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ABSTRACT

Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution
to environmental problems. Its attributes as a non-toxic, low-carbon, and economical substitute for conventional
cement concrete, coupled with its elevated compressive strength and reduced shrinkage properties, position it as
a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.
In this context, this study sets out the task of using machine learning (ML) algorithms to increase the accuracy
and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.
To achieve this goal, a new approach using convolutional neural networks (CNNs) has been adopted. This
study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162
geopolymer concrete mixes, all containing Class F fly ash. The selection of optimal input parameters is guided
by two distinct criteria. The first criterion leverages insights garnered from previous research on the influence of
individual features on compressive strength. The second criterion scrutinizes the impact of these features within the
model’s predictive framework. Key to enhancing the CNN model’s performance is the meticulous determination
of the optimal hyperparameters. Through a systematic trial-and-error process, the study ascertains the ideal
number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the
model’s robustness. The model’s predictive prowess is rigorously assessed via a suite of performance metrics and
comprehensive score analyses. Furthermore, the model’s adaptability is gauged by integrating a secondary dataset
into its predictive framework, facilitating a comparative evaluation against conventional prediction methods. To
unravel the intricacies of the CNN model’s learning trajectory, a loss plot is deployed to elucidate its learning rate.
The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.043384
https://www.techscience.com/doi/10.32604/cmes.2023.043384
mailto:ramujee_k@vnrvjiet.in
mailto:aliwagdy@gmail.com


1456 CMES, 2024, vol.139, no.2

concrete compressive strength. To maximize the dataset’s potential, the application of bivariate plots unveils
nuanced trends and interactions among variables, fortifying the consistency with earlier research. Evidenced by
promising prediction accuracy, the study’s outcomes hold significant promise in guiding the development of inno-
vative geopolymer concrete formulations, thereby reinforcing its role as an eco-conscious and robust construction
material. The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.
The results show that the prediction accuracy is promising and can be used for the development of new geopolymer
concrete mixes. The outcomes not only underscore the significance of leveraging technology for sustainable
construction practices but also pave the way for innovation and efficiency in the field of civil engineering.
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1 Introduction

Geopolymer concrete provides environmental protection by repurposing industrial by-products
such as low-calcium fly ash, blast furnace slag, etc., into efficient construction materials. In geopolymer
concrete, a tonne of fly ash or blast furnace slag is comparable in cost to a tonne of Portland
cement after subtracting the cost of alkaline solutions. In a study [1], it was found that one tonne
of low-calcium fly ash could be used to produce three metric tonnes of geopolymer concrete, which
would result in reduced emissions. A wide range of characteristics has also been studied [2–5],
with extremely high strengths and other outstanding qualities achieved [6–8]. However, substantial
scientific obstacles exist based on research findings, such as a better knowledge of setting reactions, the
interplay between mixed design elements, and short-term and long-term mechanical qualities [9,10].
The compressive strength of the geopolymer concrete is typically higher than that of Portland cement
concrete, so the mix design can target a lower compressive strength for a given application. The lower
compressive strength will reduce the materials needed and lead to a more cost-effective mix design.
Compressive strength information can be used to make initial decisions about the material’s properties
for engineering purposes. This data allows for more accurate estimates of the material’s properties
and how they will respond to stresses and forces. It also helps engineers to make more informed
decisions about which materials to use in their designs. Hence, it is critical to anticipate compressive
strength. Concrete’s compressive strength results from its mix-design proportions; therefore, it may
be anticipated based on the proportions of the various constituents. Progress has been made by
researchers who have studied the inclusion of waste ashes into geopolymers, including bottom ash,
ground granulated blast furnace slag, and fly ash, as well as microstructural analysis and its link to
compressive strength [11]. Traditional empirical relationships make it impossible to forecast and assess
the relationship between mix proportion and geopolymer material performance. Although several tests
might be employed to confirm the links, a lot of time and resources will have to be squandered. As a
result, employing soft computing approaches is a far superior choice.

Its ability to handle complex nonlinear structural systems under difficult conditions makes
machine learning the most successful artificial intelligence subfield. It enhances structural engineering
predictability. Machine learning (ML) trains a computer system to make accurate predictions. In
order to build any ML model, you must prepare a database, learn, and then evaluate the model. As a
computer system learns, it improves. Due to recent advances in ML methods, processing power, and
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access to large datasets, machine learning is becoming more prevalent in structural engineering. In
the study, neural networks were found to be the most used machine learning method for structural
engineering, approximately 56 percent of the time, and among neural network methods, artificial
neural networks accounted for 84 percent, followed by convolutional neural networks with 8% [12].
An analysis of machine learning approaches for compressive strength prediction revealed that artificial
neural networks were used in 43.9% of cases, statistical procedures in 12.3%, and support vector
machines in 11.4% of cases. Tree-based models, genetic methods, and fuzzy logic techniques are used
in 10.5, 9.6, and 5.3 percent of cases, respectively [13]. In addition to ANN (Artificial Neural Network)
models, gene expression interface models, and adaptive neuro-fuzzy models, geopolymer concrete has
also been examined [14]. Using an artificial neural network, models were developed to predict the
compressive strength, curing time, and heat of geopolymerization of high-calcium fly ash geopolymer,
and 189 data samples were used to train a multilayer neural network for fly ash evaluation. compressive
strength of fly ash-based geopolymer concrete [15,16].

The objectives of the research are outlined as follows:

• The primary objective is to create a predictive analytical methodology for forecasting the
compressive strength of geopolymer concrete.

• The study introduces an optimized deep learning model that utilizes convolutional neural
networks (CNNs).

• The research involves obtaining a dataset comprising the composition of 162 geopolymer
concrete mixes using Class F fly ash and their corresponding 28-day compressive strength
values.

• The research involves selecting an optimal set of input parameters for the predictive model
based on two criteria: the influence of each feature on both the compressive strength and the
model’s prediction performance.

• The use of bivariate plots to explore interactions between various components of geopolymer
concrete mix design and compressive strength adds a valuable dimension to the analysis.

2 Related Works

Composite geopolymer slump and compressive strength were predicted using a back propagation
neural network, and the results were compared to the random forest and k-closest neighbor algorithm
models [17], A unique mix design strategy for FAGC (fly ash geopolymer concrete) that enables high
strength and outstanding workability was developed and validated [18]. The compressive strength
of fly ash geopolymer concrete was estimated using supervised machine learning methods such as
bagging regressor, AdaBoost regressor, and decision tree [19]. To forecast the strength of geopolymer
concrete containing 100% waste slag aggregates, both a particle swarm optimization-based adaptive
network-based fuzzy inference system and one that is based on a genetic algorithm was employed
[20]. Multi-expression programming and gene expression programming models were used to predict
strength, and their accuracy was validated using statistical checks and an external validation parameter
and later compared to linear regression and non-linear regression models [21]. The correlation of
compressive strength with various mechanical properties was determined, and later equations for
properties such as strain, Poisson’s ratio, and flexure strength corresponding to peak compressive
strength were derived by utilizing a dataset of 126 points [22]. Geopolymer concrete mix proportions
were established and experimentally validated using the Bayesian regularization algorithm, a scaled
conjugate gradient technique, and the Levenberg-Marquardt algorithm, as well as contour plots [23]
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and flexural, shear, and torsion strength parameters of fly ash geopolymer concrete, were assessed
and established using past experimental data as well as those from several standard design codes
such as AS3600 and ACI (American Concrete Institute) [24]. All the attempts produced excellent
results, but there were a few issues, such as a lack of generalization when sample sizes were small,
as well as a high computing cost when using an artificial neural network and the fuzzy logic method,
which required tuning to produce the desired results. Convolutional neural networks (CNNs) represent
a relatively recent advancement in the field of machine learning, demonstrating their capability
to outperform several other methodologies. Notably, CNNs have been employed to predict the
compressive strength of recycled concrete, exhibiting impressive precision and generalization in this
context [25]. Furthermore, CNNs have been harnessed to determine the compressive strength of fiber-
reinforced concrete under elevated temperatures [26], and an ensemble prediction model, incorporating
a CNN, was developed for concrete compositions containing Ground Granulated Blast Furnace
Slag (GGBFS) and Recycled Concrete Aggregate (RCA) components [27]. Predicting the strength of
concrete mixtures incorporating diatomite and iron ore tailings was also accomplished using a CNN-
based approach [28]. To enhance computational efficiency, a lightweight deep CNN was engineered
[29]. Leveraging an extensive dataset encompassing 380 concrete mix groups, a CNN was proposed
and trained, showcasing its versatility across varied applications [30]. Furthermore, a trained deep-
learning CNN model was adeptly employed to estimate the workability of diverse concrete grades
[31]. These instances collectively illustrate the versatility and effectiveness of convolutional neural
networks across a spectrum of concrete-related predictions and analyses. However, research shows
that the convolutional neural network technique has certain limitations. However, research shows that
the convolutional neural network technique has certain limitations. Some difficulties that one may
have while using this technique include attempting to apply the correct hyperparameters; decoding
the “black box” nature of this model to understand how it works; and avoiding overfitting in the
event of inadequate data [12]. These limitations can also be found in other complicated machine-
learning methods. Some scholars have attempted to address these concerns by employing Shapley’s
additive explanations [32], presenting improved data imputation methodologies [33], and employing
a game theory approach [34]. This research focused on building an optimized prediction model using
a convolutional neural network on geopolymer concrete made with low-calcium fly ash. In addition
to the forecasting, the influence of several characteristics, including the composition of fly ash, was
investigated, which had only been done in a few earlier studies [35–37]. Fig. 1 provides a graphical
overview of the methodology flowchart used in this study.

Figure 1: An outline of the study design in graphic form
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2.1 Proposed Predictive Analytical Model
This section introduces the proposed convolutional neural network model, describes the model

training technique, and discusses the performance metrics used to judge the model’s performance.

2.2 Structure of the Proposed Model
There are four layers in the CNN model we propose, namely the output layer, the flattened

layer, the one-dimension convolutional layer, and the fully connected layers. The architecture of the
suggested model is shown in Fig. 2.

Figure 2: Illustration of the proposed CNN model’s architecture

2.2.1 The One-Dimension Convolutional Layer

This layer is primarily in charge of collecting the connections between input parameters using
multiple convolutional kernels (the value of which is indicated by p). By utilizing multiple kernels, the
model is able to pick up as many trends as feasible and look into further ways to enhance compressive
strength forecasting. Each convolutional kernel slides across the entire input feature vectors with a
particular stride u for each slide, calculating a weighted sum over all the q components the kernel
covers for each slide. The values used for p (no. of convolution layer kernels) and q (dimension of the
kernel) are discussed further. The value of u is set to 1 to allow the kernel to discover as many locally
existing patterns as feasible, as bigger numbers can result in the kernel losing too much information
and slipping through too many features. Within the convolutional kernel, the RELU (rectified linear
activation unit) function functions as the activation function. RELU was chosen because the needed
compressive strength is a positive real number and RELU can separate negative interim calculation
results that influence the outcome. Fig. 2a illustrates the RELU function. For the specified input
feature vector z with n dimensions, this layer’s final output for the Pth convolutional kernel is shown
below:

F = [
f 1, . . . . . . , f p

]
, F ∈ R(n−q+1)×P (1)

In Eq. (1), F is a set of feature vectors generated by p convolutional kernels. The size of the matrix
is (n-q+1, P). This type of matrix holds the information from all the retrieved feature patterns that
locally exist for an input z and can be used as a more edifying feature in succeeding layers.
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2.2.2 The Flattening Layer

Matrix F is flattened into a 1-d feature vector. Later it passed to the fully connected layers to
retrieve further hidden patterns. The flattened layer’s corresponding feature vector Ff is calculated as
follows:

Ff =
⎡
⎢⎣

f 1

...
f p

⎤
⎥⎦ , Ff ∈ R(n−q+1)×P (2)

2.2.3 The Fully Connected Layers

Because of the input parameters and compressive strength’s extremely nonlinear relationships,
only superficial patterns are present in the flattened vector Ff, making it impossible to infer compres-
sive strength from it. To solve this issue, A deep latent feature vector is obtained by sending Ff across D
number of fully connected layers in order to simulate and learn the appropriate non-linear connection.
Each fully connected layer’s intermediate results are calculated as follows, where dth fully connected
layer has gd neurons.

Fd =

⎡
⎢⎢⎢⎢⎢⎢⎣

Fd
1
...

Fd
i
...

Fd
gd

⎤
⎥⎥⎥⎥⎥⎥⎦

, Fd ∈ Rgd , 1 ≤ d ≤ D (3)

Fd
i = RELU

(gd−1∑
j=1

(wd
i,j × Fd−1

j )

)
(4)

wd
i = {

wd
i,j

}gd−1

j=1
(5)

Here, for the ith neuron within dth fully connected layer, wd
i is an array of trainable weights which

are denoted by wd
i,j. The activation function chosen for this step is Rectified Linear Unit (RELU). The

activation function chosen for this step is the Rectified Linear Unit (RELU) shown in Fig. 3a.

2.2.4 Output Layer

The final compressive strength prediction is carried out by another fully connected layer with
a sigmoid activation function. Fig. 3b illustrates the sigmoid activation function. The estimated
compressive strength is calculated by:

CSpred = sigmoid

(
gd∑
j=1

(w0
j × FD

j )

)
(6)

w0 = {
w0

j

}gd

j=1
(7)

Here, w0 represents the output layer’s trainable weights. Because of the sigmoid function’s unique
properties, the estimated compressive strength (CSestm) values will be in the [0,1] range. Later, for model
evaluation, by employing the normalizing function’s inverse operation, these values are normalized to
their actual scale.
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Figure 3: Illustration of activation function: (a) RELU activation function (b) Sigmoid activation
function

2.3 Training of the Model
2.3.1 Loss Function

A binary cross-entropy loss function was utilized to calculate the loss generated during the
prediction process between its real and estimated values. The sigmoid activation function, being the
only function compatible with this loss function, was employed. In the following set of formulas,
the loss value between real compressive strength values and estimated compressive strength values
is determined as shown in the former expression. The latter formula in the set of formulas below is
used to compute the overall loss by calculating the mean of individual loss Lz of every estimated value
for the input z.

Lz = −CSreal log (CSestm) − (1 − CSreal) log(1 − CSestm) (8)

L = 1
N

∑
z

Lz (9)

To improve the model weights based on the above loss, Adaptive Moment Estimation (Adam)
is utilized, which is one of the most frequently used optimizers. Adam’s ability to asynchronously
change learning rates for parameters has been proven to perform successfully in practice with the
default configuration. The number of epochs E for learning and Adam’s dynamic rate of learning are
two of the many hyperparameters, and optimal values of epochs are investigated and examined in the
upcoming sections.

2.3.2 k-Fold Cross-Validation

Given that the division of training and testing databases and the arbitrary assignment of trainable
weights can affect training and evaluation results, a cross-validation strategy is employed to train and
evaluate the model rather than a fixed training-testing split. This method can minimize the impact
of randomization and improve the visualization of the model’s predictive accuracy. The technique of
k-fold cross-validation is a well-known method for assessing the performance of a machine learning
algorithm on a database. The database is divided into k number of non-overlapping folds using the
cross-validation technique of k-fold. One of the k-folds is chosen as the held-back test set, whereas the
rest are utilized collectively as the training dataset. After fitting and assessing k models on k hold-out
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test sets, the average performance is provided. The most common choices for the value of ‘k’ are 3,
5, and 10, with 10 being the most frequently used value in many studies to evaluate models. This is
because the research was conducted, and k = 10 was discovered to give a suitable trade-off between
cheap computing cost and low bias in an assessment of model performance [12,13]. On the contrary,
some researchers have also concluded that a model with 5 folds (k = 5) has also shown acceptable
performance, particularly in saving time and tackling computational complexity. The question is
what value of k to utilize for CNN model evaluation on the geopolymer dataset to attain the best
possible performance. The approach chosen in this study to answer this question was to compare the
performance of the model, using a certain database, for varying k values. k’s value would range from
2 to 30.

2.3.3 Setting of the Hyperparameters

The proposed model’s hyperparameters are as follows: kernel dimension; number of neurons in
the completely connected layer; number of kernels in the convolution layer; number of fully connected
layers; training epochs, learning rate, and the activation function. Because a hyperparameter governs
the learning process, its values directly affect other model parameters like biases and weights and thus
how well the model works. The convolution layer’s number of kernels was set to 32, the number of fully
connected layers was 2, the kernel dimension to 6 the number of neurons in the 1st fully connected layer
was 128 and the 2nd was 64, and the learning rate was set to 0.01, and Rectified Linear Unit (RELU)
was selected as the activation function for the fully connected layers. These values of hyperparameters
were chosen on the basis of previous work which used a similar set of hyperparameters whereas the rest
were decided by utilizing a trial-and-error approach. The number of times the learning algorithm will
loop through the entire training dataset is determined by the hyperparameter known as the training
epoch. Any positive integer between one and infinity can be chosen. The most typical values are 10,
100, 500, and 1000. The training epochs were not chosen based on studies; three empirical values were
chosen for them, which were 500, 200, and 5000, and then, utilizing the cross-validation technique,
the performance of the model under all possible combinations of training epoch value and k-fold
value as mentioned in the previous section was studied. In total, 87 configurations were tested on each
dataset, and the combination that produced the least average root mean square error was considered
the optimum combination.

2.4 Performance Metrics
Four performance metrics were used to assess how effectively the proposed CNN model functions,

which are, the mean absolute error (MAE), mean absolute percentage error (MAPE), correlation
coefficient (R), and root mean square error (RMSE). R determines whether the real and estimated
compressive strength values have a linear relationship. While Mean Absolute Error takes the square
of the errors, RMSE provides an error measure in the target variable’s unit. Instead, it just estimates
the absolute value of the errors and then averages them. MAE, like RMSE, does not square the
units, making the findings more interpretable. MAPE expresses the percentage of real and estimated
values’ differences. By presenting the mistake as a percentage, it provides a better grasp of how far
off the forecasts are in relative terms. In general, a larger R-value suggests better model prediction
performance, while a lower value indicates better performance for RMSE, MAE, and MAPE. The
following is the calculation formulas for the four indicators mentioned above:

R =
∑N

i=1(yi − y)(ŷi − ỹ)∑N

i=1(yi − y)2(ŷi − ỹ)2
(10)
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RMSE =
√∑N

i=1(yi − ŷi)2

N
(11)

MAE =
∑N

i=1

∣∣yi − ŷi

∣∣
N

(12)

MAPE =
∑ |yi−ŷi|

yi
× 100

N
(13)

In the above-mentioned formulae, yi and ŷi are the real and predicted compressive strengths in a
database. Correspondingly, y is the average value of the real strength value, ỹ is the average value of
the estimated strength value; and N is the entire data quantity.

3 Materials and Methods
3.1 Data Acquisition and Data Pre-Processing

A dataset was acquired from the work of Toufigh et al. [33]. In their study, data was collected from
papers published from the years 2000 to 2020 [38–41]. This dataset contained one hundred and sixty-
two mixed-design values. Table 1 enlists the influential parameters affecting the 28-day compressive
strength of fly ash-based geopolymer.

Table 1: Input parameters of the acquired dataset of geopolymer concrete (GPC)

S. no. Parameter Units

1 SiO2 in FA (Fly ash) %
2 Na2O in FA %
3 CaO in FA %
4 Al2O3 in FA %
5 Fe2O3 in FA %
6 Fly ash (FA) kg/m3

7 Percentage of Superplasticizer (SP) kg/m3

8 Sodium hydroxide solution (SH) kg/m3

9 Sodium silicate solution (SS) kg/m3

10 Fine aggregate (Fagg) kg/m3

11 Coarse aggregate (Cagg) kg/m3

12 Extra water (EW) kg/m3

13 Sodium hydroxide concentration (SH concentration) Molarity
14 Percentage of silicon dioxide in sodium silicate %
15 Percentage of silicon dioxide in sodium oxide %
16 Curing time Hr
17 Curing temperature °C

By studying the fly ash constituents, it could be deduced that the fly ash used in all these mix
designs had a low amount of calcium oxide, which makes it class F fly ash. Table 2 describes the data
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in the data frame concerning the concrete studied in this inquiry. Each column’s description contains
details such as std (standard deviation), count (number of non-empty values), mean (average value),
75% (75th percentile), 50% (50th percentile), 25% (25th percentile), and max (maximum value) and
min (minimum value) with percentile indicating the proportion of values that are smaller than the
stated percentile.

Table 2: Statistical information about the dataset obtained from GPC

Index Count Mean Std Min 0.25 0.5 0.75 Max

SiO2 in FA 162 56.49 4.59 47.8 53.36 59.7 59.7 70.3
Na2O in FA 162 0.41 0.54 0 0.04 0.31 0.45 2.12
CaO in FA 162 1.95 1.23 0.03 1.34 2.1 2.1 5.57
Al2O3 in FA 162 27.14 2.09 20.7 26.49 28.21 28.36 34.75
Fe2O3 in FA 162 7.77 4.29 1.4 4.57 4.57 10.86 17.4
FA 162 372.68 62.81 255 312.5 400 420 500
Cagg 162 1186.12 109.03 785 1170 1204 1204 1591
Fagg 162 633.26 107.65 318 623 647 648 1100
SH 162 50.63 14.46 25 41 49 57 129
SS 162 116.38 23.7 48 103 114 127.75 204
EW 162 19.03 19.61 0 0 15.5 33.75 86
SP 162 7.09 6.14 0 6 6 7 28
SH concentration 162 11.45 2.09 8 10 10 14 16
% of SiO2 in SS 162 32.46 2.9 23 29.4 34.64 34.64 35.01
% of Na2O in SS 162 15.52 1.37 9.1 14.7 16.27 16.27 16.84
Curing time 162 26.37 8.96 24 24 24 24 96
Curing temperature 162 82.93 16.04 60 70 80 100 100
Compressive strength 162 43.14 10.57 17 36 42 48.89 74

The data frame was also examined for any null values, and it was determined that no null values
existed. While analyzing the data, outliers were discovered in a couple of the features. Although it
is said that outliers may cause elevated error rates, no attempt has been made to delete them since
some scholars believe that their removal may result in bad outcomes [42]. One of the distribution
visualization techniques used to comprehend the distribution of the variables was a combination of
kernel density estimate (KDE) plots and histograms. Distribution visualization techniques provide
answers such as an observation’s range, central tendency, degree of skewness in one direction, etc.
KDE plots provide numerous benefits: the data’s most important aspects are easily discernible (skew,
bimodality, central tendency). However, there are times when KDE fails to accurately display the
underlying data. This is due to KDE’s logic assuming that the underlying distribution is continuous
and boundless. If there are close observations (for instance, minimal non-negative values of a variable),
the KDE contour might extend to unrealistic values. One of the most prevalent methods to display
a distribution is with a histogram. A histogram is a bar graph in which the axis indicating the data
variable is segmented into distinct segments. The height of the corresponding bar indicates how many
observations occurred inside each segment. The KDE shows that there are surges near numbers,
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whereas the histogram shows a much more cluttered distribution. As a result, as a compromise, these
two approaches can be combined as depicted in Fig. 4.

(a) SiO2 in FA distribution (b) Na2O in FA distribution (c) CaO in FA distribution

(d) Al2O3 in FA distribution (e) Fe2O3 in FA distribution (f) FA distibution

(g) Coarse Aggt distribution (h) Fine Aggt distribution (i) SH distribution

Figure 4: (Continued)
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(j) SS distribution (k) Extra water distribution (l)Superplasticizer distribution 

(m) Conce of SH distribution (n) SiO2 in SS distribution (o) Na 2O in SS distibution

(p) Curing time distribution (q) Curing temp distribution (r) Comp strength distribution 

Figure 4: KDE distribution of various features the GPC dataset

Features such as silicon dioxide in fly ash, the content of fly ash, and curing temperature
were symmetric negatively. Positively symmetric sodium silicate solution and sodium hydroxide
concentration Aluminum dioxide in fly ash, coarse aggregate, and the percentage of silicon dioxide in
sodium silicate curing temperature was moderately negatively skewed. Fine aggregate, extra water, and
compressive strength were moderately positively skewed. The percentage of silicon dioxide in sodium
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oxide seemed highly negatively skewed. Sodium oxide in fly ash, calcium oxide in fly ash, iron oxide
in fly ash, sodium hydroxide solution, superplasticizer, and curing time were highly positively skewed.
Fig. 5 is an illustration of the Spearman correlation matrix.

Figure 5: A heatmap of Spearman correlations for the features of the acquired GPC datasets

The relationship between each of the possible value pairings is depicted in the matrix. It is an
effective tool for analyzing large volumes of data and discovering and visualizing data trends. The
correlation matrix is made up of columns and rows, each focusing on a different attribute. The columns
and rows are all arranged in the same order. The correlation coefficient is found in each cell of a table.
The results confirm that the correlation between the percentage of silicon dioxide in sodium silicate
and the percentage of silicon dioxide in sodium oxide was positively and highly related, whereas the
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correlation between coarse aggregate & fine aggregate and iron oxide in fly ash & silicon dioxide in fly
ash was negatively and highly related, and the other correlation was not significant enough.

3.2 Input Parameters
Some studies claim that using a large dataset formed of key input features to train a model

outperforms one trained with fewer input parameters. Some also say that explainable features, i.e.,
attributes grouped by engineers based on their influence on the development of concrete strength that
is already known or potentially discoverable through research, are well-suited for prediction. Input
feature groups were created for this study. While some of the input features were engineered from the
initial features, others were taken directly from Table 1.

Group 1: Features with a well-known and significant impact on geopolymer concrete’s strength.

Group 2: Features pertaining to fly ash’s composition.

Group 3: Ratios utilized by various researchers to predict geopolymer concrete’s strength.

Group 4: The top 12 features from groups 1, 2, and 3 that performed well across three feature-
importance methods i.e., Random Forest Regression Feature Importance, CART (Classification and
Regression Tree) Regression Feature Importance, and XGBoost Regression Feature Importance. The
scores of these methods for every feature can be found in Appendix A. Scores in feature importance
techniques are assigned to input features chosen for the predictions that indicate their relative
importance in predicting. They help to highlight the relevance of data, provide insight about the model
being used by conveying which features are most important for an efficient prediction, and better
the model by eliminating features with low scores which indirectly help fasten the process and enhance
the process. Table 3 shows various input parameter groups of datasets. Based on feature importance,
the input parameters that are bound to greatly influence the prediction are grouped as G4 and
tabulated in Table 4.

Table 3: Various input parameters groups of datasets

Group S. no. Parameter Units

G1

1 FA kg/m3

2 SH kg/m3

3 SS kg/m3

4 SH concentration Molarity
5 % of SP %
6 Curing time hr
7 Curing temperature °C
8 Total H2O kg/m3

9 Total H2O/FA (mass ratio) ∼
10 Total H2O/Total solids (mass ratio) ∼
11 Fine aggregate/Total aggregate (mass ratio) ∼
12 Coarse aggregate/Total aggregate (mass ratio) ∼
13 Total solids/Total aggregate (mass ratio) ∼
1 % of SiO2 in FA %
2 % of Na2O in FA %

(Continued)
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Table 3 (continued)

Group S. no. Parameter Units

3 % of CaO in FA %
G2 4 % of Al2O3 in FA %

5 % of Fe2O3 in FA %
6 % of SiO2 in SS %
7 % of Na2O in SS %

G3

1 AA/FA (mass ratio) ∼
2 SS/SH (mass ratio) ∼
3 superplasticizer/FA (mass ratio) ∼
4 Total H2O/Total Na2O (molar ratio) ∼
5 Total Na2O/SiO2 in AA (molar ratio) ∼
6 Total SiO2/Na2O in AA (molar ratio) ∼
7 SiO2/Al2O3 in FA (molar ratio) ∼
8 SiO2/Fe2O3 in FA (molar ratio) ∼
9 Na2O/Al2O3 in FA (molar ratio) ∼
10 Al2O3 in FA/Na2O in AA (molar ratio) ∼

Table 4: Group formed of input parameters chosen based on feature importance (G4)

S. No. Parameter Units

1 FA kg/m3

2 SH kg/m3

3 SS kg/m3

4 Curing time hr
5 Total H2O kg/m3

6 Total H2O/FA (mass ratio) ∼
7 Total H2O/Total solids (mass ratio) ∼
8 Total solids/Total aggregate (mass ratio) ∼
9 % of CaO in FA %
10 AA/FA (mass ratio) ∼
11 Total H2O/Total Na2O (molar ratio) ∼
12 Total SiO2/Na2O in AA (molar ratio) ∼

Table 5 shows combinations of various groups of datasets. The model was trained using each
of these combinations, and its performance for various epoch values and k values was assessed.
Combinations’performance was judged based on error-related performance metrics, mainly root mean
square error (RMSE).
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Table 5: Combinations of various groups of datasets

Combinations Groups involved No. of input parameters

C-1 G1+C.S∗ 13
C-2 G1+G2+C.S∗ 20
C-3 G1+G3+C.S∗ 23
C-4 G1+G2+G3+C.S∗ 30
C-5 G4+C.S∗ 12

∗C. S –28-day compressive strength

3.3 Generality of Model
To examine the adaptability of the CNN model, a secondary dataset was acquired and used in

the model. This dataset, generated through the work of I.C. Yeh of the University of California,
1030 compositions and their corresponding concrete strength values for high-strength concrete mixes.
Many researchers have used this dataset to study the data in various ways and test out new machine
learning techniques. Table 6 enlists the input parameters for estimating high-strength concrete mixes’
compressive strength.

Table 6: Input parameters of the secondary dataset acquired

S. no. Parameter Units

1 Coarse aggregate kg/m3

2 Superplasticizer kg/m3

3 Fly ash kg/m3

4 Fine aggregate kg/m3

5 Water kg/m3

6 Blast furnace slag kg/m3

7 Age day
8 Cement kg/m3

4 Results and Discussion
4.1 Influence of No. of k-Folds and Epochs

All the combinations mentioned in Table 5 were analyzed in the CNN model for each of the 87
combinations mentioned previously. Fig. 6 represents k-fold cross-validation results for combination
1 for all the epoch values.

Each epoch value has been represented in each graph by a distinct color. Fig. 5a depicts the
variation of the correlation coefficient (R) across k values for the three epoch values, demonstrating
and deducing that the R-value increases as the k-fold value increases, and the variation of R across k
values follows the same trend for all three epoch values. Among the three, the epoch value of 5000,
shows the highest R-value for the k-fold value of 29. Overall, the epoch 5000 trend has the highest
R-value across all folds. Figs. 5b–5d depict the variation of root mean square error (RMSE), mean
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absolute error (MAE), and mean absolute percentage error (MAPE), for the chosen 3 epoch values
across k values. All three show that the combination which was analyzed for 26 k-folds produced the
least amount of error for the epoch value of 5000. Finally, we can deduce that the optimal value of
the k-fold lies in the range of 25 to 30 when the range is considered 2 to 30, and that this combination
performs better when the epoch value is 5000. Fig. 6 illustrates the variation of the RMSE value of
each fold when the dataset of combination 1 was analyzed in the CNN model for 5000 epochs and 29
k-folds. The average RMSE value for this attempt, 3.083, is highlighted at the end, as shown in Fig. 7.
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Figure 6: k-fold cross-validation results for the combination 1 for all the epoch values: (a) Variation
of R (b) Variation of RMSE (c) Variation of MAE (d) Variation of MAPE

Also, it was observed that the computational time for combination 4 was the highest since it had
the most input parameters as mentioned in Table 5. This also applied to the increasing number of folds
or epochs.
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Figure 7: k-fold cross-validation results for 5000 epochs and 29 as the k value for the combination 1

4.2 Influence of Input Parameter
As mentioned in Section 3.3, the effects of the numerous input parameters and their variety were

studied. As listed in Table 5, the 5 combinations of input parameters were considered and analyzed
in the CNN model for epoch values of 500, 2000, and 5000 for k-fold values ranging from 2 to 30.
Table 7 depicts the performance of each combination of datasets for a randomly selected combination
of epoch and k-fold value and the order of precedence.

Table 7: Performance metrics of the model based on various combinations

E K Combination Performance metrics
R RMSE (MPa) MAE (MPa) MAPE (%)

500 3 C-1 0.745 6.899 5.241 12.760
C-2 0.740 6.887 5.227 12.936
C-3 0.734 6.902 5.259 12.921
C-4 0.739 6.872 5.101 12.480
C-5 0.769 6.582 4.909 12.087
Order of precedence 5-1-2-4-3 5-4-1-2-3 5-4-1-2-3 5-4-1-3-2

2000 10 C-1 0.867 4.843 3.744 9.403
C-2 0.836 5.264 3.947 9.644
C-3 0.818 5.452 4.266 10.759
C-4 0.829 5.133 3.816 9.664
C-5 0.832 5.177 3.903 9.539
Order of precedence 1-2-5-4-3 1-4-5-2-3 1-4-5-2-3 1-5-2-4-3

5000 28 C-1 0.885 3.180 2.575 6.283
C-2 0.898 3.334 2.794 7.039
C-3 0.862 3.120 2.555 6.414
C-4 0.865 3.364 2.708 6.607
C-5 0.862 3.675 2.923 7.287
Order of precedence 2-1-4-3-5 3-1-2-4-5 3-1-4-2-5 1-3-4-2-5
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The results convey that combination 1 outperforms the others. The performance metrics of
combination 1 improved as the epoch and k-fold values increased. Apart from that, combination 5,
which consisted of parameters chosen based on feature importance, performed inconsistently over
the range of epoch and k-fold values considered. Its performance was depleted as k-fold and epoch
values increased. From studying the performance of each combination in terms of the influence of the
number of variables, in agreement with the results of De-Cheng Feng [43], it can be deduced that as the
model’s performance depletes the number of variables increases. To summarize, it could be said that
the important parameters in Group 1 influence the model to a large extent compared to other groups,
such as Group 2 and Group 3, which contain a composition of fly ash and alkali activators and various
ratios pertaining to the components of the concrete mix. Also, the novel approach of building a group
of input parameters with the help of feature importance did not pan out as a significantly good result,
as the performance of that combination performed inconsistently as mentioned before.

A learning curve uses experience to measure changes in learning performance over time. It
indicates how well the model learns when plotted against the training dataset and how well it
generalizes when plotted against the validation dataset. Models are evaluated and selected based
on model performance. B. Accuracy. The optimization curve is calculated according to parameter
optimization. B. You incur losses. Loss curve behavior was examined for epoch values of 50, 100, and
200 and k-fold values of 5, 10, and 25. It has been observed that the learning rate improves as the
epoch value increases because the loss decreases faster with increasing epoch value. When a higher
k-fold value was chosen, the loss value quietly decreased after each epoch.

4.3 Comparative Study
4.3.1 Performance Evaluation

A comparative study was done where the performance metrics of various traditionally used models
were compared to the CNN model for the dataset of combination 1. Other than the CNN model,
various models were built, such as the Random Forest regression model, Decision Tree Regression
model, Linear Regression model, Ridge Regression model, Gradient Boosting Regression model,
AdaBoost Regression model, and an ensemble model (containing the aforementioned models). Except
for the CNN model, all the models divided the dataset in a 9:1 ratio, with 90% of the dataset used for
training and 10% utilized for testing. This ratio was chosen due to the work of Hamza Imran, who
had deduced from his work that the 9:1 ratio as the train-test split ratio would produce the best results
[30]. Table 8 presents the performance of each of the models, which concludes that for this dataset, the
CNN model outperforms the other models as well.

Table 8: Performance metrics of the various models for the acquired GPC dataset

Models Performance metrics
R RMSE (MPa) MAE (MPa) MAPE (%)

CNN (C-1; E = 5000; K = 29) 0.939 3.083 2.509 6.222
Decision Tree Regression 0.838 5.131 3.980 8.670
Random Forest Regression 0.878 4.455 3.677 8.271
Linear Regression 0.615 7.909 6.167 14.478
Ridge Regression 0.555 8.503 6.159 14.532
Gradient Boosting Regression 0.906 3.916 3.154 7.534

(Continued)
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Table 8 (continued)

Models Performance metrics
R RMSE (MPa) MAE (MPa) MAPE (%)

AdaBoost Regression 0.753 6.336 5.142 12.091
Ensemble model 0.819 5.429 4.151 9.656

Note: The values in bold correspond to the most effective model.

The gradient-boosting regression model seemed to have performed much like the CNN model.
Models such as ridge regression, linear regression, and AdaBoost regression performed the poorest.
To check the generality of the CNN model as mentioned in Section 3.3, the above-mentioned process
was done with the secondary dataset acquired. Table 9 depicts the performance of each of the models,
which concludes that for this dataset, the CNN model outperforms the other models as well.

Table 9: Performance metrics of the various models for the secondary dataset

Model Performance metrics

R RMSE (MPa) MAE (MPa) MAPE (%)

CNN (C-1; E = 5000; K = 29) 0.977 3.508 2.581 9.058
Decision Tree Regression 0.788 7.665 4.389 13.816
Random Forest Regression 0.888 5.576 3.256 10.974
Linear Regression 0.603 10.474 8.477 31.506
Ridge Regression 0.603 10.474 31.506 8.477
Gradient Boosting Regression 0.876 5.851 3.951 11.900
AdaBoost Regression 0.763 8.091 6.492 26.890
Ensemble model 0.814 7.168 5.315 19.222
Note: The values in bold correspond to the most effective model.

The gradient-boosting regression model seemed to have performed very similarly to the CNN
model. Models such as Linear regression, Ridge regression, and AdaBoost regression performed the
poorest.

4.3.2 The Score Analysis

The technique of score analysis was applied to compare the performance of various models in a
simple manner. Using this technique, the model is assigned a score of x. When models are placed in
descending order depending on their performance in each metric, x represents the position obtained
by each computational model. The maximum value of x would be the total number of computational
models used in the performance comparison (maximum value of x is equal to 8 here), which would
be assigned to the model with the best performance based on that metric, and the minimum would
be 1, for the model with the worst performance in that particular metric. Each computational model
would acquire a separate score for its performance for each evaluation metric, i.e., R, RMSE, MAE,
and MAPE. Following that, the total score corresponding to each of the models is derived by adding
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their separate scores [44,45]. The information regarding the score analysis performed on the models
has presented in Table 10.

Table 10: Classification of performance metrics and score analysis

Model Performance metrics Total score

R RMSE (MPa) MAE (MPa) MAPE (%)

CNN (C-1; E = 5000; K = 29) 8 8 8 8 32
Decision Tree Regression 5 5 5 5 20
Random Forest Regression 6 6 6 6 24
Linear Regression 2 2 1 2 7
Ridge Regression 1 1 2 1 5
Gradient Boosting Regression 7 7 7 7 28
AdaBoost Regression 3 3 3 3 12
Ensemble model 4 4 4 4 16

The results suggest that the CNN model used in this study gained the best score of 32. Other
models whose performance almost matched the performance of the CNN model were the Random
Forest Regression model, Gradient Boosting Regression model, and Decision Tree Regression model.
The Ridge Regression model performed the least among all, with a score of 5. Fig. 8 illustrates the
findings of the score analysis as a radar diagram. It easily demonstrates the precedence of the CNN
model.
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Figure 8: Visualization of score analysis using a Radar diagram
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4.3.3 Generality of the Model

To check the generality of the CNN model, the above-mentioned process was repeated with the
secondary dataset acquired. Table 11 depicts the performance of each of the models, which clearly
concludes that the CNN model performs better than the rest of the models for this dataset as well.
This result indicates the CNN model’s consistent efficacy and generality in forecasting the compressive
strength of not just geopolymer concrete but also high-performance concrete.

Table 11: Performance metrics of the various models for the secondary dataset

Model Performance metrics

R RMSE (MPa) MAE (MPa) MAPE (%)

CNN (C1; E = 5000; K = 29) 0.977 3.508 2.581 9.058
Decision Tree Regression 0.788 7.665 4.389 13.816
Random Forest Regression 0.888 5.576 3.256 10.974
Linear Regression 0.603 10.474 8.477 31.506
Ridge Regression 0.603 10.474 31.506 8.477
Gradient Boosting Regression 0.876 5.851 3.951 11.900
AdaBoost Regression 0.763 8.091 6.492 26.890
Ensemble model 0.814 7.168 5.315 19.222
Note: The values in bold correspond to the best performing model.

4.3.4 Predictability

To test the predictability of the model, the true values and the predicted values were compared. As
shown in Fig. 9, it was found that the percentage variation between both ranges from 0.30% to 4.84%.
Also, the difference in the values did not exceed 2.16 MPa. Fig. 9 is a software screenshot showing the
output true and anticipated values.
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4.4 Loss Curve
A loss curve was plotted to understand the training process and the way the convolutional neural

network learns the data and optimizes itself. The loss (calculated as mentioned in Section 2.2.1) was
plotted across every epoch of the data set of combination 1, which was trained with the k-fold value
of 29 and for 5000 epochs. The advantage of plotting loss across epochs rather than every iteration or
fold is that loss will be calculated for every data point instead of producing a loss value for a subset
chosen in that fold. The curve’s form in Fig. 10 represents a high learning rate since the loss seemed
to decay fast with the increment in epochs.
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Figure 10: Representation of loss against epochs

4.5 Effect of Parameters on Compressive Strength
This section examines the numerous trends and interactions between variables. Fig. 11 shows

scatter plots generated among different features. The correlation between fly ash content and its
corresponding compressive strength is depicted in Fig. 11a. The addition of fly ash appears to have
a small favorable effect on compressive strength. Strength appears to be strong in the zone where
fly ash concentrations range from 400 to 450 kg/m3. Fig. 11b depicts the relationship between sodium
hydroxide concentration and compressive strength. The greatest compressive strength is found at 14 M.
This result is consistent with previous work [2]. Fig. 11c shows the relationship between the percentage
of superplasticizer in fly ash and compressive strength. It was discovered that there is no substantial
change in strength when the percentage changes. However, the maximum value is attained at a rate
of between 1% and 2%. Fig. 11d depicts the influence of curing temperature on compressive strength.
There is no discernible trend across the curing temperature range. Fig. 11e depicts the variation in total
water and compressive strength. Water harms compressive strength, as was recognized. This result is
consistent with previous work [2]. The correlation between compressive strength and total water/total
solids is shown in Fig. 11f. It was obvious that as the ratio increased, the strength diminished. This
outcome is in line with an earlier study [5]. The correlation between compressive strength and SS/SH
(mass ratio) is shown in Fig. 11g. It has been observed that as the ratio rises, so do the strength levels.
Fig. 11h depicts the variation in total water, total sodium oxide, and compressive strength. As stated
in previous studies, strength appears to decrease as the ratio increases [4,5]. The correlation between
total sodium oxide and silicon dioxide in the alkali activator and compressive strength is shown in
Fig. 11i. It was found that compressive strength is slightly improved by raising the ratio. Fig. 11j depicts
the influence of an alkali activator/binder (fly ash) on compressive strength. Agreeing with what was
stated in the previously done work, as the ratio increases, the strength decreases [4]. It appears to be
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greatest when the ratio is between 0.3 and 0.4. Fig. 11k depicts the variation in total water/fly ash (mass
ratio) and compressive strength. The strength of the concrete rapidly decreases as the ratio rises. This
result is consistent with previous work [2]. Fig. 11l depicts the variation in total solids/total aggregates
(mass ratio) and compressive strength. Some of the highest values are found to be in the region of 0.25
to 0.3 of the ratios. The influence of the percentage of silicon dioxide and aluminum dioxide on the
compressive strength of the concrete mix is represented in Figs. 11m and 11p, respectively. From the
figures, it is concluded that the strength slowly decreases while the percentage of dioxides increases. The
influence of the percentage of calcium oxide and ferric oxide on the compressive strength of concrete
mix is represented in Figs. 11o and 11q, respectively. Both indicate that the strength increases with the
percentage of the oxides increases. The correlation between compressive strength and sodium oxide
percentage in fly ash content is shown in Fig. 11n. When the amount of sodium oxide is around 0.4, the
compressive strength appears to be at its greatest. There is no discernible pattern in their performance.
The correlation between the curing time and the compressive strength is depicted in Fig. 11r. When
the time is set to 24 h, the greatest value is seen.

Figure 11: (Continued)
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Figure 11: (Continued)
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Figure 11: (Continued)
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Figure 11: The influence of various features on compressive strengths

5 Summary and Conclusions

This work used an optimized deep learning model utilizing convolutional neural networks to solve
the effectiveness and application challenges of current methods for forecasting geopolymer concrete’s
compressive strength. A dataset comprising the composition of 162 Class F fly ash geopolymer
concrete mixes as well as 28-day compressive strength values were obtained. Using prior knowledge
of each feature’s influence on compressive strength as well as feature importance techniques, an ideal
set of input parameters was carefully chosen. The optimal number of epochs (how many groups a
certain dataset should be divided into) and the optimal value of k to run the k-fold cross-validation
technique (the number of groups into which the data sample should be split) for the model that yielded
the best results were determined through a process of trial and error. The performance metrics of this
model were compared to different previously existing models for the obtained geopolymer concrete
dataset as well as a secondary dataset (the high-performance concrete dataset) to evaluate the model’s
predictability and adaptability. The following points were made:

i) In the analyzed geopolymer concrete database, the proposed model’s R, RMSE, MAE,
and MAPE were 0.939, 3.083%, 2.509 MPa, and 6.222%, respectively, indicating that the
prediction error is reasonable and that the model can accurately forecast the compressive
strength of geopolymer concrete. Compared to traditional approaches, the proposed model
for predicting geopolymer concrete compressive strength has significantly lower error metrics.
The difference between the true and anticipated values did not exceed 2,16 MPa, or 4.84%,
which indicates the model’s predictability is efficient.

ii) It was necessary to adjust hyperparameters for the k-fold cross-validation technique, such
as k (the number of groups into which each data sample should be split) and epochs (the
number of times the training data was passed through the algorithm). The performance of
the model was greatly influenced by the number of passes through the algorithm. In k-fold
cross-validation, the optimal value of k was determined to be between 25 and 30 for all dataset
combinations. The epoch value of 5000 performed best on all combinations despite the long
computational time.

iii) For epoch values of 500, 2000, and 5000 and k values ranging from 2 to 30, the algorithm was
executed for five combinations of input parameters that were evaluated and analyzed in the
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proposed model. Combination 1, which is a collection of essential parameters, outperforms
the others. As the epoch and K values increased, so did the performance metrics of combina-
tion 1. It was also discovered that as the no. of variables increases, the model’s performance
depletes, and the computing time increases.

iv) The loss curve behaviour was studied for various epoch values and k-fold values, and it could
be concluded that as epoch values increase, the learning rate keeps getting better as the loss
decays faster with the increase in epoch values. In the instances where higher k-fold values
were chosen, in those the loss value decreased calmly as each epoch was experienced.

v) A learning curve plotted between the number of epochs and their corresponding loss assisted
in visualizing the model’s performance and decoding the model’s ”black box” character.
Visualization demonstrated that the suggested model had a high learning rate, indicating that
the hyperparameters were set correctly. Furthermore, the model showed no signs of overfitting,
which was expected to be avoided due to the limited amount of data utilized.

vi) Bivariate plots are used to study distinct trends and interactions between various components
of geopolymer concrete mix design and 28th day compressive strength. Most of the patterns
identified were consistent with prior studies’ findings. The figures depicting the interaction
between the oxides found in fly ash and compressive strength were helpful in understanding
their impact on strength.

However, an enhanced data set of geopolymer concrete mixes should be produced for future
work, as a larger and more diverse data set could provide opportunities to investigate several more
machine-learning techniques. Also, appropriate strategies should be studied and implemented to cut
computational time as much as possible so that there is no need to adopt those hyperparameters, which
would take less time to train the model and settle for a poorer result.

To summarize, there is a certain novelty value in this study’s approach towards predicting strength
using machine learning methods. This study provides an AI-based prediction model and method for
the compressive strength of geopolymer concrete (made with low-calcium fly ash) by using tuned
hyperparameters with a learning rate of 0.01. This would not only allow engineers to use this as
the primary design element in geopolymer concrete mix design but also would help to establish the
significant material parameters for preliminary design purposes, such as tensile strength, elasticity
modulus, and flexural strength.
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Appendix A (Feature Importance)

Table A1: Feature the importance of each parameter in various methods

S. No. Parameter CART regression
feature importance

Random forest
regression feature
importance

XGBoost regression
feature importance

1 FA 0.086 0.020 0.027
2 SH 0.020 0.014 0.043
3 SS 0.010 0.038 0.057
4 SH concentration 0.000 0.009 0.013
5 % of SP in FA 0.000 0.008 0.009
6 Curing time 0.003 0.004 0.007
7 Curing temperature 0.065 0.040 0.024
8 Total H2O 0.017 0.042 0.039
9 Total H2O/FA (mass

ratio)
0.352 0.197 0.183

10 Total H2O/Total solids
(mass ratio)

0.028 0.224 0.085

(Continued)
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Table A1 (continued)

S. No. Parameter CART regression
feature importance

Random forest
regression feature
importance

XGBoost regression
feature importance

11 Fine aggregate/Total
aggregate (mass ratio)

0.024 0.011 0.025

12 Coarse aggregate/Total
aggregate (mass ratio)

0.033 0.011 0.000

13 Total solids/Total
aggregate (mass ratio)

0.092 0.041 0.026

14 % of SiO2 in FA 0.000 0.007 0.019
15 % of Na2O in FA 0.000 0.005 0.064
16 % of CaO in FA 0.061 0.041 0.081
17 % of Al2O3 in FA 0.000 0.010 0.048
18 % of Fe2O3 in FA 0.001 0.007 0.017
19 % of SiO2 in SS 0.000 0.008 0.047
20 % of Na2O in SS 0.000 0.006 0.000
21 AA/FA (mass ratio) 0.010 0.054 0.037
22 SS/SH (mass ratio) 0.001 0.014 0.010
23 superplasticizer/FA

(mass ratio)
0.006 0.008 0.000

24 Total H2O/Total Na2O
(molar ratio)

0.168 0.098 0.048

25 Total Na2O/SiO2 in AA
(molar ratio)

0.000 0.016 0.025

26 Total SiO2/Na2O in AA
(molar ratio)

0.005 0.030 0.043

27 SiO2/Al2O3 in FA (molar
ratio)

0.008 0.005 0.000

28 SiO2/Fe2O3 in FA (molar
ratio)

0.000 0.006 0.000

29 Na2O/Al2O3 in FA
(molar ratio)

0.003 0.005 0.000

30 Al2O3 in FA/Na2O in AA
(molar ratio)

0.006 0.023 0.024
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