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ABSTRACT

This research proposes a highly effective soft computing paradigm for estimating the compressive strength (CS)
of metakaolin-contained cemented materials. The proposed approach is a combination of an enhanced grey wolf
optimizer (EGWO) and an extreme learning machine (ELM). EGWO is an augmented form of the classic grey
wolf optimizer (GWO). Compared to standard GWO, EGWO has a better hunting mechanism and produces an
optimal performance. The EGWO was used to optimize the ELM structure and a hybrid model, ELM-EGWO,
was built. To train and validate the proposed ELM-EGWO model, a sum of 361 experimental results featuring
five influencing factors was collected. Based on sensitivity analysis, three distinct cases of influencing parameters
were considered to investigate the effect of influencing factors on predictive precision. Experimental consequences
show that the constructed ELM-EGWO achieved the most accurate precision in both training (RMSE = 0.0959)
and testing (RMSE = 0.0912) phases. The outcomes of the ELM-EGWO are significantly superior to those of
deep neural networks (DNN), k-nearest neighbors (KNN), long short-term memory (LSTM), and other hybrid
ELMs constructed with GWO, particle swarm optimization (PSO), harris hawks optimization (HHO), salp swarm
algorithm (SSA), marine predators algorithm (MPA), and colony predation algorithm (CPA). The overall results
demonstrate that the newly suggested ELM-EGWO has the potential to estimate the CS of metakaolin-contained
cemented materials with a high degree of precision and robustness.
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B/S Binder to sand ratio
BBO Biogeography-based optimization
CO2 Carbon dioxide
CPA Colony predation algorithm
CS Compressive strength
CSS Charged system search
DE Differential evolution
DNN Deep neural network
E&E Exploration and exploitation
EGWO Enhanced grey wolf optimizer
ELM Extreme learning machine
ELM-CPA Hybrid model of ELM and CPA
ELM-EGWO Hybrid model of ELM and EGWO
ELM-GWO Hybrid model of ELM and GWO
ELM-HHO Hybrid model of ELM and HHO
ELM-MPA Hybrid model of ELM and MPA
ELM-PSO Hybrid model of ELM and PSO
ELM-SSA Hybrid model of ELM and SSA
EP Evolutionary programming
FOF Field of forces algorithm
GA Genetic algorithm
GGBS Granular glass furnace slag
GP Genetic programming
GSA Gravitational search algorithm
GWO Grey wolf optimizer
HHO Harris hawks optimization
KNN K-nearest neighbors algorithm
lb Lower bound
LCA League championship algorithm
LSTM Long short-term memory
M Cement grade
MH Meta-heuristic
MK Metakaolin
MK/B Metakaolin to binder ratio content
ML Machine learning
MLA Machine learning algorithm
MPA Marine predators algorithm
NH Number of hidden neurons
NS Swarm size
PFI Performance index
PSO Particle swarm optimization
R2 Coefficient of determination
RMSE Root mean square error
RSR RMSE to standard deviation of actual observations
SLC Soccer league competition
SLFNN single layer feed-forward neural network
SLO Social learning optimization
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SO Spiral optimizer
SOA Seeker optimization algorithm
SP Superplasticizer
SSA Salp swarm algorithm
SVR-PSO Hybrid model of SVR and PSO
TLBO Teaching-learning-based optimization
tmax Maximum epoch count
TR Training
TS Testing
ub Upper bound
VAF Variance account factor
W/B Water-binder ratio
WCA Water cycle algorithm

1 Introduction

Concrete is a broadly utilized material in the construction industry. In the field of civil engineering,
composite concrete technology is used to make concrete and cement-based materials, which are
made up of cement, reinforcement, filler materials, admixtures, and water [1]. These materials are
extensively used in the construction industry due to their high mobility, early strength gain, strong
durability, and many other characteristics. For the construction of important structures such as precast
concrete frames [2], reinforced concrete frames [3–5], composites reinforced columns and beams [6,7],
steel-concrete composite beams [8], composite structure conducted under severe conditions [9], these
materials also play an important role. During the process of cement manufacturing, a large amount of
CO2 is released into the air which is a great threat to the environment. Practically, 5% of the total CO2

emission is mainly due to the production of cement [1,10–12]. The environmental damage caused by
the mining of such large quantities of raw materials, the construction industry faces increasing pressure
to cut the amount of cement consumption in concrete or to replace a proportion of cement content
with supplemental materials such as recycled aggregates. According to the source of availability,
supplementary materials can be classified into the following categories (a) natural materials such as
natural pozzolans; (b) industrial wastes, viz., slag, fly ash, silica fume, etc.; and (c) environmentally
friendly materials such as granular glass furnace slag (GGBS), metakaolin (MK), etc. [1,10]. Notably,
the production energy of GGBS and MK is less demanding and thus more environmentally friendly.
Among these two, MK is an aluminosilicate substance that is created by calcining kaolin clay at high
a temperature. MK is a high-performance mineral additive and has better pozzolanic properties than
silica fume [13,14].

Extensive research works on the production and characterization, and effect of MK on the
physico-chemical characteristics of cement, mortars, and concrete have been carried out since the
mid-20th century [15,16]. The partial replacement of cement with MK has shown a substantial
effect on both the fresh and hardened properties of MK-cement mixtures, providing an alternative
to standard cement-sand mixtures. Due to the pozzolanic reaction between MK and portlandite, the
addition of MK to concrete/cement mortar causes the consumption of portlandite formed during the
hydration phase of Portland concrete resulting in the generation of extra C-S-H gel and crystalline
substances [13,14]. The optimal proportion of MK replacement varies among studies and depends
on several factors such as the composition of Portland cement, water-binder ratio (W/B), proportion
of superplasticizer (SP), and the properties of MK. The pozzolanic reaction and filler effect lead to
the refinement of pores in the hardened mix of MK-contained concretes, resulting in a decrease in
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pore size and increasing total porosity. According to the literature, the compressive strength (CS)
of concrete/cement increases with MK content when used as partial cement replacement, but the
optimum percentage for maximum long-term strength varies. Concrete mixes with MK also exhibit
enhanced durability and workability, better resistivity against chemical attack, reduced permeability
and efflorescence, and reduced the effect of alkali-silica reaction. The part replacement of cement with
GGBS and/or MK not only improves concrete durability but also reduces the risk of thermal cracking
in the produced mix [17–19].

Although MK may increase the susceptibility of concrete to carbonation by consuming port-
landite, there are cases where MK enhances carbonation resistance. Overall, replacing cement with
MK increases the durability of mortar and concrete. According to earlier research, the part replace-
ment of cement with MK has a good effect on the strength and durability of mortar and concrete;
therefore, MK can serve as a carbon-neutral substitute for pure Portland cement concrete/mortar.
In the past, numerous experimental works have been conducted to examine the impact of various
factors, such as the proportion of cement replaced by MK, the age of the specimen during testing, and
the ratio of aggregates to binder, on the CS of concrete and cement containing MK. Furthermore,
statistical models have been developed to predict their CS. However, the vast number of variables and
complexity of the subject make it difficult to incorporate all parameters into these formulas, rendering
them specific to certain materials and not generally applicable. Additionally, researchers have tested
the CS of cement in the laboratory, but the laboratory tests can be time-consuming, expensive, and
labour-intensive. Therefore, there is a need for a more resourceful and cost-effective method to estimate
the CS of concrete and cement-based materials containing MK.

Machine learning (ML) is a multi-disciplinary area of research concerned with the development
of intelligent inferences that can learn and draw inferences from patterns in data. Its main goal is
to simulate and implement human learning behavior, enabling the acquisition of new skills and the
continual improvement of existing skills [20,21]. By leveraging the powerful data processing and
analysis abilities of computers, ML can effectively process and analyse large quantities of data. In
recent times, ML paradigms have been applied in various fields due to their superior performance.
Given its outstanding performance, many researchers have proposed multiple ML approaches to
estimate the characteristics of cement and concrete, yielding satisfactory outcomes. In the field of
CS prediction of concrete and cement, Özcan et al. [22] presented comparative results of prediction
outcomes of neural network and fuzzy logic paradigms for the long-term CS of silica fume-based
concrete. Sarıdemir [23,24] used ANNs and fuzzy logic for predicting CS of concretes and mortars
containing MK and silica fume. Gilan et al. [25] suggested an SVR-PSO paradigm for the prediction
of CS of MK-contained concretes. Moradi et al. [26] studied predicting the CS of MK-contained
concrete with different properties using ANN. Asteris et al. [1] used ANN to reveal the nature of MK-
based concrete. Huang et al. [10] predicted the CS of cement-based materials with MK used on the
hybrid ML paradigm. Although the aforementioned ML paradigms achieved satisfactory results in
predicting the CS of concrete and cement, they have multiple limitations such as uncertainty, time
consumption, and local minima trapping issues. Thus, it is necessary to develop a high-performance
ML paradigm, especially for estimating the CS of MK-contained cement-based materials.

According to the literature, to overcome the afore-mentioned limitations and enhance the appli-
cation of hybrid ML paradigms, this research suggests a high-performance ML solution for predicting
the CS of cement containing MK. To this end, enhanced GWO (EGWO), proposed by Joshi et al. [27],
was employed to optimize the weights and biases of ELM. EGWO is an augmented form of the
classic GWO. Compared to standard GWO, EGWO has a better hunting mechanism and produces an
appropriate balance between exploration and exploitation (E&E) that leads to optimal performance.
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The developed model was then used for the estimation of CS of MK-contained cement-based
materials. The outcomes of the ELM-EGWO were also compared with six more hybrid ELMs
constructed with GWO, PSO, HHO, SSA, MPA, and CPA and three standalone models including
DNN, KNN, and the LSTM.

The subsequent part of this work is ordered as follows: Section 2 offers research significance which
is followed by the details of the ELM and an overview of MHs in Section 3. Descriptive information
of the datasets and the computation modelling procedure are presented in Section 4. The results and
discussions are presented in Section 5, while in Section 6, a summary and conclusions is provided.

2 Research Significance

With non-linear association between the parameters and the concrete qualities, it is challenging to
construct optimal concrete mixes incorporating metakaolin [1]. For the optimal mix design, expensive
and time-consuming experimental operations based on empirical formulas are typically conducted. In
addition, the literature and current tools for predicting the CS of concrete and cemented materials
reflect this challenge, where empirical correlations are suggested to account for the consequence
of a small number of parameters on the concrete CS. Most of the existing models employ diverse
parameters and provide findings with a substantial variation, highlighting the need for additional
studies. In addition, alternative methods that can produce optimum outcomes with fewer input data
are required.

The existing literature across several technical and scientific disciplines provides evidence that soft
computing techniques, known for their proficiency in non-linear modelling, can establish correlations
between desired outcomes and a range of influencing parameters, whether they have direct or indirect
impacts [1,28–32]. Considering the effects of influencing parameters, it is possible to design a high-
performance soft computing-based paradigm using existing experimental data from numerous sources.
As stated previously, the selection of an effective soft computing model is however a difficult task
for the following reasons: (a) model implementation without considering the effects of individual
variables; (b) inappropriate model construction and validation; (c) inability of employed models to find
the exact global optimum; (d) overfitting-related issues, etc. In order to estimate the intended output,
such as the CS of concrete, it is necessary to develop a high-performance intelligence paradigm that
takes into account the effects of influencing parameters and overfitting related concerns. Considering
the afore-mentioned discussion as a reference, this study suggested a highly effective hybrid model, i.e.,
ELM-EGWO, for estimating the CS of cemented materials. To this end, a comprehensive record was
collected from the work of Huang et al. [10]. The outcomes of the suggested ELM-EGWO paradigm
were analysed and compared for three different input combinations. For this purpose, three standalone
models (viz., DNN, KNN, and LTSM) and six additional hybrid ELMs constructed with GWO, PSO,
HHO, SSA, MPA, and CPA algorithms, were used in the present research.

3 Methodology

This section discusses the working concept of ELM, followed by the classification of MHs.
Following that, details of GWO and EGWO are presented. At the end, the methodological details
for hybrid ELM development are provided. Notably, detailed information on the utilized MHs is not
offered because they are well-established and the works of PSO [33], HHO [34], SSA [35], MPA [36],
and CPA [37] can be referred to for more detail. Similarly, the literature on DNN [38,39], KNN [40,41],
and LSTM [42,43] can be referred to for information regarding the working principle and application
domain of these paradigms.
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3.1 Extreme Learning Machine
ELM [44], a widely used soft computing algorithm that is used for both regression and classifi-

cation tasks. It is also called single layer feed-forward neural network (SLFNN). With the use of an
advanced SLFNN, a closed-form solution for the weights of the outputs is produced by the ELM.
It has only one hidden layer with one or more hidden neurons (see Fig. 1). The input and output
layers each include the same number of nodes as their corresponding input and output parameters.
In ELM, the weights and biases are assigned at random, which remains constant during the course of
operation. Contrary to usual feed-forward networks where iterative procedures are followed, adapting
to the ELM is carried out through a continuous-time function of the distribution of probability, which
provides lower design complexity and is capable of solving problems faster using random weights and
biases for the hidden layers, along with a unique solution in the output by employing the Moore-
Penrose pseudo inverse function [44].

Figure 1: Structure of ELM

A set of predictor as xi and the target as yi in a series of d-Dim vectors for i = 1, 2, . . . , N samples;
the SLFNN having L hidden layers is demonstrated as below:

fL (x) =
L∑

i=1

hi (x) βi = h (x) β (1)

where β = [β1, β2 . . . βL]T represent the output weight matrix; h (x) = [h1, h2 . . . hL] is the outputs of
the hidden layer; h (x) is the ith hidden node. Therefore, the output function, hi (x), can be given as:

hi (x) = G (ai, bi, x) ; ai ∈ Rd; bi ∈ R (2)

where G (ai, bi, x) is represented by the hidden neuron variables (a, b), is considered as a nonlin-
ear continuous function. The sigmoid function is generally used for developing the ELM model,
Huang et al. [44] emphasized that the approximation error should be optimized to solve the weights
in the hidden and output layers (β) using minβ∈RL×m ‖Hβ − T‖2, where ||Hβ-T || demonstrates the
Frobenius norm and H represents the hidden-output matrix as follows:
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H =
⎡
⎢⎣

g(x1)
...

g(xN)

⎤
⎥⎦ =

⎡
⎢⎣

g1(a1x1 + b1) . . . gL(aLx1 + bL)
...

...
...

g1(aNxN + b1) . . . gL(aLxN + bL)

⎤
⎥⎦ (3)

The target matrix in the training phase can be defined as:

T =
⎡
⎢⎣

tT
1
...

tT
N

⎤
⎥⎦ =

⎡
⎢⎣

t11 . . . t1m

...
...

...
tN1 . . . tNm

⎤
⎥⎦ (4)

An optimal response is provided through β∗ = H+T, where H+ represents the Moore-Penrose
generalized inverse function (+). The optimal solution is then applied to provide a prediction for given
input vectors, x. Successful application of ELMs can be found in the literature [45,46].

3.2 MH Algorithms
As of date, several MHs have been introduced. Based on their source of inspiration, MHs can

be classified into various groups including (a) evolutionary algorithms (EAs), (b) swarm intelligence
(SI) algorithms, (c) natural phenomena-based algorithms, and (d) human inspiration algorithms [47].
The inspiration for EAs is dependent on the simulation of natural genetic concepts, e.g., mutation,
selection, and crossover. BBO [48], DE [49], EP [50], GA [51], and GP [52] belong to this group. The
SI techniques simulate the behavior of a swarm in nature in the course of searching for food. The MHs
under this category are CPA [37], GWO [53], HHO [34], MPA [36], PSO [33], SSA [35], and so on. The
natural phenomena-based techniques include CSS [54], FOF [55], GSA [56], SO [57], WCA [58], and
so on. The human-inspired algorithms are dependent on inspiration from human behavior. Examples
are LCA [59], SLC [60], SLO [61], SOA [62], TLBO [63], etc. These groups are illustrated in Fig. 2.

Figure 2: Classification of MHs

3.2.1 Grey Wolf Optimizer

GWO [53] offered an innovative and revolutionary algorithm for optimization based on the
imitation of the grey wolves’ social bahavior. In specific, GWO mimics the process that grey wolves
utilize to capture their prey, along with the structure of their leadership. For the recreation of the
hierarchical structure in GWO, grey wolves in four different types are assumed for every wolf pack.
The leader and the most significant wolf in the pack are called α, β and δ wolves. ω wolves with the
minimum responsibility are placed at the bottom of the food. In GWO, the entire hunting process can
be classified as: searching, encircling, hunting, and attacking. The expression for encircling of prey is
given by:
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�D =
∣∣∣ �C. �Xp(t) − �X(t)

∣∣∣ (5)

�X(t+1) = �Xp(t) − �A. �D (6)

where �X and �Xp are the position vectors of grey wolf and the prey, respectively; t and t + 1 represent
present and subsequent epochs, respectively. �A and �C are two vectors, given by:

�A = 2�a.�r1 − �a (7)

�C = 2.�r1 (8)

where r1 and r2 are the two random vectors that are uniformly distributed [0 1]; and a is a parameter.
When |�A| > 1, the exploration of prey location is possible by diverting the search agents. Conversely,
with |�A| < 1, convergence of search agents can be used to achieve exploitation. The hunting process in
GWO can be mathematically modelled as:

�Dα =
∣∣∣ �C1. �Xα − �X

∣∣∣ ; �Dβ =
∣∣∣ �C2. �Xβ − �X

∣∣∣ ; �Dδ =
∣∣∣ �C3. �Xδ − �X

∣∣∣ (9)

�X1 = �Xα(t) − �A1. �Dα; �X2 = �Xβ(t) − �A2. �Dβ ; �X3 = �Xδ(t) − �A3. �Dδ (10)

�X(t+1) = ( �X1 + �X2 + �X3)/3 (11)

In GWO, E&E are handled using parameters �a and �C, in which the parameter �a is decreased from
2 to 0.

3.2.2 Enhanced GWO

In standard GWO, exploration is allowed on the primary phase of the iterations and exploitation
on the second phase. However, this approach ignored the importance of striking the appropriate
balance between the two activities in order to arrive at a close approximation of the global optimum.
Thus, to solve the problem, Joshi and Arora [27] proposed EGWO, in which the �a was set to be random
between [0, 1], and hence, the �a search agents were modified. According to the study of Joshi and Arora
[27], the hunting mechanism is given by:

�Dα =
∣∣∣ �C1. �Xα − �X

∣∣∣ (12)

�X1 = �Xα(t) − �A1. �Dα (13)

�X(t+1) = �X1 (14)

3.3 Hybridization Steps of ELM and MHs
In the last decade, numerous MHs have been utilized extensively to adjust the learning parameters

of many ML models in order to improve their performance [64–66]. The combination of MLAs with
MHs helps in the search for the exact global optimum. This is accomplished by improving the accuracy
of the results. Due to the use of MHs, the search space has been reduced to a global optimum. In the
case of hybrid ELM modelling, MHs update weights and biases of ELM iteratively and offer optimal
values that are then used to estimate the intended output. Notably, the activation function and hidden
neuron numbers (NH) play a significant role during the model construction; therefore, they should also
be selected carefully during hybridization. In addition, different MH parameters, such as swarm size
(NS), maximum epoch count (tmax), and upper and lower bounds (ub and lb) should also be designed
sensibly for constructing the optimum hybrid ELMs. Six MHs, viz., GWO, PSO, HHO, SSA, MPA,
and CPA, were used in the current research to develop hybrid ELMs for the purpose of predicting
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the CS of MK-contained materials. Additionally, EGWO was used to construct a high-performance
hybrid model called ELM-EGWO. Fig. 3 illustrates the steps of hybrid ELM modelling in predicting
CS of MK-contained cemented materials.

Figure 3: Flow chart of computational modelling

4 Data Description and Modelling
4.1 Data Description

In past studies, researchers focused more on making models that were easy to use and could
predict the properties of concrete and cement mortar. However, they often overlooked how important
it was to have a good database for making predictions. The model’s accuracy can be checked by
looking at a database with enough good data. In this study, a large amount of data was acquired
from Huang et al. [10] and used to predict the CS of MK-contained cemented materials. There are five
influential parameters including M, MK/B, W/B, SP, and B/S, and the CS of MK-contained cemented
materials is the output variable. Literature has shown that these parameters have a substantial effect
on the CS. Descriptive particulars are presented in Table 1.

According to Table 1, M varies between 32 and 53 with a high variance of 66.90. The parameters
MK/B, W/B, and B/S scatter in the range of 0 to 30, 0.30 to 0.60, and 0.33 to 0.76, respectively. the SP

content varies between 0% and 5%. The variance of MK/B and CS is 101.01 and 428.29, respectively,
which is considered to be very high. The parameters (viz., M, MK/B, and W/B) with -ve Kurtosis
indicate that these variables are not uniformly distributed. Similarly, The parameters (viz., SP, B/S,
and CS) with +ve Kurtosis also indicate that they are not uniformly distributed. According to this
information, it is seen that the gathered records have a wide range of experimental observations and
hence, can be considered useful for the estimation of CS of MK-contained cement-based materials.
To illustrate the data range, frequency distribution histograms (see Fig. 4) and correlation matrix (see
Fig. 5) are also presented. From the correlation matrix, it is seen that the association between the
influential variables and the CS is scattered between –0.56 and 0.32, which is very low. The maximum
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correlation is −0.56 between M and CS whereas the minimum correlation is 0.025 between MK/B
and CS.

Table 1: Descriptive particulars of the collected dataset

Particulars M MK/B W/B SP B/S CS

Minimum 32.00 0.00 0.30 0.00 0.33 6.06
Mean 40.70 9.89 0.46 0.37 0.43 44.42
Median 42.50 10.00 0.49 0.00 0.44 43.40
Maximum 53.00 30.00 0.60 5.00 0.76 115.25
Skewness 0.27 0.52 −0.56 3.05 0.76 1.15
Kurtosis −1.36 −1.00 −0.06 13.70 1.23 1.79
Variance 66.90 101.01 0.01 0.51 0.01 428.29
Standard deviation 8.18 10.05 0.07 0.72 0.09 20.70
Standard error 0.43 0.53 0.00 0.04 0.00 1.09
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Figure 4: Frequency distribution histograms of input and output variables
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Figure 5: Correlation matrix

4.2 Data Processing and Analysis
To model the CS of MK-contained materials, 3 different combinations of input parameters, viz.,

Case-1 (C1), Case-2 (C2), and Case-3 (C3), were explored. For this purpose, sensitivity analysis (SA)
based on the Cosine Amplitude method [1,28] was conducted. Initially, the strength of relation (RS)
between the output and input variables was determined and arranged in descending order. The input
parameters were then ranked between 1 and 5 (there are a total of five input parameters) based on their
RS values. The RS value and rankings for three combinations are presented in Table 2. It is seen that
M has the highest strength (RS = 0.7462), followed by B/S (RS = 0.7186), W/B (RS = 0.6887), MK/B
(R2 = 0.6265), and SP (RS = 0.4391). In this work, the parameters, i.e., M and B/S were considered in
Case-1. These two inputs have a high RS value (range from 0.7462 to 0.7186) and are thus taken into
account in this combination. In Case-2, parameters with RS ≥ 0.60 were considered. All the parameters
were considered in Case-3. Notably, although there are no criteria or standards for selecting different
input combinations according to RS value, it is up to the researchers’ discretion and the type of tasks
to be explained. In the current research, 3 distinct ranges, i.e., 0.7462 to 0.7186, 0.7462 to 0.6265, and
0.7462 to 0.4391, were investigated.

Table 2: Details of RS value and input combinations

Input parameters (abbreviations and names) RS Rank Case-1 Case-2 Case-3

M Cement grade 0.7462 1 � � �
MK/B Metakaolin to binder ratio content 0.6265 4 × � �
W/B Water to binder ratio 0.6887 3 × � �
SP Superplasticizer 0.4391 5 × × �
B/S Binder to sand ratio 0.7186 2 � � �

Table 3 displays the details of different input combinations considered in the present work.
The details of the computational analysis are also demonstrated in Fig. 6. The steps are (a) dataset
collection; (b) selection of input parameters; (c) sensitivity analysis; (d) arranging input parameters in
descending order based on RS value; (e) selection of three different input combinations (i.e., Cases-1
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to 3) based on ranking, (f) computational modelling, and (g) training and validation of hybrid ELMs.
Note that, Fig. 6 shows a complete flow chart for hybrid ELM modelling, however, three conventional
models, such as DNN, KNN, and LSTM, were also used in this work for predicting the CS of MK-
contained cemented materials.

Table 3: Details of inputs and data dimensions for all combinations

Input combination Input parameters Input data dimension Output

Case-1 M and B/S 361 × 2 CS
Case-2 M, B/S, W/B, and MK/B 361 × 4 CS
Case-3 M, B/S, W/B, MK/B, and SP 361 × 5 CS

Figure 6: Illustration of computational modelling

4.3 Modelling and Performance Evaluation
It should be mentioned that data normalization is a vital activity in data-driven modelling and

is frequently employed to mitigate the impacts of multidimensionality. Thus, the current research
uses the min-max approach of normalization. Then the acquired records were separated into training
(TR) and testing (TS) subgroups. The latter was extracted in order to estimate the trained models’
outcomes against unseen samples. So, 80% (289 observations) of the collected records were used
for model construction and a balance of 20% (72 observations) for validation. Notably, while there
are no predefined guidelines for determining the number of samples to include in a data-driven
model, the researchers’ decision will be mostly determined by the nature of the tasks. Note that, a
model constructed using a large sample is more likely to be accepted than one constructed from a
small dataset. Thus, a 20% sample was preferred to validate the developed models. Following model
development, their effectiveness was measured using multiple indices namely Adj.R2, NS, PFI, R2,
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RMSE, RSR, and VAF, expressed in Eqs. (15)–(21). In the domain of engineering and sciences,
these are the most common indices used for the performance assessment of a data-driven model
[1,28,67–70].

Adj.R2 = 1 − (n − 1)

(n − p − 1)
(1 − R2) (15)

NS = 1 −
∑n

i=1(oi − õi)
2∑n

i=1(oi − omean)2
(16)

PFI = Adj.R2 + (0.01 × VAF) − RMSE (17)

R2 =
∑n

i=1(oi − omean)
2 − ∑n

i=1(oi − õi)
2∑n

i=1(oi − omean)2
(18)

RMSE =
√√√√1

n

n∑
i=1

(oi − õi)2 (19)

RSR = RMSE√
1
n

∑n

i=1(oi − omean)2

(20)

VAF =
(

1 − var(oi − õi)

var(oi)

)
× 100 (21)

where oi and õi are the actual and estimated outputs, respectively; n and p are the number of datasets
and input parameters, respectively; ymean is the mean of the actual output values; and Adj.R2 is the
adjusted value of R2.

5 Results

This section reports the performance of the developed/employed paradigms used to evaluate the
CS of MK-contained cemented materials. As said above, each dataset was split into TR and TS
subsets before developing the models. It should be mentioned that all of the models were constructed
and corroborated with similar TR and TS subsets. Then, their results were evaluated via multiple
parameters. It is noteworthy that the deterministic parameters of the MHs (viz., NS, tmax, ub, lb, etc.)
have a key role in hybrid modelling, and hence they were calibrated correspondingly. In addition,
the activation function and NH of ELM were tuned appropriately. Thus, before providing the results,
the next sub-section presents a complete description of the configuration of hyper-parameters and
deterministic parameters and their final values in the prediction of the CS of MK-contained materials.

5.1 Parametric Configuration
To construct an optimum hybrid ELM, the NH ranging between 5 and 20 was investigated. Using

sigmoid as the activation function and RMSE as the cost function, the optimal value of NH was
obtained via a trial-and-error technique. On the contrary, the deterministic parameters of MHs were
also tuned in the course of simulations. The details of all the parameters for the optimum hybrid ELMs
are tabulated in Table 4. The detailed approach of hybrid ELM-GWO for CS estimation is described
below.
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Table 4: Details of model parameters used for constructing hybrid ELMs

Parameters ELM-EGWO ELM-GWO ELM-PSO ELM-HHO ELM-SSA ELM-MPA ELM-CPA

NH (Case-1) 12 16 9 13 11 18 11
NH (Case-2) 14 13 11 12 12 17 17
NH (Case-3) 15 18 13 11 12 14 14
NS 50 50 50 50 50 50 50
tmax 500 500 500 500 500 500 500
c1, c2 – – 1,2 – – –
ub, lb ±1 ±1 ±1 ±1 ±1 ±1 ±1
OW+B (Case-1) 36 48 27 39 33 54 33
OW+B (Case-2) 70 65 55 60 60 85 85
OW+B (Case-3) 90 108 78 66 72 84 84

During ELM-GWO modelling, the ELM was set primarily and consequently the GWO was
incorporated in order to optimize biases and weights of ELM. As soon as the training was completed,
the final ELM-GWO structure was finalized. It is noteworthy that the GWO optimized ELM contains
16, 13, and 18 hidden neurons in Cases-1, 2, and 3 combinations, respectively. The numbers of input
neurons were 2, 4, and 5, for input combinations Case-1, 2, and 3, respectively. However, the number
of output neurons was 1 for all three cases. Therefore, the number of OW+B can be determined as
48 (2 × 16 + 16) for Case-1, 65 (4 × 13 + 13) for Case-2, and 108 (5 × 18 + 18) for Case-3 of
input combinations. With NH between 13 and 18 and a sum of 289 training samples, the searches were
carried out for global optimum at tmax = 500 with NS = 50 and subsequently, the OW+B were generated
to validate the developed ELM-GWO models against each input combination.

Analogous to the ELM-GWO model, all other hybrid ELMs were developed using the same
training dataset. For each hybrid ELM, the value of NH was determined using a trial-and-error
technique. However, the values of NS, tmax, lb and ub were kept constant to conduct a fair comparison
between other hybrid ELMs. Other deterministic parameters of HHO, PSO, MPA, CPA, and SSA
were also fine-tuned in the course of the optimization. The accelerator coefficients of PSO, i.e., c1 and
c2, were respectively set to 1 and 2 in ELM-PSO modelling. In all cases, the values of b and b were
set to −1 and +1, respectively. By employing a trial-and-error technique, the optimal configuration of
these parameters was obtained, the details of which are presented in Table 4.

Fig. 7 illustrates the convergence behavior for the developed hybrid ELMs for all combinations
of CS estimation. It is seen that the proposed ELM-EGWO reached faster convergence and lower
RMSE than other hybrid ELMs. Notably, all the ELMs were built in MATLAB 2015a environment.
The computation time was recorded as ELM-EGWO = 56.51 s, ELM-GWO = 63.68 s, ELM-PSO =
58.50 s, ELM-HHO = 62.22 s, ELM-SSA = 55.33 s, ELM-MPA = 112.66 s, and ELM-CPA = 94.93 s
for Case-1; ELM-EGWO = 56.98 s, ELM-GWO = 57.74 s, ELM-PSO = 56.97 s, ELM-HHO = 66.03
s, ELM-SSA = 55.83 s, ELM-MPA = 114.94 s, and ELM-CPA = 125.74 s for Case-2; and ELM-
EGWO = 57.73 s, ELM-GWO = 57.51 s, ELM-PSO = 57.19 s, ELM-HHO = 64.72 s, ELM-SSA =
56.02 s, ELM-MPA = 114.40 s, and ELM-CPA = 132.85 s for Case-3 input combinations.
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Figure 7: Convergence curves for different input combinations of hybrid ELMs

Similar to hybrid ELMs, the parameters of DNN, KNN, and LSTM were selected using a trial
and error approach. The DNN structure was finalized by using mean squared error as the loss function
and Adam optimizer. The final structure comprises of 5-input neurons, one output neuron, and four
hidden layers with NH = 10 in each layer. Notably, in each dense layer, the ReLU was used as the
activation function. For KNN, the number of neighbors was set to 5. The LSTM model was finalized
using the same loss function and optimizer that were utilized during the creation of the DNN model.
The sigmoid activation function was used in this case. The epoch number was set to 500 in the case of
DNN and LSTM models.

The following sub-sections present and discuss the performance of all the constructed/employed
models in the evaluation of the CS of MK-contained cemented materials. Also, a comprehensive
comparison of the accuracies of models via various performance criteria is provided. In addition,
the final results are visually presented and analyzed.

5.2 Model Performance
The results for all the constructed/employed paradigms for the estimation of CS of MK-contained

cemented materials are given in Tables 5–7 for Cases-1, 2, and 3, respectively. Herein, the model
performance along with their scores are summarized for the training subset. In accordance with
the results of the R2 and RMSE measures, it is evident that the proposed ELM-EGWO reached its
maximum precision in the training phase. In Cases-1, 2, and 3 of CS predictions, the R2 are 0.5834,
0.6416, and 0.7240, and the RMSE are 0.1178, 0.1093, and 0.0959, respectively. In all cases, the
developed ELM-EGWO attained the highest total score of 70. The second-best model in Case-1
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combination is ELM-PSO with a total score = 63, R2 = 0.5814 and RMSE = 0.1181, followed by
ELM-MPA (total score = 56, R2 = 0.5773 and RMSE = 0.1187), ELM-CPA (total score = 49, R2

= 0.5768 and RMSE = 0.1187), and so on (see Table 5 for other models). The second-best model in
Case-2 combination is ELM-CPA with total score = 63, R2 = 0.6375 and RMSE = 0.1099, followed
by ELM-SSA (total score = 56, R2 = 0.6302 and RMSE = 0.1110), ELM-MPA (total score = 49, R2

= 0.6220 and RMSE = 0.1122), and so on (see Table 6 for other models). For Case-3 combination,
the ELM-GWO (total score = 63, R2 = 0.6620 and RMSE = 0.1061) and ELM-MPA (total score =
56, R2 = 0.6555 and RMSE = 0.1071) were determined to be the second and third-best paradigms,
respectively.

Table 5: Model performance (Case-1–TR phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.5760 0.5834 1.0416 0.5834 0.1178 0.6455 58.3365 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.5595 0.5672 1.0066 0.5672 0.1201 0.6579 56.7162 28
R 4 4 4 4 4 4 4

ELM-PSO V 0.5740 0.5815 1.0374 0.5814 0.1181 0.6470 58.1433 63
R 9 9 9 9 9 9 9

ELM-HHO V 0.5205 0.5289 0.9241 0.5288 0.1253 0.6864 52.8838 21
R 3 3 3 3 3 3 3

ELM-SSA V 0.5598 0.5675 1.0072 0.5674 0.1200 0.6577 56.7431 35
R 5 5 5 5 5 5 5

ELM-MPA V 0.5698 0.5773 1.0284 0.5773 0.1187 0.6502 57.7265 56
R 8 8 8 8 8 8 8

ELM-CPA V 0.5693 0.5768 1.0274 0.5768 0.1187 0.6505 57.6789 49
R 7 7 7 7 7 7 7

DNN V 0.5688 0.5760 1.0259 0.5763 0.1188 0.6512 57.5957 42
R 6 6 6 6 6 6 6

KNN V 0.4345 0.4432 0.7418 0.4443 0.1362 0.7462 44.3490 7
R 1 1 1 1 1 1 1

LSTM V 0.5018 0.5104 0.8845 0.5105 0.1277 0.6997 51.0411 14
R 2 2 2 2 2 2 2

Note: V, Value; R, Rank.

Table 6: Model performance (Case-2–TR phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.6353 0.6416 1.1676 0.6416 0.1093 0.5987 64.1594 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.5945 0.6016 1.0809 0.6015 0.1152 0.6312 60.1548 42
R 6 6 6 6 6 6 6

(Continued)
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Table 6 (continued)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-PSO V 0.5877 0.5949 1.0664 0.5948 0.1162 0.6365 59.4844 35
R 5 5 5 5 5 5 5

ELM-HHO V 0.5740 0.5814 1.0372 0.5813 0.1181 0.6470 58.1347 28
R 4 4 4 4 4 4 4

ELM-SSA V 0.6237 0.6303 1.1430 0.6302 0.1110 0.6081 63.0244 56
R 8 8 8 8 8 8 8

ELM-MPA V 0.6154 0.6221 1.1252 0.6220 0.1122 0.6148 62.2046 49
R 7 7 7 7 7 7 7

ELM-CPA V 0.6311 0.6376 1.1588 0.6375 0.1099 0.6020 63.7535 63
R 9 9 9 9 9 9 9

DNN V 0.5584 0.5639 1.0019 0.5661 0.1205 0.6604 56.4023 21
R 3 3 3 3 3 3 3

KNN V 0.5386 0.5428 0.9580 0.5467 0.1234 0.6762 54.2794 14
R 2 2 2 2 2 2 2

LSTM V 0.4991 0.5075 0.8788 0.5078 0.1281 0.7018 50.7743 7
R 1 1 1 1 1 1 1

Note: V, Value; R, Rank.

Table 7: Model performance (Case-3–TR phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.7191 0.7240 1.3473 0.7240 0.0959 0.5254 72.4024 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.6560 0.6620 1.2120 0.6620 0.1061 0.5813 66.2018 63
R 9 9 9 9 9 9 9

ELM-PSO V 0.6049 0.6116 1.1028 0.6117 0.1137 0.6232 61.1650 21
R 3 3 3 3 3 3 3

ELM-HHO V 0.4546 0.4641 0.7851 0.4641 0.1336 0.7320 46.4089 7
R 1 1 1 1 1 1 1

ELM-SSA V 0.6366 0.6430 1.1705 0.6429 0.1090 0.5975 64.2945 49
R 7 7 7 7 7 7 7

ELM-MPA V 0.6494 0.6555 1.1978 0.6555 0.1071 0.5869 65.5492 56
R 8 8 8 8 8 8 8

ELM-CPA V 0.6280 0.6345 1.1522 0.6345 0.1103 0.6046 63.4486 42
R 6 6 6 6 6 6 6

DNN V 0.5696 0.5770 1.0279 0.5771 0.1187 0.6504 57.6971 14
R 2 2 2 2 2 2 2

KNN V 0.6172 0.6234 1.1289 0.6238 0.1120 0.6137 62.3789 31
R 4 5 4 4 5 5 4

LSTM V 0.6179 0.6208 1.1295 0.6245 0.1124 0.6158 62.3987 32
R 5 4 5 5 4 4 5

Note: V, Value; R, Rank.
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For a comparative assessment, all the developed/employed paradigms were ranked (as per R2 and
RMSE criteria) and the details of the best three models are presented in Table 8. It is seen that the built
ELM-EGWO attained the most precise estimation in all input combinations of CS prediction. Also,
the R2 increased significantly from 0.5834 to 0.7240, indicating Case-3 input combination is the most
effective one among the three combinations considered in this work. In Case-3, the RMSE index lower
than 10% (RMSE = 0.0959, i.e., 9.59%) indicates that the proposed ELM-EGWO reached a good
predictive performance. According to the total score in Case-3 combination, the performance of ELM-
HHO (total score = 7), DNN (total score = 14), and ELM-PSO (total score = 21) models was found to
be least effective. Among the standalone models, the LSTM model shows significant performance with
total score = 32, R2 = 0.6245 and RMSE = 0.1124 in the Case-3 input combination of CS estimation.
To better establish the performance of the best three prediction paradigms (as per RMSE index),
illustrations of scatter plots are presented in Fig. 8. It is noteworthy that the performance matrices
given in Tables 5–7 were determined via normalized values.

Table 8: Best three models based on R2 and RMSE criteria (TR phase)

Case Particulars R2 RMSE

Rank-1 Rank-2 Rank-3 Rank-1 Rank-2 Rank-3

Case-1 Model ELM-EGWO ELM-PSO ELM-MPA ELM-EGWO ELM-PSO ELM-MPA
Value 0.5834 0.5814 0.5773 0.1178 0.1181 0.1187

Case-2 Model ELM-EGWO ELM-CPA ELM-SSA ELM-EGWO ELM-CPA ELM-SSA
Value 0.6416 0.6375 0.6302 0.1093 0.1099 0.1110

Case-3 Model ELM-EGWO ELM-GWO ELM-MPA ELM-EGWO ELM-GWO ELM-MPA
Value 0.7240 0.6620 0.6555 0.0959 0.1061 0.1071
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Figure 8: (Continued)
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Figure 8: Scatter plots for TR subset (best three models in each case): (a–c) C1, (d–f) C2, and (g–i) C3
of CS prediction

After training the models on the same dataset, the testing subset was employed to corroborate
them for all three input combinations in CS prediction. The model performance for the testing
subset with normalized output values is given in Tables 9–11, respectively, for Cases-1, 2, and 3
combinations. Notably, the results of the testing subset were utilized to validate the estimation ability
of the developed/employed models. According to the results, The constructed ELM-EGWO achieved
the maximum precision in all cases of CS prediction, with optimal outcomes of R2 = 0.6751 and VAF
= 64.5864 (Case-1), R2 = 0.7964 and VAF = 78.5611 (Case-2), and R2 = 0.8233 and VAF = 81.8112
(Case-3). In all cases, the developed ELM-EGWO attained the highest total score of 70.

Table 9: Model performance (Case-1–TS phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.6505 0.6305 1.1680 0.6751 0.1284 0.6079 64.5864 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.6388 0.6216 1.1453 0.6642 0.1299 0.6151 63.6439 40
R 5 6 6 5 6 6 6

ELM-PSO V 0.6455 0.6266 1.1592 0.6704 0.1290 0.6111 64.2747 49
R 7 7 7 7 7 7 7

(Continued)
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Table 9 (continued)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-HHO V 0.6388 0.6204 1.1441 0.6642 0.1301 0.6161 63.5480 28
R 4 4 4 4 4 4 4

ELM-SSA V 0.6389 0.6211 1.1453 0.6643 0.1300 0.6155 63.6337 37
R 6 5 5 6 5 5 5

ELM-MPA V 0.6497 0.6302 1.1667 0.6743 0.1284 0.6081 64.5496 63
R 9 9 9 9 9 9 9

ELM-CPA V 0.6493 0.6300 1.1661 0.6740 0.1285 0.6083 64.5240 56
R 8 8 8 8 8 8 8

DNN V 0.5920 0.5992 1.0704 0.6207 0.1337 0.6331 61.2148 21
R 3 3 3 3 3 3 3

KNN V 0.5445 0.5550 0.9633 0.5766 0.1409 0.6670 55.9646 14
R 2 2 2 2 2 2 2

LSTM V 0.5044 0.5078 0.8791 0.5393 0.1481 0.7016 52.2813 7
R 1 1 1 1 1 1 1

Note: V, Value; R, Rank.

Table 10: Model performance (Case-2–TS phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.7810 0.7742 1.4663 0.7964 0.1003 0.4752 78.5611 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.7259 0.7221 1.3462 0.7452 0.1113 0.5271 73.1664 52
R 7 8 7 7 8 8 7

ELM-PSO V 0.6966 0.6988 1.2857 0.7180 0.1159 0.5488 70.4956 35
R 5 5 5 5 5 5 5

ELM-HHO V 0.6488 0.6592 1.1892 0.6735 0.1233 0.5838 66.3618 25
R 3 4 3 3 4 4 4

ELM-SSA V 0.7237 0.7146 1.3421 0.7432 0.1128 0.5343 73.1185 42
R 6 6 6 6 6 6 6

ELM-MPA V 0.7264 0.7190 1.3507 0.7456 0.1119 0.5301 73.6219 53
R 8 7 8 8 7 7 8

ELM-CPA V 0.7501 0.7381 1.3938 0.7677 0.1081 0.5118 75.1719 63
R 9 9 9 9 9 9 9

DNN V 0.6827 0.6447 1.2179 0.7050 0.1259 0.5961 66.1105 24
R 4 3 4 4 3 3 3

KNN V 0.6429 0.6105 1.1342 0.6681 0.1318 0.6241 62.3066 14
R 2 2 2 2 2 2 2

LSTM V 0.4964 0.4968 0.8626 0.5319 0.1498 0.7094 51.6029 7
R 1 1 1 1 1 1 1

Note: V, Value; R, Rank.
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Table 11: Model performance (Case-3–TS phase)

Models/Particulars Adj.R2 NS PFI R2 RMSE RSR VAF Total score

ELM-EGWO V 0.8100 0.8135 1.5369 0.8233 0.0912 0.4319 81.8112 70
R 10 10 10 10 10 10 10

ELM-GWO V 0.6950 0.6913 1.2813 0.7165 0.1173 0.5556 70.3607 63
R 9 9 9 9 9 9 9

ELM-PSO V 0.6074 0.6174 1.1026 0.6350 0.1306 0.6185 62.5858 14
R 2 2 2 2 2 2 2

ELM-HHO V 0.6582 0.6611 1.2050 0.6822 0.1229 0.5822 66.9826 28
R 4 4 4 4 4 4 4

ELM-SSA V 0.6748 0.6720 1.2371 0.6977 0.1209 0.5727 68.3185 37
R 6 5 5 6 5 5 5

ELM-MPA V 0.6849 0.6857 1.2674 0.7071 0.1184 0.5606 70.0899 56
R 8 8 8 8 8 8 8

ELM-CPA V 0.5928 0.6075 1.0764 0.6214 0.1323 0.6265 61.5896 7
R 1 1 1 1 1 1 1

DNN V 0.6555 0.6397 1.1831 0.6798 0.1268 0.6002 65.4321 21
R 3 3 3 3 3 3 3

KNN V 0.6727 0.6759 1.2387 0.6957 0.1202 0.5693 68.6176 40
R 5 6 6 5 6 6 6

LSTM V 0.6755 0.6838 1.2478 0.6983 0.1188 0.5624 69.1022 49
R 7 7 7 7 7 7 7

Note: V, Value; R, Rank.

The second-best model for Case-1 combination is ELM-MPA with total score = 63, R2 = 0.6743
and RMSE = 0.1284, followed by ELM-CPA (total score = 56, R2 = 0.6740 and RMSE = 0.1285),
ELM-PSO (total score = 49, R2 = 0.6704 and RMSE = 0.1290), and so on (see Table 9 for other
models). The second-best model for Case-2 combination is ELM-CPA with total score = 63, R2 =
0.7677 and RMSE = 0.1081, followed by ELM-MPA (total score = 53, R2 = 0.7456 and RMSE =
0.1119), ELM-GWO (total score = 52, R2 = 0.7452 and RMSE = 0.1113), and so on (see Table 10 for
other models). For Case-3 combination, the ELM-GWO (total score = 63, R2 = 0.7165 and RMSE =
0.1173) and ELM-MPA (total score = 56, R2 = 0.7071 and RMSE = 0.1184) were determined to be the
2nd and 3rd-best paradigms, respectively. Analogous to training results, all the developed/employed
models were ranked for the testing subset, and the details of the top-three paradigms (as per R2 and
RMSE values) are presented in Table 12, from which it is understood that the ELM-EGWO reached
the most precise prediction in all cases of CS estimation. In the testing phase, the proposed ELM-
EGWO led to better results in all cases, which indicates that EGWO acts better than the standard GWO
when it comes to the prediction of CS of cemented materials containing metakaolin. The scatterplots
in Fig. 9 illustrate the top three performing models (as per RMSE index) for each of the three input
combinations.
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Table 12: Best three models based on R2 and RMSE criteria (TS phase)

Models Particulars R2 RMSE
Rank-1 Rank-2 Rank-3 Rank-1 Rank-2 Rank-3

Case-1 Model ELM-EGWO ELM-MPA ELM-CPA ELM-EGWO ELM-MPA ELM-CPA
Value 0.6751 0.6743 0.6740 0.1284 0.1284 0.1285

Case-2 Model ELM-EGWO ELM-CPA ELM-MPA ELM-EGWO ELM-CPA ELM-GWO
Value 0.7964 0.7677 0.7456 0.1003 0.1081 0.1113

Case-3 Model ELM-EGWO ELM-GWO ELM-MPA ELM-EGWO ELM-GWO ELM-MPA
Value 0.8233 0.7165 0.7071 0.0912 0.1173 0.1184
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Figure 9: (Continued)
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Figure 9: Scatter plots for TS subset (best three models in each case): (a–c) C1, (d–f) C2, and (g–i) C3
of CS prediction

5.3 Visual Interpretation of Results
In order to spot trends, patterns, and other insights, it is always preferable to offer a visual

description of the gathered information rather than reading raw reports/data. Raw data is visualized
using graphical representations, allowing users to easily explore the data and reveal profound insights.
It permits one to grasp information quickly and effectively. Thus, to investigate the generalization
ability of the generated/employed paradigms, visual interpretations of results are presented and
discussed in this sub-section.

In this work, the performance of the developed/employed paradigms was examined using index
scoring and Taylor diagram [71]. The model performance for the testing subset is only reported in
this sub-section. Taylor diagram is a 2-D graphic that depicts the associations between the actual
and expected variables in terms of three different matrices. In this figure, a model is usually depicted
by a point, which should match with the point of reference for a perfect predictive model. On the
other hand, during index scoring, the notion of rank analysis was utilized to rank the models based
on performance matrices. All of the performance indicators were first transformed into % precision
terms against each index and then ranked from 1 to m, where m (in this study m = 10) is the number of
prediction models under consideration. On the basis of R2 index, the accuracy of the developed models
(for Case-3 input combination) was found to be ELM-EGWO = 82.33%, ELM-GWO = 71.65%,
ELM-PSO = 63.50%, ELM-HHO = 68.22%, ELM-SSA = 69.77%, ELM-MPA = 70.71%, ELM-CPA
= 62.14%, DNN = 67.98%, KNN = 69.57%, and LSTM = 69.83%. Therefore, they can be ranked
by assigning a maximum rank of 10 to the model with the greatest R2 value and a rank of 1 to the
model with the poorest R2 value. The ELM-EGWO model received a score of 10 for having the highest
accuracy of 82.33% (R2 = 0.8233), while the ELM-CPA model received a score of 1 for having the
lowest accuracy of 62.14% (R2 = 0.6214). The same steps were followed for other indicators. It should
be noted that a model with the highest score of 70 (i.e., total number of models considered × total
number of indices = 10 × 7) is deemed extremely accurate. Figs. 10 and 11 represent the Taylor diagram
and index scoring, respectively. The correctness and degree of inaccuracy of the employed/constructed
models can be deduced easily from these figures.
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Figure 10: Taylor diagram for the TS subset: (a–c) C1, (d–f) C2, and (g–i) C3 of CS prediction

Figure 11: (Continued)
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Figure 11: Illustration of index scoring: (a) C1, (b) C2, and (c) C3 of CS prediction

5.4 Statistical Testing
Notably, quantitative estimation of a data-driven model’s results is an important criterion for

assessing its reliability in forecasting the desired output [72]. Therefore, uncertainty analysis (UA)
was conducted in this work to undertake the quantitative evaluation of the prediction models’ errors.
Herein, the results of the whole dataset are investigated. Since there are 72 real-life records in the
dataset, it is significant to compare the results of predictions to see how reliable the developed/em-
ployed models are. In UA, the error (εi) between the estimated (ôi) and actual (oi) outputs was
calculated using εi = ∣∣oi − ôi

∣∣. Subsequently, the standard deviation (SD) and the standard error (SE)
can be obtained as:

SD =
√∑n

i=1 (εi − MAE)
2

n − 1
; SE = SD√

n − 1
(22)

where n represents the observation count. Subsequent to the estimation of the SD and SE, the margin
of error (ME) was determined at a 95% confidence interval in order to estimate the width of confidence
bound (WCB). Afterward, the ub, lb, and WCB values were determined as follows:

ub = MAE + ME; lb = MOE − ME; WCB = ub − lb (23)

Note that, WCB represents a range of errors in which approximately 95% of the data reside.
Table 13 reports the UA results for all four input combinations of CS prediction. One can evaluate the
model performance based on the WCB value presented in Table 13. It is noteworthy that smaller WCB
represents higher certainties, i.e., the model is subjected to a smaller error level, and it can predict with
higher precision. In accordance with the UA results, ELM-EGWO recorded the minimum WCB and
mean absolute error (MAE) values of 0.0434 and 0.0891, 0.0306 and 0.0762, and 0.0286 and 0.0678,
respectively, in Cases-1, 2, and 3 combinations. In addition, smaller quantities of ME, SE, and SD are
rendered as higher reliability for ELM-EGWO compared to the other suggested models. For a quick
assessment, all of the models were ranked by their WCB value. MAE and SD were used to rank a
model with the same WCB value. It is seen that the proposed ELM-EGWO is the most reliable model
(secured first rank) in all cases. A comparison of the developed hybrid ELMs with DNN, KNN, and
LSTM shows that the LSTM and DNN have the highest WCB value among all models. Nonetheless,
based on the outcomes presented in Table 13, the proposed ELM-EGWO can be considered reliable
in predicting the CS of cemented materials containing metakaolin. However, for a better comparison,
the UA results are presented in Fig. 12.
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Table 13: Results of UA for all input combinations

Case Models MAE SD SE ME LB UB WCB Rank

Case-1 ELM-EGWO 0.0891 0.0924 0.0109 0.0217 0.0674 0.1108 0.0434 1
ELM-GWO 0.0910 0.0927 0.0109 0.0218 0.0692 0.1128 0.0436 3
ELM-PSO 0.0895 0.0930 0.0110 0.0219 0.0676 0.1114 0.0438 8
ELM-HHO 0.0914 0.0926 0.0109 0.0218 0.0696 0.1132 0.0436 5
ELM-SSA 0.0910 0.0928 0.0109 0.0218 0.0692 0.1128 0.0436 4
ELM-MPA 0.0886 0.0930 0.0110 0.0219 0.0667 0.1105 0.0438 7
ELM-CPA 0.0887 0.0929 0.0109 0.0218 0.0669 0.1105 0.0436 2
DNN 0.0957 0.0934 0.0110 0.0219 0.0738 0.1176 0.0438 6
KNN 0.1028 0.0963 0.0113 0.0226 0.0802 0.1254 0.0452 9
LSTM 0.1063 0.1032 0.0122 0.0243 0.0820 0.1306 0.0486 10

Case-2 ELM-EGWO 0.0762 0.0653 0.0077 0.0153 0.0609 0.0915 0.0306 1
ELM-GWO 0.0853 0.0715 0.0084 0.0168 0.0685 0.1021 0.0336 4
ELM-PSO 0.0857 0.0780 0.0092 0.0183 0.0674 0.1040 0.0366 6
ELM-HHO 0.0937 0.0801 0.0094 0.0188 0.0749 0.1125 0.0376 7
ELM-SSA 0.0853 0.0738 0.0087 0.0173 0.0680 0.1026 0.0346 5
ELM-MPA 0.0872 0.0702 0.0083 0.0165 0.0707 0.1037 0.0330 3
ELM-CPA 0.0826 0.0697 0.0082 0.0164 0.0662 0.0990 0.0328 2
DNN 0.0897 0.0883 0.0104 0.0207 0.0690 0.1104 0.0414 8
KNN 0.0972 0.0890 0.0105 0.0209 0.0763 0.1181 0.0418 9
LSTM 0.1082 0.1036 0.0122 0.0243 0.0839 0.1325 0.0486 10

Case-3 ELM-EGWO 0.0678 0.0610 0.0072 0.0143 0.0535 0.0821 0.0286 1
ELM-GWO 0.0848 0.0811 0.0096 0.0191 0.0657 0.1039 0.0382 5
ELM-PSO 0.1037 0.0795 0.0094 0.0187 0.0850 0.1224 0.0374 2
ELM-HHO 0.0889 0.0849 0.0100 0.0200 0.0689 0.1089 0.0400 8
ELM-SSA 0.0881 0.0829 0.0098 0.0195 0.0686 0.1076 0.0390 7
ELM-MPA 0.0876 0.0796 0.0094 0.0187 0.0689 0.1063 0.0374 3
ELM-CPA 0.0975 0.0895 0.0105 0.0210 0.0765 0.1185 0.0420 9
DNN 0.0881 0.0911 0.0107 0.0214 0.0667 0.1095 0.0428 10
KNN 0.0874 0.0825 0.0097 0.0194 0.0680 0.1068 0.0388 6
LSTM 0.0883 0.0894 0.0094 0.0187 0.0696 0.1070 0.0374 4
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Figure 12: Bar plot of UA for all combinations of CS prediction

5.5 Monotonicity Analysis
Furthermore, the monotonicity analysis was used to test the viability of the proposed ELM-

EGWO model for different input parameters of MK-contained cemented materials. Notably, over-
fitting is a common problem encountered during the mathematical simulation of datasets. This means
that a model may succeed in an excellent simulation of data used for its development and training, but
at the same time predict extremely unusual behavior for other datasets. Hence, it is worth assessing
the overall behavior of the optimum models with regard to their expected behavior in terms of the
estimated parameter. Thus, the purpose of this investigation was to see if the proposed ELM-EGWO
model is capable of developing the necessary trend between various inputs and CS. For this purpose,
one input parameter was changed monotonically, while the other inputs were kept constant at their
mean values (as presented in Table 1), resulting in a simulated dataset (details tabulated in Table 14).
The variation of the anticipated CS with various input parameters can be identified using the ELM-
EGWO model. The changing range of the input parameters cannot exceed the range defined by
its minimum and maximum values during the monotonicity computation, as presented in Table 1.
Figs. 13a–13o show the variation of the predicted CS value with all the influential variables. As can be
seen, the predicted CS decreases as W/B, and B/S increase whereas the CS increases with the increase of
M value. However, the value of CS rises initially and then declines when the MK/B and SP rise. These
variations are consistent with the theoretical trend for the CS value against each input parameter,
implying the correctness of the proposed ELM-EGWO model.
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Table 14: Details of datasets for monotonicity analysis

Parameters Range Details of constant input parameters Fig. ref.

M Set A: 30–39 by 1 MK/B = 9.89, W/B = 0.46, SP = 0.37, and B/S = 0.43. Fig. 13a
Set B: 40–49 by 1 Fig. 13b
Set C: 50–59 by 1 Fig. 13c

MK/B Set A: 1–10 by 1 M = 40.70, W/B = 0.46, SP = 0.37, and B/S = 0.43. Fig. 13d
Set B: 11–20 by 1 Fig. 13e
Set C: 21–30 by 1 Fig. 13f

W/B Set A: 0.30–0.39 by 0.01 M = 40.70, MK/B = 9.89, SP = 0.37, and B/S = 0.43. Fig. 13g
Set B: 0.40–0.49 by 0.01 Fig. 13h
Set C: 0.50–0.59 by 0.01 Fig. 13i

SP Set A: 0–1.35 by 0.15 M = 40.70, MK/B = 9.89, W/B = 0.46, and B/S = 0.43. Fig. 13j
Set B: 1.50–2.85 by 0.15 Fig. 13k
Set C: 3.00–4.35 by 0.15 Fig. 13l

B/S Set A: 0.35–0.44 by 0.01 M = 40.70, MK/B = 9.89, W/B = 0.46, and SP = 0.37. Fig. 13m
Set B: 0.45–0.54 by 0.01 Fig. 13n
Set C: 0.55–0.64 by 0.01 Fig. 13o

Figure 13: (Continued)
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Figure 13: (Continued)
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Figure 13: Illustration of monotonicity analysis

5.6 Discussion of Results
A thorough examination of the prediction outcomes of the proposed ELM-EGWO model in

estimating CS of cemented materials containing metakaolin is provided in the above sub-sections.
In this work, three distinct input parameter combinations were chosen for model construction and
validation. The ELM-EGWO model appears to be the most successful based on the results of RMSE,
R2, and other performance metrics. The said model also attained the requisite predicted accuracy
in Case-3 combination. Using UA, the reliability of the proposed/employed models was assessed. The
ELM-EGWO model was determined to be most reliable in Case-3 combination (WCB = 0.0286) when
the produced models were evaluated using the WCB value. Note that, the uncertainty evaluation was
done only based on the testing dataset because a model with higher accuracy during the validation
phase is deemed more resilient and should be recognized with greater confidence. It can also be seen
from the results that the Case-3 input combination provided a stronger prediction model, implying that
the parameters considered in this study had a significant effect on the CS of MK-contained materials.
Moreover, the results of the monotonicity analysis verify the correctness and validity of the proposed
ELM-EGWO model. Based on the results of monotonicity analysis, engineers and practitioners can
attain the desired CS value by adjusting the proportions of different influential parameters. However,
it may be noted that the effects of different parameters presented in Fig. 13 may differ during the
course of manufacturing different-grade cemented materials.

6 Summary and Conclusion

This research proposes a novel hybrid model, ELM-EGWO, for estimating the CS of MK-
contained cemented materials. To create and evaluate the constructed ELM-EGWO model, three
distinct combinations of influencing parameters were investigated based on SA. Experimental results
indicate that the developed ELM-EGWO obtained the most precise CS value when all the input
parameters, i.e., combination Case-3, were considered as influencing factors. Precisely, the ELM-
EGWO performed better than other hybrid ELMs and standalone models in the testing phase with R2

= 0.6751 in Case-1, R2 = 0.7964, and R2 = 0.8233 in Case-3 combinations of CS prediction. Overall,
the experimental findings show that the newly suggested ELM-EGWO model has strong potential
to estimate the CS of cemented materials containing metakaolin with a high degree of accuracy and
robustness.

One of the key advantages of the proposed ELM-EGWO had the highest predation accuracy,
demonstrating EGWO’s superiority over the standard GWO and other MHs employed in this work.
The proposed ELM-EGWO model also offers a faster convergence rate, which is a significant benefit.
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In addition, the findings of monotonicity analysis will enable researchers/practitioners to design
concrete by changing the mix proportions of MK and superplasticizers as per their requirements.
This will lead engineers/practitioners to implement a sustainable concept without affecting the desired
strength of concrete. However, the future scope might include (a) a thorough evaluation of the ELM-
EGWO and other hybrid ANN, SVM, and ANFIS models constructed with EGWO in predicting CS
of MK-contained concrete and cemented materials; (b) a comparison of the proposed ELM-EGWO to
other hybrid models constructed with evolutionary and physics-based MHs, and (c) implementation of
shapley additive explanations (SHAP) methods or partial dependency graphs to obtained optimized
results of parametric analysis. Nonetheless, as per the authors’ knowledge, this is the first research to
estimate the CS of cemented materials containing metakaolin using a hybrid ELM paradigm created
with an enhanced version of an SI algorithm.
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