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ABSTRACT

In time-variant reliability problems, there are a lot of uncertain variables from different sources. Therefore,
it is important to consider these uncertainties in engineering. In addition, time-variant reliability problems
typically involve a complex multilevel nested optimization problem, which can result in an enormous amount of
computation. To this end, this paper studies the time-variant reliability evaluation of structures with stochastic and
bounded uncertainties using a mixed probability and convex set model. In this method, the stochastic process
of a limit-state function with mixed uncertain parameters is first discretized and then converted into a time-
independent reliability problem. Further, to solve the double nested optimization problem in hybrid reliability
calculation, an efficient iterative scheme is designed in standard uncertainty space to determine the most probable
point (MPP). The limit state function is linearized at these points, and an innovative random variable is defined to
solve the equivalent static reliability analysis model. The effectiveness of the proposed method is verified by two
benchmark numerical examples and a practical engineering problem.
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1 Introduction

In practical problems, due to the extension of the service time of the structure, its material
properties and stress are affected by changes in the time and working environment [1–5]. The theory of
time-variant reliability was first introduced in the 1940s, and since then, numerous analysis methods
have been developed. The time-variant reliability methods mainly include four types of methods: first
passage methods, numerical simulation methods, extreme value methods, and quasi-static methods [6].

Rice [7] first proposed the theory of the first passage method to study the problem of dynamic
response exceeding a certain threshold value, which laid the foundation of the time-variant reliability
analysis method for the first passage method. Subsequently, a large number of derivative methods of
the first passage method have emerged, including differential Gaussian process [8], rectangular wave
renewal process [9], Laplace integration [10], phi2 method [11], and phi2 + method [12]. Since the
first passage method involves the complex stochastic process theory and adopts certain stochastic
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process assumptions when calculating the crossing rate, it can be used to solve only specific time-
variant reliability problems. In recent years, various numerical methods have been studied, such as the
Monte Carlo method [13], important sampling method [14,15], and subset simulation method [16,17].
The numerical simulation methods have high accuracy but suffer from an enormous computation
burden; therefore, it is difficult to implement this type of method into practical applications. Further,
the surrogate model method represents a representative of the extreme-value methods, including a
response surface [18], Kriging [19,20], and polynomial chaos expansion [21]. However, the construction
process of an accurate global surrogate model is challenging when the performance function involves
multiple stochastic processes and variables. Finally, the quasi-static method can be roughly divided into
methods based on envelope functions [6] and methods using stochastic process discretization (TRPD)
[22,23]. This work focuses on the latter.

The time-variant reliability analysis based on TPRD was first conducted by equivalently trans-
forming the time-variant reliability problem into an invariant system [22]. Later, an improved version
of TRPD was proposed to simplify the solution process [24]. However, the TRPD is based on a
probability model, and unreasonable assumptions might produce significant errors in the probabilistic
reliability analysis [25]. In view of that, non-probabilistic uncertain (convex) models could be beneficial
supplements to the probabilistic models, and these models mainly included the interval model, the
ellipsoid model, the multidimensional parallelepiped model, the exponential convex model and the
super parametric convex model [26–28]. The shape of the convex domain reflects the known degree
of events, while the size reflects the volatility or deviation degree of uncertain events. Accordingly, the
non-probabilistic convex set modeling method has been increasingly favored among scholars in recent
years.

In practical engineering, some uncertain parameters can be described by a probability model using
sufficient information, but other uncertainties tend to be bounded models because of insufficient
sample data. Many studies have investigated the reliability analysis of a hybrid model with random
parameters and bounded uncertain parameters [29–33]. However, there has been limited research
on the application of hybrid models to the time-variant reliability analysis [34–36]. The reliability
analysis of a static performance function with hybrid variables faces the two-level nested optimization
problem at each discrete time. Furthermore, the development of an accurate mathematical framework
for reliability analysis that includes mixed variables in the whole design cycle has been challenging.

The rest of this paper is organized as follows. In Section 2, the time-variant reliability problem
with mixed probability and convex set models is defined. In Section 3, a hybrid model and reliability
index based on the hybrid model are described. In Section 4, a time-variant reliability model under the
mixed probability and convex set model is established and solved. Three typical numerical examples
are given in Section 5. Finally, the main conclusions are drawn in Section 6.

2 Time-Variant Reliability Model under Probability and Convex Set Mixed Model

Assume that z (t) = [z1(t), z2(t), . . . , zs (t)]
T is a s-dimensional random process vector, where t

represents time. During a certain period of time [0, T ], a reliability Pr (T) and a failure probability
Pf (T) of the structure can be respectively defined as follows:

Pr (T) = P {g (z(t), y, x, t) ≥ 0, ∀t ∈ [0, T ] , x ∈ E} (1)

Pf (T) = P {g (z(t), y, x, t) < 0, ∀t ∈ [0, T ] , x ∈ E} (2)
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where y represents a random variable, x denotes a bounded variables, and E is the set of multiple
ellipsoids. By using the process discrete method [12], the time interval is divided into m equal parts,
each of which has a duration of �t =T /m. In accordance with the series reliability theory, Eq. (2) can
be written as follows:

Ps (T) =
{

m∩
i=1

[
g (zi, y, x, ti) > 0, ti =

(
i − 1

2

)
�t, �t = T

m
, x ∈ E

]}
(3)

where zi = [z1(t), z2(t), . . . , zs (t)]
T = (zi,1, zi,2, . . . , zi,s), i = 1, 2, . . . , M, and

(
z1

T , z2
T , . . . , zs

T
)T

represents
a discretized m × s dimensional random vector of the stochastic process vector z(t).

3 Uncertainty Description and Hybrid Reliability Index Definition
3.1 Description of Hybrid Model

To perform reliability analysis with time variation, a random variable y = [X, Y] at a time ti can
be converted into a standard normal variable using the Nataf transformation [37] as follows:

[Ui; ρU] = Nataf
[
Zi; ρX

]
(4)(

V; ρV

) = Nataf
(
Y; ρY

)
(5)

where Nataf (·) denotes the Nataf transformation function; Zi is a random vector obtained by
discretizing the random process z(t), and its correlation coefficient matrix is denoted by ρX; ρY is the
correlation coefficient matrix of random vector Y; ρU and ρV are the correlation coefficient matrices
of standard normal variables U and V, respectively.

Next, assume that ρU = [
ρUiρUj

]
m×m

, i = 1, 2, . . . , m, j = 1, 2, . . . , m represents the covariance
of a random variable U = (U1, U2, . . . , Um)

T . The variance σ 2
Ui

of variable Ui is represented by a
diagonal element, while the covariance CU = Cov

(
Ui, Uj

)
between variables Ui and Uj is indicated

by a non-diagonal element. Additionally, it should be emphasized that the matrix CU = Cov
(
Ui, Uj

)
is

symmetric and positive definite with an order of m, which can be mathematically expressed as follows:

CU = ρU =

⎡
⎢⎢⎣

Cov (U1, U1) Cov (U2, U1) · · · Cov (Um, U1)

Cov (U1, U2) Cov (U2, U2) · · · Cov (Um, U2)
...

...
...

Cov (U1, Um) Cov (U2, Um) · · · Cov (Um, Um)

⎤
⎥⎥⎦ (6)

The previously mentioned symmetric and positive definite CU matrix of an order m includes a
set of linearly independent eigenvectors represented by α1, α2, . . . , αm. Considering the transformation
matrix A = [α1, α2, . . . , αm] , and performing A−1CUA = �, the resulting diagonal matrix � of an
order i will exhibit eigenvalues λi, i = 1, . . . , m corresponding to the orthogonal matrix A. This study
uses an orthogonal transformation method to convert the related normal random variable U into an
independent normal random variable P [37] as follows:

U = AP (7)

Further, random vector U is changed into a linearly independent random vector P. According to
the matrix theory, it holds that A−1 = AT , so Eq. (7) can be written as:

P = ATU (8)

where a superscript T indicates the matrix transpose.
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The covariance matrix CP is converted by applying the orthogonal transformations to Eq. (8) as
follows:

CP = Cov
(
Pi, Pj

) = Cov
(
P, PT

) = Cov
(
ATU, UTA

) = ATCov
(
U, UT

)
A = ATCUA (9)

Similarly, an uncorrelated random variable Q can be obtained from the correlated random variable
V through an orthogonal transformation as follows:

Q = BTV (10)

where B denotes a linear transformation matrix. For the purpose of describing bounded variables
x = {x1, x2, . . . , xe}T, the multi ellipsoid convex model is applied to describe, namely

x ∈ E =
{

x
∣∣∣(xi − x̂i

)T
Wi

(
xi − x̂i

) ≤ εi
2, i = 1, 2, . . . , e

}
(11)

where E represents a set of multiple ellipsoids; x̂i denotes the nominal value vector of xi; matrix W i

represents the unique characteristics of a hyper-ellipsoid, and εi is a constant factor that determines
its size; e indicates the total number of groups.

If ni is used to denote the number of bounded uncertain parameters of group i, then
e∑

i=1

ni = n.

According to [31,38], the multi-dimensional ellipsoid is standardized. The eigenvalue decomposition
of Wi is performed as follows:

�i
TWi�i = �i (12)

where �i
T�i = I , the matrix �i is comprised of the eigenvalues arranged in a diagonal form.

The vectors qi is introduced, and its expression is given as follows:

qi = (1/εi) �i
1/2�i

T
(
xi − x̂i

)
(13)

The original multi-ellipsoid undergoes a transformation to obtain a standardized unit multi-
ellipsoid by substituting Eq. (13) into Eq. (11), which can be expressed as follows:

E =
{

q
∣∣∣√qi

Tqi ≤ 1 (i = 1, 2, . . . , e)
}

(14)

3.2 Reliability Index Based on Hybrid Model
The limit state function (i.e., the performance function), denoted by g (zi, y, x, ti), represents a

structural safety condition, where g (zi, y, x, ti) > 0 indicates that the structure satisfies the functional
requirements. Upon standardizing the transformation of uncertain parameters, the initial limit-state
function g (zi, y, x, ti) is converted into its standardized form G (Pi, Q, q, ti). Suppose a random variable
u = [Pi Q], as shown in Fig. 1; the limit state of the structure forms a strip-shaped critical region in
the u-space. Thus, a hybrid reliability index βL can be defined as the shortest distance from the origin
to the critical region in the standard u-space, which can be expressed as follows:

βL = min
∥∥∥(Pi

T , QT)T
∥∥∥

s.t. G
(
Pi, Q, q̃, ti

) = 0
(15)

The solution to Eq. (15) yields an most probable point (MPP)
(

Pi, Q
)

; q̃ is the most disadvanta-

geous point (MDP), and it represents an optimal solution to the following optimization problem:
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minq G (Pi, Q, q, ti)

s.t. qT
i qi ≤ 1 (i = 1, 2, . . . , e)

(16)

The hybrid reliability index is defined by Eqs. (15) and (16), which are formulated as nested

optimization problems. The outer layer aims to search for the MPP
(

Pi, Q
)

, while the inner layer

focuses on locating the MDP q̃. However, it is a challenge to solve the above-mentioned nested
optimization problem. Therefore, it is necessary to develop an efficient decoupling algorithm.

Figure 1: Limit-state strip caused by convex variables

4 Proposed Analysis Method of Structural Time-Variant Reliability with Random and Uncertain-But-
Bounded Variables
4.1 Establishment of an Equivalent Model

The time-variant reliability analysis based on the probability and ellipsoid model can be math-
ematically expressed in the form of Eq. (15) using normalized normal random and uncertain-but-
bounded variables.

Random variables Pi, Q are retained, whereas an uncertain-but-bounded variable q becomes an
independent random variable; namely, a non-probabilistic standardized variable is transformed into
a random variable subjected to a uniform distribution, which can be expressed as follows:

qi ∼ u(qL
i , qR

i ), i = 1, 2, . . . , e (17)

qi ∈ E, i = 1, 2, . . . , e (18)

where qL
i and qR

i are the lower and upper bounds of qi, respectively.

The ith original ellipsoid model in Eq. (17) is transformed into a unit model using spherical
coordinate transformation as follows:

qi,1 < ρi cos αi1

qi,2 < ρi sin αi1 cos αi2

...
qi,ni−1 < ρi sin αi1 sin αi2 sin αi3 · · · sin αi,ni−2 cos αi,ni−1

qi,ni < ρi sin αi1 sin αi2 sin αi3 · · · sin αi,ni−2 sin αi,ni−1

(19)



1986 CMES, 2024, vol.139, no.2

with qi,ni as the nth component of qi, the uncertain space of Eq. (17) becomes:

�i = {(
ρi, αij

) ∣∣ρi ∈ [0, 1] , αij ∈ [0, 2π ] , i = 1, 2, . . . , e; j = 1, 2, . . . , ni − 1
}

(20)

where ρi is the radical coordinate and αi,j is the jth angular coordinate for the ith ellipsoid.

For the convex set of hype ellipsoids, uniformly distributed random numbers need to be generated
in the ellipsoid body, which is equivalent to performing the uniform sampling in the unit hypersphere
in each Q space, that is, ρi ∈ [0, 1], αij ∈ [0, 2π ], which can be expressed as follows:

ρi ∼ u
(
ρL

i , ρR
i

) = u(−1, 1), i = 1, 2, . . . , e (21)

αij ∼ u
(
αL

ij , α
R
ij

) = u(0, 2π), i = 1, 2, . . . , e (22)

where ρL
i and ρR

i are the lower and upper bounds of ρi, respectively; αL
ij and αR

ij are the lower and upper
bounds of αij, respectively; u (·) represents the uniform distribution.

After substituting variables u = [P,Q] and τ = [ρ, α] into Eq. (15), a reliability problem with mixed
variables can be expressed by:⎧⎪⎨
⎪⎩

βL = min
u,τ

√
‖u‖2 + ‖τ‖2

s.t. G ′
(u, τ , ti) = 0, i = 1, 2, . . . , m

τ L ≤ τ ≤ τ R

(23)

where G ′ represents the transformed limit state function in standard space; τ L and τ R are the lower
and upper bounds of τ , respectively.

4.2 Model Equivalence Proof
By solving Eq. (23), MPP (u, τ̃ ) can be obtained. According to the related literature [39,40], the

MPP demonstrates the highest level of probability density in comparison to all other points on the
limit state function. Therefore, the point (u, τ̃ ) represents the solution to the following problem:⎧⎪⎨
⎪⎩

max
u,τ

fu,τ (u, τ )

s.t. g (u, τ , ti) = 0, i = 1, 2, . . . , m
τ L ≤ τ ≤ τ R

(24)

fu,τ (u, τ ) is the probability density function of the random variables u and τ .

The above-presented optimization problem can be further written as:⎧⎪⎨
⎪⎩

max
u,τ

fu (u) fτ (τ )

s.t.g (u, τ , ti) = 0
τ L ≤ τ ≤ τ R

(25)

Since τ is uniformly distributed, fτ (τ ) is constant, so Eq. (25) becomes:⎧⎪⎨
⎪⎩

max
u,τ

fu (u)

s.t. g (u, τ , ti) = 0, i = 1, 2, . . . , m
τ L ≤ τ ≤ τ R

(26)

Eq. (26) is an optimization problem with constraints. Based on the KKT (Karush-Kuhn-Tucker)
conditions, it can be written that:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇uk
fX (u) + λ1∇uk

g (u, τ , ti) = 0, k = 1, 2, . . . , n

λ1∇τj g (u, τ , ti) + λ3j − λ2j = 0, j = 1, 2, . . . , e

λ2j

(
τ L

j − τj

) = 0, j = 1, 2, . . . , e

λ3j

(
τj − τ R

j

) = 0, j = 1, 2, . . . , e

g (u, τ , ti) = 0, i = 1, 2, . . . , m

τ L
j ≤ τj ≤ τ R

j , j = 1, 2, . . . , e

(27)

where λ1, λ2j, λ3j represent Lagrange multipliers.

According to Eq. (15), the MPP point is the solution to the following optimization problems:⎧⎪⎨
⎪⎩

max
u

fu (u)

s.t. min
τ

g (u, τ , ti) = 0

τ L ≤ τ ≤ τ R

(28)

The constraint in Eq. (28) has a suboptimization problem, which satisfies the following KKT
necessary conditions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇τi g (u, τ , ti) + λ3j − λ2j = 0, j = 1, 2, . . . , n

λ2i

(
τ L

j − τj

) = 0, j = 1, 2, . . . , n

λ3i

(
τj − τ R

j

) = 0, j = 1, 2, . . . , n

τ L
j ≤ τj ≤ τ R

j , j = 1, 2, . . . , e

(29)

The following expression can be derived by substituting Eq. (29) into Eq. (28):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxu fu (u)

s.t. g (u, τ , ti) = 0, j = 1, 2, . . . , e

∇τi g (u, τ , ti) + λ3i − λ2i = 0, i = 1, 2, . . . , n

λ2i

(
τ L

j − τj

) = 0, i = 1, 2, . . . , n

λ3i

(
τj − τ R

j

) = 0, i = 1, 2, . . . , n

τ L
j ≤ τj ≤ τ R

j , j = 1, 2, . . . , e

(30)

It can be noticed that Eqs. (30) and (27) have the same expression, which mathematically proves
that the current equivalent model has the same solution as the original model.

4.3 Linearization of the Limit-State Equation
The limit state function is initially linearized at the MPP to simplify calculations since Eq. (15)

incorporates multiple limit state equations. Consequently, Eq. (15) undergoes a transformation as
follows:

Ps (T) =
{

m∩
i=1

[
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(
Pi,j − Pi,j

)+
h∑

k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)
+

n∑
l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)
> 0

]}
(31)

where Pi,j, Qk, and τ̃l can be obtained from the MPP in the standard space.
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Then, Eq. (31) is transformed into:

Ps (T) =
⎧⎨
⎩ m∩

i=1

⎡
⎣ n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(−Pi,j
)+

h∑
k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)
+

n∑
l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)
> −

n∑
j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

Pi,j

⎤
⎦
⎫⎬
⎭

(32)

Next, define a new random vector ξi as follows:

ξi = −
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

Pi,j, i = 1, 2, · · · , m (33)

Considering that Pi,j is a random variable following the normal distribution with a standard
deviation, it can be deduced that vector ξi also conforms to the normal distribution in m dimensions.

Based on the characteristics of a random vector’s mean vector and covariance matrix, the mean
vector μξ and covariance matrix Cξ can be respectively expressed as follows:

(
μξ

)
i
= −

n∑
j=1

∂G′
i

∂Pi,j

∣∣∣∣
Pi,j

μPi,j = 0, i = 1, 2, · · · , m (34)

(
Cξ

)
i,v

=
n∑

k=1

n∑
j=1

∂G′
i

∂Pi,j

∣∣∣∣
Pi,j

∂G′
v

∂Pv,k

∣∣∣∣
Pv,k

CP((i − 1) n + j, (v − 1) n + k), i, v = 1, 2, . . . , m (35)

The construction of matrix C is explained in detail in [22]. Combined with the m-dimensional
normal distribution function, Eq. (35) can be further transformed into:

Ps (T) =
∫ +∞

0

∫ +∞

0

· · ·
∫ +∞

0

φm

{[
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(−Pi,j

)+
h∑

k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)

+
n∑

l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)]
, μθ , Cθ

}
× fQ (Q) dQ (36)

The problem defined in the above expression is a multivariate integral problem, and a large number
of complex operations need to be performed during its numerical calculation. Therefore, a new random
variable E is introduced to transform Eq. (36) into:

Ps (T) =
�

· · ·
∫

Ω

fE (e) fQ (Q) dQde

= Pr ob

{
F−1

E

{
φm

{[
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(−Pi,j

)+
h∑

k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)

+
n∑

l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)]
, μθ , Cθ

}}
− E > 0

}
(37)
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where Ω denotes the integral boundary, and it is defined by:

Ω =
{

E, Q

∣∣∣∣∣E < F−1
E

{
φm

{[
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(−Pi,j

)+
h∑

k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)

+
n∑

l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)]
, μθ , Cθ

}}}
(38)

where F ′−1
E (·) is the inverse function of F ′

E (·).
Thus, a new function can be defined as follows:

G′ (E, τ) = F−1
E

{
φm

{[
n∑

j=1

∂Gi

∂Pi,j

∣∣∣∣
Pi,j

(−Pi,j

)+
h∑

k=1

∂Gi

∂Qk

∣∣∣∣
Qi,k

(
Qk − Qi,k

)

+
n∑

l=1

∂Gi

∂τl

∣∣∣∣
τ̃i,l

(
τl − τ̃i,l

)]
, μθ , Cθ

}}
− E (39)

The limit state function of the static reliability analysis model with mixed variables is expressed by
Eq. (39). The traditional method can be effectively employed to solve the aforementioned equation.
The final expression of the limit state equation is observed to be independent of the specific distribution
of E. However, for computational convenience in practical engineering problems, it has been common
practice to use the normal distribution.

4.4 Procedure
The following steps are to be implemented:

(1) Based on uncertainty information, identify three types of uncertainties in the limit state
function as follows: random process variable, random variable, and non-probability variable. Next,
input initial points P

0

i,j, Q
0

i,k, and τ̃ 0
l , and set the initial iteration number to K = 0;

(2) Discretize the stochastic process in the time-variant limit state function over different time
periods and construct the reliability model based on the hybrid variables defined by Eq. (15);

(3) Standardize random variables, random processes, and non-probability variables; transform
the non-probability variable into a random variable with uniform distribution;

(4) Design an equivalent model, as shown in Eq. (23), and obtain points P
K

i,j, Q
K

i,k, and τ̃ K
l at each

moment;

(5) Linearize the limited state function at points P
K

i,j, Q
K

i,k, and τ̃ K
l , as shown in Eq. (31);

(6) Simplify the static reliability analysis model, as shown in Eq. (39); calculate the transformed
reliability model by the FORM;

(7) If the MPP meets the convergence criteria, go to Step 8; otherwise, go to Step 4;

(8) Output P
K+1

i,j , Q
K+1

i,k , τ̃ K+1
l , and β.

5 Numerical Examples

The effectiveness of the proposed method was verified by three numerical examples. To verify the
accuracy and efficiency of the presented method, this study used the Monte Carlo (MC) method as a
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reference for each example. The Expansion Optimal Linear Estimation (EOLE) method was employed
to generate random process samples. The sample number ns was set to 100,000.

5.1 Numerical Example 1
The time-variant limit state function was defined as follows:

g (x, a, Y(t), t) = a1a2 − 5 (1 + x4) + x1 + 4.6x2 + 4.6x3 − 0.025t + 3 (40)

where t is a time parameter with a variation range of 1–10.

The distributions and values of non-probability parameter a of random parameters are shown in
Tables 1 and 2, respectively.

Table 1: Random parameter distribution

Parameters Distribution type Mean value Standard deviation Autocorrelation coefficient

x1 Normal 3 0.1 NA
x2 Normal 3 0.1 NA
x3 Normal 3 0.1 NA
Y (t) Gauss process 5 0.3 exp

[− (τ )
2
]

Table 2: Non probabilistic variables

Uncertain variable Nominal value Convex model description

a1 0
[a1a2]

[
1 0
0 1

][
a1

a2

]
≤

0.12a2 0

The comparison of the reliability index results of the proposed method and the Monte Carlo
method are presented in Table 3 and Fig. 2. The reliability index values obtained by the proposed
method were 1.97, 1.73, 1.55, 1.41, 1.29, 1.18, 1.08, 0.99, 0.90, and 0.83; the reliability index values
obtained by the Monte Carlo method were 1.84, 1.62, 1.46, 1.34, 1.23, 1.14, 1.05, 0.98, 0.91, and 0.84.
The reliability index decreased monotonously with time, which represented the fundamental difference
between the time-variant reliability model and the static reliability model. The deviations between
the proposed and Monte Carlo methods were 7.07, 6.79, 6.16, 5.22, 4.88, 3.51, 2.86, 1.02, 1.10, and
1.19, having a maximum deviation of only 7.07%. The results calculated by the proposed method
were accurate. Regarding the computational efficiency, the Monte Carlo method called the limit-state
53,501,481 times, and the proposed method called the function only 320 times, which indicated the
high efficiency of the proposed method.

5.2 Numerical Example 2
The second numerical example was a steel frame simply supported beam, as shown in Fig. 3

[18,22,41]. The cross-section had a rectangular shape with a width of b0 and a height of h0. A simply
supported beam was subjected to a concentrated random load Q(t) at its midpoint in addition to a
uniformly distributed load Q. The material density was ρ = 7.85 kN/m, and the uniformly distributed
load was expressed as ρstb0h0; the yield strength of the material σ .
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Table 3: Reliability index in different time step

1 2 3 4 5 6 7 8 9 10

Monte Carlo method 1.84 1.62 1.46 1.34 1.23 1.14 1.05 0.98 0.91 0.84
Proposed method 1.97 1.73 1.55 1.41 1.29 1.18 1.08 0.99 0.90 0.83
Deviation (%) 7.07 6.79 6.16 5.22 4.88 3.51 2.86 1.02 1.10 1.19

Figure 2: Variation curve of reliability index with time

Figure 3: A simply supported steel beam structure [18,22,41]

Assuming that the simply supported beam was subjected to uniform linear corrosion in all
directions during the service, and the corroded part completely lost its mechanical strength, the area
of the uncorroded area could be expressed by:

A (t) = b (t) × h (t) (41)

where A(t) is the non-corroded area, having the width and height of b (t) = b0 −κt and h (t) = h0 −κt,
respectively; κ is equal to 0.03 mm/year.
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When the stress reached the ultimate stress of the material, the simply supported beam failed, and
the limit state function was formulated as follows:

G (X, Y (t)) = b (t) h2 (t)
4

σ −
(

Q (t) L
4

+ ρstb0h0L2

8

)
(42)

In this example, the random parameter distribution is presented in Table 4. The non probabilistic
variables are shown in Table 5.

Table 4: Random parameter distribution of the simply supported beam

Parameter Distribution type Mean value Coefficient of
variation

Autocorrelation
coefficient

Yield stress σ (MPa) Lognormal 170 10 NA
Beam width b0 (m) Lognormal 0.2 5 NA
Beam height h0 (m) Lognormal 0.04 10 NA
Stochastic load F (t)(N) Gauss process 3500 20 exp

[− (3τ)
2
]

Table 5: Non probabilistic variables of simply supported beam

Uncertain variable Nominal value Convex model description

Beam length L (m) 5
[δLδρ]

⎡
⎣1

4
0

0 1

⎤
⎦[δL

δρ

]
≤ 0.12

Material density ρ (N/m3) 78,500

Note: δL = L − L

L
, δρ = ρ − ρ

ρ
; L and ρ represent the nominal values of the two variables, respectively.

The reliability index results of the two methods are presented in Table 6, where it can be seen
that the reliability indexes obtained by the proposed method were 2.73, 2.56, 2.46, 2.39, 2.33, 2.28,
2.24, 2.20, 2.17, and 2.14. Those obtained by the Monte Carlo method were 2.72, 2.55, 2.45, 2.37,
2.32, 2.27, 2.23, 2.19, 2.16, and 2.13, respectively. A similar conclusion could be drawn from the
analysis of the results. As shown in Fig. 4, with the increase in the design service life, the reliability
of the structure decreased continuously in the time-varying reliability analysis. The deviations between
the two methods were 0.37%, 0.39%, 0.41%, 0.84%, 0.43%, 0.44%, 0.45%, 0.46%, 0.46%, and 0.47%.
The time-varying reliability calculated by the proposed method was very close to the results obtained
by the Monte Carlo method, and the error was within 0.84%, which indicated that the proposed
method had sufficient accuracy. In terms of the calculation cost, the Monte Carlo method required
the evaluation of the limit state function 59,433,341 times for each time-variant reliability analysis,
whereas the proposed method performed only 2,792 evaluations, which clearly demonstrated that the
proposed method had high calculation efficiency.
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Table 6: Reliability index in different time

1 2 3 4 5 6 7 8 9 10

Monte Carlo method 2.72 2.55 2.45 2.37 2.32 2.27 2.23 2.19 2.16 2.13
Proposed method 2.73 2.56 2.46 2.39 2.33 2.28 2.24 2.20 2.17 2.14
Deviation 0.37% 0.39% 0.41% 0.84% 0.43% 0.44% 0.45% 0.46% 0.46% 0.47%

Figure 4: Variation curve of reliability index with time for simply supported beam

5.3 Reliability Prediction of Tablet Computer Structures
At present, electronic equipment has been widely used in industrial fields. A tablet computer is a

quintessential consumer electronic device [36,42,43], and its Performance requirements such as high
temperature environments, accidental drops, and operational safety have been usually considered.
Therefore, it is necessary to analyze its reliability in the whole life cycle. The operational temperature of
a tablet affects its working performance. In a high temperature environment, the operating temperature
of the tablet used in this study was set at 45°C. The temperature TCH of a chip on the motherboard
should not exceed its rated operating temperature T0

CH = 65°C. As shown in Fig. 5, the tablet used in
this experiment mainly consisted of a touch screen, a display screen, a battery, the mainboard, support,
a front shell, and a back shell. The thickness of the front shell x1, the thickness of the touch screen x2,
and the power consumption of the mainboard Y1 were treated as random variables.

The power consumption Y 2(t) of the display screen was considered a stochastic process. The rated
operating temperature decayed with time during service, and the decay function was defined by TC

0 =
TCH

0 e−0.001t. The distribution parameters of random variables and processes are presented in Table 7. The
thickness x3 of the support and the thickness x4 of the back shell were considered non-probabilistic
variables, as shown in Table 8.
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Figure 5: The structure of a tablet

Table 7: Random parameter distribution

Parameters Distribution type Mean value Standard deviation Autocorrelation coefficient

x1 Normal 5.07 0.03 NA
x2 Normal 0.65 0.03 NA
Y 1 Normal 2.0 0.2 NA
Y2 (t) Gauss process 2.0 0.2 exp [−4τ 2]

Table 8: Non-probabilistic variables

Uncertain variable Nominal value Convex model description

x3 0.58 [
δx3

δx4

] [1 0
0 1

][
δx3

δx4

]
≤ 0.12

x4 1.10

Thus, the reliability model of the actual problem could be constructed as follows:

g (t) = TC
0 − TCH (x1, x2, x3, x4, Y1, Y2 (t)) (43)

In the finite element analysis and calculation, 86,650 eight-node hexahedrons were used. To
improve the calculation efficiency, the second-order response surface for TCH was constructed as
follows [36,42]:

TCH (x1, x2, x3, x4, Y1, Y2 (t)) = − 0.6330Y1 (t)2 + 0.02776Y1 (t) Y2 (t) − 0.2823Y1 (t) X2 + 7.119Y1 (t)

+ 0.6486Y2 (t)2 − 0.1774X1
2 + 1.767X1 − 0.03070X2

2 − 0.2237X3
2

− 0.1057X4
2 + 44.18
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In this example, the Monte Carlo method and the proposed method were used to conduct the
time-varying reliability analysis. The analysis results are presented in Table 9 and Fig. 6, with a time
step of 0.5 years. The tablet’s reliability changed over time and tended to decrease. As shown in Fig. 7,
in the first year, the reliability index was 2.23, and the corresponding failure probability was 1.29 ×
10−2; in the 10th year, the reliability index decreased to 1.20, and the corresponding failure probability
was 1.15 × 10−1, which was more than eight times of the initial failure probability. Therefore, when
designing a tablet computer, its performance in the whole life cycle should be considered, and a certain
margin should be provided in the reliability design. The comparison results of the proposed method
and the Monte Carlo method demonstrated that the proposed method was accurate, and the maximum
deviation between the two methods was only 9.09%. In terms of the calculation cost, the proposed
method called the performance function only 320 times.

Table 9: The reliability indexes for a tablet computer

T (years) 1 2 3 4 5 6 7 8 9 10

Monte Carlo method 2.13 1.92 1.76 1.63 1.52 1.43 1.34 1.26 1.18 1.10
Proposed method 2.23 2.00 1.84 1.72 1.616 1.52 1.44 1.36 1.28 1.20
Deviation 4.69% 4.17% 4.55% 5.52% 6.32% 6.29% 7.46% 7.94% 8.47% 9.09%

Figure 6: The reliability index over time for the structure of a tablet
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Figure 7: The failure probability for the structure of a tablet

6 Conclusion

This study proposes an innovative sequential iterative method to obtain the time-varying reliability
index using a hybrid model that integrates the probabilistic and multi-ellipsoid convex models. The
objective of this study is to solve a multi-layer nested optimization problem. The proposed method can
solve the reliability problems when the resistance and load vary with time, and uncertain parameters
have non-probabilistic uncertain parameters. The existing formulas and numerical techniques are
used to develop a method for time-variant reliability assessment affected by random and bounded
variations. Numerical examples show that the results of the proposed method are very close to those
of the Monte Carlo method, but its computational efficiency is significantly improved. The structural
analysis of the tablet shows that power degradation over time can decrease device reliability and, thus,
should not be ignored in the device design process. The hybrid modeling theory can better evaluate
the reliability of tablet computer structures when multiple sources of uncertain parameters are input.
This study provides a complementary attempt for this field.

The decoupling framework has the limitation that it relies on gradient-based algorithms to solve
the reliability problem, which requires small changes in variables between successive iterations to
ensure the accuracy of the solution. Therefore, it is crucial to investigate robust algorithms for time
variant reliability analysis to address significant fluctuations in variables. In addition, the adaptive
surrogate model could be integrated into the decoupling framework to improve its efficiency, thus
providing a potential approach to solve the problem of inefficiency in the reliability analysis of complex
structures. Finally, future work could focus on developing advanced reliability analysis methods for
time-dependent problems with high and strong nonlinearity.
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