
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.043913

ARTICLE

An Efficient Reliability-Based Optimization Method Utilizing
High-Dimensional Model Representation and Weight-Point Estimation
Method

Xiaoyi Wang1, Xinyue Chang2, Wenxuan Wang1,*, Zijie Qiao3 and Feng Zhang3,*

1School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
2School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
3School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, China

*Corresponding Authors: Wenxuan Wang. Email: wxwangd@163.com; Feng Zhang. Email: wpuwindy@nwpu.edu.cn

Received: 15 July 2023 Accepted: 25 October 2023 Published: 29 January 2024

ABSTRACT

The objective of reliability-based design optimization (RBDO) is to minimize the optimization objective while
satisfying the corresponding reliability requirements. However, the nested loop characteristic reduces the efficiency
of RBDO algorithm, which hinders their application to high-dimensional engineering problems. To address
these issues, this paper proposes an efficient decoupled RBDO method combining high dimensional model
representation (HDMR) and the weight-point estimation method (WPEM). First, we decouple the RBDO model
using HDMR and WPEM. Second, Lagrange interpolation is used to approximate a univariate function. Finally,
based on the results of the first two steps, the original nested loop reliability optimization model is completely
transformed into a deterministic design optimization model that can be solved by a series of mature constrained
optimization methods without any additional calculations. Two numerical examples of a planar 10-bar structure
and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and
practicability of the proposed method.

KEYWORDS
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1 Introduction

Many uncertainty factors inevitably exist in practical engineering problems and affect the per-
formance of structural systems to some extent [1–3]. Therefore, it is critical to consider the uncertain
influence of structural systems on reliability-based design optimization (RBDO) [4,5]. RBDO produce
more reliable design results compared to those obtained using traditional deterministic optimization
methods [6,7]. Existing RBDO methods can be roughly divided into three categories: the nested
double-loop method (NDLM), single loop method (SLM), and decoupled-loop method (DLM).
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NDLM is the original RBDO method and is executed with alternating inner and outer layer
calculations. The outer layer performs deterministic optimization analysis for the design variables and
the inner layer performs probabilistic analysis for the reliability constraints [8]. Because the inner-
layer probability analysis requires a large number of computations and each outer-layer optimization
iteration must invoke inner-layer probability analysis, the efficiency of RBDO based on NDLM is
relatively low. Regardless, this method can be considered as a milestone in RBDO and has received
extensive attention in the field of structural system design [9].

Efficient algorithms such as SLM and DLM have emerged to improve the computational
efficiency of RBDO. For SLM, the processes of searching for optimal design variables and calculating
the most probable failure points occur simultaneously. This process overcomes the drawbacks of
NDLM to some extent and has been widely applied in practical engineering problems. Wang et al. [10]
proposed a non-probabilistic reliability-based optimization method based on SLM and applied it to
the optimization of a supersonic wing. Their method uses first-order interval Taylor expansion, the
interval vertex theorem, and direct optimization methods to analyze the uncertainty propagation prob-
lem of a system. Additionally, the extended non-probabilistic set theory-stress strength interference
model and volume ratio theory are introduced to evaluate the non-probabilistic index reasonably.
Jiang et al. [11] proposed an adaptive hybrid single-loop method (AH-SLM). An iterative control
strategy (ICS) with two iterative control criteria is proposed. This strategy converges rapidly, regardless
of the degree of non-linearity of the performance function, and improves the accuracy of the most
probable point (MPP) in highly nonlinear problems. Keshtegar et al. [12] proposed a novel RBDO
based on SLM and applied it to the design of aircraft stiffened plates with complex bucking constraints.
The results demonstrated that their method has enhanced computational efficiency and robustness.
Additional studies on SLM include references [13–15]. One can see that SLM is not only suitable for
probabilistic RBDO, but also provides a good performance for non-probabilistic RBDO. Currently,
the research on this method mainly focuses on handling highly nonlinear probabilistic constraints
and rapid convergence. To reduce the computational burden further, the RBDO of complex structure
systems through the combination of surrogate models and SLM is an emerging trend [16].

DLM first transforms reliability constraints into general deterministic constraints. Converted
RBDO problems can then be solved utilizing traditional deterministic optimization methods. In
[17,18], it is replaced the MPP with a quantile-based decoupling method to overcome the drawbacks of
the original method that requires solving the MPP. This is particularly important for highly nonlinear
problems, multiple-MPPs and non-normally distributed variables. In this approach, quantitative
metrics are obtained by sampling a surrogate model and a new sample is selected using a sample-
updating strategy in the significant region [19,20]. Overall, this method yields good performance
for complex structures. Shi et al. [21] utilized a two-step method to implement a novel form of
decoupling. Because this method involves only a small amount of time-varying reliability analysis
and deterministic optimization, the efficiency of time-varying reliability optimization is improved to
some extent. Zhang et al. [22] used a Kriging surrogate model [23,24] to handle RBDO problems
with independent constraint functions and then proposed a novel quantile-based sequential RBDO
approach. In this method, an adaptive Kriging scheme with error control is integrated to derive the
accuracy information of the surrogate model. The proposed independent training strategy reduces the
number of function evaluations while maintaining the accuracy of reliability estimation. Other studies
on DLM include references [25,26]. Most DLM implementations are similar to SLM. However, there
is no method for completely decoupling the reliability of the inner layer and optimization analysis
of the outer layer because it is difficult to determine the functional relationships between reliability
constraints and design variables directly.
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In this study, a fully decoupled RBDO method is developed by combining high dimensional
model representation (HDMR) [27] and the weight point estimation method (WPEM) [28]. First, the
reliability constraint function is decomposed using HDMR and then combined with WPEM and the
first-order reliability method (FORM) [29] to decompose the reliability index into a combination of
a series of univariate functions. Second, the univariate function is fitted using Lagrange interpolation
[30]. Finally, a traditional deterministic optimization method is utilized to obtain optimal design
variables.

The remainder of this paper is organized as follows. Section 2 briefly introduces the basic
principles of RBDO and HDMR. Section 3 presents the derivation of the reliability index based on
HDMR and WPEM. The proposed decoupled RBDO model is detailed in Section 4. In Section 5,
two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system (AHPS)
with 28 design variables involving finite element analysis are presented to illustrate the performance
and practicality of the proposed method. Finally, our conclusions are summarized in Section 6.

2 Brief Review of RBDO and HDMR
2.1 Reliability-Based Design Optimization

The goal of RBDO is to derive optimal design variables that meet the reliability requirements of
an engineering system. Generally, RBDO is mathematically expressed as follows:

minimize f (d)

subject to Rk = Pr (gk (x, d) ≤ εk) ≥= Rta
k , k = 1, . . . , Nc

dL
i ≤ di ≤ dU

i , i = 1, . . . , Nd

(1)

where x = (x1, x2, . . . , xn)
T and d = (d1, d2, . . . , dm)

T are the random parameter and design variable,
respectively, and n and m are the numbers of random parameters and design variables, respectively. f is
the objective function, and Rk, gk, εk and Rta

k are the reliability, performance function, security threshold
and target reliability levels of the kth reliability constraint, respectively. Nc is the number of reliability
constraints, dL

i and dU
i are the lower and upper bounds of the ith design variable di, respectively, and

Nd is the number of design variables.

2.2 High Dimensional Model Representation
Two types of HDMR are commonly used in the reliability field, namely the multiplication

dimension reduction method (MDRM) [31] and conventional dimension reduction method (CDRM)
[32]. In this study, MDRM is utilized to handle reliability constraints and it is formulated as follows:

g (x) = g (xc)
(1−n)

n∏
i=1

gi

(
xc

−i

)
(2)

where xc = (
xc

1, xc
2, . . . , xc

n

)
represents a specific reference vector of a random vector. For a random

variable that follows a normal distribution, its reference point is generally regarded as its mean value.
xc

−i = (
xc

1, xc
2, . . . , xc

i−1, xi, xc
i+1, . . . , xc

n

)
denotes the reference points other than xi and gi is the univariate

function of xi.
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3 Reliability Index Based on MDRM and WPEM

Because the relationship between the reliability level and reliability index is R = Φ (β), the
reliability constraint in Eq. (1) can be transformed into

βk ≥ β ta
k , k = 1, . . . , Nc (3)

where Φ is the cumulative distribution function, and βk and β ta
k are the reliability indices of the ith

event gk (x, d) ≤ εk and kth target reliability index, respectively. Then, Eq. (1) can be rewritten as

minimize f (d)

subject to βk ≥ β ta
k , k = 1, . . . , Nc

dL
i ≤ di ≤ dU

i , i = 1, . . . , Nd

(4)

Many methods can be used to calculate β, including FORM [27] and the second-order reliability
method [33]. Because FORM is most commonly used in actual engineering structural reliability
analysis, we used FORM to calculate β, which is expressed as

β = ε − μg

σg

(5)

where μg, σg and ε denote the mean and standard deviations of the performance function and security
threshold, respectively.

According to MDRM, as shown in Eq. (2), a performance function containing both random and
design variables can be decomposed into the following form in a similar manner:

g (x, d) = g
(
xc, dc)(1−n−m)

n∏
i=1

gi

(
xc

−i, dc) m∏
j=1

gj

(
xc, dc

−j

)
(6)

where gj denotes the univariate function of the jth design variable dj and dc = (
dc

1, dc
2, . . . , dc

m

)
represents

the reference vector of the design vector, which can be considered as the most valuable point among the
design variables. In this study, the central point of the design variables is considered as the reference
point. dc

−j denotes the reference vector, excluding dj. The performance function is decomposed into
two parts using Eq. (6), where one is the product of the random univariate functions gi

(
xc

−i, dc) and
the other is the product of the design univariate function gj

(
xc, dc

−j

)
.

Next, the relationship between the reliability index β and design variables d is deduced based on
Eq. (6). The deduction process for the mean μg and variance σ 2

g is as follows:

μg = E [g (x, d)]

= g
(
xc, dc)1−n−m

m∏
j=1

gj

(
xc, dc

−j

) n∏
i=1

∫
gi

(
xc

−i, dc) f (xi) dxi

= ξ

m∏
j=1

gj

(
xc, dc

−j

)
(7)
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σ 2
g = E

[
g (x, d)

2] − (E [g (x, d)])2

= g
(
xc, dc)2(1−n−m)

(
m∏

j=1

gj

(
xc, dc

−j

))2 n∏
i=1

∫
gi

(
xc

−i, dc)2
f (xi) dxi −

(
μg

)2

= g
(
xc, dc)2(1−n−m)

⎛
⎝ n∏

i=1

∫
gi

(
xc

−i, dc)2
f (xi) dxi −

(
n∏

i=1

∫
gi

(
xc

−i, dc) f (xi) dxi

)2
⎞
⎠

×
(

m∏
j=1

gj

(
xc, dc

−j

))2

= ζ 2

(
m∏

j=1

gj

(
xc, dc

−j

))2

(8)

where ξ and ζ are expressed as follows:

ξ = g
(
xc, dc)1−n−m

n∏
i=1

∫
gi

(
xc

−i, dc) f (xi) dxi (9)

ζ = g
(
xc, dc)(1−n−m)

√√√√√
⎛
⎝ n∏

i=1

∫
gi

(
xc

−i, dc)2
f (xi) dxi −

(
n∏

i=1

∫
gi

(
xc

−i, dc) f (xi) dxi

)2
⎞
⎠ (10)

In Eqs. (7)–(10), f (xi) denotes the cumulative distribution function of the xi.
∫

gi

(
xc

−i, dc) f (xi) dxi

and
∫

gi

(
xc

−i, dc)2
f (xi) dxi are the first and second origin moments of gi

(
xc

−i, dc), respectively. If the
distribution type and parameters of xi are known in advance, then the two moments can be calculated
through a series of WPEM applications (e.g., sparse grid integration [34], seven-point estimation (a
Gauss quadrature method), or three-point estimation [27]). Therefore, ξ and ζ are constants. In this
study, a three-point estimation is adopted to solve the first- and second-order origin moments, as
detailed below.

According to the principles of WPEM, the first and second moments of gi

(
xc

−i, dc) can be
approximated as

M1
gi

=
∫

gi

(
xc

−i, dc) f (xi) dxi ≈
k∑

j=1

wj
igi

(
pj

i, xc
−i, dc) (11)

M2
gi

=
∫

gi

(
xc

−i, dc)2
f (xi) dxi ≈

k∑
i=1

wj
igi

(
pj

i, xc
−i, dc)2

(12)

where f (xi) is the probability density function of xi, and wj
i and pj

i are the weight and feature points
corresponding to xi, respectively. k denotes the number of weight points.

In Eqs. (11) and (12), one can see that if wj
i and pj

i are known in advance, then M1
gi

and M2
gi

can
be solved using WPEM. wj

i and pj
i in the three-point estimation approach can be calculated using the
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following equations:

w1
i = 1

2

⎛
⎝1 + λ3xi/

√
4λ4xi − 3λ2

3xi

λ4xi − λ2
3xi

⎞
⎠ (13)

w2
i = 1 − 1

λ4xi − λ2
3xi

(14)

w3
i = 1

2

⎛
⎝1 − λ3xi/

√
4λ4xi − 3λ2

3xi

λ4xi − λ2
3xi

⎞
⎠ (15)

p1
i = λ1xi − λ2xi

2

(√
4λ4xi − 3λ2

3xi
− λ3xi

)
(16)

p2
i = λ1xi (17)

p3
i = λ1xi + λ2xi

2

(√
4λ4xi − 3λ2

3xi
+ λ3xi

)
(18)

where λ1xi , λ2xi , λ3xi and λ4xi denote the first four moments of xi. The first four moments are the mean,
standard deviation, kurtosis and skewness in order. The corresponding standard normally distributed
variables are zero, one, zero and three in order.

By combining Eq. (5) with Eq. (7) to Eq. (10), the reliability index β can be rewritten as

β =
ε − ξ

m∏
j=1

gj

(
xc, dc

−j

)
ζ

m∏
j=1

gj

(
xc, dc

−j

) (19)

As shown in Eq. (19), β is only a function of the design variables and is independent of the random
variables.

4 Decoupled RBDO Model

According to the basic principles described in the previous section, two types of decoupled
RBDO models can be formulated. In the first RBDO model, the reliability level is given by R =
Pr (g (x, d) ≤ ε) and the corresponding reliability constraint can be deduced as follows:

ε − ξ
m∏

j=1

gj

(
xc, dc

−j

)
ζ

m∏
j=1

gj

(
xc, dc

−j

) ≥ β ta ⇔ C
m∏

j=1

gj

(
xc, dc

−j

) − ε ≤ 0 (20)

where C = (ζβ ta + ξ) is a constant. Furthermore, the RBDO model can be decoupled into the
following deterministic optimization model:

minimize f (d)

subject to Ck

∏m

j=1 gk
j

(
xc, dc

−j

) − εk ≤ 0, k = 1, . . . , Nc

dL
i ≤ di ≤ dU

i , i = 1, . . . , Nd

(21)
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In the second RBDO model, the reliability level is expressed as R = Pr (g (x, d) ≥ ε). Therefore,
the reliability index can be rewritten as follows:

β =
ξ

m∏
j=1

gj

(
xc, dc

−j

) − ε

ζ
m∏

j=1

gj

(
xc, dc

−j

) (22)

Then, the reliability constraint can be deduced in the following form:

ξ
m∏

j=1

gj

(
xc, dc

−j

) − ε

ζ
m∏

j=1

gj

(
xc, dc

−j

) ≥ β ta ⇔ ε − C ′
m∏

j=1

gj

(
xc, dc

−j

) ≤ 0 (23)

where C ′ = (ξ − ζβ ta) is a constant. Furthermore, the corresponding decoupled RBDO model is
expressed as follows:

minimize f (d)

subject to εk − C ′
k

∏m

j=1 gk
j

(
xc, dc

−j

)
k
≤ 0, k = 1, . . . , Nc

dL
i ≤ di ≤ dU

i , i = 1, . . . , Nd

(24)

The optimization models defined in Eqs. (21) and (24) are deterministic optimization models with
respect to the design variables that can be solved using any traditional optimization algorithm. In
this study, Monte Carlo simulation (MCS), sequential quadratic programming (SQP) [35] and particle
swarm optimization (PSO) [36] we adopted to verify the performance of the proposed method.

Eqs. (21) or (24) can be used directly to solve the RBDO model when the constraint is an explicit
function, whereas for an RBDO model with an implicit constraint function, Lagrange interpolation
is adopted to fit the univariate function gk

j

(
xc, dc

−j

)
as follows:

L (x) =
Nl∑

k=1

ykφk (x) (25)

where

φk (x) =
Nl∏
j=1
j �=k

x − xj

xk − xj

(26)

In Eqs. (25) and (26), Nl denotes the number of samples, xj denotes the jth input sample, and yk

denotes the kth output sample. In this study, the input samples are evenly distributed within the design
interval. A flowchart of the proposed RBDO algorithm is presented In Fig. 1.

As shown in Fig. 1, the calculation steps of the proposed method can be divided into two main
parts. The first is calculating two constants ξ and ζ for the random variables and the second is fitting
the univariate function gk

j

(
xc, dc

−j

)
using Lagrange interpolation. Therefore, the computational cost

of the proposed approach depends on these two operations. Assuming that the numbers of random
variables, design variables, and constraint functions are n, m and k, respectively, and that there are p
input samples in each design variable, the number of function evaluations in the proposed method is
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3 × n + (p × m) × k. For example, when n, m, k and p are 2, 2, 2 and 4, respectively, the number
of function evaluations for RBDO analysis is 22, which demonstrates that the proposed approach is
relatively efficient.

Figure 1: Flowchart of the proposed RBDO algorithm

Notably, the application of the proposed method must focus on the following two points.

(1) The premise of applying the proposed method is assumption that the performance function
of all constraints is greater than 0. Otherwise, the performance functions in the reliability constraint
must be transformed to ensure that they are greater than 0. For example, suppose that the performance
function in R = Pr (g (x, d) ≤ ε) is less than 0, i.e., g (x, d) ≤ 0. Then, there is a non-negative constant
γ that makes Eq. (27) true.

g′ (x, d) = g (x, d) + γ ≤ 0 + γ (27)

In Eq. (27), the value of γ should be sufficiently large to ensure that g′ (x, d) = g (x, d) + γ > 0,
g′ (x, d) is the corresponding new performance function, which must be greater than 0. Assume that
ε′ = ε + γ is the corresponding new threshold. Then, R′ = Pr (g′ (x, d) ≤ ε′) is the corresponding new
reliability level and R′ = R. Finally, the reliability constraint is transformed as follows:

R′ = Pr (g′ (x, d) ≤ ε′) ≥= Rta (28)

(2) According to Wang et al. [10], there are three combination types between the design variable d
and random variable x. The first type is direct mixing of the design variable and random variable (i.e.,
(d, x)). The second type is that the design variable is a parameter of the random variable (e.g., such
as x ∼ N (d, σ)). The third type contains both the first type and second type. However, any of these
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types can be transformed into the first type by the following formula:

U = x − d
σ

⇒ x = d + Uσ (29)

where U ∼ N (0, 1). Therefore, only the first combination type is considered in this study.

5 Illustrative Examples

In this section, two numerical examples of a planar 10-bar structure and AHPS that requires finite
element software calculations are presented to illustrate the performance of the proposed method. The
proposed method is set up to use SQP and PSO (abbreviated as PM-SQP and PM-PSO, respectively) to
perform the optimization analysis, and the results of direct MCS (MCS-D) and a combination of MCS
and PSO (MCS-PSO) are used as references. It is noteworthy that MCS-D is a direct MCS method
that has the greatest reference value. However, because the optimization module is still MCS, there
may be some errors. Therefore, using PSO can further ensure the correctness of the reference results
(MCS-PSO). PM-SQP and PM-PSO are implemented based on the proposed method with Lagrange
interpolation proxy models after complete decoupling. The difference between these models lies in the
optimization methods, which are only used to verify the accuracy of the models.

5.1 Numerical Example 1
A numerical example with two design variables (d1, d2) and two random variables

(
x1 ∼ N (0, 1),

x2 ∼ N (0, 1)
)

is defined in Eq. (30). The target reliability of Rta is set to 0.9987 with d1 ∈ [2, 5],
d2 ∈ [2, 5], and ε = 1.

minimize f (d) = (d1 + d2)/2

subject to R = Pr (g ≥ ε) ≥ Φ (β ta) = Rta

g = (d1 + 0.3x1)
2
(d2 + 0.3x2)/20

2 ≤ d1, d2 ≤ 5

(30)

The samples required to approximate the input-output relationship of the univariate function
using Eqs. (25) and (26) are defined as d1

samples = d2
samples = (2, 3, 4, 5). Given 105 samples for MCS,

the optimization results are presented in Table 1.

Table 1: Results calculated by different RBDO methods

Design variables

Method d1 d2 f (d) R Ncall

MCS-D 4.04d (±2.60%c) 2.37 (±4.41%) 3.21a 99.86% (±0.03%) –
MCS-PRO 4.07(±1.97%) 2.38 (±2.92%) 3.22 99.89% (±0.01%) –
PM-SQP 4.54 2.27 3.40 (5.92%b) 99.99% (±0.02%) 14
PM-PRO 4.52 (±0.99%) 2.27 (±1.64%) 3.40 (5.92%) 99.99% (±0.02%) 14
Note: aReference value. bError relative to the reference value is shown in bold. cDeviation after 10 calculations. dMedian after 10 calculations.

The reliability level R in Table 1 is calculated by applying MCS 10 times and the design variable
values are the corresponding median values. The reliability level obtained by MCS-D is 99.86%, which
is lower than the target reliability level of 99.87%. This is because the optimal design variables obtained
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by MCS-D are the optimal solutions based on 105 samples, so the median value of 10 calculations is
generally less than the target reliability level and it is reasonable to use the optimal objective function
value f (d) obtained by MCS-D as a reference. For MCS-PRO, the inner layer uses MCS for reliability
analysis, and the outer layer uses PRO for optimization analysis. The results obtained by MCS-PRO
can be used as an auxiliary reference, because the error of MCS-D is relatively large when the number
of design variables is large or the sample size is limited.

In Table 1, one can see that the f (d) values calculated by PM-SQP and PM-PRO are the same at
3.40, which is slightly larger than the reference value of 3.22 calculated by MCS-PRO. The error of the
proposed method is approximately 5.92%. The reliability level corresponding to the optimal design
variables obtained by PM-SQP and PM-PRO is the same and equal to 99.99%, which is slightly higher
than the target reliability level of 99.87%.

The relationship between the number of samples and the minimum value of f (d) is presented in
Fig. 2. One can see that the value of f (d) remains largely unchanged after 3 samples and 4 samples
can meet the accuracy requirement. The number of function calls Ncall is 14 for the proposed method,
demonstrating that the computational efficiency of the proposed method is relatively high.

f(d)

Number of samples foff r fiff tting univariate fuff nctionNumber of samples for fitting univariate function

Figure 2: Objective function value changes with the number of samples

5.2 Numerical Example 2
A numerical example with four constraints that has been widely used for benchmarking purposes

in previous studies [37,38] is defined in Eq. (31). Two random variables are normally distributed as
x1 ∼ N

(
d1, 0.32

)
and x2 ∼ N

(
d1, 0.32

)
, and d1 and d2 are two design variables with the same design

range of [2, 5]. The target reliability Rta is set to 0.9987 and four thresholds are assigned as ε1 = ε2 =
ε3 = ε4 = 1. Given an the input sample d1

samples = d2
samples = (2, 3, 4, 5), the optimization results are

presented in Table 2.

minimize f (d) = d1 + d2

subject to Rk = Pr (εk − gk (x, d) ≤ 0) ≥ Φ
(
β ta

k

) = Rta, k = 1, 2, 3, 4

2 ≤ d1, d2 ≤ 5

g1 = x2
1x2/20;

g2 = (x1 + x2 − 5)
2
/30 − (x1 − x2 − 12)

2
/120;

g3 = 80/
(
x2

1 + 8x2 + 5
)
;

g4 = 80/
(
x2

1 + 9x2 + 4
)
;

(31)
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Table 2: Results calculated by different RBDO methods

Design variables

Method d1 d2 f (d) R1 R2 R3 R4 Ncall

MCS∗ 3.4549 3.2811 6.7359 0.9987 0.9987 1 1 –
MCS-D 3.4597 3.2808 6.7405 0.9988 0.9987 1 1 –
MCS-PRO 3.4485 3.2905 6.7390 0.9987 0.9988 1 1 –
PM-SQP 3.7111 3.3892 7.1003 1 0.9990 1 1 38
PM-PRO 3.7138 3.3907 7.1044 1 0.9990 1 1 38
Note: ∗Reference results from [38].

The results in Table 2 are obtained by executing each method once. The MCS results from [38]
are presented to verify the correctness of the reference method. The results obtained by MCS and
MCS-D are similar, indicating that it is reasonable to use the results of MCS-D as a reference. The
minimum values obtained by PM-SQP and PM-PRO are very similar and the error is approximately
5.34% relative to the results obtained by MCS-D.

As shown in Fig. 3, because the objective function value is unchanged after 3 samples, 4 samples
can meet the fitting accuracy requirement. The number of function evaluations for the proposed
method is 38, indicating that the efficiency of the proposed method is relatively high.

f(d)

Number of samples foff r fiff tting univariate fuff nctionNumber of samples for fitting univariate function

Figure 3: Objective function value changes with the number of samples

The two numerical examples demonstrate that the accuracy and efficiency of the proposed
method are within acceptable ranges. Its accuracy depends on the accuracy of the formula used
to calculate the reliability index. In this study, the first-order reliability method, which is the most
widely used in practical engineering, resulting in a conservative calculation error of approximately 5%.
Additionally, its computational efficiency depends entirely on the number of feature points in WPEM
and the number of sample points fitting the univariate function, which are unrelated to subsequent
optimization. Next, we apply the proposed method to two practical engineering problems using finite
element software to demonstrate the feasibility of the proposed method for practical engineering
problems.
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5.3 Planar 10-Bar Structure
The plane 10-bar structure is presented in Fig. 4. The length of the rods is L, and the corresponding

cross-sectional area is Ai (i = 1, 2, . . . , 10), and the elasticity modulus and three external loads are
E and Pi (i = 1, 2, 3), respectively. L and Ai (i = 1, 2, . . . , 10) are the 11 design variables, and E and
Pi (i = 1, 2, 3) are 4 random variables that follow normal distribution. An optimization model aimed
at minimizing the volume of the 10-bar structure is established and expressed by Eq. (32).

minimize f (d) = d1

(∑7

i=2 di +
√

2
∑11

i=8 di

)
subject to R = Pr (g (x, d) − ε ≤ 0) ≥ Rta

dl
i ≤ di ≤ du

i

(32)

where x = [x1, x2, x3, x4] = [E, P1, P2, P3], and the mean μ and standard deviation σ are listed in
Table 3. Additionally, d = [d1, d2, . . . , d11] = [L, A1, A2, . . . , A10], g (x, d) is the maximum displacement
response, dl

i and du
i represents the lower and upper bounds of di, respectively, and the corresponding

values are listed in Table 3.

(1) (2)

(3) (4)

(5) (6)

(7)

(8)

(9)

(10)

P1

1 2 3

4 5 6

P2

P3

Figure 4: Planar 10-bar structure

Table 3: Specific parameter values of design and random variables in a 10-bar structure

Design variables Random variables

d1(m) di (i = 2,3,...,11) (m2) x1 (GPa) x2 (kN) x3 (kN) x4 (kN)

du
i 1.2000 0.0020 μ 100 80 10 10

dl
i 0.0800 0.0003 σ 0.08 × 100 0.08 × 80 0.08 × 10 0.08 × 10

Given the threshold ε = 0.0035 (m) and target reliability level Rta = 0.999, the optimization
process and results are presented in Fig. 5 and Table 4, respectively.

Because PRO is a heuristic global optimization algorithm that is more suitable for the optimization
of complex problems, only utilized PM-PRO to optimize the planar 10-bar structure. The finite element
analysis model of the planar 10-bar structure is presented in Fig. 6, where the design variables are fixed
at d1 = 1 and di (i = 2, . . . , 11) = 0.001, and the maximum displacement is 0.0027 (m). It is noteworthy
that this example required the use of the ANSYS commercial software and it would be a laborious
process to calculate the reliability level using MCS. Therefore, the reliability levels listed in Table 4 are
obtained by substituting the optimal design variables into Eq. (21).
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Figure 5: Optimization process of a planar 10-bar structure

Table 4: Optimization results of a planar 10-bar structure

d1 (m) d2 (m2) d3 (m2) d4 (m2) d5 (m2) d6 (m2) d7 (m2)

PM-PRO 0.8000 0.0011 0.0003 0.0011 0.0003 0.0003 0.0003
PM-SQP 0.8001 0.0011 0.0003 0.0011 0.0003 0.0003 0.0003

d8 (m2) d9 (m2) d10 (m2) d11 (m2) f (d) (m3) R Ncall

PM-PRO 0.0009 0.0007 0.0003 0.0003 ≈0.0052 0.9992 89
PM-SQP 0.0009 0.0007 0.0003 0.0003 ≈0.0052 0.9992 565

Figure 6: Displacement contour plot before optimization
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For this engineering optimization problem with 11 design variables, Fig. 7 reveals that the objective
function value remained essentially unchanged after 6 sample points. Therefore, 7 samples are taken
for each design variable to satisfy the basic accuracy requirements and only 89 function calls are
required to solve the optimization problem. For an optimization model with 11 design variables and
4 random variables, the proposed method is relatively efficient. The FE model corresponding to the
optimal solution of PM-SQP proposed in Table 4 is presented in Fig. 8.

f(d)

Number of samples foff r fiff tting univariate fuff nctionNumber of samples for fitting univariate function

Figure 7: Objective function value changes with the number of samples

Figure 8: Displacement contour plot after optimization

5.4 Reliability Optimization of the Clamp Support Position in an AHPS
An AHPS is required for most aircraft operations and is one of the most critical aircraft

accessories. Considering the long span of an AHPS, a large number of clamp supports are typically



CMES, 2024, vol.139, no.2 1789

required to fix it and reduce the instability caused by engine vibration and fuselage flutter. A series
of AHPS clamp support positions are presented in Fig. 9, while Fig. 10 presents the corresponding
right-side view.

Figure 9: AHPS clamp support positions Figure 10: Right-side view of an AHPS

In Fig. 9, A is the pump source, and B and C are the two oil outlets. The numbers in Fig. 9
corresponding to nodes in the finite-element model, which are also the clamp support positions. The
corresponding coordinates are listed in Table 5. The bold coordinates represent the initial values of
the design variables and the superscripts are the corresponding serial numbers of the design variables
(total of 28 design variables). As shown in Table 5, the design variables are the coordinates of the clamp
position nodes and most of the design variables are X coordinates (e.g., nodes 14, 17, and 51). Some
of the design variables are the X and Y coordinates of the corresponding notes (e.g., nodes 45, 62 and
69) and there are three design variables for nodes 82 representing X , Y , and Z coordinates.

Table 5: Coordinates of the clamp support locations (mm)

Locations 14 17 20 23 26 30 33 36 39 40 42
X −5091 −7122 −10233 −13854 −16205 −19806 −23177 −25638 −27759 −291910 −351311

Y −160 −154 −146 −104 −135 −148 −148 −111 −111 −148 −148
Z −227 −233 −223 −192 −207 −188 −188 −155 −155 −188 −188

Locations 45 51 54 59 62 65 69 72 75 82

X −363412 −420914 −452115 −488816 −503617 −514819 −541520 −574522 −660224 −203326

Y −148 −40 −35 −35 12318 247 34421 38723 40525 −16427

Z −6913 168 180 −189 214 171 195 201 274 14028

It is noteworthy that the coordinates in Table 5 are global coordinates, and the pipeline is modeled
using the PIPE 16 unite in ANSYS. Considering the characteristics of the PIPE 16 unit, the pipeline
is constructed using local coordinate, where the last node of each segment corresponded to the start
of the next segment. Fig. 11 illustrates this type of construction for node 14 in Fig. 10.

13

X

Y

X

Y

Z

14

-509

-43
�

�
�

Figure 11: Illustration of PIPE16 unit modeling



1790 CMES, 2024, vol.139, no.2

In Fig. 11, one can see that the global coordinate in the X direction of node 14 is −509, which
corresponds to the value for node 14 listed in Table 5. The establishment of this section of the pipeline
between nodes 13 and 14 begins at node 13 and the local coordinate in X direction is −43. For
convenience, only local coordinates are used to describe the initial values d0, lower bounds d l and
upper bounds du of the design variables, as shown in Table 6. The choice of upper and lower bounds
for the design variables followed the principle that the shape of the pipeline cannot change when the
design variables vary between the upper and lower bounds. Furthermore, the shape of the pipeline does
changes whenever if a variable exceeds the upper or lower bounds. Therefore, the range of variable
changes in Table 6 is optimal.

Table 6: Parameter information regarding the design variables

Design
variable

Initial value d0
(×10−3m)

Lower bound
dl (×10−3m)

Upper bound
du (×10−3m)

Design
Variable

Initial value d0
(×10−3m)

Lower bound
dl (×10−3m)

Upper bound
du (×10−3m)

d1 43 10 100 d15 63 10 100
d2 35 10 150 d16 36 10 120
d3 93 10 200 d17 29 10 40
d4 55 10 400 d18 59 10 100
d5 56 10 90 d19 56 10 80
d6 110 10 160 d20 187 10 200
d7 158 10 200 d21 20 10 25
d8 88 10 200 d22 111 10 200
d9 93 10 150 d23 13 10 20
d10 290 10 300 d24 78 10 180
d11 117 10 140 d25 7 1 15
d12 30 10 70 d26 54 10 100
d13 30 10 70 d27 28 10 40
d14 67 10 120 d28 50 10 100

The random variables for the AHPS are the pipeline material density ρp, pipeline outer radius D,
pipeline wall thickness t, fluid density ρf , ambient temperature T , oil pressure P, elastic modulus E,
and Poisson’s ratio μ. For simplicity, we let x = [x1, x2, . . . , x8] = [

ρp, D, t, ρf , T , P, E, μ
]
. The specific

values of these variables are listed in Table 7 and additional values can be found in [39].

Table 7: Distribution types and parameter values of random variables

Random variable x1 (kg/m3) x2 (m) x3 (m) x4 (kg/m3) x5 (°C) x6 (Pa) x7 (Pa) x8

Distribution type Normal Normal Normal Normal Normal Normal Normal Normal
Parameter1 7900 0.02 0.003 1000 20 25 2 × 1011 0.3
Parameter2 7.9 0.002 0.0003 150 5 5 2 × 1010 0.03

The random excitation applied to all clamp supports is an acceleration power spectral density
function, as shown in Fig. 12 [39]. The scaling factor of excitation applied at the three endpoints of
the AHPS (i.e., A, B, C) is 1, and 0.025 is applied at the other clamp supports. Because the excitation
exerted on an AHPS is mainly caused by engine vibration and fuselage fluttering and mainly occurs
in the direction of gravity, only the excitation in the Y direction is considered in the AHPS model.
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Figure 12: Acceleration power spectral density function of random excitation

In the current state of the AHPS (i.e., when the design variable is at the initial value and the random
variable value is at parameter 1), the maximum value of the stress response and displacement response
are 2.12 × 107 (Pa) and 3.89 × 10−4 (m), as shown in Figs. 13 and 14, respectively.

Figure 13: Stress response before optimization Figure 14: Displacement response before opti-
mization

Both stress and the displacement responses affect the safety of an AHPS. To improve further
improve the reliability of the AHPS further, the following RBDO model is established:

Find d∗ = {
d∗

1 , d∗
2 , . . . , d∗

28

}
Smax

(
d∗) = Min Smax

(
d∗, xc

)
subject to R = Pr (Dmax (d, x) − ε ≤ 0) ≥ Rta

dl
i ≤ di ≤ du

i i = 1, 2, . . . , 28

(33)

In Eq. (33), Smax denotes the maximum stress response, d∗ represent the optimal design variable, xc

is the mean value of the random variables (i.e., parameter 1 shown in Table 7) and Dmax is the maximum
displacement response. It is noteworthy that unlike the previous three examples in which the objective
function is only a function of design variables, Smax (d, x) contains both design variables and random
variables. Therefore, Eq. (33) cannot be directly solved by the proposed method. Because random
variables only affect the reliability constraints, it is reasonable to replace Smax (d, x) with Smax

(
d∗, xc

)
as the objective function. Given the threshold ε and target reliability Rta of 4 × 10−4 (m) and 0.999,
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respectively, based on PRO, the optimization process and results are presented in Fig. 15 and Table 8,
respectively.

×107×107

Number of iterationsNumber of iterations

maxS

Figure 15: Optimization process of the AHPS

Table 8: Optimal values of 28 design variables (×10−3m)

d1
∗ d2

∗ d3
∗ d4

∗ d5
∗ d6

∗ d7
∗ d8

∗ d9
∗ d10

∗ d11
∗ d12

∗ d13
∗ d14

∗

23.0 80.0 10.0 49.9 52.4 104.8 195.3 83.8 10.0 263.5 10.0 64.8 16.9 10.0

d15
∗ d16

∗ d17
∗ d18

∗ d19
∗ d20

∗ d21
∗ d22

∗ d23
∗ d24

∗ d25
∗ d26

∗ d27
∗ d28

∗

100.0 16.9 10.0 100.0 72.2 200.0 17.3 196.6 10.0 10.0 15.0 100.0 40.0 100.0

For practical problems, only PM-PRO is used to perform optimization analysis because it has
better global stability than SQP. When comparing Figs. 13 and 16, one can see that the result is
reduced from 2.12 × 107 (Pa) to 1.48 × 107 (Pa) through the RBDO design, representing a reduction of
approximately 31.19%. Simultaneously, as a reliability constraint, the displacement response is reduced
from 3.89 × 10−4 (m) to 2.73 × 10−4 (m), representing a reduction of approximately 27.51% which can
be found in the comparison between Figs. 14 and 17. When substituting the initial value in Table 6
and the optimal values in Table 8 into Eq. (33), the resulting reliability levels are 0.9980 and 0.9991,
respectively, indicating that the optimized reliability level satisfies the requirements. Because there
are only one reliability constraint in this reliability optimization problem, the number of function
evaluations used to approximate the performance function in the reliability constraint is 3 × 8 +
28 × 5 = 164. It is noteworthy that the sample size used to fit each univariate function is 5. This
value is selected based on the empirical results obtained from several previous examples (i.e., when
the sample size is greater than 4, engineering accuracy can be guaranteed). It should be noted that the
RBDO of this AHPS is different from previous optimization problems, where the objective functions
are explicit functions that does not need require additional computation. The optimization objective
in the AHPS is an implicit function and additional calculations are required for each iteration. To
reduce the computational cost, the implicit optimization target is approximated utilizing Lagrange
interpolation and the concrete process is similar to that of the optimization constraint. The number of
function calls required to approximate the implicit objective function is 28 × 5 = 140 and the error is
approximately 1.22%. Therefore, the total number of function calls is 304 for the RBDO of the AHPS.
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Figure 16: Stress response after optimization

Figure 17: Displacement response after optimization
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6 Conclusions

In this study, the RBDO model is completely decoupled into a general constrained optimiza-
tion problem based on MDRM and WPEM, and Lagrange interpolation is used to approximate
a univariate function. Therefore, the RBDO problem is transformed into a general constrained
optimization problem. Because the transformed model is a proxy model, no additional computation is
required for optimization analysis following transformation. As a result, the computational cost of the
proposed method mainly depends on decoupling and the approximation of reliability constraints. In
the first example with a single reliability constraint, the number of function calls is 14 and the error is
5.92%. The number of function calls is only 38 for the second example with four reliability constraints.
The function calls are 89 and 164 for two finite element examples with 15 and 36 variables, respectively.
These examples fully demonstrated the excellent practicability, efficiency, and accuracy of the proposed
method.
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