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ABSTRACT

Graph Neural Networks (GNNs) play a significant role in tasks related to homophilic graphs. Traditional GNNs,
based on the assumption of homophily, employ low-pass filters for neighboring nodes to achieve information
aggregation and embedding. However, in heterophilic graphs, nodes from different categories often establish
connections, while nodes of the same category are located further apart in the graph topology. This characteristic
poses challenges to traditional GNNs, leading to issues of “distant node modeling deficiency” and “failure of the
homophily assumption”. In response, this paper introduces the Spatial-Frequency domain Adaptive Heterophilic
Graph Neural Networks (SFA-HGNN), which integrates adaptive embedding mechanisms for both spatial and
frequency domains to address the aforementioned issues. Specifically, for the first problem, we propose the
“Distant Spatial Embedding Module”, aiming to select and aggregate distant nodes through high-order random walk
transition probabilities to enhance modeling capabilities. For the second issue, we design the “Proximal Frequency
Domain Embedding Module”, constructing adaptive filters to separate high and low-frequency signals of nodes,
and introduce frequency-domain guided attention mechanisms to fuse the relevant information, thereby reducing
the noise introduced by the failure of the homophily assumption. We deploy the SFA-HGNN on six publicly
available heterophilic networks, achieving state-of-the-art results in four of them. Furthermore, we elaborate on
the hyperparameter selection mechanism and validate the performance of each module through experimentation,
demonstrating a positive correlation between “node structural similarity”, “node attribute vector similarity”, and
“node homophily” in heterophilic networks.
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1 Introduction

Traditional Graph Neural Networks (GNNs) [1–4] have demonstrated impressive performance
in semi-supervised learning tasks related to homophilic graphs. Most GNNs assume that nodes tend
to establish connections with strongly homophilic nodes of the same class, known as the homophily
assumption [5]. Traditional GNNs function as low-pass filters [6,7], and based on the homophily
assumption, aggregate feature information from neighboring nodes with similar attributes to create
a graph representation that integrates homophilic nodes. These models show robust performance in
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strongly homophilic networks because the central node and its adjacent nodes often belong to the
same class and exhibit significant similarity in attribute vectors, allowing for effective representation
during message aggregation [8].

However, the opposite is true in heterophilic networks, where most nodes tend to connect
with nodes of different classes and lower similarity in attribute vectors [5,8]. As a result, highly
homophilic nodes are often located in distant regions from the central node. Traditional GNNs
based on the homophily assumption introduce considerable noise to node representations through
message passing in heterophilic networks [9,10]. This phenomenon is referred to as the “failure of the
homophily assumption” [5]. Additionally, traditional GNNs focus more on aggregating information
from proximal neighborhoods, which leads to inadequate modeling of highly homophilic nodes that
are hidden in distant regions. We refer to this issue as the “distant node modeling deficiency” [5].
Consequently, models such as MLPs that ignore graph structure can outperform GNNs in some
experiments [8].

To address the above issues simultaneously, this paper proposes the SFA-HGNN model. First, to
tackle the “distant node modeling deficiency”, we introduce the concept of structural similarity for
distant nodes during the structural encoding stage by high-order random walks originating from each
node. It can help identify highly homophilic distant nodes. We establish direct connections between the
central node and these distant homophilic nodes to facilitate the potential discovery of neighborhoods.
Thereby we obtain the results of spatially adaptive embedding via attention mechanisms to integrate
the distant node information. Second, to address the “failure of the homophily assumption”, we
design an adaptive filter that amplifies differences between nodes using high-pass filtering and
preserves common features using low-pass filtering [5]. We use the embedding which has similarity
of distant attribute vectors embedded in the structural encoding stage as guidance for the frequency-
directed attention mechanism, which learns how to fuse high-frequency and low-frequency signals
in the proximal neighborhood. This allows the high-pass filter to capture neighborhood differential
information and the low-pass filter to capture homophily information. By separating the node’s
ego-information from neighborhood information, we prevent the central node’s features from being
smoothed by noise. Finally, we merge the distant spatial and proximal frequency node embedding
results to accomplish node classification in heterophilic graphs. In addition to this, additional attention
should be paid, different from the definition of source and target domains in graph transfer learning
[11], this paper adopts the definitions related to spatial and frequency domain methods based on
the design principles of graph neural networks. The spatial domain method focuses more on the
connection relationships between nodes and their neighboring nodes, as well as the node features. On
the other hand, the frequency domain method considers node features as spectral signals and utilizes
convolution operations on the spectral signals to achieve information propagation and analysis of
graph structures [1].

Specifically, the main contributions of this paper are as following:

• The SFA-HGNN model addresses the challenges of the “distant node modeling deficiency”
and the “failure of the homophily assumption” commonly faced by traditional GNNs through
the distant spatial embedding module and the proximal frequency embedding module.

• SFA-HGNN has deployed in six common heterophilic networks, achieving state-of-the-art
results in four of them. This validates the effectiveness of the proposed model design. Besides,
the paper thoroughly discusses the selection mechanism for the hyperparameter set through
theory and experiments.
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• The paper provides experimental evidence for the positive correlation among “node structural
similarity”, “node attribute vector similarity”, and “node homophily”, and demonstrates
the advantages of the constructed distant homophilic subgraph in enhancing neighborhood
homophily and attribute vector similarity. The paper also proves the advantages of the
frequency-directed attention mechanism in adaptive learning of high-frequency and low-
frequency signals in proximal nodes.

2 Related Work

Heterophily refers to the phenomenon in which nodes in a graph are more inclined to associate
with characteristics of nodes from different classes, contrasting with Homophily [5,7,8]. On the other
hand, Heterogeneity indicates that nodes or relationship types in the graph belong to more than
two classes, as opposed to Homogeneity [12–14]. Existing heterophilic graph-oriented neural network
design schemes can be categorized into “Non-local Neighbor Extension” and “GNN Architecture
Refinement” to solve the problems of effective Neighbor information discovery and fully integrating
neighbor information, respectively [5]. On this basis, this paper supplements the method of adaptive
spatial structure modeling to make full use of the structural roles played by nodes in heterophilic graphs
to achieve remote neighbor reconstruction and supplements the information on node structural roles
to improve the modeling capability of the model for remote nodes.

2.1 Heterophilic Graph Neural Network Based on Non-Local Neighbor Extension
In the context of the homophily graph message-passing framework, neighboring nodes are typi-

cally defined as those reachable from the center node within one hop [15]. However, in the heterophilic
graph, nodes of the same type that exhibit high structural similarity may possess significant topological
distances from each other [16,17]. Consequently, information from distant nodes in the heterophilic
graph is challenging to aggregate through shallow models based on the homophily assumption. In
summary, the Non-local Neighbor Extension, through the following approaches, expands the scope
of neighborhood aggregation to non-local nodes: High-order neighbor mixing and Potential neighbor
discovery. By doing so, it aggregates crucial features from non-local nodes to address the issue of
“distant node modeling deficiency” [5,16,17].

High-order neighbor mixing aims to aggregate information from neighboring nodes within a
topological distance of one hop to k hops from the central node, enabling heterophilic GNNs
to incorporate potential representations from nodes in various neighborhood orders to obtain
node embeddings [5]. It defines the kth-order neighborhood as Nk(v) = {u : d (v, u) = k}, where
d (v, u) represents the graph structural distance between two nodes [18]. The MixHop model not
only considers two-hop neighborhood message propagation but also encodes other neighborhood
information through linear transformations [18]. The resulting representations are concatenated and
combined to obtain the final node embedding, aiming to complement the homophilic information
in heterophilic networks. The H2GCN model starts by theoretically demonstrating that a high level
of heterophily within the first-order neighborhoods leads to an increase in homophilic information
within the second-order neighborhoods [19]. Moreover, it aggregates homophilic information from
higher-order neighborhoods during each round of message passing. TDGNN constructs the directly
connected subgraphs of each k-order neighborhood and the central node, respectively, parallelizes
the message passing, aggregates the homophilic information of the remote nodes, and improves the
message passing efficiency at the same time [16]. The above-mentioned models are built upon the
inherent graph topology, aiming to fuse information from different-order neighborhood nodes to



1704 CMES, 2024, vol.139, no.2

integrate distant homophilic patterns. However, their essence lies in the unfiltered aggregation of
potential neighborhoods, which poses the risk of introducing noise and excessive smoothing, making
it challenging to effectively transmit valuable information from more remote nodes to the central
node [7].

Potential neighbor discovery aims to leverage the global graph structure and novel neighbor-
hood definitions to uncover “neighbor nodes” with latent homophilic information and subsequently
aggregate them [5]. Potential neighbors are defined as Np (v) = {u : s (v, u) < r}, where s (v, u) is a
metric function defining the distance between two nodes in the potential space, and r is a threshold
parameter limiting the size of the neighborhood, potential neighbors with significant homophilic
information under the new definition can be mined by the above method. Geom-GCN embeds nodes
in multiple geometric spaces and employs the geometric distance within this manifold as the metric
function for potential neighborhood definition. Nodes that adhere to this definition are identified as
potential neighbors, facilitating message aggregation [20]. NLGNN, Node2seq, and GPNN get the
node embedding scores by defining the attention mechanism or pointer network to rank the potential
neighbors to filter the potential neighbors in the heterophilic graph that are most similar to the central
node [21–23]. The above models employ a certain neighborhood metric to identify nodes with more
prominent homophilic information but not necessarily directly linked to the central node. These
identified nodes are defined as potential neighborhoods, enabling the incorporation of additional
homophilic information into node embeddings [5]. However, such methods disrupt the original graph
topology, hindering the comprehensive integration of structural information and making it challenging
to achieve node classification from a spatial structural perspective.

2.2 Heterophilic Graph Neural Networks Based on GNN Architecture Refinement
GNN Architecture Refinement is a redesign of the AGGREGATE and UPDATE modules in the

traditional message passing framework [15], aiming to fully aggregate the information of neighboring
nodes of each order within the connectivity component to amplify the distinguishability between
heterophilic node representations, which can be achieved by three methods, namely, Adaptive message
aggregation, Ego-neighbor separation, and Inter-layer combination [5].

Adaptive Message Aggregation addresses the issue of “homophily assumption failure” by intro-
ducing adaptive edge weights to distinguish between heterophilic and homophilic information from
the neighborhood during the message-passing process. In the frequency domain, both the FAGCN [24]
and ACM [25] models are built upon the assumption of “High-pass filters amplify differences between
nodes, while low-pass filters preserve common node features”. They utilize high-pass filters to model
the heterophilic information between nodes and optimize the AGGREGATE module of the model. In
FAGCN, an attention mechanism is constructed to adaptively learn the fusion ratio of high-frequency
and low-frequency information in the neighborhood [24]. On the other hand, ACM simultaneously
incorporates low-pass, high-pass, and ego-information filters. It adaptively integrates common and
differential information between nodes and their neighborhoods while preserving ego-information
to mitigate the loss of original data [25]. The above models learn the most accurate embedding
representations of heterophilic graph nodes starting from learning the neighborhood difference and
homophilic information. In the spatial domain, combining the topological structure of the spatial
graph with node classes to assign adaptive edge weights to neighborhood information, WRGNN [26]
transforms the original heterophilic graph into a multi-relational graph. This is achieved by modeling
heterophilic edges to obtain link weights during the process of message passing [27].
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Ego-Neighbor Separation aims to disentangle the central node from the neighborhood information
during the “Aggregation” and “Update” process, adopting a non-mixing approach to avoid the impact
of averaging heterophilic noise from the neighborhood [5]. The H2GCN [19] avoids self-loop connec-
tivity and adopts a non-hybrid approach so that the node representations retain distinguishability
after multiple rounds of messaging; the WRGNN [26] imposes different mapping functions for the
neighborhood information and the central node ego-information to carry out the messaging.

Inter-Layer Combination aims to utilize the aggregated results of intermediate representations
from each layer of the model to obtain the final node embedding [5]. This enables the learning
of homophilic information distributed across various neighborhood orders within the heterophilic
graph. The JKNet [28] and GCNII [29] models achieve global topological node information aggre-
gation from the perspective of cross-neighborhood information fusion. The JKNet model flexibly
captures information from various neighborhood orders, enabling the comprehensive exploration
of homophilic information concealed within these diverse neighborhoods. On the other hand, the
GCNII model introduces initial information into each layer’s node embedding representation and
supplements the weight matrix with an identity mapping. This approach not only facilitates the
learning of homophilic information from various neighborhood orders but also effectively preserves
the initial ego-information. Both of the above models extend the scope of AGGREGATE to more
neighborhood layers, allowing for a comprehensive consideration of homophilic information from
distant neighborhoods.

2.3 Heterophilic Graph Neural Network Based on Spatial Structure Modeling
The structural role refers to the structural relationship exhibited by nodes and their neighborhoods

in the original graph topology [30,31]. Heterophilic graph nodes and their neighborhoods often
belong to different classes and exhibit distinct feature vectors. In the local topological structure, these
differences manifest as variations in structural roles. Therefore, embedding the attribute information
describing the structural roles into feature vectors and reconstructing distant neighborhoods based
on this information can result in embeddings of distant nodes that incorporate structural attribute
information [31].

Currently, graph neural network models that rely solely on message passing mechanisms can
aggregate neighborhood node information based on the original graph topology [15]. However, the
expressive power of these models is limited by the one-dimensional Weisfeiler-Lehman test (1-WL
test) [32] and cannot fully capture the structural roles that nodes play in the topology.

As shown in Fig. 1, The above process approximates the node embedding of traditional graph
neural networks from the perspective of the 1-WL test. This paper simplifies the 1-WL test process
by obtaining the representation of the current node through the addition of labels of its first-order
neighboring nodes. Additionally, the term “Node Embedding Tree” refers to a tree structure formed
by expanding the first-order neighborhood of each node layer by layer, with the central node as the
parent node. The sibling nodes of the node embedding tree are arranged in a counterclockwise order
based on the original graph layout. Furthermore, the computation results of the two-order 1-WL test
processes with S1/S2 as the center are marked in the vicinity of each node.

In conclusion, it is shown that using simple message passing within n orders alone cannot
accurately represent nodes that have the same n-order Nodes Embedding Tree but possess different
structural information. Entities S1 and S2 play different structural roles within their respective
connected components. S2 acts as a hub node, taking on the task of connecting the other seven nodes.
However, in traditional MP-GNN, nodes with similar first-order structures are assigned the same
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node representation during one round of message passing. This can lead to confusion about the roles
these nodes play in the graph structure, making it difficult to effectively model the rich information
embedded in structural roles.

Figure 1: Nodes embedding diagram

Recent studies have shown that supplementing MP-GNN with deterministic distance attributes
as structural role information can effectively compensate for the shortcomings of traditional graph
neural network models in describing node structural roles. DE-GNN [31] incorporates distance
encoding ζ (u|N) as additional attribute information for nodes to complement the description of the
neighborhood structure of labeled nodes. The specific definition is as follows:

ζ (u|N) =
∑
v∈N

MLP (ζ (u|v)) (1)

ζ (u|v) represents a certain distance metric defined between node u and node v, usually taking the
various order relationships between nodes as input. The specific definition is as follows:

ζ (u|v) = g (luv) (2)

luv = (1, (W)uv, (W 2)uv, . . . , (Wk)uv, . . .) (3)

W = AD−1 is the random walk matrix, Wk is the kth order random walk matrix, and the
structure mapping function g (·) transforms luv into different types of distance measures. For example,
neighborhood structure similarity grw described by random walk transition probabilities; the node
structure hierarchy distribution gsp characterized by the shortest path length. By computing the
distance attributes of each node relative to the central node u, the message passing process will obtain
a central node’s structural role embedding vector that integrates the topological information of the
neighborhood nodes. It can help redefine the way neighborhood nodes are selected, thereby achieving a
potential neighborhood discovery mechanism that integrates graph structure information in the spatial
domain.

2.4 Heterophilic Noise and Self-Supervised Learning
In their research, Dai et al. addressed the issue of noisy edges and limited node labels and proposed

the RS-GNN model [33]. The definition of noisy edges in their work is similar to the definition of
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Heterophilic noise resulting from the “failure of homophily assumption” in our paper. RS-GNN
tackles the problem of Heterophilic noise (noisy edges) by incorporating the idea of graph self-
supervised learning. It trains the Link Predictor to assign high message-passing weights to node pairs
with similar features and low message-passing weights to pairs with low feature similarity. The self-
supervised learner is then trained through the reconstruction of the adjacency matrix, enabling the
reconstruction of weight coefficients and node connectivity to mitigate potential interference caused
by heterophilic noise.

However, RS-GNN also has certain limitations. The model assumes that “nodes are more likely
to connect with similar nodes,” which serves as the basis for training the Link Predictor based on the
adjacency matrix and edge reconstruction task, leading to a stronger emphasis on connecting similar
node pairs. However, this assumption does not hold completely in Heterophilic graphs, giving rise to
the phenomenon of “failure of homophily assumption”. If we directly train the Link Predictor based
on the adjacency matrix of a Heterophilic graph (which exhibits nodes that are more likely to connect
with different types of nodes), it may have a negative impact on self-supervised learning. This is because
the adjacency matrix of a heterophilic graph inherently contains more heterophilic noise compared to
a normal dataset, and constructing a Pretext Task directly based on this may affect the training of
the Link Predictor. In the following sections, we will address the issue of heterophilic noise from a
perspective more suitable for highly heterophilic graph data.

3 Prior Knowledge
3.1 Basic Definition

Predefinition: A ∈ R
N×N represents the adjacency matrix without self-loops of an undirected graph

G (V , E), where V denotes the set of nodes and E represents the set of edges. The normalized graph
Laplacian matrix is defined as L = In − D−1/2AD−1/2, wherein D ∈ R

N×N is the diagonal degree matrix,
Di,i = ∑

j Ai,j, and In is a diagonal matrix. In summary, L is a real symmetric matrix equipped with
mutually orthogonal eigenbasis vectors {ul}n

l=1, each corresponding to the eigenvalue λl ∈ [0, 2]. Thus,
the symmetric normalized form of the Laplacian matrix can be expressed as L = U�UT , where � =
diag ([λ1, λ2, · · · , λn]) and U = [u1, u2, · · · , un].

Graph Fourier Transform: From the theory of graph signal processing [33], {ul}n
l=1 can be used as

an orthogonal basis for the graph Fourier transform, and the Fourier transform of the signal x can
be defined as x̂ = UTx and the Fourier inverse transform as x = Ux̂, which defines the convolution
operation ∗G between the signal x and the convolution kernel f as follow:

f ∗G x = U
((

UTf
) � (

UTx
)) = UgθU

Tx (4)

where � denotes the element-wise multiplication between vectors. The frequency domain convolution
kernel gθ is typically represented as a diagonal matrix, used to simplify UTf .

Adjacency Matrix of Each Order: In this paper, we define Ar as the rth-order adjacency matrix of
the central node as nodeseeds. AR represents the set of Rth-order adjacency matrices within a connected
component, encompassing the adjacency relationships between nodes of different orders. The specific
definition is as follows:

Ar i, j =
{

1 d (i, j) = r i ∈ nodeseeds, j ∈ others

0 otherwise
(5)

AR = (A1, A2, ......, AR) (6)
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3.2 Homophily Measurement Metrics
Relevant work has shown that the relationship between node labels and graph structure can serve

as a metric for graph homophily [8]. In this paper, we choose edge homophily and node homophily as
measures to assess the intrinsic homophilic information within the graph data as follows:

Hnode(G) = 1
|V |

∑
v∈V

Hv
node = 1

|V |
∑
v∈V

|{u|u ∈ Nv, Zu = Zv}|
dv

(7)

Hedge(G) = |{euv|euv ∈ E, Zu = Zv}|
|E| (8)

In above equations, Hv
node represents the local homophilic information of node v, where Nv stands

for the first-order neighboring nodes of node v, and Z represents the labels of nodes, reflecting the
proportion of nodes within the first-order neighborhood of v that belong to the same class as v. Hedge

reflects the proportion of the same class between the two nodes associated with an edge, euv represents
the edges associated with node u and node v, E is the set of edges, and defines edges connecting nodes
with the same class as intra-class edges, and vice versa as inter-class edges.

The range of values for the above metrics is [0, 1]. A higher value of the metric reflects a graph
structure with stronger homophilic information, while a lower value indicates a dominant presence of
heterophilic information.

4 Model
4.1 SFA-HGNN Model Framework

The SFA-HGNN model is structured as follows, as shown in Fig. 2.

Figure 2: Model structure diagram

Data Input: The model takes the node feature vectors H ∈ R
N×F and adjacency matrix A ∈ R

N×Nof
the heterophilic graph HG (V , E) as input.

Node Embedding: The node embedding process involves two main components: the Distant Spatial
Embedding Module and the Proximal Frequency Embedding Module:

Distant Spatial Embedding Module: This module focuses on creating a mechanism for potential
neighborhood discovery that incorporates structural information. It starts by embedding the shortest
path lengths and random walk transition probabilities from the neighborhood to the central node
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into the attribute vectors of neighboring nodes. The high-order random walk transition probabilities
originating from the central node serve as a measure of homophily information. This helps prioritize
the selection of highly homophilic distant nodes and establishes direct connections (“high-speed link”)
between the “new neighborhood nodes”and the central node. This process creates a distant homophilic
subgraph. Graph attention mechanisms are then applied to obtain node representations of the central
node within this distant subgraph, which become the spatial embedding results, capturing both the
structural role and the homophily information of distant nodes.

Proximal Frequency Embedding Module: This module aims to achieve adaptive message aggre-
gation using frequency-domain methods to integrate effective attribute information from proximal
neighborhoods. Leveraging high-pass filters to amplify differences between nodes and low-pass filters
to preserve shared node features, an adaptive filter is designed to select high-frequency and low-
frequency signals of the central node. A frequency-directed attention mechanism is introduced,
incorporating prior information from the similarity of attribute vectors of distant nodes. This guides
the fusion of high-frequency and low-frequency signals to get the frequency-domain embedding of
proximal nodes in the heterophilic graph.

Node Classification: The embeddings from the two modules are concatenated and fused to produce
a node embedding with both spatial and frequency-domain adaptability. After passing through fully
connected layers and applying the softmax, the model outputs the node classification results.

4.2 Node Embedding
4.2.1 Distant Spatial Adaptive Embedding Module

While the High-order neighbor mixing method helps embed homophilic information from higher-
order neighborhoods for node representation in heterophilic graphs, aggregating all high-order
neighborhoods without filtering can lead to compromise information quality and increase the risk
of over-smoothing. On the other hand, the Potential neighbor discovery method lacks the ability to
learn node structures, resulting in an insufficient utilization of graph topology during the process
of potential neighborhood discovery and a disconnection between information aggregation and the
graph structure. Given these considerations, the key to this module’s design is the targeted selection
of distant homophily information in the graph topology guided by nodes’ structural information. The
specific design is as follows:

The structural encoding mechanism focuses on embedding the topological attributes of all nodes
within a connected component relative to the central node. Simultaneously, it uses high-order random
walk transition probabilities originating from the central node to selectively identify highly homophilic
distant nodes. A virtual high-speed link is established between these selected nodes and the central
node, creating a direct connected subgraph. Within this subgraph, message passing based on attention
mechanisms enables the fusion of both topological roles and distant homophily information resulting
in spatial embeddings.

Structural Encoding: This module aims to describe the topological information of a central node’s
local neighborhood in the attribute vectors. As shown in the Fig. 3, S1 within the connected component
exhibits tighter internal connections, while S2 plays a crucial role in connecting the two branches.
Consequently, they assume distinct structural roles. However, traditional graph neural network models
based solely on simple message passing mechanisms struggle to effectively differentiate between them.

If only first-order neighborhood nodes are used for message passing between S1 and S2, they
would yield the same node embedding results. However, by encoding structural information into the
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attribute vectors, such as using the shortest path length (SE) as an example, where the color of nodes
reflects the distance from the central node based on the shortest path length, it becomes possible
to express the structural role of the central node based on the topological information provided
by background nodes. This encoding of structural information allows for node classification and
differentiation.

Figure 3: Structural encoding diagram

In this paper, the shortest path length and random walk transition probability are used to describe
the node role structure. The specific definition is as follows:

ζ (v|u) = gsp

(
AR) ⊕ grw (W) (9)

W = AD−1 (10)

The above node u is the central node, the node v is the background node in u’s connected
component, and AR = (A1,A2,. . .,AR) is the R-order adjacency matrix set of u’s connected component,
reflecting the correlation between nodes of different orders; gsp

(
AR) and grw (W) are used to obtain the

shortest path distance between the nodes and the migration probability of the higher-order random
walks, these are concatenated to obtain ζ (v|u) the structural information of the node v with respect
to the central node u. The specific definitions are as follows:

ε ∈
[

Radius + Asp
2

− 1,
Radius + Asp

2
+ 1

]
(11)

gsp(A
R
) = onehot(argmint((At)u,v = 1)) t ≤ max _sp (12)

grw (W) = RandomWalkn∈[ε,2ε] ((W ε)uv , . . . , (W 2ε)uv) (13)

As shown above, gsp characterizes the shortest path distance from node v to node u by one-hot
coding, and sets a threshold max_sp to limit the dimension of the embedding vector; grw calculates
the higher-order random walk migration probability between nodes u and v based on the random
walk matrix W in an order-by-order manner; In this paper, ε is defined as the radius of effective
message transmission, which is used as a hyperparameter to predefine the farthest hop of effective
message transmission in the message transmission process, and thus define the higher-order random
walk interval n ∈ [ε, 2ε], so as to embed the higher-order random walk migration probability vector
of ε + 1 dimensions for node v.
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Definition and Description of Hyperparameters: The above max_sp and n are hyperparameters,
which can be dynamically adjusted according to the a priori information, and are defined as ε and
[ε, 2ε] which are analyzed as follows:

(1) According to the definition of ε, it can be seen that the distance between the neighborhood
nodes and the central node within the connectivity component, so the shortest path length between
nodes u and v is less than or equal to ε, and therefore max _sp = ε;

(2) According to the definition of random walk, it can be seen that the low-order random walk is
restricted by the distribution of proximal nodes, more inclined to assign higher migration probability
to the proximal nodes, there is a numerical instability phenomenon, and the process of the walk is not
converged to take care of the distal nodes and the lack of global information description.

At the same time, when ε ≤ n the random walk will traverse all the background nodes in the
connected component, in order to make the distal nodes be fully described by the random walk and
reduce the influence of the unstable value of the low-order random walk, so as to ensure that the
information expressed is focused on the structural similarity between the distal nodes and the central
nodes, so this paper will set the hyper-parameter to n ∈ [ε, 2ε] initially.

Distal Homophilic Subgraph Sampling aims at mining homophilic information relative to the distal
end of the central node, and guarantees the quality of homophilic information with the orientation
of random walk migration probability. In this paper, we design the sampling mechanism of distal
nodes, which is different from the aggregation of distal nodes without screening in the high-order
neighbor mixing method, and we utilize a higher-order migration probability measure of homophily
between nodes based on random walks originating from a central node. Using this as a basis, it ranks
distant nodes and selectively prioritizes those with higher migration probabilities, indicating stronger
similarity which ensures the quality of information sampled from nodes.

As shown in Fig. 4, The article establishes the distal node threshold as η. It considers neigh-
borhoods that are beyond η hops from the central node nodeseeds to be distal nodes. The kth-order
random walk migration probability s k originating from nodeseeds is then employed to gauge its potential
similarity with these distal nodes. The definition is outlined as follows:

s1 = AD−1 (14)

sk = Ask−1 (15)

Figure 4: Hierarchical diagram
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sk represents the migration probability vector of nodeseeds with respect to the other nodes after kth-
order random walk migration. To ensure convergence of the random walk process and comprehensive
access to distal nodes, aggregation of migration probabilities is applied only to distal nodes where the
distance d (u, v) ≥ η and falls within the range of [ε, 2ε]. This aggregated migration probability results
in the distal node structural similarity denoted as S. The definition is presented as follows:

S = Aggregate (s) =
∑2ε

i=ε
si (16)

The algorithm aggregates migration probabilities only for the higher-order random walk segment,
specifically within the range of ε to 2ε, ensuring a comprehensive description of structural information
for distal nodes with respect to S, Subsequently, sampling is conducted based on the priority of
structural similarity, where the sampling process for distal nodes is denoted as topk(S), involving
the selection of the top k distal nodes ranked by S. To maintain the quality of selected distal node
information, a hyperparameter Sample_Account is introduced to determine the sampling proportion
of distal nodes and to limit the number of k.

Virtual High-Speed Link aims to redefine the selection method Nfar for neighboring nodes based on
the structural similarity S. Simultaneously, the consideration of distal homophilic subgraphs focuses
on higher-order information to reduce the interference from initial-stage random walks favoring
nearby nodes. Therefore, higher-order migration probabilities are employed as the metric for structural
similarity, offering enhanced numerical stability. Given that most nodes in the distant and central node
lack direct connections, the establishment of a “virtual direct high-speed link” between distal nodes
and nodeseeds is necessary to construct a distal homophilic subgraph denoted as Afar

Subgraph and it enhances
information transmission efficiency. The definition is outlined as follows:

Nfar (v) = {u : u = topk(S), d (u, v) ≥ η} (17)

Afar

Subgraph i, j
=

{
1 i = nodeseeds, j ∈ topk(S)&d (i, j) ≥ η

0 otherwise (18)

Distal Spatial Adaptive Message Passing: As mentioned earlier, using the virtual high-speed link,
a shallow subgraph structure has been established between the central node and the distal nodes.
Therefore, this article adopts a single-layer graph attention mechanism to complete the embedding
of distal information, detailed as follows:

attention
{

eij = MLP
(
Wattentionhi, Wattentionhj

)
aij = softmax

(
eij

)
j ∈ Nfar (i)

(19)

hspatial

i far
= σ

⎛⎝ ∑
j∈Nfar(i)

aijWhj

⎞⎠ (20)

MLP refers to a single-layer feedforward neural network. It takes the linear transformation results
of the feature vectors of nodes i and j as input, generating importance coefficients, denoted as eij.
Subsequently, applying softmax yields the attention coefficients, aij between the nodes. This process
facilitates information fusion within the distal homophilic subgraph based on an attention mechanism.
To summarize, the message passing enables the spatial embedding results, denoted as hspatial

i far
, which

combine attribute information of distal nodes with their structural roles in the graph.
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4.2.2 Proximal Frequency Adaptive Embedding Module

Highly heterophilic nodes often have direct neighbors in different categories. However, graph
neural networks based on the homophilic assumption lead to node representations being smoothed
by the heterophilic information from neighboring nodes through low-pass filtering, thereby reducing
the discriminative power of node representations. To address this issue, it is crucial to design high-pass
filters that capture the differences between node representations and the heterophilic information from
their neighborhoods and design low-pass filters ensure that common information among neighboring
nodes is adequately learned.

In this study, an adaptive filter is defined to separate the low and high-frequency components
contained in node features. Leveraging the prior information of similarity between attribute vectors of
distal nodes, a frequency-domain guided attention mechanism is introduced to learn how to aggregate
high-frequency and low-frequency signals in the graph, achieving adaptive message aggregation.
Thereby we can obtain the result of the frequency domain adaptive embedding of the proximal node.

Adaptive Filter: The adaptive filter is employed to separate the low-frequency and high-frequency
components of node features. Drawing on graph signal processing theory and inspired by the relevant
definitions in GCN [3], the forms of low-frequency and high-frequency convolutional kernels are
defined as follows:

glow
θ

(λi) = β + 1 − λi ≡ (β + 1) I − � (21)

ghigh
θ

(λi) = β − 1 + λi ≡ (β − 1) I + � (22)

gGCN
θ

(λi) = 1 − λi ≡ I − � (23)

β ∈ [0, 1] serves as an adaptive filter coefficient, allowing for the adjustment of the scaling degree
of convolutional kernels for different frequency bands. To investigate the effects of convolutional
kernels on signals in different frequency domains while avoiding the influence of numerical value, we
define the second-order norm functions

∥∥ghigh
θ (λi)

∥∥
2
,
∥∥gGCN

θ
(λi)

∥∥
2

and
∥∥glow

θ
(λi)

∥∥
2

for the convolutional
kernels, as illustrated in Fig. 5.

Figure 5: Filter effect diagram

As shown in the above illustration, when λ > 1,
∥∥ghigh

θ (λi)
∥∥

2
>

∥∥gGCN
θ

(λi)
∥∥

2
; when λ << 1,∥∥ghigh

θ (λi)
∥∥

2
<

∥∥gGCN
θ

(λi)
∥∥

2
. Therefore, the high-frequency convolutional kernel designed in this study
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amplifies the high-frequency components of the graph signal more effectively while suppressing the
low-frequency components compared to the GCN convolutional kernel. Similarly, the low-frequency
convolutional kernel designed in this study has advantages in amplifying low-frequency signals and
suppressing high-frequency signals compared to GCN.

According to Fourier transform theory, in the spatial domain, the convolution of a filter with a
signal, denoted as f ∗G x, is essentially equivalent to performing element-wise multiplication in the
spectral domain after Fourier transforming both the filter and the signal, followed by an inverse
Fourier transform to bring the result back to the spatial domain. Based on Eq. (1), the following
definitions can be derived:

UgθU
Tx = f ∗G x (24)

Therefore, by substituting the defined high-frequency and low-frequency convolutional kernels
from this paper into the above equation, we can derive the forms of the adaptive filter for high-
frequency and low-frequency components as follows:

f low = Uglow
θ

UT = U ((β + 1) I − �) UT = (β + 1) I − L = βI + D−1/2AD−1/2 (25)

f high = Ughigh
θ

UT = U ((β − 1) I + �) UT = (β − 1) I + L = βI − D−1/2AD−1/2 (26)

According to the above equation, the low-pass filter designed in this study essentially aggregates
node and neighborhood features in a specific proportion, leading to a gradual convergence of node
representations. On the other hand, the high-pass filter amplifies the differences between nodes and
their neighborhoods, resulting in high-frequency representations that differ from the neighborhood.
Both the low-pass and high-pass filters are collectively defined as the adaptive filter in this study. They
operate on node features, amplifying either the commonality or distinctiveness between nodes and
their neighborhoods, thus capturing intrinsic high-frequency and low-frequency information in node
representations.

Frequency-Domain Aggregation Mechanism: Considering that the heterophily between each node
and its neighborhood varies, embedding solely based on fixed-frequency domain information for all
nodes in the graph could distort node representations. Therefore, learning the fusion of node high-
frequency and low-frequency representations is essential to achieve adaptive embedding results in the
frequency domain. The frequency-domain aggregation mechanism designed in this study is presented
as follows:

h̃i = wlow
ij

(
f low ∗ H

)
ij
+ whigh

ij

(
f high ∗ H

)
ij

(27)

wlow
ij + whigh

ij = 1 (28)

Defining the node features as H = {h1, h2, · · · , hN} ∈ R
N×F , and setting wlow

ij and whigh
ij as

parameters for adaptive learning of the fusion proportions of node high-frequency and low-frequency
representations, thereby we obtain the frequency-domain embedding result for nodes, denoted as h̃i.
By simplifying the calculation process based on Eqs. (25) and (26), the final form of the frequency-
domain aggregation mechanism is as follows:

h̃i = (
Wlow

(
βI + D−1/2AD−1/2

)
H

)
ij
+ (

Whigh
(
βI − D−1/2AD−1/2

)
H

)
ij

= (
wlow

ij + whigh
ij

)
βhi +

∑
j∈Ni

wlow
ij − whigh

ij√
didj

hj (29)
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wG
ij = wlow

ij − whigh
ij (30)

h̃i = βhi +
∑
j∈Ni

wG
ij√

didj

hj (31)

Frequency-Domain Guided Attention Mechanism: FAGCN emphasizes the necessity for prior
knowledge, such as homophily information, to guide the selection of high-frequency or low-frequency
signals during the message-passing process [24]. This requirement presents challenges for semi-
supervised learning models and underscores the need for a mechanism that can adequately per-
ceive graph homophily and employ it to guide the adaptive aggregation of high-frequency and
low-frequency signals. Hence, in this study, a Frequency-Domain Guided Attention Mechanism is
introduced, as described below:

To ensure that wG
ij effectively captures the actual demands of nodes for high-frequency and low-

frequency information, a frequency-domain guided information prior, is defined in this work. This
prior information is introduced to assist the attention mechanism, denoted as FAttention, in learning
the graph signal’s frequency-domain preference, wG

ij . The specifics are detailed as follows:

simi = 1
Nj

∑
j∈Nfar(i)

hi · hj

|hi|
∣∣hj

∣∣ (32)

simall = 1
Ni

∑
simi (33)

In this study, the average attribute vector similarity simi between node i and its homophilic distal
nodes is employed as the basis for measuring its high-frequency preference. To ensure normalization
and numerical stability, simall is defined to calculate the mean of all node simi values. Thus, the
frequency-domain guided information prior is defined as follows:

priori = simall − simi (34)

In heterophilic graph, when node’s simi is larger, its homophily with proximal neighbors decreases.
Therefore, the process of embedding neighborhood information should focus on learning high-
frequency information that amplifies the differences between the node and its proximal neighbors, i.e.,
wG

ij = wlow
ij − whigh

ij < 0. Thus, when simi > simall, priori < 0 and providing negative guidance for node
embedding, leading wG

ij to take smaller values, emphasizing the learning of high-frequency information
from proximal neighbors. Conversely, when priori > 0, it encourages wG

ij to take larger values,
leaning towards learning the low-frequency commonality from proximal neighbors. In summary, the
Frequency-Domain Guided Attention Mechanism, denoted as FAttention, is defined as follows:

wG
ij = tanh

(
MLP2F→1

([
hi||hj

]) + priori

)
(35)

As shown above, the concatenation operation || allows the attention mechanism to consider both
the node itself and its neighboring nodes’ feature information. The MLP facilitates the transition of
the concatenated vector dimension from 2F to 1. Additionally, the introduction of prior enables the
utilization of the prior knowledge from sim to guide the learning of frequency-domain preferences
during message propagation within proximal neighborhoods. The tanh() activation ensures that wG

ij ∈
[−1, 1], supporting the learning of inter-node distinctiveness information during the message-passing
process.
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Proximal Frequency-Domain Adaptive Message Passing: Drawing inspiration from the design of
FAGCN [24], this study employs the linear transformation of input features as the initial information
for each layer. This separation of self-information and neighborhood information retains the original
node features during the message passing process, alleviating the impact of excessive smoothing. Based
on the node representation process defined by Eq. (31), the proximal frequency-domain adaptive
message passing in this study is formulated as follows:

h(0)

i = relu (W 1hi) ∈ R
F0×1 (36)

h(l)
i = βh(0)

i +
∑
j∈Ni

wG
ij√

didj

h(l−1)

j ∈ R
Fl×1 (37)

hfrequency

i near
= W 2h

(l)
i ∈ R

output×1 (38)

The described equation shows the weight parameters W1 and W2, where Fl represents the
dimension of the hidden layer, and hfrequency

i near
denotes the proximal frequency-domain adaptive node

embedding result. From this analysis, we can infer that the time complexity for a single-layer message
passing process is O ((N + |E|) × Fl).

4.3 Nodes Classification
The study concatenates the proximal frequency-domain embedding hfrequency

near with the distant spatial-
domain embedding hspatial

far to obtain a node representation that combines both spatial and frequency-
domain adaptiveness. Subsequently, it undergoes a fully connected layer (FC) to transform the vector
dimension to match the node classification dimension. Finally, the Softmax function is applied to
output the classification result, and the model is trained using the cross-entropy loss function. The
overall process is outlined as follows:

hfinal = concat
(
hfrequency

near , hspatial
far

) ∈ R
N×2output (39)

ypred = softmax
(
FC

(
hfinal

)) ∈ R
N×C (40)

5 Experiments
5.1 Datasets

In this paper, we deploy the SFA-HGNN on six publicly available heterogeneous graph datasets,
which are described as shown in Table 1.

Table 1: Statistics and properties of benchmark datasets with heterophily

Cornell Wisconsin Texas Film Chameleon Squirrel

Nodes 183 251 183 7600 2277 5201
Edges 295 499 309 33544 36101 217073
Features 1703 1703 1703 931 2325 2089
Classes 5 5 5 5 5 5
Hedge 0.30 0.21 0.11 0.22 0.23 0.22
Hnode 0.11 0.16 0.06 0.24 0.25 0.22
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The Chameleon (Cha) and Squirrel (Squ) datasets consist of subgraphs extracted from the
“Wikipedia” web pages. In these datasets, nodes represent web pages related to specific topics,
while edges represent the mutual connections between these pages. Node features correspond to the
information nouns found on these web pages, and the web pages are classified into 5 classes based on
their monthly visitation rates.

The Film dataset is a subgraph extracted from the movie-director-actor-author relationship
network. Where each node corresponds to an actor, the edge between two nodes represents both
appearing on the same Wikipedia page at the same time, and the node features represent keywords
on the Wikipedia page, and all the nodes are classified into 5 classes based on the type of participant.

Cornell (Cor), Texas (Tex) and Wisconsin (Wis): the above datasets are three subsets of the WebKB
dataset collected at CMU, which represent links between the corresponding university web pages. In
these networks, nodes represent web pages, edges are hyperlinks between them, and node features are
bag-of-words representations of web pages, while all the nodes mentioned above are classified into five
classes: students, programs, courses, staff, and faculty.

5.2 Baselines
In this paper, we refer to the framework outlined by Zheng et al. [5]. For heterophilic graph neural

networks and select a set of representative models from various classes as the baseline networks, which
are classified as follows:

Firstly, the concept of “Non-local Neighbor Extension” refers to the approach of high-order
neighbor mixing or potential neighbor discovery to identify same-class nodes in the heterophilic graph
that may not be directly connected to the central node but share high structural similarity. This helps
introduce high homophilic information to the central node, thereby improving the quality of node
representations. The core idea of the distal node spatial embedding module in SFA-HGNN is similar
to this concept. To assess the practical effectiveness of this module, we have selected the following
baseline models for comparative analysis:

MixHop [18] and H2GCN [19] are representatives of high-order neighbor mixing, which accomplish
node embedding by aggregating the information of neighboring nodes within multiple hops from the
central node.

Geom-GCN [20], GPNN [23], and Node2Seq [22] are representatives of potential neighbor dis-
covery. They define the similarity between distant nodes and the central node based on geometric
relationships in latent space, attention scores from pointer networks, or sequence orders based on
attention scores. These methods prioritize the fusion and embedding of highly similar nodes.

Secondly, Graph Neural Network Architecture Refinement is to optimize the traditional GNN
message aggregation and updating mechanism in order to obtain a more distinguishable node
representation. Its common methods include Adaptive message aggregation, Ego-neighbor separation,
and Inter-layer combination. The enhanced model’s Adaptive message aggregation mechanism aligns
with the proximal embedding module in this paper. We select the following baseline models to compare
and analyze the practical effectiveness of this module.

FAGCN [24] and WRGNN [26] are representatives of Adaptive Message Aggregation, in which
FAGCN defines high-pass and low-pass filters from the frequency domain perspective and learns the
fusion ratio of the above filtering results; WRGNN models the relational edges of the heterophilic
graph transformations from the spatial domain perspective, and aggregates the nodes with more
significant link weights.
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JK-Net [28] is a representative of inter-layer combination, which takes the embeddings from
the successive layers as input for final information fusion, enabling adaptive fusion learning across
different neighborhood orders.

Thirdly, in this paper, we select frequency-domain and spatial-domain graph neural networks
based on the homophily assumption to compare the effectiveness of our proposed model in het-
erophilic graphs. The specific models are as follows:

GCN [3] and SGC [34] are frequency-domain graph neural networks, while GAT [35] and
GraphSage [4] are spatial-domain graph neural networks.

Fourthly, MLP is a feedforward neural network based on node attributes, aiming to contrast the
actual effects of homophily assumptions and message-passing mechanisms in heterophilic graphs [36].

5.3 Experimental Settings
Basic Parameter Settings: For training SFA-HGNN, we set the number of epochs to 500 and

employ an early stopping strategy with a threshold of 200 epochs. The model parameters are adjusted
based on the cross-entropy loss and accuracy of the validation set, and Adam is selected as the
optimizer. The hyperparameters set for the above datasets are as follows: the hidden layer dimensions
are chosen from {16, 32, 64}, learning rates are selected from {0.01, 0.005, 0.001}, dropout rates for
each layer are set to {0.4, 0.5, 0.6}, and weight decay values are specified as {5E−4, 1E−4, 5E−5}.
Additionally, the dataset is split into training, validation, and test sets using a ratio of 60%/20%/20%.

Key Parameter Settings: For training SFA-HGNN, we adjust the number of layers in the proximal
node frequency domain embedding module to define the proximal node threshold, denoted as K ∈
{2, 3}; sets the distal node threshold as η ∈ {2, 3}; specifies the effective information propagation radius
as ε ∈ {3, 4, 5}; sets the adaptive filter coefficient as β ∈ {0.3, 0.4, 0.5}; and defines the sample account
as Sample_Account ∈ {2%, 4%, 5%, 10%, 20%}. The detailed rationale for these hyperparameter
choices can be found in Section 5.6 of this paper.

The remaining baseline models were configured according to the parameter settings used by these
papers [20,23,25,26], and others in the same experimental environment. The average predictive results
were demonstrated on the test sets obtained from 10 random splits of each dataset. To ensure a
fair comparison, the experimental procedures and settings were consistent with the implementation
approach used by Pei et al. [20] and others. For all datasets, uniform initial feature vectors and labels
were employed in the experiments.

The software environments used for the experiments in this paper are Pytorch, Pytorch Geometric,
and Python 3.8. The hardware environments used are GPU RTX 3090 (2 GB); CPU Intel(R) Xeon(R)
Gold 6330 @ 2.00 GHz; and RAM 80 GB.

5.4 Experiment Result
The experimental results of the model on the above six datasets are shown in Table 2, and this

paper demonstrates the average accuracy and standard deviation under 10 different sets of randomized
data splits.

As shown in Tables 2 and 3, the optimal experimental results for each dataset are shown in bold,
and the experimental results are analyzed as follows:
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Table 2: Experiments results

Core idea Models Cornell Wisconsin Texas

Spatial-frequency SFA-GNN 91.90 ± 2.71 96.07 ± 1.96 94.59 ± 2.69
High-order
NeighborMixing

MixHop 73.51 ± 6.34 75.88 ± 4.90 77.84 ± 7.73
H2GCN 82.16 ± 4.80 86.67 ± 4.69 84.86 ± 6.77

Potential
neighbor discovery

Geom-GCN [20] 60.81 64.12 67.57
Node2Seq 58.7 ± 6.8 60.3 ± 7.0 63.7 ± 6.1
GPNN [23] 85.14 ± 6.00 86.86 ± 2.62 85.23 ± 6.40

GNN architecture
refinement

WRGNN 81.62 ± 3.90 86.98 ± 3.78 83.62 ± 5.50
FAGCN 88.03 ± 5.6 89.75 ± 6.37 88.85 ± 4.39
JK-GAT 74.43 ± 10.24 69.50 ± 3.12 75.41 ± 7.18
JK-GCN 66.56 ± 13.82 62.50 ± 15.75 80.66 ± 1.91

Homophily
assumption

GCN 58.91 ± 8.33 58.82 ± 6.06 59.73 ± 3.24
GAT 56.76 ± 5.70 57.06 ± 7.07 59.45 ± 6.37
GraphSage 75.95 ± 5.01 81.18 ± 5.56 82.43 ± 6.14
SGC 70.98 ± 8.39 70.38 ± 2.85 83.28 ± 5.43

Node attributes MLP 82.16 ± 7.45 85.49 ± 4.99 81.08 ± 3.82

Table 3: Experiments results

Models Film Chameleon Squirrel Average

SFA-HGNN 37.61 ± 1.90 67.52 ± 1.20 53.60 ± 1.80 73.55
MixHop 32.22 ± 2.34 60.50 ± 2.53 43.80 ± 1.48 60.58
H2GCN 35.86 ± 1.03 59.39 ± 1.98 37.90 ± 2.02 64.47
Geom-GCN 31.63 60.9 38.14 53.86
Node2Seq 31.4 ± 1.0 69.4 ± 1.6 58.8 ± 1.4 57.05
GPNN 37.08 ± 1.41 71.27 ± 1.88 59.11 ± 1.13 70.78
WRGNN 36.53 ± 0.77 65.24 ± 0.87 48.85 ± 0.78 67.14
FAGCN 31.59 ± 1.37 49.47 ± 2.84 42.24 ± 1.20 64.99
JK-GAT 35.41 ± 0.97 68.14 ± 1.18 52.28 ± 3.61 62.53
JK-GCN 32.72 ± 2.62 64.68 ± 2.85 53.40 ± 1.90 60.09
GCN 30.16 ± 1.27 65.92 ± 2.58 49.78 ± 2.06 53.89
GAT 29.74 ± 1.46 65.32 ± 2.00 46.79 ± 2.08 52.52
GraphSage 34.23 ± 0.99 58.73 ± 1.68 41.61 ± 0.74 62.36
SGC 25.26 ± 1.18 64.86 ± 1.81 47.62 ± 1.27 60.40
MLP 35.79 ± 1.09 47.36 ± 2.37 29.82 ± 1.99 60.28

SFA-HGNN integrates the core ideas of Adaptive Message Aggregation and Potential Neigh-
bor Discovery, and designs adaptive filter and oriented frequency domain attention mechanism to
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introduce frequency domain adaptivity for Heterophilic message passing; At the same time, we design
structural coding and distal homophilic subgraph sampling to embed the rich structural information
represented by random wandering migration probability for the nodes, and use it as a guide to mine the
distal high homophilic nodes as a supplement to the embedding, so as to obtain the node embedding
results with both spatial-frequency domain adaptivity. And the model mitigates the effects of noise
and over-smoothing introduced by the High-order Neighbor Mixing model’s unfiltered aggregation of
distal nodes; compared with the Potential Neighbor Discovery model, it fully combines the structural
role information of nodes, and avoids the problem of separating the classification of nodes from the
topology of the graph.

According to the experimental results, SFA-HGNN achieves SOTA results in Cor\Wis\Tex\Film;
compared with the GCN with Homophily Assumption, it has an average performance enhancement of
19.66%, which proves the validity of the motivation of the design of this model;

Compared with the GNN Architecture Refinement, the advantage of this model is that it comple-
ments the homophily information of the distal nodes and filters out the effective information of the
proximal nodes by combining with the frequency domain adaptivity. As a result. As a result, the model
has an average performance improvement of 6.41% and 8.56% compared to WRGNN and FAGCN
based on spatial or frequency domain methods alone;

Comparing with Potential Neighbor Discovery, the advantage of this model is that it closely
combines the process of potential neighbor discovery with structural information and supplements the
node embedding with the learning results of the frequency domain adaptivity of the proximal nodes,
which results in 2.77% and 16.5% improvement compared with the models based on the sequential
ordering only, GPNN and Node2seq.

Compared with High-order Neighbor Mixing, the advantage of this model lies in the targeted
acquisition of distal nodes with high homophily through structural similarity, which reduces the risk of
introducing heterophilic information noise and over-smoothing, and the frequency-domain adaptive
method to aggregate the proximal neighborhood’s effective information. As a result, the experimental
effect is improved by 12.97% and 9.08% compared with the methods of MixHop and H2GCN that
directly aggregate the nodes of each order.

Meanwhile, GPNN achieves excellent experimental results in the Chameleon and Squirrel datasets
because the Hnode of the two datasets are 0.25 and 0.22, respectively, compared with the rest of the
datasets, they have slightly higher homophily and relatively dense edges;

GPNN samples the initial neighborhood nodes and generates the initial node sequences through
the BFS algorithm, and then carries out further learning on the node sequences, so the mechanism will
tend to learn the proximal node sequences in dense graphs, and the above two datasets can provide
relatively rich proximal isomorphism information and dense edges for GPNN to train the pointer
network, thus achieving better experimental results in the above datasets.

To demonstrate the effectiveness of the node embedding and classification in this study, we
performed t-SNE visualization analysis on the node embedding results of the Wisconsin and Texas
datasets after 100 training epochs. The following figure, Fig. 6, illustrates this analysis:

As shown in the Fig. 6, the SFA-HGNN model achieves distinct separation between different
classes of nodes with a significant inter-class distance and a compact intra-class distance after just 100
training epochs. This layout formation indicates that SFA-HGNN effectively discriminates between
different classes.
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Figure 6: T-SNE results
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5.5 Parameter Sensitivity Analysis
5.5.1 Selection of Network Prior Information and Hyperparameter Range

This section sets the core hyperparameter value range in combination with prior information,
defined as follows:

Effective information transmission radius ε: Considering the network diameter reflects the longest
distance between two nodes within the connected components, it is hard to represent the main
transmission path in the message transmission process. Therefore, this paper uses the average value
of the network Radius and the average shortest path length Asp as the basis for selecting ε. This can
reflect the actual path length of message transmission among many nodes and ensure that the sampled
subgraph contains ample information from distant nodes. The specific definition is as follows:

ε ∈
[

Radius + Asp
2

− 1,
Radius + Asp

2
+ 1

]
(41)

Distal node threshold η and proximal node threshold K : The number of each-order neighboring
nodes originating from the central node is defined as HopNum. Then, the similarity of attribute vectors
between these nodes and the central node is Fsimilarity, along with the count of homophilic nodes
HomoNum and the proportion of homophilic nodes HomoAccount. Based on the trends of these
indicators with the change in the sampling order, they are used as the basis for selecting the above-
mentioned hyperparameters. The relevant definitions are as follows:

HopNumr = Nr (nodeseeds) = {v : d (u, v) = r, u ∈ nodeseeds} (42)

Fsimilarityr = 1
VNr

∑
u∈nodeseeds ,v∈Nr(u)

xu · xv

|xu| |xv| (43)

HomoNumr = {v : labelv = labelu, u ∈ nodeseeds, v ∈ Nr(u)} (44)

HomoAccountr = HomoNumr

NumNodesr

(45)

Distal node sampling ratio (Sample_Account): To achieve a relatively balanced information
density for both near and distal message transmission, the distal node sampling ratio is set. Ensuring a
dynamic balance between the number of nodes on the near and far sides while maintaining the quality
of homophilic information. The specific definition is as follows:

Nnear (nodeseeds) ≈ Nfar (nodeseeds) (46)

Sample_Account = Nfar (nodeseeds)
ε∑

r=η

HopNumr

(47)

In summary, the relevant experiments are carried out by taking the validation set nodes defined in
the previous section, and the results of the above a priori information calculations are shown below:

As shown in Fig. 7 and combined with Eq. (41), this study defines the preliminary range for ε
as ε ∈ {3, 4, 5, 6}, ensuring that ε is slightly larger than Asp to ensure sufficient sampling of far-end
effectiveness information.

As shown in Fig. 7, the fluctuations in “HomoNum” for various datasets with respect to the order
are quite noticeable. For the Wis/Tex/Cor dataset, the number of homophilic nodes reaches its peak at
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the 2nd order, followed by a decreasing trend. The Film/Squ/Cha dataset exhibits an initial increase
followed by a decrease, with the peaks mainly concentrated at the 3rd and 4th orders. Notably, Cha is
relatively more stable compared to other datasets. Given that the aforementioned datasets fall into five
categories, this paper sets 20% as the threshold for determining the strength of effective information
at each order.

Figure 7: Dataset prior information

As shown in Fig. 7, the fluctuations in “HomoAccount” for the Wis/Tex/Cor dataset are more
pronounced, but strong overall homophilic information across different orders. For the Film/Squ/Cha
dataset, “HomoAccount” remains relatively stable, with a general fluctuation around 20%.

The overarching principle for setting the range of “K” and “η” is as follows: Using the proximal
node threshold “K” to define the proximal neighborhood range with the relatively higher “HomoAc-
count” and more significant homophilic node count (“HomoNum”) to mitigate noise interference from
neighboring node message propagation.

Similarly, using the distal node threshold “η” to define the far-end node range with a lower
“HomoAccount” and a relatively smaller “HomoNum”, thereby constructing a far-end homophilic
subgraph to enhance the quality of information aggregation. In summary, this paper tentatively selects
K ∈ {1, 2, 3} and η ∈ {2, 3, 4}.

As shown in Fig. 7, nodes from Wis/Tex/Cor/Squ are primarily concentrated at the 3rd order, while
nodes from the Film/Squ dataset are predominantly found at the 4th order. Considering the definitions
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of HopNum, “K” and “η”, this study tentatively sets the distal node sampling ratio Sample_Account ∈
{1%, 1.5%, 2%, 4%, 5%, 10%, 20%, 25%} to ensure a relative balance in information density between
the near and far ends.

5.5.2 Parameter Experimental Analysis

This section aims to integrate the aforementioned prior information with the intrinsic char-
acteristics of the dataset. We design four sets of hyperparameters for each dataset, adjusting the
information density of proximal and distal node connections. These sets are specifically tailored to
embed information for nodes at close, intermediate, middle-distance, and far distances. The specific
parameter designs are shown in Tables 4 and 5.

Table 4: Hyper parameters set

Parameters ε η K Sample_account

Cha_near 4 3 1 4%
Cha_middle 4 3 2 4%
Cha_middle_long 4 2 2 2%
Cha_long 4 2 2 5%
Squ_near 3 2 1 1.5%
Squ_middle 3 2 2 1.5%
Squ_middle_long 5 3 2 2%
Squ_long 5 3 3 2%
Film_near 3 2 2 5%
Film_middle 4 3 2 1.5%
Film_middle_long 4 3 3 1.5%
Film_long 6 3 2 1%

Table 5: Hyper parameters set

Parameters ε η K Sample_account

Cornell_near 5 3 2 25%
Cornell_middle 5 4 3 25%
Cornell_middle_long 5 3 3 25%
Cornell_long 5 2 2 10%
Texas_near 5 3 3 20%
Texas_middle 5 3 2 20%
Texas_middle_long 5 2 3 10%
Texas_long 5 2 2 10%
Wis_near 5 3 3 20%
Wis_middle 5 3 2 20%
Wis_middle_long 5 2 3 20%

(Continued)



CMES, 2024, vol.139, no.2 1725

Table 5 (continued)

Parameters ε η K Sample_account

Wis_long 5 2 2 20%

The effective information propagation radius ε, and the threshold for distal nodes η, are employed
to constrain the upper and lower bounds of distal nodes. And sample a specific proportion of
nodes by Sample_Account. Hence, when η is broader and Sample_Account is higher, the model tends
to incorporate information from distal nodes into the central node embedding via spatial domain
methods.

Conversely, the proximal node threshold K, serves as an upper limit for proximal nodes. A larger
value of K implies a broader coverage of proximal node information, leading the model to favor
embedding proximal node information into the central node via frequency domain methods.

Based on the aforementioned combination of parameters, the experimental results are shown
in Fig. 8a. Additionally, employing the aforementioned optimal parameters, sensitivity analysis is
conducted on the adaptive filter coefficient β across various datasets, as shown in Fig. 8b:

Figure 8: Sensitivity analysis

As shown in Fig. 8, the optimal hyperparameters for the aforementioned datasets predominantly
cluster around the mid-distance range. This suggests that embedding a balanced combination of proxi-
mal neighborhood information and distal homophily information can lead to superior representation.
Specifically, the Cor/Tex/Wis datasets are particularly sensitive to changes in the primary information
embedding method. Overemphasizing either proximal or distal information can result in a decline
in model performance. Conversely, the experimental results for the Film dataset are relatively stable,
showing low sensitivity to changes in the embedding of proximal or distal information. The Cha/Squ
datasets obtain their optimal results around mid-distance embedding parameters, with the Squirrel
dataset showing a preference for spatial domain methods to aggregate distal node information for
optimal node representation.

As shown in Fig. 8, compared to other datasets, Cor/Wis/Tex exhibit higher sensitivity to
variations in the adaptive filter coefficient β. Optimal results across datasets converge around β = 0.3,
proving the notion that moderate scaling of the convolution kernel across different frequency bands
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is conducive to learning the best embedding representation. If β is excessively big, it may diminish the
learning capability for certain frequency bands, leading to information loss.

5.6 Ablation Experiment
5.6.1 Frequency Domain Embedding Module Ablation Analysis

The aim of this section is to adapt the information fusion method in the message aggregation
process by modifying Eq. (37) as follows to verify the effectiveness of frequency domain adaptivity for
learning proximal nodes:

h(l)
i = βh(0)

i +
∑
j∈Ni

wAblation
ij√
didj

h(l−1)

j ∈ R
F×1 (48)

w1
ij = tanh

(
MLP2F→1

([
hi||hj

]))
(49)

w2
ij = Sigmoid

(
MLP2F→1

([
hi||hj

]))
(50)

w3
ij = Relu

(
MLP2F→1

([
hi||hj

]))
(51)

As described above, a linear transformation is applied to the concatenated vectors of dimension
2F using a feedforward neural network MLP to obtain an information fusion scalar. The weight coef-
ficient w1

ij is defined to eliminate the “frequency domain orientation information prior”. Additionally,
w2

ij and w3
ij are introduced, incorporating two nonlinear activation functions to fix the edge weight

coefficients positively during the message-passing process, thereby canceling the frequency domain
adaptivity.

For the experiments conducted on the aforementioned datasets, the optimal parameter set defined
in Section 5.6.1 is employed. The data is randomly partitioned and the experiment is repeated 10 times
to obtain results, presenting the average values across all datasets. Other settings remain consistent with
Section 4.3. The experimental outcomes are shown in Fig. 9.

Figure 9: Frequency domain module ablation results

As shown in Fig. 9, the introduction of the frequency domain orientation information prior incor-
porates the similarity between the attribute vectors of the central node and its distant neighborhood.
This reflection captures the central node’s preferences for proximal and distal information. Based on
the magnitude of these preference indicators, the embedding process selectively learns high-frequency
and low-frequency signals from the proximal neighborhood. As a result, an average of 73.55% optimal
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experimental outcomes is achieved across all datasets. Compared to the sole utilization of the nonlinear
activation function tanh to achieve frequency domain adaptivity in w1

ij, there is a notable experimental
enhancement of 2.0%.

On the other hand, w2
ij and w3

ij map the information fusion weights to positive values, effectively
making the message-passing process equivalent to a weighted averaging of neighborhood information.
This could introduce the influence of proximal noise during the heterophilic graph neighborhood
aggregation process. Consequently, when compared to the experimental results obtained by introduc-
ing prior, w2

ij and w3
ij exhibit reduced performance by 5.2% and 4.0%, respectively.

5.6.2 Spatial Embedding Module Ablation Analysis

To validate the effectiveness of the spatial domain embedding module in capturing distal node
homophily information, a comparison is conducted among three sets of neighboring nodes: first-
order neighborhood nodes, the top 5 neighborhood nodes sampled based on attention scores from the
Node2Seq model, and distal nodes selected using random walk transition probabilities. The relative
homophily measure, Hnode, with respect to the central node is computed for these sets. Utilizing the
optimal hyperparameters designed in Section 5.6.2, a distal homophily subgraph is constructed for
all nodes in each dataset. Within this subgraph, the distal nodes associated with the central node via
virtual high-speed links are used to calculate Hnode.

Moreover, Zhu et al. [19] theoretically established that second-order neighbor homophily informa-
tion dominates in heterophilic network nodes. Therefore, this study adopts the second-order neighbor
attribute vector similarity, Fsimilaritytwohop, as a baseline. Additionally, the attribute vector similarity,
Fsimilarityfar, between the central node and distal nodes is calculated. By comparing these two
measures, the model’s preferred nodes are validated to possess not only homophily but also attribute
vector similarity. The results of the two aforementioned experiments are presented in Fig. 10.

Figure 10: Spatial domain module ablation results

As depicted in Fig. 10, this study utilizes a node selection mechanism guided by random walks
to model node structural similarity through transition probabilities. This mechanism filters out
distal homophilic nodes distributed across the heterophilic graph. This approach, compared to node
selection based on attention scores, effectively leverages the inherent topological information of the
graph, leading to enhanced node selection results. Consequently, compared to 1-Hop Neighbors and
Rank with Attention, the average improvement is 22% and 9.6%, respectively.
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Based on the earlier discussion, second-order neighbors predominantly exhibit central node
homophily information. Therefore, it serves as the baseline for highlight the relationship between
the feature vectors of the selected distal nodes and the central node. As shown in Fig. 10b, across
all datasets, the distal nodes exhibit an improvement over second-order neighbor similarity, with an
average improvement of 0.102. This experiment validates that the random walk transition probabilities
originating from the central node effectively capture the varying strengths of both node homophily and
attribute vector similarity between nodes.

Simultaneously, adhering to the optimal parameter settings defined in Section 5.6.1, in the Wis,
Cor, and Tex datasets, the Sample_Account is set to {2%, 4%, 5%, 10%, 20%}. And compute the distal
node homophilyfar and distal neighborhood Fsimilarityfar, for various Sample_Account. This process
aims to verify the relationship between higher-order random walk transition probabilities and the
similarity and homophily information of sampled nodes, as shown in Fig. 11.

Figure 11: Results of correlation verification

As mentioned earlier, Sample_Account is defined as the sampling ratio based on the priority of
node high-order random walk transition probability scores. As this value increases, the structural
similarity between the sampled distant nodes and the central node decreases. As shown in the figure
above, both Homophilyfar and Fsimilarityfar decrease as Sample_Account increases, and their overall
trends are similar. This experimental result further confirms the hypothesis of our paper: a sampling
mechanism guided by higher-order random walk transition probabilities tends to prioritize the
selection of distal nodes with high attribute vector similarity and a significant homophily. Additionally,
there appears to be a positive correlation between node homophily, attribute vector similarity, and the
score of higher-order random walk transition probabilities (i.e., node structural similarity S).

6 Conclusion and Future Work

This paper introduces the SFA-HGNN model to address the challenges that traditional GNNs
face when applied to heterophilic graphs, specifically the issues of “missing modeling of distal nodes”
and “failure of homophily assumption”. To tackle the former, SFA-HGNN employs a “distal spatial
embedding module” based on higher-order random walk transition probabilities to sample and
aggregate information from distal nodes with high structural similarity, thereby enhancing the model’s
ability to capture distal node characteristics. To address the latter, the “proximal frequency domain
embedding module” is designed to adaptively learn high and low-frequency signals from proximal
nodes to fuse valuable information, reducing noise interference introduced by the failure of the
homophily assumption on the low-pass filters.
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The paper concludes by demonstrating the excellent performance of SFA-HGNN in heterophilic
network node classification tasks, explaining the theoretical mechanisms behind hyperparameter
selection and the effectiveness of each module. The positive correlation among node attribute vector
similarity, node homophily, and node structural similarity is validated through experiments. However,
the model still has room for improvement. For instance, the structural encoding process essentially
is pre-embedding node information, and its time complexity is closely related to the complexity of
network nodes and edges. Future work could focus on further improving the model in response to this
challenge.
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