first introduce the three decomposed sub-schemes and their related responses
and then conclude the raised scheme.

A. Resource Unit Allocation Optimization

At the start of each interval in SP1, device n and BS choose the resource unit allocation strategy.
As hm

n (t), QO
n (t) and Rm

n (s) vary dynamically in timeslot, their empirical averages, namely, hm
n (t), QO

n (t)
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and Rm
n (s) are considered. So SP1 is going to be

SP1 : min
y(s)

∑N

n=1

{
Vpmin

[
τ ,

QO
n (s)∑M

m=1ym
n (s) Rm

n (t)

]

−QO
n (t)τ

M∑
m=1

ym
n (s) Rm

n (s)

}
(16)

s.t C3 − C6

A 1-to-n matching method between devices and resource unit is the default setting for SP1. The
1-to-n matching function eta that we are modeling here performs as follows:

(1) λ (n) ⊂ M ∪ {∅}, and |λ (n)| ∈ {0, 1}, ∀n ∈ N ,

(2) λ (m) ⊂ N , and |λ (n)| ≤ Nm, ∀m ∈ M,

(3) λ (n) = m ⇔ n ∈ λ (m), ∀m ∈ M, ∀n ∈ N . (17)

Performances 1 and 2 dealt with the constraints C4 and C5, while performance 3 suggests that if
device m and resource unit m match, then resource unit m is assigned to device n, and the opposite is
true. In particular, there is a strong link between the resource unit allocation index ym

n (s) and λ.{
ym

n (s) = 1, if λ (n) = m,
ym

n (s) = 0, otherwise
(18)

The following are the utility functions for device n and resource unit m:

Un (m) = −Vpmin

[
τ ,

QO
n (s)∑M

m=1ym
n (s) Rm

n (s)

]
+ QO

n (s)τym
n (s) Rm

n (s) (19)

Un (m) =
N∑

n=1

{
−Vpmin

[
τ ,

QO
n (s)∑M

m=1 ym
n (s) Rm

n (s)

]
+ QO

n (s)τym
n (s) Rm

n (s)

}
(20)

It is not practical to match all devices and resource unit due to the extensive IIoT networks’
high matching complexity. So, we start by dividing devices and resource unit into sets. Especially,
based on the clustering strategy [26], devices and resource unit are partitioned into K sets, i.e.,
N = {NG1, . . . ,NGk, . . . , NGK} and M = {MG1, . . . ,MGk, . . . , MGK}, Each union has Ng = N/k
devices and Mg = M/k resource unit, respectively. The devices in every union usually have regulated
resource unit, i.e., MGK allocated to the NGK for offloading. Then, switching matching is carried out
in each set in a semi-distributed mode, allowing resource unit and devices to build their priorities in
descending order based on their utilities. Therefore, two-end group switching matching is used to settle
the resource unit assignment problem.

Definition 1. Define matches λ and two device resource unit pairs (n, m), (v, l) ∈ λ, namely,
λ (m) = n, and λ (v) = l, ∀n �= v and n, v ∈ NGk, ∀m �= l, m, l ∈ MGk, if they meet

Un (l) ≤ Un (m) and Uv (n) ≤ Uv (l)

Um (v) ≤ Um (n) and Ul (n) ≤ Um (v) (21)

λml
nv = {λ(n, m), (v, l)} ∪ {(n, l), (v, m)} is depicted as the variables λ and λml

nv  λ swapping process.
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Definition 2. when there is no exchange match, the matched λ is bilateral exchange stable. The
proposed algorithm summarizes the details of resource unit allocation based on group switching
matching. During initialization, devices and resource unit are divided into K unions, and each device
union is assigned resource unit set, namely NGk ← MGk. Subsequently, if only all the restrictions in
formula (15) are met, the devices and resource unit in the allocation group will randomly match each
other. Each device and resource unit produces a preference based on the formula (20).

In the switching matching period, each device n in NGK currently matching the resource unit m
in MGK takes a program to its most desired resource unit l in MGK . For each device v in NGK that
existing match l in MGK , If λml

nv  λ and satisfies all the requirements in formula (15), the old match λ

is replaced with the new match λml
nv . Otherwise, λ stays the same. The stage ends until no matches are

exchanged.

At the end stage, the formula (19) transforms the final λ into the resource unit allocation index
y∗ (s).

B. Task Splitting and Resource Allocation Optimization

Task splitting issue with the following formula, in the t-th timeslot, SP2 distributes the task
splitting decision between local operation and offloading.

SP2 : min
an(t)

� (an (t)) = QL
n (t) am (t) X0 + QO

n (t)
[
amax

n (t) − an (t) X0

]

+�L
n (t)

⎡
⎣ QL

n (t)
1
t

[∑t−1

i=1X L
n (i) + an (t) X0

]
⎤
⎦

+ �O
n (t)

⎡
⎣ QO

n (t)
1
t

[∑t−1

i=1X O
n (i) + ((

amax
n (t) − an (t) X0

]
⎤
⎦ (22)

s.t C1

Computing resource allocation sub-scheme SP3 controls the number of CPU cycle frequencies
each device allocates for local operation in the t-th timeslot, which is gained via the following formula:

SP3 : min
{f (t)}

= Vκnf 3
n (t) min

[
τ ,

QL
n (t) ln

fn (t)

]
− QL

n (t) τ
fn (t)

ln

(23)

s.t C2

Both SP2 and SP3 are convex optimization problems, and Lagrange duality decomposition is easy
to resolve. Reference can be made to similar specific derivation process [27].

C. Our Proposed Algorithm

The proposed algorithm consists of three steps, namely

Step 1: Initialize all queue backlog and resource unit allocation strategy metrics.

Step 2: The best resource unit allocation y∗ (s) is achieved by each device in a partially
distributed fashion according to Algorithm 1 and sends data using the allocated resource unit.

Step 3: Each device learns the ideal resource allocation and task distribution approach. The
efficiency of data transmission, power usage, queue overhang, queue delay, and updates
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QL
n (t + 1), QO

n (t + 1), VQL
n (t + 1) and VQO

n (t + 1) according to the formulas (2), (3), (13),
and (14), are then taken into account by each device. Up until t > T , the iteration between the
second and third steps continues.

6 Experiments

This part uses simulation to assess the suggested algorithm. In this study, a unitary cell with a
2000 m radius is considered. Each 100 group contains 20 devices, dividing all equipment and resource
unit in the same way. Table 3 lists the exact simulation parameters.

Table 3: Simulation parameters

Parameters Value Parameters Value

T 200 p 25 dBm
N 400 X0 105 bits
M 2000 f max

n 2 × 108 cycle/s
Nm 8 DL

n,max 5 s
ln 1000 cycle/b DO

n,max 5 s
τ 2 s T0 15
δ2 −118 dBm SNRn 5 dB
κn 2 × 10−30 Watt·s3/cycle3 amax

n (t) [30, 40]
B 0.20 MHZ V 8

ACRA (Access Control and Resource Allocation Algorithm): ACRA is an advanced algorithm
designed for resource allocation and access control in the context of edge computing and IoT (Internet
of Things). It addresses the challenge of efficiently managing resources and allocating them to IoT
devices. The key features of ACRA include:

Resource Allocation: ACRA optimizes the allocation of computing and communication resources
to IoT devices, ensuring efficient utilization of available resources. Access Control: It implements
an access control mechanism, allowing IoT devices to submit tasks to the nearest edge server for
processing. This minimizes task delays and conserves energy. Real-time Decision-Making: ACRA
balances the need for long-term optimization goals with the requirement for real-time decision-
making. This is crucial for ensuring that tasks are processed efficiently and in a timely manner.
Multi-Time Scale Optimization: ACRA decomposes the complex, long-term stochastic optimization
problem into short-term deterministic sub-problems. This approach simplifies resource allocation
and improves system performance. Clustering Schemes: The algorithm employs clustering schemes to
group IoT terminals and resource units, reducing computational complexity and enhancing efficiency
in wireless spectrum allocation.

SMRA (Switch Matching Resource Allocation Algorithm): SMRA is another resource allocation
algorithm that focuses on optimizing energy consumption within IoT networks. It is designed to
allocate resources efficiently, particularly in terms of energy usage. Key characteristics of SMRA
include: Energy Optimization: SMRA primarily aims to minimize energy consumption in IoT
networks. It is especially well-suited for scenarios where energy efficiency is a critical consideration.
Task Processing: It ensures that devices submit tasks to edge servers when they cannot be completed
within the required timeframe. This reduces task delays and saves energy. Subtask Offloading: SMRA
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emphasizes offloading subtasks from devices to edge servers to reduce queue backlogs and enhance
overall system performance.

Comparison and Evaluation: To provide a clear understanding of their respective roles and
effectiveness, ACRA and SMRA should be compared based on various evaluation parameters, such
as: Energy Efficiency: A comparison should be made to determine which algorithm is more effective
in optimizing energy consumption. Task Processing Speed: Evaluation should assess which algorithm
minimizes task delays and enhances real-time performance. Queue Backlogs: The impact of ACRA
and SMRA on queue backlogs and system performance should be compared. Resource Utilization:
An analysis of how efficiently these algorithms allocate and utilize computing and communication
resources. Complexity: Assess the computational complexity of each algorithm, which can affect
practical implementation.

We compared the two most advanced algorithms. The first is the resource unit allocation algorithm
based on switch matching (SMRA) proposed in [28]. It should be noted that in the simulation,
minimization of energy consumption replaces SMRA maximum of energy efficiency. The second is
due to the Lyapunov optimization and pricing matching based Access control and resource allocation
algorithm (ACRA) developed. The task split phase is determined randomly, and the local computing
resource are set to maximum values in the SMRA and ACRA.

Figs. 3–5 show the average power consumption and the average backlog of QL
n and QO

n with
timeslots. SMRA outperforms other algorithms in terms of energy consumption because only energy
optimization is considered, but at the expense of much inferior backlog performance. Our suggested
technique reduces QLM by 45.32% and 17.25% percentage compared to SMRA and ACRA because
it jointly optimizes work partitioning and computing resource allocation. In addition, due to the
consideration of externalities, our proposed algorithm betters than SMRA and ACRA by 27.31%
and 74.12% on QO

n .

Figure 3: Average energy consumption Figure 4: Average backlog of QL
n

As a result, queue backlogs can be decreased by offloading more subtasks from the device to the
edge server.

Fig. 6 illustrates how the number of devices in each group of Ng affects the complexity and average
power consumption of our suggested approach. Define the whole number of devices to N = 200.
Complexity is set as the number of iterations of the exchange demanded to fulfill the match between
all resource unit and devices. When Ng is reduced from 200 to 50, the complexity of our proposed
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algorithm is decreased by 97.21%, whereas the energy consumption is just increased by 7.35%. We
can draw the conclusion that our suggested algorithm can effectively balance complexity and network
performance.

Figure 5: Average backlog of QO
n Figure 6: Impact of Ng

7 Discussion

The proposed algorithm is superior to the existing algorithms, SMRA and ACRA, based on
several critical metrics:

Energy Consumption: The primary metric indicating the superiority of the proposed algorithm
is energy consumption. The results show that the proposed algorithm effectively optimizes energy
consumption compared to SMRA. This is a crucial metric for IoT systems where energy efficiency is
paramount. The exact percentage reduction in energy consumption should be provided to quantify
this improvement.

Queue Backlog: Another important metric is the queue backlog (QLM), specifically for Qn
L

and Qn
O. The proposed algorithm significantly reduces QLM, as indicated by a 45.32% and 17.25%

reduction compared to SMRA and ACRA. A lower queue backlog is essential for real-time and delay-
sensitive applications, ensuring that tasks are processed promptly.

Complexity: The complexity of the algorithm is also a vital consideration. As demonstrated in
the experiments, when the number of devices (Ng) is reduced from 200 to 50, the complexity of the
proposed algorithm decreases by 97.21%. Lower complexity is desirable for practical implementation,
as it reduces the computational burden and improves system efficiency.

Externalities: The proposed algorithm outperforms both SMRA and ACRA by 27.31% and
74.12% in Qn

O due to the consideration of externalities. Externalities are crucial in a real-world IoT
environment where devices may interfere with each other. Minimizing externalities is essential for
efficient resource allocation and network performance.

8 Conclusion

In conclusion, this study has introduced a comprehensive framework for optimizing resource
allocation and task offloading in Industrial IoT (IIoT) environments, leveraging edge computing
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and Non-Orthogonal Multiple Access (NOMA). Through the use of directed cyclic graphs, priority-
aware scheduling, and Markov decision processes, the proposed approach addresses the challenges of
network congestion, delay sensitivity, and efficient resource management in IIoT. The results indicate
that our strategy outperforms various offloading methods in terms of both throughput and task
satisfaction rate. By considering deadlines, user mobility, and dynamic task dependencies, we have
shown the potential for real-time, efficient, and responsive IIoT systems.

For future directions, research can explore:

1. Dynamic Network Topologies: Investigating how the proposed framework performs in scenar-
ios with changing network topologies, which is common in IIoT environments.

2. Security and Privacy: Expanding the framework to incorporate enhanced security and privacy
measures to protect sensitive IIoT data.

3. Energy-Efficient Edge Servers: Exploring methods to optimize the energy consumption of edge
servers, further enhancing the sustainability of IIoT systems.

4. Scalability: Extending the framework’s scalability to accommodate a growing number of IIoT
devices and applications.

5. Hybrid Approaches: Combining edge computing with other emerging technologies, such as
blockchain or quantum computing, to explore synergies for IIoT applications.
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