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ABSTRACT

Although predictor-corrector methods have been extensively applied, they might not meet the requirements of
practical applications and engineering tasks, particularly when high accuracy and efficiency are necessary. A
novel class of correctors based on feedback-accelerated Picard iteration (FAPI) is proposed to further enhance
computational performance. With optimal feedback terms that do not require inversion of matrices, significantly
faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their
counterparts; however, the computational complexities are comparably low. These advantages enable nonlinear
engineering problems to be solved quickly and accurately, even with rough initial guesses from elementary
predictors. The proposed method offers flexibility, enabling the use of the generated correctors for either bulk
processing of collocation nodes in a domain or successive corrections of a single node in a finite difference
approach. In our method, the functional formulas of FAPI are discretized into numerical forms using the
collocation approach. These collocated iteration formulas can directly solve nonlinear problems, but they may
require significant computational resources because of the manipulation of high-dimensional matrices. To address
this, the collocated iteration formulas are further converted into finite difference forms, enabling the design of
lightweight predictor-corrector algorithms for real-time computation. The generality of the proposed method is
illustrated by deriving new correctors for three commonly employed finite-difference approaches: the modified
Euler approach, the Adams-Bashforth-Moulton approach, and the implicit Runge-Kutta approach. Subsequently,
the updated approaches are tested in solving strongly nonlinear problems, including the Matthieu equation, the
Duffing equation, and the low-earth-orbit tracking problem. The numerical findings confirm the computational
accuracy and efficiency of the derived predictor-corrector algorithms.

KEYWORDS
Predictor-corrector method; feedback-accelerated Picard iteration; nonlinear dynamical system; real-time
computation

1 Introduction

In real-world engineering tasks and scientific research, predictor-corrector methods are funda-
mental to numerically solving nonlinear differential equations [1–3]. Currently, there are hundreds
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of variants of these methods, which often involve the use of explicit formulas to obtain rough
predictions and implicit formulas for further corrections. In general, the predictor-corrector method
is widely used in asymptotic and weighted residual methods. This study focuses on finite difference
approaches, in which correctors are typically employed once per step. Although multiple corrections
can enhance computational accuracy, this approach significantly slows down the algorithm. Therefore,
the preference is to reduce the step size rather than repeat corrections. Conventional correctors are
often derived from Picard iteration (PI) to solve nonlinear algebraic equations (NAEs) associated with
implicit formulas [4,5]. Despite their ease of implementation, these correctors may be insufficient in
generating accurate results and ensuring the reliability of long-term simulations for strongly nonlinear
dynamical systems. In practical applications, it can result in destructive time delays in tasks that aim
for highly accurate results, or it can fail to achieve highly accurate results in real-time computation.
Such instances are found in large-scale dynamics simulations [6], autonomous navigation [7], and path-
tracking control [8].

This study presents three main contributions. First, an approach to derive fast and accurate
correctors to enhance the performance of predictor-corrector methods for more advanced tasks in real
life is proposed. This is achieved by replacing PI with feedback-accelerated Picard iteration (FAPI)
[9]. These two iteration approaches are categorized as asymptotic approaches that iteratively solve
analytical solutions of nonlinear systems starting from an initial guess [10]. The authors in [11] have
demonstrated that PI can be considered a special case of FAPI. The latter approach is based on the
concept of correcting an approximated solution through the integration of an optimally weighted
residual function. FAPI degenerates into PI if the optimal weighting function is specified as a unit
matrix instead of being derived from the optimal condition [12]. Therefore, FAPI converges faster and
is more stable. Second, since FAPI cannot be employed directly to solve NAEs, the iterative formula
is further discretized with appropriate basis functions and collocation nodes [13] to obtain numerical
correctors corresponding to PI and FAPI. The PI correctors obtained in this method are equivalent to
conventional correctors that directly employ PI to solve implicit finite difference formulas. Third, the
proposed approach can be directly applied to other existing predictor-corrector approaches to enhance
performance.

The applications of the enhanced predictor-corrector methods and FAPI span various domains,
including simulations of n-body problems in celestial mechanics [6], molecular dynamics [14], high-
dimensional nonlinear structural dynamics [15], and other problems in fluid mechanics, solid mechan-
ics, heat transfer, and related areas. Particularly, these methods can offer straightforward applications
in aerospace engineering for the accurate on-board prediction of spacecraft flight trajectories to
achieve autonomous precision navigation [7].

This study is structured as follows. In Section 2, the relationship between PI and FAPI is
revealed, and the methodology is introduced by constructing numerical correctors from the discretized
collocation formulas of FAPI, which are derived for a general nonlinear dynamical system. Section 3
briefly reviews the underlying relationship between finite difference and collocation, followed by
the derivation of FAPI correctors corresponding to three classical finite difference approaches: the
modified Euler approach [16], the Adams-Bashforth-Moulton approach [17], and the implicit Runge-
Kutta approach [18]. In Section 4, three nonlinear problems (the Matthieu equation [19], the Duffing
equation [20], and the low-earth-orbit (LEO) tracking problem [21]) are used as numerical examples
to verify the effectiveness of the proposed FAPI correctors.
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2 Methodology
2.1 From PI to FAPI

Consider a nonlinear dynamical system in the form of

dx
dt

= g(x, t), t ∈ [t0, tf ] (1)

Without loss of generality, we suppose x(t0) = 0. Picard iteration method solves this system via

xn+1(t) =
∫ t

t0

g(xn, τ)dτ (2)

It can be rewritten as

xn+1(t) = xn(t) −
∫ t

t0

{ẋn(τ ) − g(xn, τ)} dτ (3)

where ẋn(τ ) − g(xn, τ) is the residual error of Eq. (1). To make Picard iteration converge faster, we can
add a weighting function in the integral of residual error. Then we obtain

xn+1(t) = xn(t) +
∫ t

t0

λ(τ) {ẋn(τ ) − g(xn, τ)} dτ (4)

Suppose �[x(τ ), λ(τ)] is a vector function of x(τ ) and λ(τ),

�[x(t), λ(t)] = x(τ )| τ=t +
∫ t

t0

λ(τ) {ẋn(τ ) − g (xn, τ)} dτ (5)

Let x̂(τ ) be the exact solution of Eq. (1). Naturally, it satisfies the express

�[x̂(τ ), λ(t)] = x̂(τ )
∣∣

τ=t +
∫ t

t0

λ(τ)
{ ˙̂x(τ ) − g

(
x̂, τ

)}
dτ = x̂(τ )

∣∣
τ=t (6)

Now we want to make all the components of the function �[x(t), λ(t)] stationary about x at x(t) =
x̂(t). First, the variation of �[x(t), λ(t)] is derived as

δ�[x(t), λ(t)] = δx(τ )| τ=t + δ

∫ t

t0

λ(τ){ẋ(τ ) − g(x, τ)}dτ

= δx(τ )| τ=t +
∫ t

t0

δλ(τ){ẋ(τ ) − g(x, τ)}dτ +
∫ t

t0

λ(τ)δ{ẋ(τ ) − g(x, τ)}dτ

=
∫ t

t0

δλ(τ){ẋ(τ ) − g(x, τ)}dτ + δx(τ )| τ=t + λ(τ)δx(τ )| τ=t
τ=t0

−
∫ t

t0

[
∂λ(τ)

∂τ
+ λ(τ)

∂g(x, τ)

∂x

]
δx(τ )dτ −

∫ t

t0

λ(τ)
∂g(x, τ)

∂τ
δτdτ (7)
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Then we collect the terms including δx(τ )| τ=t and δx(τ ),

δx(τ )| τ=t + λ(τ)δx(τ )| τ=t,∫ t

t0

[
∂λ(τ)

∂τ
+ λ(τ)

∂g(x, τ)

∂x

]
δx(τ )dτ

(8)

Note that the boundary value of x(τ ) at τ = t0 is prescribed, that is to say δx(τ )| τ=t0
= 0. Thus,

the stationary condition for �[x(τ ), λ(τ)] is obtained as⎧⎪⎨
⎪⎩

I + λ(τ)|τ=t = 0

∂λ

∂τ
+ λ(τ)J(τ ) = 0

(9)

from which we can derive the first order appoximation of λ.

λ ≈ −I + J(t)(τ − t) (10)

where J is the Jacobian matrix of g(x, τ) w.r.t x, and I is an identity matrix. In Picard iteration, the
stationarity conditions cannot be satisfied and thus δ�[x(t), λ(t)] = O(δx). However, in FAPI, since
the stationarity conditions can be satisfied, then

δx(τ )| τ=t + λ(τ)δx(τ )| τ=t
τ=t0

−
∫ t

t0

[
∂λ(τ)

∂τ
+ λ(τ)

∂g(x, τ)

∂x

]
δx(τ )dτ = 0 (11)

which means the error caused will not exceed O2(δx). Therefore, we can conclude that the newly
proposed method based on FAPI is more accurate than the existing methods based on PI, and to
reach the given tolerance, the former needs fewer iterations.

By substituting Eq. (10) into Eq. (4), the correctional formula becomes

xn+1(t) = xn(t) − {I + J(t)t}
∫ t

t0

G(τ )dτ + J(t)
∫ t

t0

τG(τ )dτ (12)

where G(τ ) = ẋn(τ )−g(xn, τ). Note that both J and G depend on xn. Since Eq. (12) involves feedback
terms of integration of residual errors that accelerate the convergence of Picard iteration, it is named
as Feedback-Accelerated Picard Iteration (FAPI).

Previously, the formula of FAPI takes the form of Eq. (12). In this work, we propose another form
of it. By differentiating Eq. (4), we have

dxn+1(t)
dt

= dxn(t)
dt

+ λ(τ)|τ=t {ẋn(τ )|τ=t − g(xn, τ)|τ=t}

+
∫ t

t0

∂λ(τ)

∂t
{ẋn(τ ) − g(xn, τ)} dτ (13)

with Eqs. (9), (13) can be rewritten as

dxn+1(t)
dt

= g(xn, t) + J(t)
∫ t

t0

λ(τ) {ẋn(τ ) − g(xn, τ)} dτ (14)

Simply approximating λ(τ) as −I , which is its zeroth order approximation, Eq. (14) becomes

dxn+1(t)
dt

= g(xn, t) − J(t)
[

xn(t) − x(t0) −
∫ t

t0

g(xn, τ)dτ

]
(15)
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By integrating both sides of Eq. (15), we have

xn+1(t) = x(t0) +
∫ t

t0

{
g(xn, τ) − J(τ )

[
xn(τ ) − x(t0) −

∫ τ

t0

g(xn, ξ)dξ

]}
dτ (16)

For clarity, the two versions of FAPI fomulae are listed in Table 1.

Table 1: The two versions of FAPI formula

Versions Formula

1st xn+1(t) = xn(t) − {I + J(t)t} ∫ t

t0
G(τ )dτ + J(t)

∫ t

t0
τG(τ )τ

2nd xn+1(t) = x(t0) + ∫ t

t0

{
g(xn, τ) − J(τ )

[
xn(τ ) − x(t0) − ∫ τ

t0
g(xn, ξ)dξ

]}
dτ

2.2 Collocated FAPI
2.2.1 The 1st Version of Collocated FAPI

By collocating M nodes in time domain, Eq. (12) can be discretized. It is written as⎡
⎢⎢⎣

xn+1(t1)

xn+1(t2)
...

xn+1(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ −

(
Ĩ + J̃T̃

)
⎡
⎢⎢⎢⎢⎣

∫ t1
t0

G(τ )dτ∫ t2
t0

G(τ )dτ

...∫ tM
t0

G(τ )dτ

⎤
⎥⎥⎥⎥⎦ + J̃

⎡
⎢⎢⎢⎢⎣

∫ t1
t0

τG(τ )dτ∫ t2
t0

τG(τ )dτ

...∫ tM
t0

τG(τ )dτ

⎤
⎥⎥⎥⎥⎦ (17)

The block diagonal matrices Ĩ , J̃, T̃ are defined as

Ĩ =

⎡
⎢⎢⎣

I
I

. . .
I

⎤
⎥⎥⎦ , J̃ =

⎡
⎢⎢⎣

J(t1)

J(t2)
. . .

J(tM)

⎤
⎥⎥⎦ , T̃ =

⎡
⎢⎢⎣

t1I
t2I

. . .
tMI

⎤
⎥⎥⎦ (18)

We suppose that x(t) = [x1(t), x2(t), ..., xd(t), . . . , xD(t)]T is a D-dimensional vector of time-varying
variables, and that the variables xd(t) are approximated by the linear combinations of N orthogonal
basis functions φd,nb(t),

xd(t) =
N∑

nb=1

αd,nbφnb(t) = 
(t)Ad (19)

Using the approximation in Eq. (19), it is obtained that⎡
⎢⎢⎣

G(t1)

G(t2)
...

G(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ẋn(t1)

ẋn(t2)
...

ẋn(tM)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ = R̃Q̃R̃−1

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ (20)
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where R̃ is a row-rearranging-matrix. The differentiation matrix Q̃ is defined as

Q̃ =

⎡
⎢⎢⎣

Q
Q

. . .
Q

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎣


̇(t1)


̇(t2)
...

̇(tM)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣


(t1)


(t2)
...

(tM)

⎤
⎥⎥⎦

−1

(21)

Further, by making the basis functions in Eq. (19) universal, it is found that⎡
⎢⎢⎢⎢⎣

∫ t1
t0

G(τ )dτ∫ t2
t0

G(τ )dτ

...∫ tM
t0

G(τ )dτ

⎤
⎥⎥⎥⎥⎦ = R̃P̃R̃−1

⎡
⎢⎢⎣

G(t1)

G(t2)
...
G(tM)

⎤
⎥⎥⎦ (22)

where the integration matrix P̃ is defined as

P̃ =

⎡
⎢⎢⎣

P
P

. . .
P

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎣

∫ t1
t0


(τ)dτ∫ t2
t0


(τ)dτ

...∫ tM
t0


(τ)dτ

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣


(t1)


(t2)
...


(tM)

⎤
⎥⎥⎦

−1

(23)

For simplicity, we denote Q̃ = R̃Q̃R̃−1 and P̃ = R̃P̃R̃−1. In our previous work, we simply let⎡
⎢⎢⎢⎢⎣

∫ t1
t0

τG(τ )dτ∫ t2
t0

τG(τ )dτ

...∫ tM
t0

τG(τ )dτ

⎤
⎥⎥⎥⎥⎦ = R̃P̃R̃−1

⎡
⎢⎢⎣

t1G(t1)

t2G(t2)
...

tMG(tM)

⎤
⎥⎥⎦ (24)

However, it may cause deterioration of the numerical solution, because τG(τ ) is approximated
with the same basis functions of G(τ ). It means that the approximation of τG(τ ) is one order lower
than it should be. A more rigorous approximation is made as following:⎡
⎢⎢⎢⎢⎣

∫ t1
t0

τG(τ )dτ∫ t2
t0

τG(τ )dτ

...∫ tM
t0

τG(τ )dτ

⎤
⎥⎥⎥⎥⎦ = R̃P̃τ R̃−1

⎡
⎢⎢⎣

G(t1)

G(t2)
...

G(tM)

⎤
⎥⎥⎦ (25)

where the modified integration matrix P̃τ is derived as

P̃τ =

⎡
⎢⎢⎣

Pτ

Pτ

. . .
Pτ

⎤
⎥⎥⎦ , Pτ =

⎡
⎢⎢⎢⎢⎣

∫ t1
t0

τ
(τ)dτ∫ t2
t0

τ
(τ)dτ

...∫ tM
t0

τ
(τ)dτ

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣


(t1)


(t2)
...


(tM)

⎤
⎥⎥⎦

−1

(26)
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Denoting P̃τ = R̃P̃τ R̃, and substituting Eqs. (20), (22), and (25) into Eq. (17), it can be found that⎡
⎢⎢⎣

xn+1(t1)

xn+1(t2)
...

xn+1(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ +

{
J̃
(

P̃τ − T̃P̃
)

− P̃
}⎧⎪⎪⎨
⎪⎪⎩Q̃

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (27)

We further denote the constant matrix P̃τ − T̃P̃ as H̃, thus Eq. (27) becomes

x̃n+1 = x̃n + (J̃H̃ − P̃)(Q̃x̃n − g̃n) (28)

where x̃ = [x(t1), x(t2), ..., x(tM)]T, g̃ = [g(t1), g(t2), ..., g(tM)]T. Denote J̃H̃ − P̃ as J̃HP, the algorithm is
further simplified as⎡
⎢⎢⎣

xn+1(t1)

xn+1(t2)
...

xn+1(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ + J̃HP

⎧⎪⎪⎨
⎪⎪⎩Q̃

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (29)

2.2.2 The 2nd Version of Collocated FAPI

Further numerical discretization is made to the collocation form of Eq. (15). It is expressed as⎡
⎢⎢⎣

ẋn+1(t1)

ẋn+1(t2)
...

ẋn+1(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g(xn, t1)

g(xn, t2)
...

g(xn, tM)

⎤
⎥⎥⎦ − J̃

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

xn(t1)

xn(t2)
...

xn(tM)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

x(t0)

x(t0)
...

x(t0)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

∫ t1
t0

gdτ∫ t2
t0

gdτ

...∫ tM
t0

gdτ

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(30)

In Eq. (30), g(xn, τ) is denoted as g for simplicity. As aforementioned, the block diagonal matrices
Ĩ , J̃, T̃ are defined as

Ĩ =

⎡
⎢⎢⎣

I
I

. . .
I

⎤
⎥⎥⎦ , J̃ =

⎡
⎢⎢⎣

J(t1)

J(t2)
. . .

J(tM)

⎤
⎥⎥⎦ , T̃ =

⎡
⎢⎢⎣

t1I
t2I

. . .
tMI

⎤
⎥⎥⎦ (31)

We suppose that ẋ(t) = [ẋ1(t), ẋ2(t), ..., ẋd(t), . . . , ẋD(t)]T is a D-dimensional vector of time-varying
variables. The components ẋd(t) are approximated by the linear combinations of N orthogonal basis
functions φd,nb(t),

ẋd(t) =
N∑

nb=1

αd,nbφnb(t) = 
(t)Ad (32)

Similar approximations can be made to the components gd(x, t) of g(x, t), i.e.,

gd(x, t) =
N∑

nb=1

βd,nbφnb(t) = 
(t)Bd (33)
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Using the approximations in Eqs. (32), (33), it is obtained that⎡
⎢⎢⎣

x(t1)

x(t2)
...

x(tM)

⎤
⎥⎥⎦ = R̃P̃R̃−1

⎡
⎢⎢⎣

ẋ(t1)

ẋ(t2)
...

ẋ(tM)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

x(t0)

x(t0)
...

x(t0)

⎤
⎥⎥⎦ (34)

and⎡
⎢⎢⎢⎢⎣

∫ t1
t0

g(τ )dτ∫ t2
t0

g(τ )dτ

...∫ tM
t0

g(τ )dτ

⎤
⎥⎥⎥⎥⎦ = R̃P̃R̃−1

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ (35)

where the integration matrix P̃ is defined as

P̃ =

⎡
⎢⎢⎣

P
P

. . .
P

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎣

∫ t1
t0


(τ)dτ∫ t2
t0


(τ)dτ

...∫ tM
t0


(τ)dτ

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣


(t1)


(t2)
...

(tM)

⎤
⎥⎥⎦

−1

(36)

For simplicity, we denote P̃ = R̃P̃R̃−1. By substituting Eqs. (30), (35) into Eq. (34), it can be found
that

Picard iteration︷ ︸︸ ︷
x̃n+1 = x̃(t0) + P̃g̃n −P̃J̃

{
x̃n − x̃(t0) − P̃g̃n

}
︸ ︷︷ ︸

Acceleration terms

(37)

where x̃ = [x(t1), x(t2), ..., x(tM)]T, x̃(t0) = [x(t0), x(t0), ..., x(t0]T, and g̃ = [g(t1), g(t2), ..., g(tM)]T. It will
be shown later that the Jacobian matrix J̃ can be regarded as constant in many cases, without harming
the convergence of algorithm.

For clarity, the two versions of collocated FAPI formulae are displayed in Table 2.

Table 2: The two versions of collocated FAPI formula

Versions Formula

1st x̃n+1 = x̃n + (J̃H̃ − P̃)(Q̃x̃n − g̃n)

2nd x̃n+1 = x̃(t0) + P̃g̃n − P̃J̃
{

x̃n − x̃(t0) − P̃g̃n

}
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2.3 FAPI as Numerical Corrector
Each row of Eqs. (29) or (37) can be used independently as a numerical corrector. For instance,

the last row of Eq. (37) can be written as

xn+1(tM) = x(t0) + P̃M

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ − P̃MJ̃

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

xn(t1) − x(t0)

xn(t2) − x(t0)
...

xn(tM) − x(t0)

⎤
⎥⎥⎦ − P̃

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (38)

where the superscript M of matrices P̃M denotes the (D(M − 1) + 1)-th to (DM)-th row matrix of P̃
that are related with the collocation point tM .

Given the values of collocation nodes x(t1), x(t2), . . ., x(tM−1) being settled, Eq. (38) can be used
to update the value of collocation node x(tM). Similarly, an unknown collocation node x(tm) can be
updated using the (D(m−1)+1)-th to (Dm)-th row of Eq. (37) once the values of the other collocation
nodes are settled. The methodology of FAPI corrector is illustrated in Fig. 1.

Nonlinear 
ODEs

Predictor-Corrector 
Method

Corresponding 
Iterative Collocation 

Using FAPI

Iterative Finite 
Difference Using PI

Corresponding 
Iterative Collocation 

Using PI

Iterative
Finite Difference Using 

FAPI

Iterative Correction of 
1 Collocation Node 

Discretized by the , 

1

Basis functions, 
Collocation nodes

23
4

f ti
+ 1

B iB
− 1

BBB
− 2 + 2

Discretized by the 
same , 

FAPI Corrector

Figure 1: The process to derive FAPI corrector for predictor-corrector method when dealing general
nonlinear ODEs

3 Finite Difference Integrators Featured by FAPI

To apply FAPI as numerical corrector in finite difference method, we need to use the same
collocation nodes and basis functions underlying the finite difference discretization. The relationship
between finite difference and collocation is briefly reviewed herein.

3.1 From Collocation to Finite Difference
The collocation form of Eq. (1) can be written as

Q̃

⎡
⎢⎢⎣

x(t1)

x(t2)
...

x(tM)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ (39)
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where Q̃ is the rearranged differentiation matrix. The (D(m − 1) + 1)-th to (Dm)-th row of Eq. (39) is

Q̃m

⎡
⎢⎢⎣

x(t1)

x(t2)
...

x(tM)

⎤
⎥⎥⎦ = g(tm) (40)

Eq. (40) is a finite difference form of Eq. (1). If m �= M, it is an explicit finite difference formula,
since x(tM) can be explicitly obtained using Eq. (40) once the other values of collocation points are
known. If m = M, it becomes an implicit formula.

Besides, Eq. (1) can be equivalently expressed as

x(t) =
∫ t

t0

g(x, τ)dτ + x(t0) (41)

The collocation form of Eq. (41) is⎡
⎢⎢⎣

x(t1)

x(t2)
...

x(tM)

⎤
⎥⎥⎦ = P̃

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

x(t0)

x(t0)
...

x(t0)

⎤
⎥⎥⎦ (42)

where P̃ is the rearranged integration matrix. The (D(m − 1) + 1)-th to (Dm)-th row of Eq. (42) is

x(tm) = P̃m

⎡
⎢⎢⎣

g(t1)

g(t2)
...

g(tM)

⎤
⎥⎥⎦ + x(t0) (43)

It is an implicit finite difference formula. Usually, we let m = M in Eq. (43) to solve for x(tM).

Since Eqs. (43) and (40) are obtained by numerical differentiation and integration, respectively,
using collocation method, we can find the counterpart of a finite difference method as a collocation
method by choosing proper basis functions and collocation nodes, or derive a finite difference formula
from collocation method.

3.2 Modified Euler Method Using FAPI
Herein, we consider the Modified Euler method (MEM) that only uses 2 nodes, of which one is

known and the other is unknown. The collocation counterpart of this method has 2 collocation nodes,
and takes the Lagrange polynomials φ0(t) = (t − t2)/(t1 − t2) and φ1(t) = (t − t1)/(t2 − t1) (or simply
φ0(t) = 1 and φ1(t) = t)) as basis functions. From Eq. (21), we have

Q =
[

̇(t1)


̇(t2)

] [

(t1)


(t2)

]−1

= 1
t2 − t1

[−1 1
−1 1

]
(44)

and

Q̃ = R̃Q̃R̃−1 = 1
t2 − t1

[−I I
−I I

]
(45)
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By substituting Eq. (45) into Eq. (39), we have

1
t2 − t1

[−I I
−I I

] [
x(t1)

x(t2)

]
=

[
g(t1)

g(t2)

]
(46)

The first row of Eq. (46) is an explicit formula of Euler method, while the second row is implicit.
They can be used independently or conjointly in a predictor-corrector manner. In the later case, the
explicit formula provides prediction for the implicit formula to make further correction. Usually,
the correction is made by the Picard iteration method due to its low computational complexity and
inversion-free property. Based on Eq. (46), a predictor-corrector formula using Picard iteration can
thus be expressed as

1
t2 − t1

[−I I
] [

x(t1) x0(t2)
]T = g(t1) (47)

1
t2 − t1

[−I I
] [

x(t1) xn+1(t2)
]T = gn(t2) (48)

where xn+1 and gn, n = 0, 1, 2, ..., stand for the (n + 1)-th corrected x and n-th corrected g, respectively.
Usually n is simply set as 0, implying the correctional formula is only executed for once.

However, the modified Euler method utilizes the trapezoidal formula instead of the implicit Euler
formula to make correction. The trapezoidal formula can be derived from Eq. (42). By using the same
collocation nodes and basis functions that lead to Eq. (46), we have

P =
[∫ t1

t1

(τ)dτ∫ t2

t1

(τ)dτ

][

(t1)


(t2)

]−1

= t2 − t1

2

[
0 0
1 1

]
(49)

and

P̃ = R̃P̃R̃−1 = t2 − t1

2

[
0 0
I I

]
(50)

Note that we start the integration at t1 for simplicity. By substituting Eq. (50) into Eq. (42), we
have[

x(t1)

x(t2)

]
= t2 − t1

2

[
0 0
I I

] [
g(t1)

g(t2)

]
+

[
x(t1)

x(t1)

]
(51)

The second row of Eq. (51) is the formula of trapezoidal method. Given x(t1), x(t2) can be solved
with Picard iteration, which is

xn+1(t2) = t2 − t1

2

[
I I

] [
g(t1) gn(t2)

]T + x(t1) (52)

Eqs. (47) and (52) constitute the modified Euler method.

3.2.1 The 1st Version of ME-FAPI Method

Now we replace Eq. (52) with the feedback-accelerated Picard iteration. The necessary matrices
are derived first as following:

J̃ =
[

J(t1)

J(t2)

]
, T̃ =

[
t1I

t2I

]
, P̃τ = t2 − t1

6

[
0 0

(2t1 + t2)I (2t2 + t1)I

]
(53)
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With Eqs. (50) and (53), H̃ is derived as

H̃ = P̃τ − T̃P̃ = −(t2 − t1)
2

6

[
0 0
2I I

]
(54)

Thus

J̃HP = J̃H̃ − P̃ = −(t2 − t1)
2

6

[
0 0

2J(t2) J(t2)

]
− t2 − t1

2

[
0 0
I I

]
(55)

According to Eq. (29), we have

xn+1(t2) = xn(t2) + 1
t2 − t1

J̃ (2)

HP

[
xn(t2) − x(t1) − (t2 − t1)g(t1)

xn(t2) − x(t1) − (t2 − t1)gn(t2)

]
(56)

It is rewritten as
Picard iteration︷ ︸︸ ︷

xn+1(t2) = x(t1) + h
2

[g(t1) + gn(t2)] −h2

6
J(t2)

{
3
h

[xn−1(t2) − x(t1)] − 2g(t1) − gn(t2)

}
︸ ︷︷ ︸

Acceleration terms

(57)

where h is the interval between t1 and t2.

3.2.2 The 2nd Version of ME-FAPI Method

According to Eq. (37), we have

xn+1(t2) = x(t1) + P̃(2)

[
g(t1)

g(t2)

]
− P̃(2)J̃

{[
xn(t1) − x(t1)

xn(t2) − x(t1)

]
− P̃

[
g(t1)

g(t2)

]}
(58)

It is rewritten as
Picard iteration︷ ︸︸ ︷

xn+1(t2) = x(t1) + h
2
{g(t1) + gn(t2)}−h

2
J(t2)

{
xn(t2) − x(t1) − h

2
[g(t1) + gn(t2)]

}
︸ ︷︷ ︸

Acceleration terms

(59)

where h is the interval between t1 and t2. By comparing with Eq. (52), we can see that an acceleration
term related with the Jacobian matrix is added at the right hand side.

3.3 Adams-Bashforth-Moulton Method Using FAPI
Taking the 4-th order Adams-Bashforth-Moulton (ABM) method for instance, it solves Eq. (1)

with the following formula:

x0(t5) = x(t4) + h
24

[55g(t4) − 59g(t3) + 37g(t2) − 9g(t1)] (60)

xn(t5) = x(t4) + h
24

[9gn−1(t5) + 19g(t4) − 5g(t3) + g(t2)] (61)

of which Eq. (60) is a predictor using an Adams-Bashforth formula and Eq. (61) is a corrector that
uses Picard iteration to solve an Adams-Moulton formula.
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3.3.1 The 1st Version of ABM-FAPI Method

To replace the Picard iteration with Feedback-Accelerated Picard iteration in the Adams-Moulton
corrector (Eq. (61)), we only need to determine the differentiation matrix Q̃, the integration matrix
P̃, the Jacobian matrix J̃, and matrix T̃ . Those matrices simply depend on the collocation points
t2, ..., t5 and the basis functions of the collocation counterpart of Adams-Moulton formula. Let the
basis functions used for interpolation in the Adams-Moulton formula be the Lagrange polynomials.

φnb(t) =
∏

2≤j≤5,nb�=j

t − tj

tnb − tj

(62)

With Eq. (62), the differentiation matrix Q̃ is derived as

Q̃ = 1
6h

⎡
⎢⎢⎣

−11 18 −9 2
−2 −3 6 −1
1 −6 3 2
−2 9 −18 11

⎤
⎥⎥⎦ ⊗ I (63)

To keep consistent with the Adams-Moulton formula underlying Eq. (61), we let the integration
in Eq. (12) start from t4. Thus, the matrices P is written as

P =

⎡
⎢⎢⎢⎣
∫ t2

t4

(τ)dτ∫ t3

t4

(τ)dτ∫ t4

t4

(τ)dτ∫ t5

t4

(τ)dτ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣


(t2)


(t3)


(t4)


(t5)

⎤
⎥⎥⎦

−1

(64)

and

Pτ =

⎡
⎢⎢⎢⎣
∫ t2

t4
τ
(τ)dτ∫ t3

t4
τ
(τ)dτ∫ t4

t4
τ
(τ)dτ∫ t5

t4
τ
(τ)dτ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣


(t2)


(t3)


(t4)


(t5)

⎤
⎥⎥⎦

−1

(65)

They are further expressed as

P̃ = h
24

⎡
⎢⎢⎣

−8 −32 −8 0
1 −13 −13 1
0 0 0 0
1 −5 19 9

⎤
⎥⎥⎦ ⊗ I (66)

and

P̃τ = h2

360

⎡
⎢⎢⎣

−16 −432 −288 16
22 −261 −324 23
0 0 0 0
38 −189 684 367

⎤
⎥⎥⎦ ⊗ I + t2P̃ (67)
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Then the matrix H̃ is derived as

H̃ = P̃τ − T̃P̃ = h2

360

⎡
⎢⎢⎣

−16 −432 −288 16
7 −66 −129 8
0 0 0 0
−7 36 −171 −38

⎤
⎥⎥⎦ ⊗ I (68)

The matrix J̃ (4)

HP = J̃ (4)H̃ − P̃(4) is

J̃ (4)

HP = h2

360

[ −7 36 −171 −38
] ⊗ J(t5) − h

24

[
1 −5 19 9

] ⊗ I (69)

By substituting Eqs. (63) and (69) into Eq. (29), we have

xn+1(t5) = xn(t5) + J̃ (4)

HP

⎧⎪⎪⎨
⎪⎪⎩Q̃

⎡
⎢⎢⎣

x(t2)

x(t3)

x(t4)

xn(t5)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(t2)

g(t3)

g(t4)

gn(t5)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (70)

It is explicitly expressed as

xn+1(t5) = x(t4) + h
24

[9gn−1(t5) + 19g(t4) − 5g(t3) + g(t2)]

+ h2

360
J(t5){−90x(t2) + 450x(t3) + 450x(t4) − 810xn(t5)

6h

+ 7g(t2) − 36g(t3) + 171g(t4) + 38gn(t5)}

(71)

where the terms related with J(t5) aid to accelerate the convergence of Picard iteration of the Adams-
Moulton formula in Eq. (61).

3.3.2 The 2nd Version of ABM-FAPI Method

According to Eq. (37), we have

xn+1(t5) = x(t4) + P̃(4)

⎡
⎢⎢⎣

g(t2)

g(t3)

g(t4)

g(t5)

⎤
⎥⎥⎦ − P̃(4)J̃

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

xn(t2) − x(t4)

xn(t3) − x(t4)

xn(t4) − x(t4)

xn(t5) − x(t4)

⎤
⎥⎥⎦ − P̃

⎡
⎢⎢⎣

g(t2)

g(t3)

g(t4)

g(t5)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (72)

It is rewritten as

xn+1(t5) = x(t4) + h
24

[9gn−1(t5) + 19g(t4) − 5g(t3) + g(t2)] − h
24{

9J(t5)

[
xn(t5) − x(t4) − h(9gn−1(t5) + 19g(t4) − 5g(t3) + g(t2))

24

]

− 5J(t3)

[
x(t3) − x(t4) − h(gn−1(t5) − 13g(t4) − 13g(t3) + g(t2))

24

]
(73)

+J(t2)

[
x(t2) − x(t4) − h(−8g(t4) − 32g(t3) − 8g(t2))

24

]}
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3.4 Implicit Runge-Kutta Method Using FAPI
The equivalence between implicit Runge-Kutta (IRK) method and collocation method has been

well discussed and proved [22]. For that, the collocated FAPI provides iterative formulae for implicit
Runge-Kutta methods. A 4-stage implicit Runge-Kutta method is taken as an example, where its
corresponding collocation method takes the first kind of Chebyshev polynomials and Chebyshev-
Gauss-Lobatto (CGL) nodes as basis functions and collocation nodes, respectively.

By re-scaling the time segment as [−1, 1], the first kind of Chebyshev polynomials are obtained
from the recurrence relation

φ0(ξ) = 1, φ1(ξ) = t, φn+1(ξ) = 2tφn(ξ) − φn−1(ξ) (74)

where ξ is the rescaled time variable. The CGL nodes are ξ1 = −1, ξ2 = −1/2, ξ3 = 1/2, ξ4 = 1. The
differentiation matrix Q̃ is obtained as

Q̃ =

⎡
⎢⎢⎣

0 1 4ξ1 12ξ 2
1 − 3

0 1 4ξ2 12ξ 2
2 − 3

0 1 4ξ3 12ξ 2
3 − 3

0 1 4ξ4 12ξ 2
4 − 3

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 ξ1 2ξ 2
1 − 1 4ξ 3

1 − 3ξ1

1 ξ2 2ξ 2
2 − 1 4ξ 3

2 − 3ξ2

1 ξ3 2ξ 2
3 − 1 4ξ 3

3 − 3ξ3

1 ξ4 2ξ 2
4 − 1 4ξ 3

4 − 3ξ4

⎤
⎥⎥⎦

−1

⊗ I (75)

From Eqs. (23) and (26), the integration matrices P̃ and P̃τ are

P̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

ξ2 − ξ1

ξ 2
2 − ξ 2

1

2
2(ξ 3

2 − ξ 3
1 )

3
− (ξ2 − ξ1) ξ 4

2 − ξ 4
1 − 3(ξ 2

2 − ξ 2
1 )

2

ξ3 − ξ1

ξ 2
3 − ξ 2

1

2
2(ξ 3

3 − ξ 3
1 )

3
− (ξ3 − ξ1) ξ 4

3 − ξ 4
1 − 3(ξ 2

3 − ξ 2
1 )

2

ξ4 − ξ1

ξ 2
4 − ξ 2

1

2
2(ξ 3

4 − ξ 3
1 )

3
− (ξ4 − ξ1) ξ 4

4 − ξ 4
1 − 3(ξ 2

4 − ξ 2
1 )

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

1 ξ1 2ξ 2
1 − 1 4ξ 3

1 − 3ξ1

1 ξ2 2ξ 2
2 − 1 4ξ 3

2 − 3ξ2

1 ξ3 2ξ 2
3 − 1 4ξ 3

3 − 3ξ3

1 ξ4 2ξ 2
4 − 1 4ξ 3

4 − 3ξ4

⎤
⎥⎥⎦

−1

⊗ I (76)

P̃τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
ξ 2

2 − ξ 2
1

2
ξ 3

2 − ξ 3
1

3
ξ 4

2 − ξ 4
1

2
− ξ 2

2 − ξ 2
1

2
4(ξ 5

2 − ξ 5
1 )

5
− (ξ 3

2 − ξ 3
1 )

ξ 2
3 − ξ 2

1

2
ξ 3

3 − ξ 3
1

3
ξ 4

3 − ξ 4
1

2
− ξ 2

3 − ξ 2
1

2
4(ξ 5

3 − ξ 5
1 )

5
− (ξ 3

3 − ξ 3
1 )

ξ 2
4 − ξ 2

1

2
ξ 3

4 − ξ 3
1

3
ξ 4

4 − ξ 4
1

2
− ξ 2

4 − ξ 2
1

2
4(ξ 5

4 − ξ 5
1 )

5
− (ξ 3

4 − ξ 3
1 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

1 ξ1 2ξ 2
1 − 1 4ξ 3

1 − 3ξ1

1 ξ2 2ξ 2
2 − 1 4ξ 3

2 − 3ξ2

1 ξ3 2ξ 2
3 − 1 4ξ 3

3 − 3ξ3

1 ξ4 2ξ 2
4 − 1 4ξ 3

4 − 3ξ4

⎤
⎥⎥⎦

−1

⊗ I (77)
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The 4-stage implicit Runge-Kutta method using Picard iteration is expressed as⎡
⎢⎢⎣

xn+1(ξ1)

xn+1(ξ2)

xn+1(ξ3)

xn+1(ξ4)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x(ξ1)

x(ξ1)

x(ξ1)

x(ξ1)

⎤
⎥⎥⎦ + P̃

⎡
⎢⎢⎣

g(ξ1)

g(ξ2)

g(ξ3)

g(ξ4)

⎤
⎥⎥⎦ (78)

3.4.1 The 1st Version of IRK-FAPI Method

By substituting Eqs. (75)–(77) into the 1st collocated FAPI formula⎡
⎢⎢⎣

xn+1(ξ1)

xn+1(ξ2)

xn+1(ξ3)

xn+1(ξ4)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xn(ξ1)

xn(ξ2)

xn(ξ3)

xn(ξ4)

⎤
⎥⎥⎦ + J̃HP

⎧⎪⎪⎨
⎪⎪⎩Q̃

⎡
⎢⎢⎣

xn(ξ1)

xn(ξ2)

xn(ξ3)

xn(ξ4)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

g(ξ1)

g(ξ2)

g(ξ3)

g(ξ4)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (79)

where J̃HP = J̃H̃ − P̃ and H̃ = P̃τ − T̃P̃, we can obtain the 1st version of the 4-stage IRK-FAPI
formula. Note that it is expressed in a rescaled time domain ξ ∈ [−1, 1].

3.4.2 The 2nd Version of IRK-FAPI Method

The 2nd version of the 4-stage IRK-FAPI formula can be obtained by substituting Eq. (76) into
the 2nd collocated FAPI formula as following:⎡
⎢⎢⎣

xn+1(ξ1)

xn+1(ξ2)

xn+1(ξ3)

xn+1(ξ4)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x(ξ1)

x(ξ1)

x(ξ1)

x(ξ1)

⎤
⎥⎥⎦ + P̃

⎡
⎢⎢⎣

g(ξ1)

g(ξ2)

g(ξ3)

g(ξ4)

⎤
⎥⎥⎦ − P̃J̃

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

xn+1(ξ1)

xn+1(ξ2)

xn+1(ξ3)

xn+1(ξ4)

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣

x(ξ1)

x(ξ1)

x(ξ1)

x(ξ1)

⎤
⎥⎥⎦ − P̃

⎡
⎢⎢⎣

g(ξ1)

g(ξ2)

g(ξ3)

g(ξ4)

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ (80)

4 Numerical Results and Discussion

In this section, conventional predictor-corrector methods, the corresponding FAPI enhanced
methods, and MATLAB-built-in ode45/ode113 were used to solve the dynamical responses of some
typical nonlinear systems, such as the Mathieu equation, the forced Duffing equation, and the
perturbed two-body problem. The numerical simulation was conducted in MATLAB R2017a using
an ASUS laptop with an Intel Core i5-7300HQ CPU. GPU acceleration and parallel processing were
not used in the following examples.

In this study, to conduct a comprehensive and rational evaluation of each approach, two
approaches were employed to compare the accuracy, convergence speed, and computational efficiency
of conventional approaches and the corresponding FAPI-enhanced methods. The first approach
involves performing the iterative correction only once, which is the general usage of the prediction-
correction algorithm. The second approach involves repeating the iterative correction until the
corresponding terminal conditions are met.

The maximum computational error in the simulation time interval was selected to represent the
computational accuracy when evaluating the computational accuracy of each approach. The solution
of ode45 or ode113 was employed as the benchmark for calculating this computational error. The
relative and absolute errors of ode45 and ode113 were set as 10−15, while the convergence criteria for
the predictor-corrector methods are related to specific problems. In each problem, the computational
efficiency of different approaches was compared under the same requirement of computational
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accuracy, with computational time used as the metric for measuring the computational efficiency of
the various methods.

Mathieu Equation

The Mathieu equation is

d2x
dt2

+ (δ − ε cos t)x = 0 (81)

where the parameters are set as δ = 0.5 and ε = 0.1. The initial conditions are t = 0, x = 1,
and dx/dt = 0. The Mathieu equation is employed to investigate nonlinear vibration problems
with periodic forcing and the periodic motion of nonlinear autonomous systems. The stability of the
Mathieu equation’s solution depends on the parameters δ and ε. The set of parameters employed in
this study yields stable quasi-periodic motion, which has been confirmed through simulation results
obtained from ode45 and other methods.

Forced Duffing Equation

The forced Duffing equation is

d2x
dt2

+ c
dx
dt

+ k1x + k2x3 = f cos(ωt) (82)

where the parameters are set as c = 0.01, k1 = 1, k2 = 1, f = 7.5, and ω = 1. The initial conditions
are t = 0, x = 1.5, and dx/dt = 0. The system could exhibit chaotic motion using ode45 and other
reliable approaches. Any small state perturbation may result in substantial deviations in the simulation
results because of the sensitivity of chaotic systems to the current state. Therefore, when solving chaotic
problems, computational errors of general methods with low accuracy accumulate rapidly.

Low-Earth-Orbit Tracking Problem

The orbital problem is considered in the following form:

m
d2r
dt2

= −∂U
∂r

(83)

where r = [x, y, z]T represents the position vector and U represents the potential function of the Earth
gravity field. The gravity potential is modeled using the 10 deg Earth Gravity Model 2008. The initial
condition is set as

r0 = [−0.3889, 7.7388, 0.6736] × 106 m

v0 = [−3.5794, 0, 6.1997] × 103m/s

The computational accuracy of orbital motion plays a crucial role in determining the success of
space missions. In the case of LEO, the long-term trajectory of a spacecraft can be significantly affected
by a very small perturbation term of gravity force. A high-order gravitational model should be used
to achieve relatively high accuracy. In this case, most computational time is dedicated to assessing the
gravitational force terms. The relative error of position is defined as ε = ‖�r‖2/‖r‖2, where r represents
the reference result obtained using ode113 and �r represents the position error at the sampling point.
The relative error of the velocity can be modeled similarly. The simulation time for the LEO tracking
problem is set to 10 times the orbital period to reliably assess each method.
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4.1 Modified Euler Method Using FAPI
Using ode45/ode113 as the benchmark, Figs. 2 and 3 show a straightforward comparison of the

phase plane portraits, time responses, and computational errors of MEM, 1st ME-FAPI, and 2nd
ME-FAPI when solving the Matthieu and forced Duffing equations. Fig. 4 shows a comparison of the
trajectory of LEO and the computational errors. Table 3 presents the time step size of each method.
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Figure 2: Results of Mathieu equation using MEM, ME-FAPI, and ode45: (a) phase plane portrait;
(b) time responses; (c) computational error

The MEM and ME-FAPI methods exhibited a good match with ode45/ode113. In Fig. 2c, the
error curve of the 1st ME-FAPI method is relatively steady, whereas the error curves of the 2nd ME-
FAPI method and MEM gradually increase with time. This indicates that the 1st ME-FAPI method
has a significantly lower error accumulation rate than the 2nd ME-FAPI method and MEM when
solving the Mathieu equation. In the numerical results of the Duffing equation, an improvement
in computational accuracy with the 1st ME-FAPI method is also observed. The error curve of the
LEO tracking problem in Fig. 4b shows a significant correlation with the current orbital position (or
altitude) of the satellite, which is due to the strong association between the macroscopic gravity field
and the orbital position (altitude). This observation reveals that the 2nd ME-FAPI method is more
accurate in solving the orbit tracking problem.
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Figure 3: Results of the forced duffing equation using MEM, ME-FAPI, and ode45: (a) phase plane
portrait; (b) time responses; (c) computational error
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Figure 4: Results of MEM, ME-FAPI, and ode113 for LEO: (a) trajectory of LEO; (b) computational
error
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Table 3: The configurations of MEM and ME-FAPI method

Problems Corrected once Corrected until converged

MEM/ME-FAPI MEM/ME-FAPI

Mathieu equation �t = 0.01, t = [0, 100] tol = 10−12, t = [0, 100]
The forced duffing equation �t = 0.001, t = [0, 100] tol = 10−12, t = [0, 100]
Low-earth-orbit tracking problem �t = 1s tol = 10−8

A more comprehensive presentation of the computational accuracy and efficiency of each method
is shown in Figs. 5–7 when the proposed ME-FAPI method and MEM are only corrected once.
The maximum computational error of each method was recorded by sweeping the time step size h.
This enables us to depict the curve of the computational error to the time step size. In addition, the
error tolerance for each method is specified, and the corresponding h values are selected to enable
a comparison of the computational time for each method under the same computational accuracy.
Table 3 shows the duration of the simulated dynamical response.
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Figure 5: Performance of MEM and ME-FAPI in solving Mathieu equation when corrected only once:
(a) Maximal error; (b) computational time

Figs. 5–7 demonstrate that the ME-FAPI method proposed in this study outperforms MEM when
corrected once in terms of accuracy and efficiency. The two versions of the ME-FAPI method have
varying applicability for different nonlinear systems. For instance, the 1st ME-FAPI method is more
suitable for solving the Mathieu equation, where its computational error is 1–2 magnitudes lower than
that of the MEM, and its computational time is only 10% of the latter. However, the 2nd ME-FAPI
method is more appropriate for the LEO tracking problem, offering 1 order of magnitude higher
computational accuracy and a computational speed 1 time faster than the MEM.
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Figure 6: Performance of MEM, and ME-FAPI in solving the forced Duffing equation when corrected
only once: (a) Maximal error; (b) computational time
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Figure 7: Performance of MEM, and ME-FAPI for LEO when corrected only once: (a) Maximal error;
(b) computational time

The following section examines the performance indices of each approach after the convergence
of the iterative process, including the maximum computational error, average iteration steps, and com-
putational efficiency. Table 3 presents the configurations of these methods, and Figs. 8–10 illustrate
the simulation results. Since the convergence speed of each method shows similar rules in different
cases, only the corresponding simulation results of the Mathieu equation are retained.

Figs. 8–10 demonstrate that at least one of the two versions of the ME-FAPI method proposed
in this study will have higher computational efficiency than the classical MEM. Only the 1st ME-
FAPI method is more efficient than MEM when solving the Mathieu equation, as illustrated in Fig. 8.
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However, the 1st and 2nd ME-FAPI methods are more efficient than MEM when solving the Duffing
equation. Thus, in practical applications, it is crucial to select the appropriate approach based on the
specific problem to be solved.
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Figure 8: Performance of MEM, and ME-FAPI in solving Mathieu equation when the algorithms
converge: (a) Maximal error; (b) average iteration steps; (c) computational time

Furthermore, Fig. 8b illustrates that the 1st ME-FAPI and 2nd ME-FAPI methods converge
almost as fast, while the MEM method exhibits the slowest convergence. The advantage of convergence
speed substantially enhances the efficiency of the method. For instance, the evaluations of the force
model consume most of the computational time when solving the perturbed two-body problem. There-
fore, a reduction in the number of iterations plays a significant role in reducing computational cost.
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Figure 9: Performance of MEM, and ME-FAPI in solving the forced duffing equation when the
algorithms converge: (a) Maximal error; (b) computational time
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Figure 10: Performance of MEM, and ME-FAPI for LEO when the algorithms converge: (a) Maximal
error; (b) computational time

4.2 Adams-Bashforth-Moulton Method Using FAPI
When corrected only once, the simulation results in Figs. 11–13 provide an overview of the

computational accuracy and efficiency of each method. Table 4 shows the duration of the simulated
dynamical response.

Figs. 11–13 demonstrate that when corrected only once, the 1st ABM-FAPI method is more
accurate and efficient than the ABM method in all cases. For instance, the computational error of
the 1st ABM-FAPI method is 1–2 orders of magnitude lower than that of the ABM method at the
same step size when solving the Mathieu equation (Fig. 11). Furthermore, at the same computational
accuracy, the former can save approximately 10% − 60% of the computational time of the latter.
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Figure 11: Performance of ABM, and ABM-FAPI in solving Mathieu equation when corrected only
once: (a) Maximal error; (b) computational time
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Figure 12: Performance of ABM, and ABM-FAPI in solving the forced Duffing equation when
corrected only once: (a) Maximal error; (b) computational time

New results can be obtained when the algorithms converge, as shown in Figs. 14–16. Table 4 shows
the configurations of these methods. For the same reason as in the previous section, only the simulation
results of the Mathieu equation concerning the convergence speed are retained.

The simulation findings indicate that, in all cases, the 1st ABM-FAPI method significantly reduces
computational time compared with the classical ABM method. For instance, as shown in Fig. 14c, the
1st ABM-FAPI method can save approximately 28% − 65% of the computational time of the ABM
method.
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Figure 13: Performance of ABM, and ABM-FAPI for LEO when corrected only once: (a) Maximal
error; (b) computational time

Table 4: The configurations of ABM, and ABM-FAPI

Problems Corrected once Corrected until converged

ABM/ABM-FAPI ABM/ABM-FAPI

Mathieu equation t = [0, 200] tol = 10−14, t = [0, 200]
The forced duffing equation t = [0, 100] tol = 10−14, t = [0, 100]
Low-earth-orbit tracking problem / tol = 10−9
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Figure 14: (Continued)
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Figure 14: Performance of ABM, and ABM-FAPI in solving Mathieu equation when the algorithms
converge: (a) Maximal error; (b) average iteration steps; (c) computational time
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Figure 15: Performance of ABM, and ABM-FAPI in solving the forced Duffing equation when the
algorithms converge: (a) Maximal error; (b) computational time

Fig. 14b demonstrates that the convergence speeds of the two versions of the ABM-FAPI method
are almost the same. The ABM and ABM-FAPI methods converge at the same speed when the step
size is small. However, the convergence speed of the ABM method lags behind that of the ABM-FAPI
method as the step size increases.

Furthermore, the algorithm complexity of the 2nd ABM-FAPI method, which incorporates more
information about the Jacobi matrix at time nodes, is significantly higher than that of the 1st ABM-
FAPI method. However, as shown in Figs. 11–16, the performance of the 2nd ABM-FAPI method does
not significantly outperform that of other methods, whereas the relatively “simpler” 1st ABM-FAPI
method exhibits a significant advantage in computational accuracy and efficiency.
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Figure 16: Performance of ABM, and ABM-FAPI for LEO when the algorithms converge: (a)
Maximal error; (b) computational time

4.3 Implicit Runge-Kutta Method Using FAPI
The initial approximation in each step is selected as a straight line without additional computation

of the derivatives when using the IRK method and the corresponding IRK-FAPI method to solve the
nonlinear system. This initial approximation serves as a “cold start” for the methods. Generally, the
“cold start” is a very rough prediction method.

Figs. 17–19 show the simulation results when correcting once. Table 5 presents the duration of the
simulated dynamical response. Due to the notably poor accuracy of the IRK method, to the extent
that it can barely satisfy the corresponding accuracy requirements in some cases, its computational
time is not recorded.
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Figure 17: Performance of IRK, and IRK-FAPI in solving Mathieu equation when corrected only
once: (a) Maximal error; (b) computational time
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Figure 18: Performance of IRK, and IRK-FAPI in solving the forced Duffing equation when corrected
only once: (a) Maximal error; (b) computational time
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Figure 19: Performance of IRK, and IRK-FAPI for LEO when corrected only once: (a) Maximal error;
(b) computational time

Table 5: The configurations of IRK, and IRK-FAPI

Problems Corrected once Corrected until converged

IRK/IRK-FAPI IRK/IRK-FAPI
Mathieu equation t = [0, 100] tol = 10−14, t = [0, 100]
The forced duffing equation t = [0, 100] tol = 10−14, t = [0, 1000]
Low-earth-orbit tracking problem / tol = 10−10/tol = 10−8
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Figs. 17–19 demonstrate that the IRK-FAPI method outperforms the IRK method with extremely
rough initial guesses in terms of accuracy and efficiency. As shown in Fig. 18, even with a very small
step size, the IRK method cannot predict the long-term dynamical response of the chaotic system,
whereas the IRK-FAPI method is very accurate by correcting once.

Similarly, Figs. 20–22 show the simulation results when the algorithm converges. Table 5 presents
the configurations of these methods.

10-12 10-10 10-8 10-6 10-4

Maximum tolerance error

10-2

10-1

100

C
om

pu
ta

tio
na

l t
im

e 
(s

)

IRK
1st IRK-FAPI
2nd IRK-FAPI

(a)

10-4 10-3 10-2 10-1 100

Time step size h

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 it
er

at
io

n 
st

ep
s

IRK
1st IRK-FAPI
2nd IRK-FAPI

(b)

Figure 20: Performance of IRK, and IRK-FAPI in solving Mathieu equation when the algorithms
converge: (a) computational time; (b) average iteration steps
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Figure 21: Performance of IRK, and IRK-FAPI in solving the forced Duffing equation when the
algorithms converge: (a) computational time; (b) average iteration steps

Figs. 20–22 demonstrate that at least one of the two versions of the IRK-FAPI method will
have higher computational efficiency than the IRK method, although the difference is not obvious
in the case of the Duffing-Holmes’s oscillator. For instance, when solving the Mathieu equation,
the 1st ABM-FAPI method can save more than half the computational time of the ABM method.
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Furthermore, the two versions of the IRK-FAPI method converge at almost the same speed, and both
converge faster than the IRK method.
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Figure 22: Performance of IRK, and IRK-FAPI for LEO when the algorithms converge: (a) compu-
tational time; (b) average iteration steps

5 Conclusion

This study proposes a novel approach for deriving efficient predictor-corrector approaches based
on FAPI. Three classical approaches, including the modified Euler approach, the Adams-Bashforth-
Moulton approach, and the implicit Runge-Kutta approach, are used to demonstrate how FAPI can be
employed to modify and improve commonly used predictor-corrector approaches. For each classical
method, two versions of the FAPI correctors are derived. The resulting six FAPI-featured approaches
are further used to numerically solve three different types of nonlinear dynamical systems originating
from various research fields, ranging from mechanical vibration to astrodynamics. The numerical
findings indicate that these enhanced correctors can effectively solve these problems with high accuracy
and efficiency, with the 1st version of FAPI featured methods displaying superior performance in most
cases. For instance, the 1st FAPI correctors achieve 1–2 orders of magnitude higher accuracy and
efficiency than conventional correctors in solving the Mathieu equation. Furthermore, at least one
version of the FAPI correctors shows superiority over the original correctors in all these problems,
particularly when the correctors are used only once per step. In future studies, the application of the
proposed approach to bifurcation problems and high-dimensional nonlinear structural problems will
be presented.

The proposed approach offers a general framework for enhancing existing predictor-corrector
methods by deriving new correctors using FAPI. Although three existing methods were retrofitted
and their improvements demonstrated with three problems, it is anticipated that similar enhancements
can be achieved by applying the proposed approach to various other predictor-corrector methods and
nonlinear problems. For clarity, methods with low approximation orders (<5) were selected to illustrate
our approach. However, methods of higher order can also be derived using the same procedure. In
addition, our method can be directly combined with existing adaptive computational approaches for
predictor-corrector methods to adaptively solve real-world problems.
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