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ABSTRACT

The development of the fifth-generation (5G) mobile communication systems has entered the commercialization
stage. 5G has a high data rate, low latency, and high reliability that can meet the basic demands of most industries
and daily life, such as the Internet of Things (IoT), intelligent transportation systems, positioning, and navigation.
The continuous progress and development of society have aroused wide concern. Positioning accuracy is the core
demand for the applications, especially in complex environments such as airports, warehouses, supermarkets, and
basements. However, many factors also affect the accuracy of positioning in those environments, for example,
multipath effects, non-line-of-sight, and clock synchronization errors. This paper provides a comprehensive review
of the existing works about positioning for the future wireless network and discusses its key techniques and
algorithms, as well as the current development and future directions. We first outline the current traditional
positioning technologies and algorithms, which are discussed and analyzed with the relevant literature. In addition,
we also discuss application scenarios for wireless localization. By comparing different positioning systems, the
challenges and future development directions of existing wireless positioning systems are prospected.
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FNN Fuzzy neural network
IoV Internet of vehicles
GPS Global positioning system
KF Kalman filter
LoS Line-of-sight
MUSIC Multiple signal classification
MIMO Multiple input multiple output
NLoS Non-line-of-sight
RNN Recurrent neural network
RFVS Random forest variable selection
RSSI Received signal strength indication
RIS Reconfigurable intelligent surface
ToA Time of arrival
TDoA Time difference of arrival
UWB Ultra wide band
VLC Visible light communication
VLP Visible light positioning
WIFI Wireless fidelity
WKNN Weighted k-nearest neighbor
WDMA Wavelength division multiple access

1 Introduction

With the wide applications of the fifth generation (5G)-driven Internet of Things (IoT) and mobile
Internet services, positioning services play indispensable roles in our daily work and life. For some
application scenarios, positioning accuracy is a critical issue in determining the success or failure
of positioning systems; such as in natural disasters, the accuracy of positioning trapped individuals
is critical for effective and efficient rescue operations. Recently, the development of 5G mobile
communication systems has entered the commercial stage and provided promising methods to improve
positioning accuracy, such as multi-antenna, device-to-device, and other core technologies [1–3].
5G has continuous wide-area coverage, high hotspot capacity, low latency and power consumption,
high reliability, and connectivity, meeting the demands for positioning scenarios [4,5]. In the sixth
generation (6G) mobile communication systems, millimeter wave, terahertz wave, and reconfigurable
intelligent surfaces (RIS) are the core technologies that can provide high-precision and wide-coverage
positioning services for the IOT systems. Among them, Millimeter waves and terahertz waves have the
characteristics of large bandwidth, which can support higher data transmission rates. RIS positioning
technology has the advantages of high positioning accuracy, strong flexibility, low cost, and low energy
consumption. It is considered one of the core technologies for indoor positioning, outdoor navigation,
and intelligent transportation [6].

Wireless positioning can be applied in many areas, such as medicine, industry, public safety,
logistics, transportation systems, etc. In general, positioning applications can be classified into the
following categories: indoor environment, mine, sea, underground parking, supermarkets, etc., as
shown in Fig. 1. On the other hand, positioning accuracy faces many problems in complex geograph-
ical environments, where the signals are blocked due to obstacles, reducing the positioning accuracy.
In indoor environments, the indoor propagation conditions are very complex, resulting in non-line-
of-sight (NLoS) propagations. Meanwhile, the real-time and accuracy of the worker positioning are
critical due to many accidents incurred by the complex underground environments.
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Figure 1: System model

Typical wireless positioning technologies include wireless fidelity (WIFI) positioning, radio
frequency identification (RFID) positioning, Zig-Bee positioning, Bluetooth positioning, and ultra
wide band (UWB) positioning. Typical positioning algorithms can be divided into ranging-based
positioning and non-ranging-based positioning. The ranging positioning algorithms include time
of arrival (ToA), time difference of arrival (TDoA), and angle of arrival (AoA), while the non-
ranging-based positioning algorithms include the centralization and fingerprint matching methods.
The ranging-based positioning algorithms obtain distance from the target to the base station anchor
point by measuring the signal flight time and angle information, while non-ranging-based positioning
algorithms achieve the localization by the fingerprint matching without the distance between two
points, where signals and images form the location fingerprint. Unfortunately, building a fingerprint
library for fingerprint matching takes a long time, and the matching mode can affect the positioning
accuracy.

Motivated by the above, this paper compares positioning technologies and algorithms to better
understand each positioning technology’s advantages and disadvantages. Moreover, we discuss the
current research challenges of wireless localization and highlight its future directions and application
scenarios. In brief, the contribution of this paper can be summarized below:

• We comprehensively discussed the existing wireless localization technologies and the relevant
research and introduced their localization principles.

• We discussed and summarized the localization algorithms, of which the applicabilities are based
on their fundamental principles.

• We introduced the application scenarios of wireless positioning: the Internet of Vehicles (IoV),
smart hospital, smart logistics, and other future application scenarios.
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• Finally, we identified several important research challenges and discussed future development
trends.

The organization of this paper is shown in Fig. 2. Section 2 discusses the current and traditional
positioning technology and provides the advantages and disadvantages of each positioning technology.
Section 3 elaborates on the typical and recent popular positioning algorithms and expounds them with
the literature. Finally, Section 4 describes the future positioning scenarios and emerging technologies,
such as IoV, smart hospital, smart logistics, intelligent reflecting surface (IRS), and backscatter.

Figure 2: Organization of this article

2 Wireless Positioning

The positioning technology can be realized through various wireless communication technologies,
such as the commonly used WIFI positioning, fingerprint positioning, UWB positioning, visible
light positioning (VLP), ZigBee positioning, RFID positioning, and geomagnetic positioning. For
most positioning technologies, some extra equipment is used to assist in determining the location
information of the terminal, resulting in the differences between positioning technologies. Therefore,
Table 1 overviews the accuracy, advantages, and disadvantages of different wireless positioning
technologies.

2.1 WIFI Positioning
Thanks to the continuous development of wireless networks, full coverage of indoor WIFI signals

has led to the attention and development of WIFI positioning.
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Table 1: Comparison table of positioning techniques

Positioning
technology

Positioning
accuracy

Merit Drawback

UWB CM level High positioning accuracy,
strong penetration, low
power consumption

High cost

WIFI Metre level Low cost, simple operation Large workload for
fingerprint collection,
vulnerable interference

RFID Metre level High positioning accuracy,
low cost

Small coverage, poor
communication capability

ZigBee Metre level Low power consumption,
small cost

Poor stability

Bluetooth Metre level Low power consumption,
simple operation, easy to
integrate

Short distance

Ultrasound CM level High positioning precision,
mature technology

Multi-diameter effect, high
cost

Cellular network
wireless positioning

CM level Large coverage, strong
universality

Low positioning accuracy, rely
on the number of base stations

VLP CM level Abundant bandwidth
resources, high security, low
cost, no electromagnetic
radiation

Limited by obstacles

Geomagnetic
positioning

Metre level No hardware, no cumulative
error, low cost

Acquisition workload, signal
interference, the acquisition of
the initial position

Beidou positioning Metre level Synchronicity, the bureau
positioning and
communication function,
reliability, stability, strong
confidentiality

Low quality satellites,
expensive chips

The WIFI positioning offers simple operation and low cost, but its positioning accuracy is easily
affected by the NLoS and the multipath. Sun et al. [7] investigated a WIFI fine time measurement
(FTM) positioning algorithm with the aid of geomagnetic positioning. They designed an enhanced
mind evolution algorithm (EMEA) for positioning accuracy in NLoS environments. To this end, an
access point selection algorithm based on multi-objective optimization was put forward in [8], where
the optimal solution can be achieved by machine learning. In [9], a WIFI-based localization technique
that could improve the accuracy of the ToA estimation was studied to assist in the estimation by
sending multiple identical predefined messages. Pei et al. [10] introduced the interference of positioning
for WIFI positioning in the environments of coexistence of the WIFI and Bluetooth, ameliorating the
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WIFI positioning accuracy. In [11], WIFI fingerprints were generated by the logarithmic distance path
loss model, which could reduce the indoor positioning error.

2.2 Fingerprint Positioning Technology
The fingerprint localization technology is based on fingerprint pattern recognition, which uses

multiple sensors or fixed nodes to collect the fingerprint information of the target device and
determines the location of the device by matching it with the pre-established fingerprint database.
It is built by the spatial differences and characteristics of wireless signals (or other environmental
characteristics) in different environments. Thus, the precision of fingerprint matching depends on
the density of the reference points in the positioning areas. In contrast, WIFI positioning, UWB
positioning, VLP, ZigBee positioning, and RFID positioning are based on the characteristics of
wireless signals, which are based on propagation characteristics of wireless signals, such as signal
strength, time delay, optical signals to determine the location of the devices.

Wireless local area networks (WLAN) have become ubiquitous, upon which the WIFI finger-
printing technology has become a relatively developed technology in the future. In particular, it
has advantages such as low cost, high accuracy, and wide applicability without measuring distances
between Access Points (APs), suitable for complex environments.

WIFI fingerprint positioning is done in two stages: offline and online. In the offline stage, the
localization area is divided into multiple grid points; the received signal intensity of WIFI signals at
different known reference access points is collected through the established grid points, represented
by their respective fingerprints. In the online stage, position estimation can be achieved by the
closest reference point, which is obtained by measuring the received signal strength indication (RSSI)
value of the user’s position and comparing the RSSI value with the fingerprint in the database [12].
Fingerprint matching is the key step in WIFI fingerprint localization, which compares and matches
WIFI fingerprint data collected in real-time with a pre-constructed fingerprint database. During the
fingerprint matching stage, the most similar or matching fingerprint information can be identified by
comparing the RSSI of WIFI signals with the fingerprint data stored in the database. The efficiency
and accuracy of fingerprint localization can be improved by using this centralization method [13].

In [14], the WIFI fingerprinting method was initially proposed based on signal similarity and
spatial location. The authors explored the relationship between RSSI similarity and the difference
in signal propagation distance and introduced an approximate position distance to enhance the
positioning accuracy of the weighted k-nearest neighbors (WKNN) algorithm. In [15], a WIFI indoor
positioning optimization method based on a location fingerprint algorithm was studied, revealing
that the localization error reduces as the number of APs increases, and the algorithm can effectively
optimize WIFI indoor positioning. The authors of [16] proposed a WKNN algorithm based on
signal similarity and spatial location, first analyzed the relationship between RSSI similarity and
signal propagation distance difference, and designed the approximate position distance to improve
the WKNN algorithm positioning accuracy. For RSSI instability, Ji et al. [17] studied a random
forest variable selection (RFVS) multivariable fingerprint, established the database by ten distance and
power relationship variables, and sorted variable importance and combinations by RFVS. In [18], a
fingerprint positioning method based on a virtual antenna array and multipath AoA delay fingerprint
was investigated to decrease the influence of multipath effects on positioning accuracy. Zheng et al. [19]
considered a new magnetic base positioning system for fingerprint and confidence evaluation for com-
plex environments and inaccurate indoor positioning, which ensured the penetration and reduced the
interference of multipath error, solving the sparse fingerprint. The authors in [20] used a convolutional
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neural network (CNN) to realize exact and non-directional direction systems, which convert WIFI and
magnetic field signals into fingerprint images and self-directed learning of the mapping between real
position and fingerprint images, achieving the non-directional orientation and significantly improving
the accuracy.

2.3 Ultra Wide Band Positioning
UWB is a short-range communication technology with the advantages of high precision, strong

penetration, high security, and low power consumption [21,22]. The UWB positioning model is shown
in Fig. 3.

Figure 3: The UWB positioning model

Given the multipath effect and NLoS in complex environments, an indoor positioning scheme
based on wavelength division multiple access (WDMA)-UWB was investigated for multiuser UWB
positioning applications [23], where the entropy-based method and the transfer learning method were
used to estimate ToA and reduce the ranging error in NLoS. UWB-based positioning technology that
can achieve fast and accurate positioning is subjected to adequate infrastructure and clear line-of-sight
(LoS), limiting its business application. Therefore, the researchers focused on using other techniques
to mitigate those limitations. In [24], a mixing positioning system that combined UWB and pedestrian
dead reckoning (PDR) was studied to alleviate infrastructure and error drift constraints, indicating
that the positioning performance was significantly enhanced. The authors of [25] studied an NLoS
error compensation method to ameliorate accuracy in indoor positioning system-based UWB, where
the coordinate set was smoothed by Kalman Filter (KF). In [26], the NLoS error and multipath effect
in the underground positioning system were reduced by the KF algorithm. Because the positioning
of robotic mining equipment restricted the application in the coal mining industry, the authors in
[27] discussed a UWB anchor optimal deployment strategy, which can maintain realistic positioning
accuracy for coal mine robots. For improving positioning accuracy in a coal mine roadway, the
extended KF-based UWB positioning model was studied in [28], verifying that the considered system
could achieve decimeter-level accuracy. To address UWB’s limited range issue caused by fixed anchors,
in [29], the position of multiple unmanned aerial vehicles (UAVs) equipped with UWB anchors to
collect the precise positions can be changed in real-time according to user requirements.
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2.4 Visible Light Positioning
Compared with visible light communication (VLC) technology and traditional communication

technology, the VLC with LED as the carrier is less affected by multipath effect and electromagnetic
waves; thus, it is more applicable in limited radio communication environments such as hospitals,
shopping malls, and mines, especially indoor positioning [30]. VLP technology offers the advantages
of high accuracy, low cost, and traceability. Fig. 4 shows the scenarios of the visible light indoor
positioning.

Figure 4: Visible light localization model

The authors in [31] discussed the advantages and disadvantages of the four main indoor posi-
tioning methods based on VLC, including scene analysis, proximity, image positioning, and the
triangulation of the RSSI method, which indicated small indoor environments with fewer obstacles
and weak diffuse in the literature is impractical. The problems posed by many obstacles and strong
diffuse in complex environments were discussed [32–34]. Unlike the receiver deployed on the mine
tunnel ground, Pang et al. [32] deployed photodiodes (PDs) as receivers on the ceiling of the mine
tunnel, which can resolve unstable and unreliable light signal transmission caused by receivers being
trampled and shrouded. When the large-scale deployment of base stations constructed by PDs is
limited, inertial navigation can assist in real-time positioning. In [33], the positioning performance
of a deep learning-based fusion system combined with an inertial measurement unit (IMU) and VLP
under poor LoS environments was enhanced by selecting a structured neural network. In [34], the
position estimation deep neural network (PE-DNN) aided module was added to the VLP system
for high compatibility and low complexity, where the position and information transmission can be
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provided by only one LED and one PD. For the accuracy of VLP systems, the authors of [35] globally
optimized the positioning accuracy by a nonlinear graph optimization model, which improved the
accuracy by 71% compared with local estimators. For breaking the limitation of more than two LED
lamps in practical application scenarios of VLP, a single-LED VLP system was considered [36], which
can reduce the computation complexity and the time for captured images by the unbalanced single-
LED algorithm and beacon searching algorithm. Fang et al. [37] solved the light source flicker with
the flicker-free line coding scheme and lightweight image processing algorithms.

2.5 Bluetooth Positioning
Bluetooth positioning has the same principle as WIFI positioning, which can be divided into

ranging and fingerprint matching methods. The Bluetooth positioning technology is widely adopted
due to its low cost and easy integration, but it is severely interfered with by other signals in the
environment. Thus, the signal stability tends to be compromised, leading to a restricted communication
range and heightened reliance on the RSSI. The above defects limit its positioning accuracy [38].

To address the adverse effects of the NLoS on Bluetooth location accuracy and robustness
in indoor positioning, the authors of [39] considered Bluetooth ranging model combined trilateral
measurement and least squares based on Taylor expansion by the RSSI of Bluetooth transmission
and the distance of logarithmic attenuation model, where the integrity monitoring alert mechanism
reminds users in the position that cannot be accurately located. Maus et al. [40] investigated a phase
normalization scheme that can achieve Bluetooth measurements by joint angle and delay estimation
multiple signal classification (JADE-MUSIC) algorithms. They studied an applicable JADE-MUSIC
AoA estimation approach to solve the indeterministic phase offsets caused by different Bluetooth
channels, which can significantly improve its localization accuracy, especially in systems with few
antennas and few available channels. Bluetooth-based indoor positioning systems for those who are
old, weak, ill, or disabled were proposed in [41], and their daily living patterns can be monitored by
multiple sensors installed in different locations, as well as trilateration-based and fingerprinting-based
methods. Yang et al. [42] investigated the multiple kernel function for the accuracy analysis of the
classification regression algorithm based on the support vector machine and equal weight k-nearest
neighbor (EWKNN) algorithm, demonstrating that the latter positioning accuracy is better than the
former in complex environments. Kumar et al. [43] considered a phase-based angle measurement
method for Bluetooth angle calculation, providing a more accurate positioning while maintaining a
distance between the locators in an indoor environment.

2.6 ZigBee Positioning
The position information of the nodes is calculated by the signal strength or arrival time between

the nodes in the ZigBee positioning networks. The ZigBee positioning stands out for its low power
consumption and small cost, yet it has poor stability.

The authors in [44] developed a ZigBee-based indoor positioning technology that used the RSSI
values of fixed nodes, determined by a 3D three times measurement method, to locate unknown nodes.
By combining KF optimization with node RSSI values and optimal results from changing the position
of the reader and label, optimal estimation is obtained. In [45], Shangbin et al. designed a coal mine
underground safety monitoring system that detects environmental parameters (gas, carbon monoxide,
temperature, and humidity) using ZigBee nodes and achieves personnel positioning. The location of
people in the mine is determined using a three-sided positioning ranging method, and using KF reduces
random error and improves positioning accuracy. In [46], the particle swarm optimization method
was proposed to estimate path loss parameters in ZigBee wireless sensor networks, which also can
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remove the poor experimental data for fitting signal attenuation curves. A modified particle filtering
using a ZigBee model was studied in [47] to address the numerous calculations for particle filtering,
demonstrating that the algorithm has the advantages of low power consumption, efficient particle
number, and estimation error.

2.7 Radio Frequency Identification Positioning
RFID technology, also known as electronic tag, can automatically identify objects and collect

relevant data through RF signals, suitable for all harsh environments [48].

The advantages of RFID positioning technology include the low cost of positioning equipment,
no additional hardware support and LoS transmission, and the ability to trace the movement trajectory
of items, which make it one of the most widespread positioning applications. The authors in [49]
considered a dual-channel low-power passive RFID localization system with extremely low radiation
power, where a probabilistic algorithm based on measurement jitters was adopted to estimate the
target’s location, and localization accuracy can be up to 0.5 m. Yao et al. [50] investigated an indoor
positioning system where the position of the RFID reader was estimated by the instantaneous RSSI
measurements received from tags. Moreover, for estimating the path loss of the tag reader angle, the
iterative compensation from the RSSI measurement was used to improve the performance of the
positioning system, whose error was up to 0.1 m. However, low cost and simple hardware structure limit
the coverage and signal anti-interference ability, leading to low positioning precision. Tang et al. [51]
used the differential evolution algorithm to optimize the RFID positioning accuracy. Firstly, the
distance between the tag and the reader was estimated by RSSI values. Then, the closest position
coordinates to the label were measured by optimizing the distance error between the label and the
tested tag, whose error can reach 0.0012 m. For the low positioning accuracy, a chaotic adaptive genetic
algorithm that can improve the convergence accuracy of the algorithm and optimize the jitter was
studied in [52], where the noise can be reduced by using Gaussian filtering.

2.8 Geomagnetic Positioning
Geomagnetic positioning technology judges the indoor and outdoor location by the geomagnetic

difference at various locations. Every position has various geomagnetic properties due to different
environmental structures related to the geographical location, such as the total magnetic field, the
magnetic bias angle, and so on [53]. It is similar to the WIFI fingerprint technology, which needs to
collect the geomagnetic distribution in the room manually. The magnetic field of target locations is
unique and can be captured without any transmitters; therefore, the positioning technology has the
advantages of high precision and low cost. Furthermore, magnetic sensors are already standard on
smartphones and tablets, thus having a wide range of applications.

The disadvantage is that metals and other interfering objects easily affect the magnetic signals,
leading to unstable and low-accuracy positioning. Especially when the magnetic field strength is
relatively weak, the magnetic resistance sensor is easily interfered with by the other magnetic fields
[54]. Qi et al. [55] improved the localization accuracy by matching the magnetic field direction and
space angle. To address the geomagnetic field anomalies caused by construction materials in an indoor
environment, Shu et al. [56] combined WIFI signals with geomagnetic field signals to improve the
positioning accuracy and reduce the workload. Aiming at the limitations of traditional geomagnetic
matching, Ji et al. [57] proposed the particle swarm optimization geomagnetic matching algorithm
based on simulated annealing, which improved the accuracy and efficiency of navigation. In [58],
the multi-parameter magnetic detection (MPMD) algorithm that combined RFID with geomagnetic
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positioning to locate the underground personnel was introduced to improve the accuracy and anti-
noise ability. In [59], the Bayesian filtering algorithm was used to enhance the robustness of the
matching algorithm. The wavelet analysis and KF methods were used to improve the matched signal-
to-noise ratio of the magnetic field [60]. Given that magnetic field signals cannot always be identified
in a specific scene, Bhattarai et al. [61] used a deep recurrent neural network to classify the landmarks
of the magnetic field value.

3 Positioning Algorithm

Many existing positioning algorithms exist, such as the arrival of time (ToA), angle of arrival
(AoA), and fingerprint positioning. They adopt a classification basis, namely range-based and non-
ranging-based methods, typically the tripartite positioning approach and fingerprint localization,
respectively. Different from the traditional positioning algorithms, the neural network positioning
algorithm as the emerging positioning algorithm is widely used. Table 2 contrasts the different
localization algorithms.

Table 2: Positioning algorithm comparison

Technique Technology Merit Shortcoming

TOA UWB Simple algorithm, high
accuracy

High hardware requirements,
high precision clock
synchronization

TDOA UWB High precision, wide range,
strong expansibility

Strict time synchronization, high
energy consumption

AOA UWB Suitable for long distance
positioning, strong
anti-interference ability

Hard to measure angles, high
hardware requirements

RSSI WIFI, BLE Low cost, easy to use Influenced by antenna
directionality, antenna gain,
environmental factors, etc.

KNN WIFI Simple calculation, low time
complexity

Large computational capacity,
poor comprehensiability, poor
fault tolerance for sample
imbalance and training data

VLC RSSI Broadband resources are rich,
high security, low cost, no
electromagnetic radiation

Limited transmission distance,
rate and quality by various
factors, inability to penetrate
objects

Nerve network RSSI, WIFI Anti-noise, fast computing
speed, high accuracy

Long development time, large
amount of data, high computing
cost

3.1 Time of Arrival Ranging Method
ToA ranging method calculates the distance between the two ends by signal transmission time

from the transmitter to the receiver. The schematic diagram is shown in Fig. 5, where the base station
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sends signals to the terminal, the signal transmission time from the base station to the terminal is t,
and the distance between the base station and the terminal is tc (c is the speed of light). Each base
station draws a circle with tc as the radius, resulting in a crossover point where the terminal is located.

Figure 5: ToA schematic diagram

It is assumed that the coordinate of the receiver is (x, y), and the ith LoS i receiver is (xi, yi). Thus,
the relationship between coordinate and the distance ri for receiver and base stations can be expressed
as:

(xi − x)2 + (yi − y)2 = r2
i , i = 1, 2, . . . , N (1)

where ri = cti, and ti denotes the signal transmission time from the transmitter to the ith receiver. The
matrix form of the above formula can be given as:⎡
⎢⎢⎣

r2
1 − K1

r2
2 − K2

...
r2

N − KN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2x1 −2y1 1
−2x2 −2y2 1
...

...
...

−2xN −2yN 1

⎤
⎥⎥⎦

⎡
⎣ x

y
R

⎤
⎦ , (2)

Y = AX , (3)

where

Ki = x2
i + y2

i , (4)

R = x2 + y2, (5)

and X is the coordinate of the receiver, which can be obtained by the least squares method.

X = (ATA)−1ATY (6)
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It is noted that the ToA positioning technique has the advantages of high-precision positioning,
simple implementation, and strong adaptability to environmental changes. However, it also suffers
from drawbacks such as sensitivity to signal propagation delay, the need for high-precision clock
synchronization, and dependence on precise timing devices. The direct and the non-direct radiation
diameters have been extensively studied in the existing literature. For the ToA-based positioning
problem under NLoS conditions, the authors in [62] studied a robust weighted least squares method
without the statistics of NLoS errors and path status to alleviate the bad performance for existing
robust methods problem, demonstrated that better accuracy can be achieved by the proposed method
for the sparse and dense NLoS environments. Yang et al. [63] proposed a UWB-based ToA indoor
positioning method that combined the KF and the linearized to reduce the multipath or NLoS effect,
improving the positioning accuracy. The fusion ToA/AoA target localization scheme that can achieve
better accuracy than any of the ToA and AoA schemes was studied in [64], which can reduce time
synchronization requirements and the number of receivers.

3.2 Time Difference of Arrival Ranging Method
The TDoA positioning method relies on the time difference between the transmitter and each

receiver. Specifically, the location of the transmitter is determined by the signal transmission time
from the transmitter to the receiving terminal. Circles are drawn, with the receiver as the center and
the distance from the transmitter to the receiver as the radius. The intersection of the circumferences
is the location of the transmitter [65]. The schematic diagram is shown in Fig. 6.

Figure 6: TDoA schematic diagram
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It is assumed that the position coordinate of the ith receiver Ri is (xi, yi) {i = 1, 2, . . . , N} and
that of the transmitter is (x, y). The relationship between coordinates and signal arrival time for the
transmitter and the ith receiver can be expressed as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x1 − x)
2 + (y1 − y)

2 = c2t2
1

(x2 − x)
2 + (y2 − y)

2 = c2(t1 + �12)
2

...
(xi − x)

2 + (yi − y)
2 = c2(t1 + �1i)

2

, (7)

where t1 is the signal arrival time at the first base station, and �t1i is the difference between the first base
station and the ith base station. When the number of receivers exceeds three, the number of nonlinear
equations is less than that of unknown variables. Therefore, the weighted least squares method can
obtain the initial solution. Then, the improved position estimation can be obtained by utilizing the
initial solution and constrained variables for a second round of weighted least squares estimation. The
matrix form of the above formula can be given as:

A

⎡
⎣x

y
t1

⎤
⎦ = B, (8)

A =

⎡
⎢⎢⎣

2(x1 − x2) 2(y1 − y2) 2c2�12

2(x1 − x3) 2(y1 − y3) 2c2�13

...
...

...
2(x1 − xi) 2(y1 − yi) 2c2�1i

⎤
⎥⎥⎦ , (9)

B =

⎡
⎢⎢⎣

x2
1 − x2

2 + y2
1 − y2

2 + c2�2
12

x2
1 − x2

3 + y2
1 − y2

3 + c2�2
13

...
x2

1 − x2
i + y2

1 − y2
i + c2�2

1i

⎤
⎥⎥⎦ . (10)

Eq. (8) can be resolved by various algorithms, such as the generalized cross-correlation (GCC)
algorithm.

The TDoA positioning has the advantages of high positioning accuracy, a wide range of distances,
and strong scalability. However, the drawbacks of high power consumption, high time synchronization
requirement, vulnerability to multipath effect, and noise need to be further ameliorated [66]. The
positioning method problem is essentially an optimization problem, and the specific optimization
problem varies according to different positioning methods. For example, for satellite-based global
positioning systems, the optimization problem is improving positioning accuracy and reliability in
different environments. For radio signal-based positioning systems, the optimization problem lies in
improving signal strength and reducing interference in different environments. Cao et al. [67] studied
a practical indoor target positioning combination weighted (COM-W) method, where the multiple
preliminary localization results for three nodes were obtained. Then, they were estimated by the
weighted averaging technique based on the Cramer-Rao lower bound, reducing the adverse effects
of combinations with poor geometry. In [68], a technique for transforming TDoA models into ToA
models and a semidefinite programming method with novel constraints were proposed, which can
resolve the convex hull and reference-anchor selection problem without prior information of NLoS
links or error statistics, reducing NLoS errors. The authors in [69] considered an iterative constrained
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weighted least squares method to solve the problems with quadratic programming constrained by
indefinite quadratic equalities and coupling of weighting matrix and unknown source position. In
[70], the difference-of-convex programming tools that can modify the objective function into convex
functions and converge to a stationary point were used to solve the maximum likelihood TDoA
localization problem. In [71], a location estimation approach incorporating both TDoA and phase-
difference-of-arrival was studied, indicating that the approach had better localization performance
than pure TDoA methods.

3.3 Angle of Arrival Ranging Method
The AoA ranging method is that the receiver measures the angle of the incident signal by the

antenna or the angle from the base station to the mobile station [72]. As is shown in Fig. 7, the point P
is the position of the mobile station, which can be obtained by at least two angles and known points. It
is assumed that the position coordinate of the ith receiver is (xi, yi), and that of transmitter P is (x, y).
The incident angle of the ith receiver is denoted as αi, which is taken as directions of the extension cord
at the receiver. The intersection point of extension cords is the location of the transmitter. According
to the geometric principle, the relationship between coordinates and incident angles for transmitter
and receivers can be represented as:

tan αi = y − yi

x − xi

, i = 1, 2, . . . , N (11)

The matrix form of the above formula can be written as:⎡
⎢⎢⎣

y1 − x1 tan α1

y2 − x2 tan α2

...
yi − xi tan αi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

− tan α1 1
− tan α2 1

...
...

− tan αi 1

⎤
⎥⎥⎦

[
x
y

]
(12)

Figure 7: AoA schematic diagram

The matrix of incident angle can be resolved by singular value decomposition (SVD). This method
is a linear algebra technique that can decompose a matrix into the product of three matrices, including
a left singular matrix, a diagonal matrix, and a right singular.
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The AoA ranging method has strong anti-interference ability, suitable for long-distance position-
ing. However, it requires high hardware requirements and is greatly affected by blocking. Moreover,
positioning results are vulnerable to multiple path effects and environmental changes. In [73], a
hybrid ToA/AoA location algorithm was investigated, which has moderate flexibility and fast, steady
convergence by combining with the grid-search-based method. Zheng et al. [74] considered a weighting
method that can decrease the median localization error, where the weight of each AoA was determined
by estimation accuracy. Ying et al. [75] investigated a multi-advanced infrared sounder (AIRS) selective
algorithm based on Discrete Fourier Transform (DFT) transformation to study multi-AIRS-assisted
AoA positioning under complex terrain conditions, which can select the optimal ARIS positioning
target point to improve the positioning accuracy. The ideal solution for the AoA positioning algorithm
is the maximum likelihood estimation method, which hinges on the choice of initial points [76,77]. To
reduce the complexity of the problems above, Zhu [78] reduced positioning errors by subtracting an
estimation based on the least squares method.

3.4 Received Signal Strength Indicator Ranging Method
In RSSI-based location systems, the distance between the sending and receiving points is obtained

by the signal strength without other additional hardware requirements; thus, the RSSI ranging is
a common method for wireless sensor network positioning. Signal intensity is related to distance,
which means signal intensity decreases with increasing distance. Typically, the RSSI is affected by
transmission power, path loss, reception gain, and system processing gain. The calculation formula
can be expressed as follows:

RSSI = PT + Dloss + GRx + Gsys, (13)

where PT denotes the transmitter power, Dloss denotes the path loss which represents the relation for
the decay of the signal with the distance, and GRx and Gsys denote the gain of the receiver and system.
However, the actual environment is much more complex than the ideal case; thus, the signal intensity
in the actual environment will not be perfectly consistent with this formula. The relationship between
transmitting power and receiving power for the wireless signal can be expressed as:

PR = c0PT

rn
, (14)

where PR is the receiving power of the wireless signal, r is the distance between transceiver units, c0

is the constant related to antenna parameters and signal frequency, and n is the propagation factor,
of which value depends on the wireless environment. Taking the logarithm from both sides of the
above equation, we can express the logarithmic relationship between power, distance, and propagation
factor as

10lg(PR) = 10lg(c0PT) − 10nlg(r) = A − 10nlg(r), (15)

where A is the received signal power when the signal is transmitted at 1 m away.

In RSSI-based localization systems, the path loss exponent (PLE) describes the multiple path
fading and shadowing conditions of channels, which plays a vital role in positioning accuracy. For
more accurate PLE estimation, Golestanian et al. [79] used a multi-distance beacon method to perform
localization and PLE estimation, which can accurately estimate PLE even in the presence of deep
fading. Aiming at the signal RSSI affected by multipath, Pinto et al. [80] further reduced localization
errors by combining boundary considerations, region selection, and estimated location compensation
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methods based on virtual location. In [81], the authors studied an improved positioning method that
combined the RSSI with the location information of training points as an attribute for the clustering
step of the K-means clustering algorithm, which was verified in a real scene. In [82], an overlapping
multi-state poly-morphing location method was investigated for multiple path loss models, including
LoS and NLoS states, which can mitigate performance degradation caused by a single path loss model.
In [83], a low-complexity algorithm that can achieve more precise ranging performance by minimizing
the distance logarithm error was investigated, which meets the low-complexity requirements of IOT
positioning applications. Alsmadi et al. [84] filtered RSSI measurements with KF and estimated the
location using beacon weights and an adaptive weighted centroid localization (AWCL) algorithm to
reduce positioning error.

3.5 K Nearest Neighbour Method
In KNN-based systems, the principle of proximity is used for classification, and its forefront is

to integrate new technologies, such as deep learning, to optimize further and expand the algorithms.
The KNN algorithm is a basic classification and regression method with the advantages of being easy
to implement, saving training samples and labels without estimating parameters, and unsusceptible to
small error probabilities. However, it requires a large amount of sample data, which leads to a large
amount of calculation.

Aiming at spatial ambiguity, RSSI instability, and short RSSI acquisition time, in [85], the authors
proposed a soft range limited KNNs (SRL-KNNs) positioning fingerprint algorithm, which can
achieve better positioning performance by previous location information. Because of the effect of
RSSI difference on positioning accuracy, Li et al. [86] investigated a feature scaling KNN algorithm
(FS-KNN) algorithm, where the key idea of feature scaling was to assign different weights to the
signal differences at different RSSI levels when the similarity between two RSSI vectors was estimated.
For the RSSI similarity problem caused by the exponential relationship of RSSI and propagation
distance, Zhang et al. [87] studied a novel weighted adaptive KNN algorithm, which selected a variable
number of reference points based on the improved RSSI similarity and positional proximity. For the
inconsistency of Euclidean distance and distance between RSSI, in [16], the authors considered a
weighted KNN (WKNN) algorithm based on the similarity and the space position of signals, where
the weighted Euclidean distance was obtained by the difference between RSSI and signal transmission
distance, and the user location can be estimated by the APD-WKNN algorithm. The authors in
[88] studied the grid-based KNN localization method that not only used low-cost and commericial-
off-the-shelf-hardware but also without changing the existing protocols and transmitters, of which
results indicated the effectiveness in expanding surveillance coverage and the robustness in noisy
environments.

3.6 Neural Network Localization Method
The neural networks are computational models that simulate the structure and function of the

human brain, consisting of multiple neurons that can receive input signals and produce output signals.
It can be divided into different types according to the different intermediate functional layers, where
several main types are fully connected neural networks (FCNN), CNN, RNN, deep neural networks
(DNN), and artificial neural networks (ANN). Neural network positioning technology can be divided
into RSSI-based localization, ToA-based localization, and WIFI fingerprint-based localization.
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The neural network positioning methods with simplicity, adaptation, and high accuracy suit
complex environments and have attracted wide attention in recent years [89]. Zhang et al. [90]
considered a positioning method based on DNN for variance and unpredictability of wireless signals,
where the neural network layers impacted the positioning accuracy and calculation complexity. To
address the impact of sharp fluctuation of RSSI and low sampling density on positioning accuracy, in
[91], the authors proposed a fingerprint positioning method that combined virtual AP technology with
the CNN classification model to improve the positioning accuracy with the low number of samples.
In [92], the authors investigated an RNN-assisted trajectory positioning algorithm, considered the
correlation among RSSI measurements, and studied a weighted average filter for accuracy among
the temporal fluctuations of RSSI, which solved RSSI measurement and reduced localization error.
To mitigate the performance degradation of the positioning algorithm, the integrated positioning
estimators fusing two general neural networks, including CNN, RNN, and multilayer perceptron, were
considered in [93], of which combination coefficients were designed by the errors of the training step
of two neural networks. In [94], an indoor localization system that combines a one-dimensional CNN
with a Stacked auto-encoder (SAE) was proposed for multi-building and multi-floor localization,
where the SAE was used to exact the key features of RSSI data, and the CNN was trained for
high accuracy. In [95], two CNN methods based on NLoS channel classification and ranging error
regression models were investigated to address localization errors caused by NLoS. The lack of
selection standards for reference points significantly affects position accuracy. The authors of [96]
investigated a Jenks natural breaks algorithm for adaptively choosing more reasonable reference
points. Wang et al. [97] studied a stochastic average gradient back-propagation (SAGA-BP) neural
network indoor positioning algorithm, which optimized the initial weights and threshold of the neural
network algorithm for efficiency.

4 Future Application Scenarios and Emerging Positioning Technologies

Intelligentialize is another breakthrough in the world’s scientific and technological revolution
after industrialization, electrification, and informatization. The proposal of smart cities makes the
cities become an ecosystem, where the subsystems constitute the people, commerce, communications,
natural resources, etc. These subsystems form a universal connection, mutual promotion, and mutual
influence of the whole, among which the wireless positioning technology is a core technology in
the construction of smart cities. Therefore, we introduce several mainstream applications of wireless
positioning technology in smart cities.

4.1 Internet of Vehicles
From the “Internet” to the “IOT,” the world is connected differently. From “Vehicle information”

to “IoV,” cars are also connected. Fig. 8 shows the scenarios of the IoV. The IoV is the specific
application of the IoT in urban transportation, which is achieved through the collection, distribution,
and data processing of dynamic networks between vehicles. Through wireless communication between
cars, information can be exchanged between vehicles and buildings. The IoV lays the foundation for
smart transportation and brings the gospel to the transportation system, for example, the efficiency of
cost and time, the reduction of traffic jams and life-threatening risks, and the promotion of the progress
of smart cities. However, the IoV also faces many challenges, such as vehicle positioning accuracy,
location privacy, and location verification, which need to be constantly improved and solved to apply
the IoV [98–100]. This section summarizes and analyzes the vehicle positioning problems in the IoV.
In the vehicle communication environments, the vehicle real-time location is particularly important
because accuracy requirements are much higher than the Global Positioning System (GPS) provides
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[101]. In addition, there are the following problems: vehicle communication positioning precision
accuracy requirements are 50 cm, GPS signals severely drop and even fail caused by vehicle speed,
and so on [102–104].

Figure 8: Scene map of IoV

To cope with GPS errors in urban environments, Chen et al. [105] designed an infrastructure-free
framework that allowed vehicles equipped with image sensors to monitor their real-time location.
In [106], the authors studied a routing algorithm for vehicle prediction (RAVP), which can more
accurately predict the movement trajectory of the vehicle. Given the low GPS positioning accuracy,
Song et al. [107] used the DNN algorithm to correct the vehicle position and reduce the GPS posi-
tioning error by the vehicle positioning error model. For the short-distance vehicle communication,
in [108], the authors established a triangulation-based vehicle positioning method using the infrared
signal direction, which a signal direction discriminator judged.

4.2 Smart Hospital
By building a regional medical information platform for health records, the smart hospital uses

advanced IOT technologies to realize the interaction between patients and medical staff, medical
institutions, and medical equipment for medical informatization. The wireless positioning is mainly
used as follows:
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(1) Mother and child positioning systems

The real-time positioning systems of mother and child management can solve the mother and
child matching, upon which baby anti-theft can realize the safety guarantee. For example, mother-
child pairing: wearing wristbands on the wrists of newborns and mothers. Hospital administrators
entered the baby’s information on the label when the mother was admitted. When the baby was born,
the medical staff read the label information in real-time, successfully comparing the baby and the
mother.

(2) Special group management

Special patient groups include people with mental health conditions, disabled patients, sudden
illness patients, and child patients. The hospital wears electronic labels for the patients. The real-time
location information of the patients on the back-end positioning server can be viewed to determine
the safety of the patients.

(3) Equipment and automated drug management

The medical equipment is labeled with electronic tags, found on the back-end server, and
immediately displays the real-time storage location on the interface. The trigger can be placed where
the drugs enter and leave the warehouse. When the drugs enter the warehouse as a box, the system
automatically reads the data and records the storage. When the drugs leave the warehouse, the drugs
will be recorded and subtracted from the inventory, reducing the risk of manual typing. At the same
time, the flow direction of valuable drugs can be monitored in real-time.

4.3 Intelligent Logistics
Wireless positioning technology can realize an efficient WLAN real-time positioning system for

logistics service providers, which can form a global industry management network and realize the
identification and tracking of cross-regions and cross-borders of goods, improving the automatic
processing of each link of logistics activities (increasing logistics efficiency and accuracy and reducing
logistics costs). Fig. 9 shows the scenarios of the intelligent logistics. In addition, manual intervention
in the tracking process can be avoided, saving many human and material resources and improving work
efficiency. The logistics management systems integrated with the wireless positioning technology will
significantly improve the operation efficiency and operation level of the logistics industry, which have
a huge role in promoting the logistics industry. From the current domestic and foreign situation, the
main applications are as follows:

(1) Warehouse management: Pallets, containers and other items are affixed with positioning labels,
and their locations can be determined on the electronic map at any time;

(2) Yard management: The trailer is affixed with a positioning label for the accurate matching of
the trailer and positioning label at any time;

(3) Transportation monitoring: The sensor connected to the positioning label can monitor the state
of the goods during transportation in real time and set the alarm function. Positioning tags can also
connect to GPS and mobile communication systems for vehicles and cargo positioning and transmitted
data upload.
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Figure 9: Intelligent logistics

5 Emerging Positioning Technologies
5.1 Reconfigurable Intelligent Surface

Reconfigurable intelligent surface (RIS), also known as metasurface or intelligent reflective
surface, is a core technology of the 6G mobile communication, which can improve the quality and
range of communication and enhance the wireless positioning effect [109–111]. Besides, RIS also
has the advantages of low cost and easy deployment, which can be deployed on the surfaces of
stationary or moving objects [112–115]. The RIS has been applied in various fields as an emerging
technology, for example, communication networks [116,117] and positioning systems [118–124].
In [118], the positioning and orientation mean square errors of the RIS-assisted millimeter wave
positioning systems were evaluated, indicating that the studied adaptive phase shifter design scheme
performs better than random phase and exhaustive search schemes. In [119], a closed-form RIS
phase profile suitable for joint communication and positioning was investigated, and numerical results
were performed to assess the localization and orientation performance of the proposed synchronous
and asynchronous signal schemes for various RIS phase designs. The authors of [120] considered a
RIS-assisted multiuser passive localization scenario, where RIS was installed on each user to resolve
the synchronization problem and lack of data association between multi-static measurements and
users. To solve the problem of similar RSSI values at adjacent locations in RSSI-based indoor
positioning, Zhang et al. [121] designed the phase shift optimization algorithm for RIS-assisted
multiuser positioning. Rinchi et al. [122] studied a RIS-assisted localization algorithm that solved the
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model mismatch in near-field localization. In [123], the accuracy performance of ToA-based and AoA-
based positioning schemes in RIS-assisted UWB positioning systems was investigated, demonstrating
that ToA-based positioning has a better effect when the number of receive is limited.

In millimeter wave systems, high time resolution can be achieved due to large bandwidth, and
high spatial resolution can be considered in the angular domain by using a large antenna array
with an extremely narrow beam [125–127]. Therefore, millimeter waves and massive systems were
widely studied in signal localization [128–130]. In [128], the beam training designs of the RIS-assisted
millimeter wave communication were proposed to estimate the optimal reflection patterns for RISs,
the optimal beams, and link blockage, which can resolve the link blockage. For the nonconvex
and nonconcave minimax in the RIS-assisted millimeter wave communication, Gao et al. [129]
studied a joint array gain and path loss search algorithm to obtain the worst position, which the
convex difference algorithm optimized. Ma et al. [130] established a distributed RIS-assisted indoor
positioning model, where RIS was used to improve signal strength, reduce interference, and enhance
positioning performance.

5.2 Backscatter and Ambient Backscatter Communication
There are many new backscattering technologies, such as double static backscattering, full duplex

backscattering, inter-technical backscattering, long-range backscatter, large intelligent surface (LIS)
assisted backscattering, piezo-acoustic backscattering, and network scattering [131–138]. In [131],
the authors proposed a bistatic scatter radio system, which can be utilized to build large scale low-
cost and low-power backscatter sensor networks with extended field coverage. In [132], the authors
proposed a inter-technology backscatter, a novel approach that transforms wireless transmissions
from one technology to another, on the air. Zhao et al. [135] considered an LIS-aided backscatter
system to support high-reliable communications for IOT applications. In [136], the authors proposed
a piezo-acoustic backscatter (PAB), the first technology that enables backscatter networking in
underwater environments. With the popularization of backscatter technology, backscatter technology
is closely connected with the IOT and provides advanced technology for smart cities and smart homes
[139]. Ambient backscatter communication (AMBC) technology has the advantages of low power
consumption, long life, low cost, environmental protection, energy saving, and strong leap ability;
therefore, AMBC has been widely used, which is one of the cores of the loT, highlighting its importance
[140,141]. In AMBC networks, the electromagnetic wave signal in the environment is an excitation
source to transmit information without a specific RF source [142,143]. Zhang et al. [144] investigated a
backscatter positioning system with a robot equipped with IMU, where the backscattered WIFI signals
and the measurements of inertial sensors were received to estimate the location of the robot and the tags
simultaneously. In [145], the authors studied a wireless positioning system based on the backscatter
phase difference, with an average positioning accuracy of 12.8 cm. In [146], the phase information of
the backscatter signal was used to improve positioning accuracy. Lazaro et al. [147] studied an indoor
positioning system with room-level accuracy, where a long-range backscattering device was designed to
determine the device position by comparing the received signal intensity. Wang et al. [148] considered
an active backscattering two-dimensional positioning system with innovative super-resolution time-
domain post-processing technology, where the algorithm based on subspace decomposition has higher
degrees of freedom and noise reduction benefits.
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6 Conclusion and Future Trends

Wireless positioning technology is the current popular research field with wide application
prospects. The paper summarizes the common positioning technologies and analyzes the existing posi-
tioning algorithms. The mainstream positioning scheme includes WIFI, UWB, Bluetooth, fingerprint,
VLC, ZigBee, and RFID. There are many challenges for the update and perfection of the positioning
technology and algorithm, such as:

1. The accuracy of traditional positioning technologies is poor in the indoor environment, about a
few meters. Moreover, positioning accuracy in a tanglesome environment is affected by many
factors, such as NLoS and multipath effect; thus, positioning accuracy can be improved by
enhancing the anti-interference ability for NLoS and multipath effect. Table 3 contrasts the
different approaches to mitigate the impact of NLoS.

Table 3: Comparison of methods to mitigate the effects of NLoS

Document Technology Scene Measure

[21] UWB Indoor A NLOS error compensation was the proposed method to
ameliorate accuracy in indoor positioning system-based
UWB, where the coordinate set was smoothed by KF.

[22] UWB Indoor The NLOS error and multipath effect in the underground
positioning system were reduced by the KF algorithm.

[28] VLP Indoor The PDs were deployed as receivers on the ceiling of the
mine tunnel, which can resolve the unstable and unreliable
light signal transmission caused by receivers being
trampled and shrouded.

[29] VLP Indoor The positioning performance of a deep learning-based
fusion system combined IMU and VLP under a poor LOS
environment was enhanced by selecting structured neural
networks.

[35] Bluetooth Indoor Bluetooth ranging model combined trilateral
measurement and least squares based on Taylor expansion
was proposed, where the integrity monitoring alert
mechanism reminds users in the position that cannot be
accurately located.

[78] UWB Indoor An overlapping multi-state poly-morphing location
method for multiple path loss models was proposed
including LOS and NLOS states.

[91] UWB Indoor Two CNN methods based on NLOS channel classification
and distance measurement error return were proposed to
address localization errors caused by NLOS.

2. The emerging positioning algorithms integrated with matured traditional algorithms played
roles in positioning fields, such as the neural network positioning method with anti-
interference, fast running speed, and high positioning accuracy [89–92], which can effectively
solve the influence of multipath effect and noise on the positioning effect. On the other
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hand, RIS, an emerging technology in 6G, can be used to enhance the communication
quality, communication rangeability, and performance of wireless positioning; thus RIS
assisted positioning technologies were studied in millimeter wave systems [119], smart radio
environments [120], multiuser systems [121,122], near-field propagation environment [123],
and UWB systems [124].

3. The carrier of a positioning signal can be electromagnetic waves, sound waves, and ultrasonic
waves. Electromagnetic waves are widely used in wireless communication and radar fields
due to their high speed and long-distance transmission. Millimeter wave and massive MIMO
systems provide high temporal and spatial resolution in the angular domain. Compared
with other carriers, electromagnetic waves are less susceptible to obstacles during signal
transmission, which can penetrate buildings and walls, leading to higher positioning accuracy
in indoor and urban environments. In summary, electromagnetic waves, as the carrier of
positioning signals, have the advantages of high accuracy, long-distance transmission, and
resistance to interference.

4. As a relatively mature positioning technology, the global navigation satellite system (GNSS)
has a relatively complete evaluation system with positioning precision, completeness, con-
tinuity, and usability as the evaluation index. The existing positioning technologies have
not reached the mature level of GNSS. With the continuous improvement of positioning
technology, positioning accuracy indoors or outdoors can meet the current demands, but the
reliability and applicability need to be constantly improved. Compared with GNSS, today’s
positioning technologies are the result of the blend of multiple positioning technologies, which
may contain a variety of signal sources. Therefore, positioning performance evaluation is much
more complicated than GNSS.
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