
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.030687

ARTICLE

An Intelligent MCGDM Model in Green Suppliers Selection Using
Interactional Aggregation Operators for Interval-Valued Pythagorean
Fuzzy Soft Sets

Rana Muhammad Zulqarnain1, Wen-Xiu Ma1,2,3,*, Imran Siddique4, Hijaz Ahmad5,6 and Sameh Askar7

1School of Mathematical Sciences, Zhejiang Normal University, Jinhua, 321004, China
2Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
3School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
4Department of Mathematics, University of Sargodha, Sargodha, 40100, Pakistan
5Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, Roma, 00186, Italy
6Near East University, Operational Research Center in Healthcare, Nicosia/Mersin, 99138, Turkey
7Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia

*Corresponding Author: Wen-Xiu Ma. Email: wma3@usf.edu

Received: 18 April 2023 Accepted: 21 June 2023 Published: 29 January 2024

ABSTRACT

Green supplier selection is an important debate in green supply chain management (GSCM), attracting global
attention from scholars, especially companies and policymakers. Companies frequently search for new ideas and
strategies to assist them in realizing sustainable development. Because of the speculative character of human
opinions, supplier selection frequently includes unreliable data, and the interval-valued Pythagorean fuzzy soft
set (IVPFSS) provides an exceptional capacity to cope with excessive fuzziness, inconsistency, and inexactness
through the decision-making procedure. The main goal of this study is to come up with new operational laws
for interval-valued Pythagorean fuzzy soft numbers (IVPFSNs) and create two interaction operators-the interval-
valued Pythagorean fuzzy soft interaction weighted average (IVPFSIWA) and the interval-valued Pythagorean
fuzzy soft interaction weighted geometric (IVPFSIWG) operators, and analyze their properties. These operators are
highly advantageous in addressing uncertain problems by considering membership and non-membership values
within intervals, providing a superior solution to other methods. Moreover, specialist judgments were calculated by
the MCGDM technique, supporting the use of interaction AOs to regulate the interdependence and fundamental
partiality of green supplier assessment aspects. Lastly, a statistical clarification of the planned method for green
supplier selection is presented.
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1 Introduction

Green supply chain management (GSCM) is a tactical strategy that implements sustainable
practices throughout the supply chain. Due to increasing concerns about the sustainability of the envi-
ronment, the concept of GSCM acquired severe recognition in the past few years. One of the primary
objectives of GSCM is to minimize a supply chain’s emissions and adverse environmental effects. As
the world’s economic system grows, more significant resources are used. Still, resource depletion and
degradation of the environment have increased indigenous, carrying more attention from researchers,
businesses, the general public, and authorities globally [1]. As a consequence, approaches to sustainable
development have been established, and many kinds of reinforced environmental regulations, laws, and
policies have been placed that combine economic expansion with a sustainable environment [2]. GSCM
is being demonstrated to be a viable approach for addressing the problem mentioned earlier. This
type of administrative strategy infuses environmentally conscious thinking through the operational
phases of the supply chain, including design, which is buying goods manufacturing, transportation,
preservation, advertisement, and transaction [3]. The supplier is upstream and in the green supply
chain, setting the basis for inter- and intra-organizational efficiency [4]. Consequently, selecting
the most capable green supplier is essential for small businesses to contribute to environmental
preservation while retaining their fundamental competitive advantage in supply chain management.

Multi-criteria group decision-making is deemed the most suitable method for determining the
optimal alternative based on criteria or attributes. However, decisions in real-life situations may
involve vague or unclear goals and limitations. In DM, dealing with uncertainties and ambiguities
can be a challenge. To address this issue, fuzzy sets (FS) were introduced by Zadeh [5]. Later,
interval-valued fuzzy sets (IVFS) were presented by Turksen [6] to handle situations where experts
consider membership degrees (MD) in intervals during the DM process. However, FS and IVFS are
limited because they do not provide information about alternative non-membership degrees (NMD).
Atanassov [7] created the intuitionistic fuzzy set (IFS) to address these limitations. Wang et al. [8] added
several operations and AOs for IFS, including the Einstein product and sum. Furthermore, the cubic
intuitionistic fuzzy set (CIFS) was proposed by Garg et al. [9] to develop the concept of IFS further.
Atanassov [10] extended the notion of IFS to the interval-valued intuitionistic fuzzy set (IVIFS).
Torağay et al. [11] utilized the Delphi method based on a 2-Tuple fuzzy Linguistic representation
and the TOPSIS model for faculty evaluation. To address these limitations, Yager [12] proposed the
Pythagorean fuzzy set (PFS), which resolves issues with the linear relationship between MD and NMD
and cases where κ + δ ≤ 1 to κ2 + δ2 ≤ 1. Rahman et al. [13] introduced an Einstein-weighted
geometric operator for PFS and demonstrated a technique for multi-attribute group decision-making
(MAGDM) using this operator. Giri et al. [14] developed the decision-making trial and evaluation
laboratory method for supplier selection in sustainable supply chain management. Zhang et al. [15]
utilized the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS) method
to handle multi-criteria decision-making (MCDM) problems using PFS. Wei et al. [16] introduced the
Pythagorean fuzzy power AOs and developed a DM technique for multi-attribute decision-making
(MADM). Operational laws for interaction with Pythagorean fuzzy numbers were demonstrated by
Wang et al. [17], who established power Bonferroni mean operators. Chaurasiya et al. [18] proposed
a hybrid MCDM model for PFS. El-Morsy [19] proposed Pythagorean fuzzy numbers (PFN) in the
rate of risked return, portfolio risk amount, and expected return rate. Zhang [20] proposed similarity
measures for PFS and developed an MCGDM approach to address DM challenges. Anusha et al. [21]
developed an interactive group decision-making approach under q-rung probabilistic dual hesitant
fuzzy sets. Khan et al. [22] established a MADM model using an Archimedean aggregation operator
in a T-spherical fuzzy environment. Peng et al. [23] introduced AOs for interval-valued Pythagorean
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fuzzy sets (IVPFS) and revealed a DM method using their approach. Yu et al. [24] used modified
TOPSIS in an interval-valued Pythagorean fuzzy setting to formulate a distinctive group decision-
making sustainable supplier selection strategy. Rahman et al. [25] extended the weighted geometric
AOs for IVPFS and provided a DM structure based on their proposed operator. A PFS is a promising
approach for handling uncertainties and ambiguities in DM processes. Mu et al. [26] developed the
interval-valued Pythagorean fuzzy power Maclaurin symmetric mean operators to resolve MAGDM
problems.

The earlier theories have various applications but may be ineffective in parametric chemistry.
Molodtsov [27] developed the theory of soft sets (SS) to address uncertainty and misperceptions.
Fu et al. [28] then developed some essential operations for interval-valued soft sets and demonstrated
a technique for DM. Khalil et al. [29] established a novel DM methodology based on FSS. Other
researchers have also proposed different variations of FSS, such as intuitionistic fuzzy soft sets (IFSS)
[30]. Arora et al. [31] proposed a method that uses AOs for IFSS. Jiang et al. [32] developed the interval-
valued IFSS (IVIFSS) with basic operations and their possessions. Zulqarnain et al. [33] proposed the
TOPSIS technique for multiple attribute decision-making (MADM) problems in IVIFSS using the
correlation coefficient (CC). Peng et al. [34] combined PFS and SS to create PFSS with some basic
operations. Zulqarnain et al. [35,36] developed AOs and interaction AOs for PFSS and used their
developed operators in green supply chain management (GSCM). Kirişci et al. [37] proposed a new
DM approach that uses PFSS. Zulqarnain et al. [38,39] prolonged the Einstein-ordered weighted AOs
for PFSS. Siddique et al. [40] developed a novel DM method based on a score matrix for PFSS to solve
daily life hurdles. Zulqarnain et al. [41] extended the AOs for IVPFSS and presented a DM technique to
solve the MAGDM problem. Selecting sustainable suppliers is vital to managing a sustainable supply
chain, ensuring all stakeholders adhere to environmental, social, and ethical standards. Qiu et al. [42]
chose the best private partner using a single-valued neutrosophic set. Chatterjee et al. [43] suggested
that to create a healthier environment, it is important for practitioners to identify the key criteria
necessary for implementing sustainable policies, particularly in the rapidly growing electronics sector.
Stevic et al. [44] utilized the DM trial and evaluation laboratory method based on rough numbers to
select suppliers for a construction company. Stojic et al. [45] established a new MCDM model to select
suppliers for a polyvinyl chloride carpentry company. Stevic et al. [46] introduced a new method for
measuring alternatives and ranking them according to compromise solutions for sustainable supplier
selection in the healthcare industry.

1.1 Motivation
The IVPFSS is a type of structure that combines two different systems, IVPFS and SS. These

systems are used to handle information that is both certain and uncertain. When making decisions,
it is important to be able to combine information from different sources to get a comprehensive
understanding of the situation. However, the current tools for IVPFSS are not very effective when
dealing with imprecise or uncertain data. This can make it difficult to determine the best course of
action. Researchers have been exploring using interaction AOs for IVPFSS to address this issue. These
AOs, such as IVPFSIWA and IVPFSIWG, can be compared to other fusion extensions of FS. The
models that determine the overall NMD are based on the compatible NMD interval values. However,
this approach can lead to adverse outcomes and make it difficult to assess alternatives accurately.
To improve the effectiveness of these models, researchers are exploring the use of interval-valued
Pythagorean fuzzy soft numbers (IVPFSNs) and their interactions. The current AOs used to check
data concepts are ineffective and can lead to imprecise outcomes. By incorporating IVPFSNs and their
interactions, researchers hope to develop better tools for decision-making that can handle uncertain
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and imprecise data more effectively. Let U = {u1, u2} be a set of two experts with weights ωi = (.6, .4)
T

and e1, e2 be the selected factors with their compatible parameters with weights νj = (.4, .6)
T . Let I

be an alternate, then preferences of experts can be precise as I =
[
([.7, .8] , [.0, .0]) ([.2, .6] , [.3, .5])
([.3, .6] , [.5, .7]) ([.5, .7] , [.1, .6])

]
longsighted the parameters of the planned aspects in terms of IVPFSNs. Then, we conquered the
collected value by the IVPFSWA [41] operator is

〈
[.8333, .9487] , [.0, .0]

〉
. Similarly, we engaged the

IVPFSWG [41] operator and achieved a collected value
〈
[.3584, .6505] , [.0, .0]

〉
. This shows that there

is no effect on the collective consequence. δij. As δij = δ11 = [0.0, 0.0], δ12 = [0.5, 0.7], δ21 = [0.3, 0.5],
and δ22 = [0.1, 0.6], which is arbitrary. An improved approach to analyzing complex and perplexing
data is important for investigators. The current methods used to determine the significance of certain
AOs are not always reliable and may not provide enough information to make decisions about
alternatives. As a result, researchers are exploring the use of IVPFSNs and their interactions to
improve the accuracy of these methods. However, the existing methodologies for analyzing IVPFSNs
are ineffective in scrutinizing data or providing clear implications for decision-making. To address
this issue, researchers have developed new interaction AOs, such as IVPFSIWA and IVPFSIWG, to
evaluate better the significance of different factors in the decision-making process. The development of
these new interaction AOs is an important step forward in the field of IVPFSS, as it allows investigators
to analyze complex data and make better decisions based on the available information.

1.2 Significant Contribution
The interactional AOs for IVPFSS are aimed at addressing the limitations of existing AOs. The

traditional AOs do not consider the interaction between different attributes or experts, which can lead
to biased or inaccurate DM. The interactional AOs allow for viewing interaction between different
attributes or experts, which can lead to more comprehensive and accurate DM. These operators
consider the weights assigned to different attributes or experts and their agreement and disagreement
levels. Therefore, by introducing interactional AOs for IVPFSS, we can improve the accuracy and
reliability of DM in various fields such as engineering, finance, medical diagnosis, sustainable
supplier selection, and other areas where uncertainty and ambiguity are common. Sustainable supplier
selection minimizes negative environmental and societal impacts while maximizing positive outcomes,
such as increased efficiency and profitability. This is accomplished by integrating sustainability criteria
into the supplier evaluation process. Evaluating potential suppliers involves considering quality, price,
delivery time, and reliability factors to determine the best fit for a particular business or organization.
The selection and assessment of suppliers are critical for ensuring the success of supply chain
management and achieving the desired results. The literature highlights the need for an MCGDM
method for sustainable supplier selection that considers environmental concerns and expert opinions.
To address these limitations, we propose a strategy that uses IVPFSS information. IVPFSS is a hybrid
intellectual structure that incorporates both IVPFSS and fuzzy soft information to improve the sorting
process and help decision-makers deal with complex and incomplete information. Based on research
findings, IVPFSS plays a crucial role in DM by integrating multiple sources into a single value.

• However, when dealing with MD and NMD, existing AOs may not yield accurate results,
making an improved sorting process essential. Based on research findings, IVPFSS plays a
crucial role in DM by consolidating multiple sources into a single value. Although combining
IVPFS and SS is a widely recognized concept, integration with the IVPFSS background has
been lacking. To address this, we propose extending IVPFSS by introducing interaction AOs
with their fundamental properties. Our investigation aims to expand the concept of IVPFSS by
introducing interaction operators based on rough data, with the following objectives:
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• Extend the PFSS to IVPFSS and develop interaction AOs to effectively handle multiple
attributes in DM processes.

• While interaction AOs for IVPFSS are a reputable and effective method for evaluating attributes
in the DM process, they may not always provide accurate results. To address this, we present
new operational laws for IVPFSNs.

• Introduce the IVPFSIWA and IVPFSIWG operators and their essential properties, utilizing the
established operational laws.

• Design a new method using the established operators to address MCGDM problems in the
IVPFSS environment.

• Sustainable supplier selection is crucial for sustainable supply chain management and a
significant step in professional development. It aims to ensure that all aspects meet concrete
conditions.

• Compare the newly proposed MCGDM technique and existing methods to evaluate the
effectiveness and superiority of the new approach.

This paper’s organization content is divided into five sections. Section 2 overviews some crucial
concepts that will facilitate the subsequent study. Section 3 introduces new operational laws for IVPF-
SNs and presents the IVPFSIWA and IVPFSIWG operators based on these laws. These operators
are developed to improve the boundaries of communicating indefinite and unreliable data in real-life
surroundings. Section 4 proposes an MCGDM method using the newly developed interaction AOs.
This section describes how the proposed method can be used to select sustainable suppliers effectively.
To demonstrate the practicality of the approach, we provide a numerical example of sustainable
supplier selection in this section. Finally, Section 5 compares the proposed technique with existing
approaches, showing its efficiency and effectiveness. The comparison will help to understand the
advantages of the proposed method over other existing methods.

2 Preliminaries

This section lays the foundation for the subsequent work by providing essential definitions.

2.1 Definition [5]
A is a fuzzy set over a universe of discourse U , where U is a collection of objects, and A is a subset

of U .

A = {(t, κA (t)) |t ∈ U}
where κA (t) ∈ [0, 1] is a membership grade function.

2.2 Definition [6]
A is an interval-valued fuzzy set over a universe of discourse U , where U is a collection of objects,

and A is a subset of U .

A = {(t, [κ l
A (t) , κu

A (t)]) | t ∈ U
}

where κ l
A (t) , κu

A (t) ∈ [0, 1] and expressed the lower and upper values of the membership grade.



1834 CMES, 2024, vol.139, no.2

2.3 Definition [10]
A is an interval-valued intuitionistic fuzzy set over a universe of discourse U , where U is a

collection of objects, and A is a subset of U .

A = {(t, ([κ l
A (t) , κu

A (t)
]

,
[
δl

A (t) , δu
A (t)

])) |t ∈ U
}

where
[
κ l

A (t) , κu
A (t)

]
and

[
δl

A (x) , δu
A (x)

]
are intervals for MD and NMD, respectively, whereas[

κ l
A (t) , κu

A (t)
]

and
[
δl

A (t) , δu
A (t)

] ⊆ [0, 1] and

0 ≤ κ l
A (t) , κu

A (t) , δl
A (t) , δu

A (t) ≤ 1

Furthermore, 0 ≤ κu
A (x) + δu

A (x) ≤ 1.

2.4 Definition [23]
A is an interval-valued Pythagorean fuzzy set (IVPFS) over a universe of discourse U , where U is

a collection of objects, and A is a subset of U .

A = {(x,
([

κ l
A (t) , κu

A (t)
]

,
[
δl

A (t) , δu
A (t)

])) |t ∈ U
}

where
[
κ l

A (t) , κu
A (t)

]
and

[
δl

A (t) , δu
A (t)

]
represents the MD and NMD intervals, respectively. Also,

κ l
A (t) , κu

A (t), δl
A (t) , δu

A (t) ∈ [0, 1] and satisfied the subsequent condition 0 ≤ (κu
A (t)

)2 + (δu
A (t)

)2 ≤ 1.

2.5 Definition [27]
A soft set is defined as a pair (�, A), where U is a universal set, and ζ is a set of parameters such

as A ⊆ ζ . Its mapping can be defined as:

� : A → P (U)

Also, it can be defined as follows:

(�, A) = {� (t) ∈ P (U) : t ∈ ζ , � (t) = ∅ if t /∈ A}

2.6 Definition [32]
An interval-valued intuitionistic fuzzy soft set is defined as a pair (�, A), where U is a universal

set, and ζ is a set of parameters, where � : ζ → IKU is a mapping and IKU is known as a collection of
all intuitionistic fuzzy soft subsets of the universal set U , and A ⊂ ζ .

(�, A) = {t, ([κ l
A (t) , κu

A (t)
]

,
[
δl

A (t) , δu
A (t)

]) |t ∈ A
}

where
[
κ l

A (t) , κu
A (t)

]
and

[
δl

A (t) , δu
A (t)

]
are intervals for MD and NMD, respectively, with 0 ≤ κu

A (t) +
δu

A (t) ≤ 1.

2.7 Definition [41]
An interval-valued Pythagorean fuzzy soft set is defined as a pair (�, A), where U is a universal

set, and ζ is a set of parameters, where � : ζ → ℘KU is a mapping and ℘KU is identified as a collection
of all Pythagorean fuzzy soft subsets of universal set U and A ⊂ ζ .

(�, A) = {x,
([

κ l
A (t) , κu

A (t)
]

,
[
δl

A (t) , δu
A (t)

]) |t ∈ A
}

where
[
κ l

A (t) , κu
A (t)

]
,
[
δl

A (t) , δu
A (t)

]
represents the MD and NMD intervals, respectively.
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Also, κ l
A (t) , κu

A (t), δl
A (t) , δu

A (t) ∈ [0, 1] and satisfied the subsequent condition 0 ≤ (
κu

A (t)
)2 +(

δu
A (t)

)2 ≤ 1 and A ⊂ ζ .

Simply IVPFSN can be expressed as M = ([
κ l, κu

]
,
[
δl, δu

])
. The score and accuracy functions

can be defined as follows to compute the ranking of the alternatives:

S (Me) =
(
κ l
)2 + (κu)

2 − (δl
)2 − (δu)

2

2

A (Me) =
(
κ l
)2 + (κu)

2 + (δl
)2 + (δu)

2

2

2.8 Definition [41]
Let Me = ([

κ l, κu
]

,
[
δl, δu

])
, Me11

= ([
κ l

11, κ
u
11

]
,
[
δl

11, δ
u
11

])
, and Me12

= ([
κ l

12, κ
u
12

]
,
[
δl

12, δ
u
12

])
be three

IVPFSNs and β be a positive real number, then the algebraic operational norms are defined as follows:

1. Me11
⊕ Me12

=
([√

κ l
11

2 + κ l
12

2 − κ l
11

2
κ l

12
2,
√

κu
11

2 + κu
12

2 − κu
11

2κu
12

2

]
,
[
δl

11δ
l
12, δ

u
11δ

u
12

])

2. Me11
⊗ Me12

=
([

κ l
11κ

l
12, κ

u
11κ

u
12

]
,
[√

δl
11

2 + δl
12

2 − δl
11

2
δl

12
2,
√

δu
11

2 + δu
12

2 − δu
11

2
δu

11
2

])

3. βMe =
([√

1 − (1 − κ l2
)β

,
√

1 − (1 − κu2)
β

]
,
[
δlβ , δuβ

]) =
(√

1 − (1 − [κ l, κu]2)β ,
[
δlβ , δuβ

])

4. Me
β =

([
κ lβ , κuβ

]
,
[√

1 − (1 − δl2
)β

,
√

1 − (1 − δu2
)β]) =

([
κ lβ , κuβ

]
,
√

1 − (1 − [δl, δu]2)β).

For the collection of IVPFSNs Meij , where ωi and νj are weight vectors for experts and
attributes correspondingly, with assumed circumstances ωi > 0,

∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1.
Zulqarnain et al. [41] planned AOs for IVPFSNs as follows:

IVPFSWA
(
Me11 ,Me12 , . . . . . . . . . ,Menm

) =
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −

[
κ l

ij, κ
u
ij

]2
)ωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ij, δ
u
ij

])ωi

)νj
⎞
⎠

IVPFSWG
(
Me11 ,Me12 , . . . . . . . . . ,Menm

) =
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ij, κ
u
ij

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

(
1 −

[
δl

ij, δ
u
ij

]2
)ωi
)νj
⎞
⎠

It is noticed that the IVPFSWA and IVPFSWG operators provide some unattractive outcomes in
certain conditions, as mentioned in 1.1. To overwhelm such consequences, we present the interaction
AOs for IVPFSNs.

3 Interaction Aggregation Operators for Interval Valued Pythagorean Fuzzy Soft Sets

This section will describe the concept of interaction operational laws in the context of IVPFSNs.
Utilizing these operational laws, we will introduce the IVPFSIWA and IVPFSIWG operators.

3.1 Interaction Operational Laws for IVPFSNs
Let Me = ([

κ l, κu
]

,
[
δl, δu

])
, Me11

= ([
κ l

11, κ
u
11

]
,
[
δl

11, δ
u
11

])
, and Me12

= ([
κ l

12, κ
u
12

]
,
[
δl

12, δ
u
12

])
be three

IVPFSNs, and β be a positive real number. Then the algebraic operational laws for IVPFSNs are given
as follows:



1836 CMES, 2024, vol.139, no.2

1. Me11 ⊕ Me12 =

⎛
⎜⎜⎝

[√
κ l

11
2 + κ l

12
2 − κ l

11
2
κ l

12
2
,
√

κu
11

2 + κu
12

2 − κu
11

2κu
12

2
]

,[√
δl

11
2 + δl

12
2 − δl

11
2
δl

12
2 − κ l

11
2
δl

12
2 − δl

11
2
κ l

12
2
,
√

δu
11

2 + δu
12

2 − δu
11

2δu
12

2 − κu
11

2δu
12

2 − δu
11

2κu
12

2
]
⎞
⎟⎟⎠

2. Me11⊗Me12 =

⎛
⎜⎜⎝
[√

kl
11

2
+ kl

12
2 − kl

11
2
kl

12
2 − κ l

11
2
δl

12
2 − δl

11
2
κ l

12
2
,
√

ku
11

2 + ku
12

2 − ku
11

2ku
12

2 − κu
11

2δu
12

2 − δu
11

2κu
12

2
]

,[√
δl

11
2 + δl

12
2 − δl

11
2
δl

12
2
,
√

δu
11

2 + δu
12

2 − δu
11

2δu
11

2
]

⎞
⎟⎟⎠

3. βMe =
(√

1 − (1 − [κ l, κu]2)β ,
√

(1 − [κ l, κu]2)
β − [1 − ([κ l, κu]2 + [δl, δu]2)]β

)

4. Me
β =

(√
(1 − [δl, δu]2)

β − [1 − ([κ l, κu]2 + [δl, δu]2)]β ,
√

1 − (1 − [δl, δu]2)β).

3.2 Interval Valued Pythagorean Fuzzy Soft Interaction Weighted Average Operator
Suppose we have a collection of IVPFSNs denoted by Meij = ([

κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
. Let ωi and νj

be the weight vectors for experts and parameters, respectively, subject to the assumptions that ωi >

0,
∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1. Then, the IVPFSIWA operator can be defined as:

IVPFSIWA: Ψn −→ Ψ

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

) = ⊕m
j=1νj

(⊕n
i=1ωiMeij

)
3.2.1 Theorem

Let Meij = ([
κ l

ij, κ
u
ij

]
,
[
δl

ij, δ
u
ij

])
be a collection of IVPFSNs, where (i = 1, 2, 3, . . . . . . , n and j =

1, 2, 3, . . . . . . . . . , m). The resulting aggregated value is also an IVPFSN, denoted as:

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

)

=

⎛
⎜⎜⎜⎜⎝

√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎠

The weight vectors for experts and attributes are denoted by ωi and νj, respectively, where
ωi > 0,

∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1.

Proof:

To demonstrate the IVPFSIWA operator, we will employ the principle of mathematical induction.

For n = 1, we get ω1 = 1. Then, we have

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Me1m

) = ⊕m
j=1νjMe1j

=
(√

1 −
∏m

j=1

(
1 − [κ l

1j, κu
1j

]2
)νj

,

√∏m

j=1

(
1 − [κ l

1j, κu
1j

]2
)νj −

∏m

j=1

(
1 −

([
κ l

1j, κu
1j

]2 + [δl
1j, δu

1j

]2
))νj

)
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=

⎛
⎜⎜⎝

√
1 −∏m

j=1

(∏1

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√∏m

j=1

(∏1

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj −∏m

j=1

(∏1

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎠ .

For m = 1, we get ν1 = 1. Then, we have

IVPFSIWA
(
Me11

,Me21
, . . . . . . . . . ,Men1

) = ⊕n
i=1ωiMei1

=
⎛
⎝
√√√√1 −

n∏
i=1

(
1 − [κ l

i1, κu
i1

]2
)ωi

,

√√√√ n∏
i=1

(
1 − [κ l

i1, κu
i1

]2
)ωi −

n∏
i=1

(
1 −

([
κ l

i1, κu
i1

]2 + [δl
i1, δu

i1

]2
))ωi

⎞
⎠

=

⎛
⎜⎜⎜⎜⎝

√
1 −

1∏
j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√
1∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

−
1∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎠

This demonstrates that the theorem given above is true for n = 1 and m = 1. To further prove the
theorem, let us assume that the theorem holds for m = α1 + 1, n = α2 and m = α1, n = α2 + 1, such as

⊕α1+1
j=1 νj

(
⊕α2

i=1ωiMeij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

√√√√1 −
α1+1∏
j=1

(
α2∏

i=1

(
1 −

[
κ l

ij , κ
u
ij

]2
)ωi
)νj

,

√√√√α1+1∏
j=1

(
α2∏

i=1

(
1 −

[
κ l

ij , κ
u
ij

]2
)ωi
)νj

−
α1+1∏
j=1

(
α2∏

i=1

(
1 −

([
κ l

ij , κ
u
ij

]2 +
[
δl

ij , δ
u
ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎟⎟⎠

⊕α1
j=1νj

(
⊕α2+1

i=1 ωiMeij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

√√√√1 −
α1∏

j=1

(
α2+1∏
i=1

(
1 −

[
κ l

ij , κ
u
ij

]2
)ωi
)νj

,

√√√√ α1∏
j=1

(
α2+1∏
i=1

(
1 −

[
κ l

ij , κ
u
ij

]2
)ωi
)νj

−
α1∏

j=1

(
α2+1∏
i=1

(
1 −

([
κ l

ij , κ
u
ij

]2 +
[
δl

ij , δ
u
ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎟⎟⎠

For m = α1 + 1 and n = α2 + 1, we have

⊕α1+1
j=1 νj

(
⊕α2+1

i=1 ωiMeij

)
= ⊕α1+1

j=1 νj

(
⊕α2

i=1ωiMeij ⊕ ωα2+1Me
(α2+1)j

)
= ⊕α1+1

j=1 ⊕α2
i=1 νjωiMeij ⊕α1+1

j=1 νjωα2+1Me(α2+1)j

=

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1 −∏α1+1

j=1

(∏α2
i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj ⊕√

1 −∏α1+1

j=1

((
1 − [κ l

(α2+1)j, κu
(α2+1)j

]2
)ωα2+1

)νj

,√∏α1+1

j=1

(∏α2
i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj −∏α1+1

j=1

(∏α2
i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj ⊕
√∏α1+1

j=1

((
1 − [κ l

(α2+1)j, κu
(α2+1)j

]2
)ωα2+1

)νj −∏α1+1

j=1

(
(1 −

([
κ l

(α2+1)j, κu
(α2+1)j

]2 + [δl
(α2+1)j, δu

(α2+1)j

]2
)ωα2+1

)νj

⎞
⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎝

√
1 −∏α1+1

j=1

(∏α2+1
i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√∏α1+1

j=1

(∏α2+1
i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj −∏α1+1

j=1

(∏α2+1

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎠

Therefore, it holds for m = α1+1 and n = α2+1. Therefore, based on the principle of mathematical
induction, we can conclude that the theorem holds ∀ m and n.

3.2.2 Example

Suppose χ = {x1, x2, x3} be set of experts and ϕ = {e1 = Resale Value, e2 = Mileage, e3 =
Cost of bike} be a set of attributes. The weights of experts and attributes are ωi = (0.38, 0.45, 0.17)

T

and νj = (0.25, 0.45, 0.3)
T , respectively. The team of experts wants to buy a motorbike under their

deliberated parameters. First of all, experts deliver their evaluations in terms of IVPFSNs for each
alternate (M, ϕ) = ([κ l

ij, κ
u
ij

]
,
[
δl

ij, δ
u
ij

])
3×3

is given as

(M, ϕ) =
⎡
⎣([.3, .8] , [.4, .5]) ([.4, .6] , [.3, .7]) ([.5, .8] , [.5, .5])

([.1, .5] , [.2, .3]) ([.3, .8] , [.5, .5]) ([.2, .4] , [.2, .3])
([.2, .9] , [.2, .3]) ([.5, .7] , [.2, .6]) ([.2, .4] , [.2, .8])

⎤
⎦

Applying the theorem mentioned above

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Me33

)

=

⎛
⎜⎜⎜⎜⎝

√
1 −

3∏
j=1

(
3∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√
3∏

j=1

(
3∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

−
3∏

j=1

(
3∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.36, 0.91]0.38 [0.75, 0.99]0.45

[0.19, 0.96]0.17

}0.25 {
[0.64, 0.84]0.38

[0.36, 0.91]0.45 [0.51, 0.75]0.17

}0.45

{
[0.36, 0.75]0.38 [0.84, 0.96]0.45

[0.84, 0.96]0.17

}0.3

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.36, 0.91]0.38 [0.75, 0.99]0.45

[0.19, 0.96]0.17

}0.25 {
[0.64, 0.84]0.38

[0.36, 0.91]0.45 [0.51, 0.75]0.17

}0.45

{
[0.36, 0.75]0.38 [0.84, 0.96]0.45

[0.84, 0.96]0.17

}0.3

⎞
⎟⎟⎠−

⎛
⎜⎝
{
(1 − [0.25, 0.89])0.38

(1 − [0.05, 0.34])0.45
(1 − [0.08, 0.9])0.17}0.25{

(1 − [0.25, 0.85])0.38
(1 − [0.34, 0.89])0.45

(1 − [0.29, 0.85])0.17}0.45{
(1 − [0.5, 0.89])0.38

(1 − [0.08, 0.25])0.45
(1 − [0.08, 0.8])0.17}0.3

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.6783, 0.9648] [0.8786, 0.9955]
[0.7540, 0.9931]

}0.25 {
[0.8440, 0.9359] [0.6314, 0.9584]

[0.8918, 0.9523]

}0.45

{
[0.6783, 0.8964] [0.9245, 0.9818]

[0.9708, 0.9931]

}0.3

⎞
⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.6783, 0.9648] [0.8786, 0.9955]
[0.7540, 0.9931]

}0.25 {
[0.8440, 0.9359] [0.6314, 0.9584]

[0.8918, 0.9523]

}0.45

{
[0.6783, 0.8964] [0.9245, 0.9818]

[0.9708, 0.9931]

}0.3

⎞
⎟⎟⎠−

⎛
⎜⎝
{
([0.11, 0.75])0.38

([0.66, 0.95])0.45
([0.1, 0.92])0.17}0.25{

([0.15, 0.75])0.38
([0.11, 0.66])0.45

([0.15, 0.71])0.17}0.45{
([0.11, 0.5])0.38

([0.25, 0.92])0.45
([0.2, 0.92])0.17}0.3

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 −

({[0.4493, 0.9538]}0.25 {[0.4752, 0.8542]}0.45

{[0.6088, 0.8740]}0.3

)
,

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√

({[0.4493, 0.9538]}0.25 {[0.4752, 0.8542]}0.45

{[0.6088, 0.8740]}0.3

)
−⎛

⎝{[0.4322, 0.8964] [0.8295, 0.9772] [0.6761, 0.9859]}0.25

{[0.4863, 0.8964] [0.3704, 0.8295] [0.7243, 0.9434]}0.45

{[0.4322, 0.7684] [0.5359, 0.9632] [0.7606, 0.9859]}0.3

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎝

√
1 − ([0.8187, 0.9882] [0.7155, 0.9315] [0.8617, 0.9604]),(√
([0.8187, 0.9882] [0.7155, 0.9315] [0.8617, 0.9604])−(

[0.2424, 0.8636]0.25 [0.1305, 0.7015]0.45 [0.1762, 0.7297]0.3)
)⎞⎟⎠

=
⎛
⎜⎝

√
1 − ([0.5048, 0.8841]),(√

[0.5048, 0.8841] −
([0.7017, 0.9640] [0.4, 0.8525] [0.5940, 0.9098]

)⎞⎟⎠
=
(√

[0.1159, 0.4952],
√

[0.5048, 0.8841] − [0.1667, 0.7477]
)

= ([0.3404, 0.7037], [0.5815, 0.3693]).

3.3 Properties of IVPFSIWA Operator
3.3.1 Idempotency

If Meij = Me = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])∀i, j, then,

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

) = Me

Proof: As we know that all Meij = Me = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
. Then, we have

IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

)
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=

⎛
⎜⎜⎜⎜⎝

√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

,√
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√
1 −

((
1 − [κ l

ij, κu
ij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

,√((
1 − [κ l

ij, κu
ij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

−
((

1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
))∑n

i=1 ωi
)∑m

j=1 νj

⎞
⎟⎟⎟⎟⎠

As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
(√

1 −
(

1 − [κ l
ij, κu

ij

]2
)

,

√
1 − [κ l

ij, κu
ij

]2 −
(

1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
)))

= ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

]) = Me

3.3.2 Boundedness

Let Meij be a collection of IVPFSNs, where M−
eij

=
(

min
j

min
i
{[

κ l
ij, κ

u
ij

]}
,
max

j
max

i
{[

δl
ij, δ

u
ij

]})
and

M
+
eij

=
(

max
j

max
i
{[

κ l
ij, κ

u
ij

]}
,
min

j
min

i
{[

δl
ij, δ

u
ij

]})
. Then

M
−
eij

≤ IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

) ≤ M
+
eij

Proof: As we know that Meij = 〈[κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

]〉
be an IVPFSN, then

min
j

min
i

{[
κ l

ij, κ
u
ij

]2
}

≤ [κ l
ij, κ

u
ij

]2 ≤ max
j

max
i

{[
κ l

ij, κ
u
ij

]2
}

⇒ 1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2
}

≤ 1 − [κ l
ij, κ

u
ij

]2 ≤ 1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2
}

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2
})ωi

≤
(

1 − [κ l
ij, κ

u
ij

]2
)ωi ≤

(
1 − min

j
min

i

{[
κ l

ij, κ
u
ij

]2
})ωi

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2
})∑n

i=1 ωi

≤
n∏

i=1

(
1 − [κ l

ij, κ
u
ij

]2
)ωi ≤

(
1 − min

j
min

i

{[
κ l

ij, κ
u
ij

]2
})∑n

i=1 ωi

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2
})∑n

j=1 νj

≤
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κ
u
ij

]2
)ωi

)νj

≤
(

1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2
})∑n

j=1 νj

⇔ 1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2
}

≤
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κ
u
ij

]2
)ωi

)νj

≤ 1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2
}

⇔ min
j

min
i

{[
κ l

ij, κ
u
ij

]2
}

≤ 1 −
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κ
u
ij

]2
)ωi

)νj

≤ max
j

max
i

{[
κ l

ij, κ
u
ij

]2
}

(1)



CMES, 2024, vol.139, no.2 1841

⇔ min
j

min
i
{[

κ l
ij, κ

u
ij

]} ≤
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi

)νj

≤ max
j

max
i
{[

κ l
ij, κ

u
ij

]}
(a)

Similarly,

min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

≤ [κ l
ij, κ

u
ij

]2 + [δl
ij, δ

u
ij

]2 ≤ max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

⇒ 1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

≤ 1 −
([

κ l
ij, κ

u
ij

]2 + [δl
ij, δ

u
ij

]2
)

≤ 1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})ωi

≤
(

1 −
([

κ l
ij, κ

u
ij

]2 + [δl
ij, δ

u
ij

]2
))ωi

≤
(

1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})ωi

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})∑n

i=1 ωi

≤
n∏

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
))ωi

≤
(

1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})∑n

i=1 ωi

⇔
(

1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})∑n

j=1 νj

≤
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
))ωi

)νj

≤
(

1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
})∑n

j=1 νj

⇔ 1 − max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

≤
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
))ωi

)νj

≤ 1 − min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

⇔ min
j

min
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

≤ 1 −
∏m

j=1

(∏n

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
))ωi

)νj

≤ max
j

max
i

{[
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
}

(2)

Subtracting (2) from (1)

⇔ min
j

min
i

{[
δl

ij, δ
u
ij

]2
}

≤
∏m

j=1

(∏n

i=1

(
1 − [κ l

ij, κ
u
ij

]2
)ωi
)νj −

∏m

j=1

(∏n

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 + [δl
ij, δ

u
ij

]2
)
)
)ωi
)νj

≤ max
j

max
i

{[
δl

ij, δ
u
ij

]2
}
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⇔ min
j

min
i
{[

δl
ij, δ

u
ij

]} ≤
√∏m

j=1

(∏n

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj −

∏m

j=1

(∏n

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

≤ max
j

max
i
{[

δl
ij, δ

u
ij

]}
(b)

Let IVPFSIWA (Me11
,Me12

, . . . . . . . . . ,Menm) = 〈[
κ l

σ
, κu

σ

]
,
[
δl

σ
, δu

σ

]〉 = Mσ , then inequalities (a) and
(b) can be transferred into the form:

min
j

min
i
{[

κ l
ij, κ

u
ij

]} ≤ Mσ ≤ max
j

max
i
{[

κ l
ij, κ

u
ij

]}
and

min
j

min
i
{[

δl
ij, δ

u
ij

]} ≤ Mσ ≤ max
j

max
i
{[

δl
ij, δ

u
ij

]}
respectively.

Using the score function, we have

S (Mσ ) =
(
κ l

σ

)2 + (κu
σ

)2 − (δl
σ

)2 − (δu
σ

)2

2
≤ max

j
max

i
{[

κ l
ij, κ

u
ij

]}− min
j

min
i
{[

δl
ij, δ

u
ij

]} = S
(
M

−
eij

)

S (Mσ ) =
(
κ l

σ

)2 + (κu
σ

)2 − (δl
σ

)2 − (δu
σ

)2

2
≥ min

j
min

i
{[

κ l
ij, κ

u
ij

]}− max
j

max
i
{[

δl
ij, δ

u
ij

]} = S
(
M

+
eij

)
Therefore, utilizing the ordering relation between two IVPFSNs, we can obtain the following:

M
−
eij

≤ IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

) ≤ M
+
eij

3.3.3 Homogeneity

Prove that IVPFSIWA (βMe11
, βMe12

, . . . . . . . . . , βMenm) = βIVPFSWA (Me11
,Me12

, . . . . . .
. . . ,Menm) for any β > 0.

Proof: Suppose we have an IVPFSN represented by Meij and a β > 0. Then, utilizing the
aforementioned operational laws, we can obtain the following:

βMeij =
((√

1 −
(

1 − [κ l
ij, κu

ij

]2
)β

,

√(
1 − [κ l

ij, κu
ij

]2
)β

− [1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
)β

))

So,

βMe11
, βMe12

, . . . . . . . . . , βMenm

)

=

⎛
⎜⎜⎜⎜⎝

√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)βωi
)νj

,√
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)βωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))βωi

)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√
1 −

(
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj
)β

,√(
m∏

j=1

(
n∏

i=1

(
1 − [κ l

ij, κu
ij

]2
)ωi
)νj
)β

−
(

m∏
j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj
)β

⎞
⎟⎟⎟⎟⎠
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= β IVPFSIWA
(
Me11

,Me12
, . . . . . . . . . ,Menm

)
3.4 Interval Valued Pythagorean Fuzzy Soft Interaction Weighted Geometric Operator

Suppose we have a collection of IVPFSNs denoted by Meij = ([
κ l

ij, κ
u
ij

]
,
[
δl

ij, δ
u
ij

])
. Let ωi and νj

be the weight vectors for experts and parameters, respectively, subject to the assumptions that ωi >

0,
∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1. Then, the IVPFSIWG operator can be defined as

IVPFSIWG: Ψn −→ Ψ

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

) = ⊗m
j=1νj

(⊗n
i=1ωiMeij

)
3.4.1 Theorem

Let Meij = 〈[κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

]〉
be a collection of IVPFSNs. Then, the aggregated value obtained by

using the IVPFSIWG operator is also IVPFSN and

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

)

=

⎛
⎜⎜⎜⎜⎝

√
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

The weight vectors for experts and attributes are denoted by ωi and νj, respectively, where
ωi > 0,

∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1.

Proof: To demonstrate the IVPFSIWG operator, we will employ the principle of mathematical
induction:

For n = 1, we get ω1 = 1. Then, we have

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Me1m

) = ⊗m
j=1νjMe1j

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

)

=
⎛
⎝
√√√√ m∏

j=1

(
1 − [δl

1j, δu
1j

]2
)νj −

m∏
j=1

(1 −
([

κ l
1j, κu

1j

]2 + [δl
1j, δu

1j

]2
)νj

,

√√√√1 −
m∏

j=1

(
1 − [δl

1j, δu
1j

]2
)νj

⎞
⎠

=

⎛
⎜⎜⎝
√∏m

j=1

(∏1

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj −∏m

j=1

(∏1

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −∏m

j=1

(∏1

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎠

For m = 1, we get ν1 = 1. Then, we have

IVPFSIWG
(
Me11

,Me21
, . . . . . . . . . ,Men1

) = ⊗n
i=1ωiMei1

=
⎛
⎝
√√√√ n∏

i=1

(
1 − [δl

i1, δu
i1

]2
)ωi −

n∏
i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

,

√√√√1 −
n∏

i=1

(
1 − [δl

i1, δu
i1

]2
)ωi

⎞
⎠
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=

⎛
⎜⎜⎜⎜⎝

√
1∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
1∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

1∏
j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

This demonstrates that the theorem given above is true for n = 1 and m = 1. To further prove the
theorem, let us assume that the theorem holds for m = α1 + 1, n = α2 and m = α1, n = α2 + 1, such as

⊗α1+1
j=1 νj

(⊗α2
i=1ωiMeij

)

=

⎛
⎜⎜⎜⎜⎝

√
α1+1∏
j=1

(
α2∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
α1+1∏
j=1

(
α2∏
i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

α1+1∏
j=1

(
α2∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

⊗α1
j=1νj

(
⊗α2+1

i=1 ωiMeij

)

=

⎛
⎜⎜⎜⎜⎝

√
α1∏
j=1

(
α2+1∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
α1∏
j=1

(
α2+1∏
i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

α1∏
j=1

(
α2+1∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

For m = α1 + 1 and n = α2 + 1, we have

⊗α1+1
j=1 νj

(
⊗α2+1

i=1 ωiMeij

)
= ⊗α1+1

j=1 νj

(
⊗α2

i=1ωiMeij ⊗ ωα2+1Me(α2+1)j

)
= ⊗α1+1

j=1 νj ⊗α2
i=1 ωiMeij ⊗α1+1

j=1 νjωα2+1Me(α2+1)j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α1+1∏
j=1

(
α2∏

i=1

(
1 −

[
δl

ij , δ
u
ij

]2
)ωi
)νj

−
α1+1∏
j=1

(
α2∏

i=1

(
1 −

([
κ l

ij, κ
u
ij

]2 +
[
δl

ij , δ
u
ij

]2
))ωi

)νj

⊗√
α1+1∏
j=1

((
1 −

[
δl
(α2+1)j , δ

u
(α2+1)j

]2
)ωα2+1

)νj

−
α1+1∏
j=1

((
1 −

([
κ l
(α2+1)j , κ

u
(α2+1)j

]2 +
[
δl
(α2+1)j , δ

u
(α2+1)j

]2
))ωα2+1

)νj
,

√
1 −

α1+1∏
j=1

(
α2∏

i=1

(
1 −

[
δl

ij, δ
u
ij

]2
)ωi
)νj

⊗
√

1 −
α1+1∏
j=1

((
1 −

[
δl
(α2+1)j , δ

u
(α2+1)j

]2
)ωα2+1

)νj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√
α1+1∏
j=1

(
α2+1∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
α1+1∏
j=1

(
α2+1∏
i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

α1+1∏
j=1

(
α2+1∏
i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

Therefore, it holds for m = α1+1 and n = α2+1. Therefore, based on the principle of mathematical
induction, we can conclude that the theorem holds ∀ m and n.

3.4.2 Example

Suppose χ = {x1, x2, x3} be set of experts and ϕ = {e1 = Resale Value, e2 = Mileage, e3 = Cost of
bike} be a set of attributes. The weights of experts and attributes are ωi = (0.38, 0.45, 0.17)

T and



CMES, 2024, vol.139, no.2 1845

νj = (0.25, 0.45, 0.3)
T , respectively. The team of experts wants to buy a motorbike under their

deliberated parameters. First of all, experts deliver their evaluations in terms of IVPFSNs for each
alternate (M, ϕ) = ([κ l

ij, κ
u
ij

]
,
[
δl

ij, δ
u
ij

])
3×3

is given as

(M, ϕ) =
⎡
⎣([.3, .8] , [.4, .5]) ([.4, .6] , [.3, .7]) ([.5, .8] , [.5, .5])

([.1, .5] , [.2, .3]) ([.3, .8] , [.5, .5]) ([.2, .4] , [.2, .3])
([.2, .9] , [.2, .3]) ([.5, .7] , [.2, .6]) ([.2, .4] , [.2, .8])

⎤
⎦

Applying the theorem mentioned above

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Me33

)

=

⎛
⎜⎜⎜⎜⎝

√
3∏

j=1

(
3∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
3∏

j=1

(
3∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

3∏
j=1

(
3∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.75, 0.84]0.38 [0.91, 0.96]0.45

[0.91, 0.96]0.17

}0.25 {
[0.51, 0.91]0.38

[0.75, 0.75]0.45 [0.64, 0.96]0.17

}0.45

{
[0.75, 0.75]0.38 [0.91, 0.96]0.45

[0.36, 0.96]0.17

}0.3

⎞
⎟⎟⎠−

⎛
⎜⎝
{
(1 − [0.25, 0.89])0.38

(1 − [0.05, 0.34])0.45
(1 − [0.08, 0.9])0.17}0.25{

(1 − [0.25, 0.85])0.38
(1 − [0.34, 0.89])0.45

(1 − [0.29, 0.85])0.17}0.45{
(1 − [0.5, 0.89])0.38

(1 − [0.08, 0.25])0.45
(1 − [0.08, 0.8])0.17}0.3

⎞
⎟⎠

,

⎛
⎜⎜⎜⎝
√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.38 [0.91, 0.96]0.45

[0.91, 0.96]0.17

}0.25 {
[0.51, 0.91]0.38

[0.75, 0.75]0.45 [0.64, 0.96]0.17

}0.45

{
[0.75, 0.75]0.38 [0.91, 0.96]0.45

[0.36, 0.96]0.17

}0.3

⎞
⎟⎟⎠
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.8964, 0.9359] [0.9584, 0.9818]
[0.9841, 0.9931]

}0.25 {
[0.7742, 0.9648] [0.8786, 0.8786]

[0.9269, 0.9931]

}0.45

{
[0.8998, 0.8998] [0.9584, 0.9818]

[0.8405, 0.9931]

}0.3

⎞
⎟⎟⎠−

⎛
⎜⎝
{
([0.11, 0.75])0.38

([0.66, 0.95])0.45
([0.1, 0.92])0.17}0.25{

([0.15, 0.75])0.38
([0.11, 0.66])0.45

([0.15, 0.71])0.17}0.45{
([0.11, 0.5])0.38

([0.25, 0.92])0.45
([0.2, 0.92])0.17}0.3

⎞
⎟⎠

,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.8964, 0.9359] [0.9584, 0.9818]
[0.9841, 0.9931]

}0.25 {
[0.7742, 0.9648] [0.8786, 0.8786]

[0.9269, 0.9931]

}0.45

{
[0.8998, 0.8998] [0.9584, 0.9818]

[0.8405, 0.9931]

}0.3

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

√√√√√√√√√

({[0.8454, 0.9125]}0.25 {[0.6305, 0.8418]}0.45

{[0.7248, 0.8773]}0.3

)
−⎛

⎝{[0.4322, 0.8964] [0.8295, 0.9772] [0.6761, 0.9859]}0.25

{[0.4863, 0.8964] [0.3704, 0.8295] [0.7243, 0.9434]}0.45

{[0.4322, 0.7684] [0.5359, 0.9632] [0.7606, 0.9859]}0.3

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

√
1 −

({[0.8454, 0.9125]}0.25 {[0.6305, 0.8418]}0.45

{[0.7248, 0.8773]}0.3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝
√

([0.5739, 0.9737] [0.8126, 0.9254] [0.9079, 0.9615]) −(
[0.2424, 0.8636]0.25 [0.1305, 0.7015]0.45 [0.1762, 0.7297]0.3),(√
1 − ([0.5739, 0.9737] [0.8126, 0.9254] [0.9079, 0.9615])

)
⎞
⎟⎟⎠

=
(√

[0.4234, 0.8663] −
([0.7017, 0.9640] [0.4, 0.8525] [0.5940, 0.9098],

√
1 − ([0.4234, 0.8663])

)

=
(√

[0.4234, 0.8663] − [0.1667, 0.7477],
√

[0.1337, 0.5766]
)

= ([0.5067, 0.3529], [0.3657, 0.7593]).

3.5 Properties of IVPFSIWG
3.5.1 Idempotency

If Meij = Me = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

]) ∀ i, j, then,

IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

) = Me

Proof: As we know that all Meij = Me = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
, then we have

IVPFSIWG (Me11
,Me12

, . . . . . . . . . ,Menm)

=

⎛
⎜⎜⎜⎜⎝

√
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

,√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√((
1 − [δl

ij, δu
ij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

−
((

1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
))∑n

i=1 ωi
)∑m

j=1 νj

,√
1 −

((
1 − [δl

ij, δu
ij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

⎞
⎟⎟⎟⎟⎠

As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
(√(

1 − [δl
ij, δu

ij

]2
)

−
(

1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
))

,

√
1 −

(
1 − [δl

ij, δu
ij

]2
))

= ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

]) = Me
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3.5.2 Boundedness

Let Meij be a collection of PFSNs, where M
−
eij

=
(

min
j

min
i
{[

κ l
ij, κ

u
ij

]}
,
max

j
max

i
{[

δl
ij, δ

u
ij

]})
and

M
+
eij

=
(

max
j

max
i
{[

κ l
ij, κ

u
ij

]}
,
min

j
min

i
{[

δl
ij, δ

u
ij

]})
, then

M
−
eij

≤ IVPFSIWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

) ≤ M
+
eij

Proof: As we know that Meij = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
be an IVPFSN, then

min
j

min
i

{[
δl

ij, δ
u
ij

]2
}

≤ [δl
ij, δ

u
ij

]2 ≤ max
j

max
i

{[
δl

ij, δ
u
ij

]2
}

⇒ 1 − max
j

max
i

{[
δl

ij, δ
u
ij

]2
}

≤ 1 − [δl
ij, δ

u
ij

]2 ≤ 1 − min
j

min
i

{[
δl

ij, δ
u
ij

]2
}

⇔
(

1 − max
j

max
i

{[
δl

ij, δ
u
ij

]2
})ωi

≤
(

1 − [δl
ij, δ

u
ij

]2
)ωi ≤

(
1 − min

j
min

i

{[
δl

ij, δ
u
ij

]2
})ωi

⇔
(

1 − max
j

max
i

{[
δl

ij, δ
u
ij

]2
})∑n

i=1 ωi

≤
n∏

i=1

(
1 − [δl

ij, δ
u
ij

]2
)ωi ≤

(
1 − min

j
min

i

{[
δl

ij, δ
u
ij

]2
})∑n

i=1 ωi

⇔
(

1 − max
j

max
i

{[
δl

ij, δ
u
ij

]2
})∑n

j=1 νj

≤
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δ
u
ij

]2
)ωi

)νj

≤
(

1 − min
j

min
i

{[
δl

ij, δ
u
ij

]2
})∑n

j=1 νj

⇔ 1 − max
j

max
i

{[
δl

ij, δ
u
ij

]2
}

≤
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δ
u
ij

]2
)ωi

)νj

≤ 1 − min
j

min
i

{[
δl

ij, δ
u
ij

]2
}

⇔ min
j

min
i

{[
δl

ij, δ
u
ij

]2
}

≤ 1 −
∏m

j=1

(∏n

i=1

(
1 − [δl

ij, δ
u
ij

]2
)ωi
)νj ≤ max

j
max

i

{[
δl

ij, δ
u
ij

]2
}

⇔ min
j

min
i
{[

δl
ij, δ

u
ij

]} ≤
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi

)νj

≤ max
j

max
i
{[

δl
ij, δ

u
ij

]}
(c)

Similarly, we can prove that

min
j

min
i
{[

κ l
ij, κ

u
ij

]} ≤
√∏m

j=1

(∏n

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj −

∏m

j=1

(∏n

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj

≤ max
j

max
i
{[

κ l
ij, κ

u
ij

]}
(d)

Let IVPFSIWG (Me11
,Me12

, . . . . . . . . . ,Menm) = 〈[κ l
σ
, κu

σ

]
,
[
δl

σ
, δu

σ

]〉 = Mσ , then inequalities (c) and
(d) can be transferred into the following:

min
j

min
i
{[

κ l
ij, κ

u
ij

]} ≤ Mσ ≤ max
j

max
i
{[

κ l
ij, κ

u
ij

]}
and

min
j

min
i
{[

δl
ij, δ

u
ij

]} ≤ Mσ ≤ max
j

max
i
{[

δl
ij, δ

u
ij

]}
,

respectively.
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So, by using the score function, we have

S (Mσ ) =
(
κ l

σ

)2 + (κu
σ

)2 − (δl
σ

)2 − (δu
σ

)2

2
≤ max

j
max

i
{[

κ l
ij, κ

u
ij

]}− min
j

min
i
{[

δl
ij, δ

u
ij

]} = S

(
M

−
eij

)

S (Mσ ) =
(
κ l

σ

)2 + (κu
σ

)2 − (δl
σ

)2 − (δu
σ

)2

2
≥ max

j
max

i
{[

κ l
ij, κ

u
ij

]}− min
j

min
i
{[

δl
ij, δ

u
ij

]} = S

(
M

+
eij

)
Therefore, utilizing the ordering relation between two IVPFSNs, we can obtain the following:

M
−
eij

≤ IVPFSWG
(
Me11

,Me12
, . . . . . . . . . ,Menm

) ≤ M
+
eij

3.5.3 Homogeneity

Prove that IVPFSIWG (βMe11
, βMe12

, . . . . . . . . . , βMenm) = β IVPFSIWG (Me11
,Me12

, . . . . . .
. . . ,Menm) for any β > 0.

Proof: Suppose we have an IVPFSN represented by Meij and a β > 0. Then, utilizing the
aforementioned operational laws, we can obtain the following:

βMeij =
(√

1 −
(

1 − [κ l
ij, κu

ij

]2
)β

,

√(
1 − [κ l

ij, κu
ij

]2
)β

− [1 −
([

κ l
ij, κu

ij

]2 + [δl
ij, δu

ij

]2
)β

)

So,

IVPFSIWG
(
βMe11

, βMe12
, . . . . . . . . . , βMenm

)

=

⎛
⎜⎜⎜⎜⎝

√
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)βωi
)νj

−
m∏

j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))βωi

)νj

,√
1 −

m∏
j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)βωi
)νj

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

√(
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj
)β

−
(

m∏
j=1

(
n∏

i=1

(
1 −

([
κ l

ij, κu
ij

]2 + [δl
ij, δu

ij

]2
))ωi

)νj
)β

,√
1 −

(
m∏

j=1

(
n∏

i=1

(
1 − [δl

ij, δu
ij

]2
)ωi
)νj
)β

⎞
⎟⎟⎟⎟⎠

= β IVPFSIWG (Me11
,Me12

, . . . . . . . . . ,Menm).

4 Proposed MCGDM Approach Based on Developed Operators

This section presents a solution for MCGDM problems using the newly proposed IVPFSIWA
and IVPFSIWG operators, along with numerical examples.

4.1 Proposed Approach
Let I = {

I1, I2, I3, . . . , Is
}

be the set of s alternatives, X = {x1, x2, x3, . . . . . . . . . xr} be the set
of r specialists (decision-makers) and ϕ = {e1, e2, e3, . . . , em} be the set of m attributes. Let ωi =
(ω1, ω2, ω3, . . . , ωn)

T and νj = (ν1, ν2, ν3, . . . , νn)
T be the weight vectors for experts Xi (i = 1, 2, 3, . . . , r)

and attributes ei (i = 1, 2, 3, . . . , m), respectively, such as ωi > 0,
∑n

i=1 ωi = 1 and νj > 0,
∑n

j=1 νj = 1.
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The decision matrix is presented by a team of specialists in the form of IVPFSNs, as shown in the
following: Dm×n

(
Meij

) = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
m×n

To solve the MCGDM problem using the proposed IVPFSIWG and IVPFSIWA operators, the
following procedure can be applied concisely:

Step-1: Obtain a decision matrix using IVPFSNs for alternatives relative to experts.

Dm×n

(
Meij

) = ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
m×n

=

⎡
⎢⎢⎢⎣
([

κ l
11, κ

u
11

]
,
[
δl

11, δ
u
11

])([
κ l

21, κ
u
21

]
,
[
δl

21, δ
u
21

]) ([
κ l

12, κ
u
12

]
,
[
δl

12, δ
u
122

])([
κ l

22, κ
u
22

]
,
[
δl

22, δ
u
22

]) · · ·
([

κ l
1n, κ

u
1n

]
,
[
δl

1n, δ
u
1n

])([
κ l

2n, κ
u
2n

]
,
[
δl

2n, δ
u
2n

])
...

. . .
...([

κ l
m1, κ

u
m1

]
,
[
δl

m1, δ
u
m1

]) ([
κ l

m2, κ
u
m2

]
,
[
δl

m2, δ
u
m2

]) · · · ([
κ l

mn, κ
u
mn

]
,
[
δl

mn, δ
u
mn

])

⎤
⎥⎥⎥⎦

where

0 ≤ κ l
ij, κ

u
ij , δ

l
ij, δ

u
ij ≤ 1 and 0 ≤ (κu

ij

)2 + (δu
ij

)2 ≤ 1 ∀ i, j are given in Tables 1–4.

Table 1: Expert’s opinion for I1 in IVPFSNs

e1 e2 e3 e4

x1 ([.4, .5] , [.2, .5]) ([.7, .8] , [.5, .6]) ([.4, .6] , [.2, .5]) ([.2, .4] , [.2, .6])
x2 ([.2, .7] , [.2, .6]) ([.1, .6] , [.4, .5]) ([.2, .3] , [.4, .8]) ([.2, .5] , [.4, .7])
x3 ([.3, .5] , [.1, .4]) ([.4, .6] , [.2, .7]) ([.4, .7] , [.3, .7]) ([.5, .7] , [.2, .4])
x4 ([.4, .6] , [.3, .7]) ([.4, .5] , [.3, .7]) ([.3, .6] , [.3, .5]) ([.3, .6] , [.3, .5])

Table 2: Expert’s opinion for I2 in IVPFSNs

e1 e2 e3 e4

x1 ([.3, .6] , [.5, .6]) ([.2, .7] , [.5, .7]) ([.2, .7] , [.4, .5]) ([.6, .7] , [.5, .8])
x2 ([.3, .5] , [.5, .8]) ([.1, .4] , [.4, .5]) ([.1, .5] , [.3, .7]) ([.4, .5] , [.3, .6])
x3 ([.2, .6] , [.1, .4]) ([.1, .2] , [.2, .9]) ([.4, .7] , [.3, .7]) ([.5, .8] , [.2, .6])
x4 ([.2, .3] , [.3, .8]) ([.3, .5] , [.2, .8]) ([.3, .7] , [.2, .6]) ([.1, .7] , [.3, .6])

Table 3: Expert’s opinion for I3 in IVPFSNs

e1 e2 e3 e4

x1 ([.3, .4] , [.2, .7]) ([.3, .4] , [.4, .6]) ([.5, .6] , [.4, .5]) ([.3, .4] , [.3, .6])
x2 ([.4, .6] , [.3, .7]) ([.3, .5] , [.2, .3]) ([.3, .5] , [.5, .8]) ([.2, .6] , [.2, .4])
x3 ([.2, .4] , [.3, .4]) ([.3, .5] , [.3, .7]) ([.3, .7] , [.3, .8]) ([.1, .3] , [.5, .6])
x4 ([.3, .7] , [.3, .7]) ([.3, .5] , [.2, .4]) ([.2, .5] , [.3, .6]) ([.3, .4] , [.3, .7])
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Table 4: Expert’s opinion for I4 in IVPFSNs

e1 e2 e3 e4

x1 ([.3, .5] , [.2, .6]) ([.2, .6] , [.4, .7]) ([.2, .5] , [.3, .6]) ([.5, .7] , [.6, .8])
x2 ([.2, .7] , [.3, .8]) ([.1, .5] , [.4, .7]) ([.5, .7] , [.4, .5]) ([.2, .5] , [.3, .4])
x3 ([.2, .5] , [.1, .6]) ([.2, .5] , [.1, .5]) ([.2, .4] , [.2, .7]) ([.3, .5] , [.1, .5])
x4 ([.2, .4] , [.5, .8]) ([.2, .5] , [.5, .8]) ([.2, .7] , [.3, .6]) ([.2, .5] , [.4, .5])

Step-2: Transforming the decision matrix by normalizing it and transforming the evaluations of
cost-type parameters into evaluations of benefit-type parameters through the normalization equation.

Meij =
{
M

c
eij

= ([κ l
ij, κ

u
ij

]
,
[
δl

ij, δ
u
ij

])
n×m

cost type parameter

Meij = ([δl
ij, δ

u
ij

]
,
[
κ l

ij, κ
u
ij

])
n×m

benefit type parameter

Step-3: Using the IVPFSIWA and IVPFSIWG operators that have been developed, the IVPFSNs
Meij for each alternative I = {I1, I2, I3, . . . , Is

}
are aggregated into the decision matrix Mij.

Step-4: Determine the score values of M for all alternatives.

Step-5: Select the maximum score value alternative and examine the ranking.

4.2 Case Study
A case study on sustainable supplier selection could involve evaluating and choosing suppliers

based on various sustainability factors, such as environmental impact, ethical practices, and social
responsibility. The goal of the case study would be to determine which suppliers meet the sustainability
criteria and should be considered for partnership. A comprehensive review of the supplier’s policies
on sustainability, procedures, and achievement reports may be part of the procedure. The information
provided might be utilized to create an evaluation matrix that is then examined employing an
MCGDM methodology. Employing experts with sufficient knowledge and experience in sustainable
supplier selection may help execute the case study. Experts can offer comments regarding the
sustainability regulations, analyze the suppliers, and give details about the final DM method. A case
study could highlight the significance of prospective supplier selection, the real-world execution of
MCGDM methods in supplier selection, and the importance of experts in the fields of the DM
approach. Moreover, the case research results can offer helpful insight into the ability and effectiveness
of using MCGDM approaches for better permanent supplier selection. Quality of products and
services, delivery performance, cost, financial stability, technical expertise, sustainability, innovation,
new product development, supply chain management, communication and collaboration, reputation,
and other factors are important in supplier selection. In this investigation, we merely investigate the
following factors to determine the most appropriate supplier:

• Quality of products and services (e1)

• Cost (e2)

• Sustainability (e3)

• Reputation (e4)
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4.2.1 Quality of Products and Services

Quality is a significant factor in supplier selection since it determines the goods or services
delivered to the consumer. Poor-quality goods or services from a supplier may culminate in consumers’
frustration, product recalls, and business loss. Conversely, a supplier who regularly produces goods
and services of superior quality may boost and strengthen a company’s credibility, advertise client
fulfilment, and build an ongoing relationship with the organization. A few of the most significant
quality factors in a supplier’s services and goods are

• Product reliability and durability

• Consistently fulfilling product specifications and standards

• Timeliness and accuracy of delivery

• Responsiveness to consumer inquiries and complaints

• Technical assistance and after-sales services.

Before and during the business interaction, companies must evaluate the superiority of a supplier’s
goods or services to ensure that the supplier fulfils their requirements and meets a suitable quality level.

4.2.2 Cost

When choosing suppliers for a business, the cost is a significant factor. A supplier’s product or
service’s monetary value is referred to as cost. It involves features such as the cost of the product,
handling and transportation fees, taxes, and additional related costs. When selecting a supplier, it is
important to look at the pricing procedures, cost structures, and overall accessibility to ensure that
the price of the goods and services they provide equates with the organisation’s budget and goal
capabilities. Also, consider the cost of maintaining a relationship and any subsequent fees that may
occur. By thoroughly investigating the expense of contracting with a supplier, a business can make
sensible choices to get the best value for its money while preserving its different supplier selection
specifications.

4.2.3 Sustainability

As firms strive to limit their environmental effect and promote ethical business practices, sustain-
ability is becoming increasingly essential in supplier selection. Sustainable factors in supplier selection
comprise a supplier’s environmental record, energy consumption, reducing waste, and utilization of
resources. Corporations can also consider a supplier’s dedication to sustainability via accreditation and
initiatives such as eco-labelling, recycling initiatives, and volunteerism in the community. As consumers
and stakeholders demand firms their duties with integrity and reduce their impact on the environment,
sustainably becomes becoming increasingly important in supplier selection. The environmental factors
that influence sustainability may consist of the following:

• Resource exhaustion and preservation

• Energy consumption and effectiveness

• Water usage and preservation

• Emissions and pollution control

• Waste administration and reprocessing

• Climate change and greenhouse gas emissions

• Biodiversity and habitation conservation
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• Land use and conservation

• Ecosystem healthiness and resilience

• Natural resource management and safety.

These elements can impact a company’s or supplier’s long-term existence.

4.2.4 Reputation

When choosing a provider, reputation is an important topic to remember. A reputable supplier is
more likely to deliver excellent services and goods, be reliable, and comply with ethical standards. A
supplier’s reputation may influence the customer’s reputation. Therefore, selecting a supplier with an
enviable industry reputation is critical. Moreover, a supplier’s reputation may impact its ability to win
agreements and collaboration, threatening a company’s viability over time. As a result, when choosing
which supplier to work with, it is important to look at the company’s reputation. The following criteria
are often used when evaluating supplier reputation:

• Financial stability: It is necessary to assess suppliers’ financial stability to guarantee that they
can fulfil orders and deliver consistent quality throughout time.

• Industry experience: The knowledge and competence of a provider in their area can impact the
quality of their products and services.

• Customer satisfaction: A track record of satisfied customers might reflect a supplier’s depend-
ability and quality.

• Innovation: Suppliers who spend in R&D and bring new and innovative products and services
to market may have an advantage over competitors.

• Ethical and social responsibility: The supplier’s principles, labour methods, and dedication
toward environmental stability are important factors that might impact their reputation.

• Quality management system: The devotion of a supplier to quality assurance and continuous
advancement can indicate the dependability and standards of their goods or services.

• Delivery performance: On-time delivery and robust supply chain management are important
aspects of supplier selection since both can significantly affect a business’s performance.

4.3 Numerical Example
Suppose I1, I2, I3 and I4 be a collection of alternatives. There are four considered attributes

as e1 = Quality of products and services, e2 = Cost, e3 = Sustainability, e4 = Reputation with the
weights ν = (0.3, 0.1, 0.2, 0.4)

T . Here e2 is cost type parameter and e1, e3, and e4 are benefit-type
parameters. The company appoints a group of four experts Xr(r = 1, 2, 3, 4) for DM with the weights
ω = (0.1, 0.2, 0.4, 0.3)

T .

4.3.1 By IVPFSIWA Operator

Step-1: Obtain Pythagorean fuzzy soft decision matrices Tables 1–4.

Step-2: Employing the normalization process in Tables 5–8, modify the decision matrix by
normalizing it and transforming the assessments of cost-type parameters into evaluations of benefit-
type parameters. Because e2 are cost-type parameters.
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Table 5: Normalized decision matrix for I1

e1 e2 e3 e4

x1 ([.4, .5] , [.2, .5]) ([.5, .6] , [.7, .8]) ([.4, .6] , [.2, .5]) ([.2, .4] , [.2, .6])
x2 ([.2, .7] , [.2, .6]) ([.4, .5] , [.1, .6]) ([.2, .3] , [.4, .8]) ([.2, .5] , [.4, .7])
x3 ([.3, .5] , [.1, .4]) ([.2, .7] , [.4, .6]) ([.4, .7] , [.3, .7]) ([.5, .7] , [.2, .4])
x4 ([.4, .6] , [.3, .7]) ([.3, .7] , [.4, .5]) ([.3, .6] , [.3, .5]) ([.3, .6] , [.3, .5])

Table 6: Normalized decision matrix for I2

e1 e2 e3 e4

x1 ([.3, .6] , [.5, .6]) ([.5, .7] , [.2, .7]) ([.2, .7] , [.4, .5]) ([.6, .7] , [.5, .8])
x2 ([.3, .5] , [.5, .8]) ([.4, .5] , [.1, .4]) ([.1, .5] , [.3, .7]) ([.4, .5] , [.3, .6])
x3 ([.2, .6] , [.1, .4]) ([.2, .9] , [.1, .2]) ([.4, .7] , [.3, .7]) ([.5, .8] , [.2, .6])
x4 ([.2, .3] , [.3, .8]) ([.2, .8] , [.3, .5]) ([.3, .7] , [.2, .6]) ([.1, .7] , [.3, .6])

Table 7: Normalized decision matrix for I3

e1 e2 e3 e4

x1 ([.3, .4] , [.2, .7]) ([.4, .6] , [.3, .4]) ([.5, .6] , [.4, .5]) ([.3, .4] , [.3, .6])
x2 ([.4, .6] , [.3, .7]) ([.2, .3] , [.3, .5]) ([.3, .5] , [.5, .8]) ([.2, .6] , [.2, .4])
x3 ([.2, .4] , [.3, .4]) ([.3, .7] , [.3, .5]) ([.3, .7] , [.3, .8]) ([.1, .3] , [.5, .6])
x4 ([.3, .7] , [.3, .7]) ([.2, .4] , [.3, .5]) ([.2, .5] , [.3, .6]) ([.3, .4] , [.3, .7])

Table 8: Normalized decision matrix for I4

e1 e2 e3 e4

x1 ([.3, .5] , [.2, .6]) ([.4, .7] , [.2, .6]) ([.2, .5] , [.3, .6]) ([.5, .7] , [.6, .8])
x2 ([.2, .7] , [.3, .8]) ([.4, .7] , [.1, .5]) ([.5, .7] , [.4, .5]) ([.2, .5] , [.3, .4])
x3 ([.2, .5] , [.1, .6]) ([.1, .5] , [.2, .5]) ([.2, .4] , [.2, .7]) ([.3, .5] , [.1, .5])
x4 ([.2, .4] , [.5, .8]) ([.5, .8] , [.2, .6]) ([.2, .7] , [.3, .6]) ([.2, .5] , [.4, .5])
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Step-3: By utilizing the proposed IVPFSIWA operator on the gathered data, we can extract the
viewpoints of the decision-makers,

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.1 [0.51, 0.96]0.2

[0.75, 0.91]0.4 [0.64, 0.84]0.3

}0.3 {
[0.64, 0.75]0.1 [0.75, 0.84]0.2

[0.51, 0.96]0.4 [0.51, 0.91]0.3

}0.1

{
[0.64, 0.84]0.1 [0.91, 0.96]0.2

[0.51, 0.84]0.4 [0.64, 0.91]0.3

}0.2 {
[0.84, 0.96]0.1 [0.75, 0.96]0.2

[0.51, 0.75]0.4 [0.64, 0.91]0.3

}0.4

⎞
⎟⎟⎠,

√√√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.75, 0.84]0.1 [0.51, 0.96]0.2

[0.75, 0.91]0.4 [0.64, 0.84]0.3

}0.3 {
[0.64, 0.75]0.1 [0.75, 0.84]0.2

[0.51, 0.96]0.4 [0.51, 0.91]0.3

}0.1

{
[0.64, 0.84]0.1 [0.91, 0.96]0.2

[0.51, 0.84]0.4 [0.64, 0.91]0.3

}0.2 {
[0.84, 0.96]0.1 [0.75, 0.96]0.2

[0.51, 0.75]0.4 [0.64, 0.91]0.3

}0.4

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
{

(1 − [0.2, 0.5])0.1(1 − [0.08, 0.85])0.2

(1 − [0.1, 0.41])0.4
(1 − [0.25, 0.85])0.3

}0.3 {
(1 − [0.74, 1])0.1(1 − [0.17, 0.61])0.2

(1 − [0.2, 0.85])0.4
(1 − [0.25, 0.74])0.3

}0.1

{
(1 − [0.2, 0.61])0.1(1 − [0.2, 0.73])0.2

(1 − [0.25, 0.98])0.4
(1 − [0.18, 0.61])0.3

}0.2 {
(1 − [0.08, 0.52])0.1(1 − [0.2, 0.74])0.2

(1 − [0.29, 0.65])0.4(1 − [0.18, 0.61])0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.9716, 0.9827] [0.8740, 0.9919]
[0.913, 0.9630] [0.8747, 0.9490]

}0.3 {
[0.9564, 0.9716] [0.9441, 0.9657]
[0.7639, 0.9838] [0.8171, 0.9721]

}0.1

{
[0.9564, 0.9827] [0.9813, 0.9919]
[0.7639, 0.9326] [0.8747, 0.9721]

}0.2 {
[0.9827, 0.9959] [0.9441, 0.9919]
[0.7639, 0.8913] [0.8747, 0.9721]

}0.4

⎞
⎟⎟⎠,

√√√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.9716, 0.9827] [0.8740, 0.9919]
[0.8670, 0.9630] [0.8747, 0.9490]

}0.3 {
[0.9564, 0.9716] [0.9441, 0.9657]
[0.7639, 0.9838] [0.8187, 0.9721]

}0.1

{
[0.9564, 0.9827] [0.9813, 0.9919]
[0.7639, 0.9326] [0.8747, 0.9721]

}0.2 {
[0.9827, 0.9959] [0.9441, 0.9919]
[0.7639, 0.8913] [0.8747, 0.9721]

}0.4

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
{

[0.9330, 0.9779] [0.6843, 0.9835]
[0.8097, 0.9587] [0.5660, 0.9173]

}0.3 {
[0, 0.8740] [0.8283, 0.9634]

[0.4682, 0.9146] [0.6676, 0.9173]

}0.1

{
[0.9101, 0.9779] [0.7696, 0.9564]
[0.2091, 0.8913] [0.7539, 0.9422]

}0.2 {
[0.9292, 0.9917] [0.7638, 0.9564]
[0.6571, 0.8720] [0.8539, 0.9422]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ1 = ([0.3523, 0.6102] , [0.7923, 0.2895]) .

Similarly, Θ2 = ([0.3442, 0.6781] , [0.7350, 0.3050]), Θ3 = ([0.2665, 0.5249], [0.8512, 0.3470]), and
Θ4 = ([0.3018, 0.5618], [0.8273, 0.2851]).

Step-4: To determine the score values for all alternatives, we can employ the score function S =
(κl)

2+(κu)
2−(δl)

2−(δu)
2

2
, and is designed for the IVPFSS, such as S (Θ1) = −0.1028, S (Θ2) = −0.0275,

S (Θ3) = −0.2492, and S (Θ4) = −0.1795.

Step-5: From the above calculation, we get S (Θ2) > S (Θ1) > S (Θ4) > S (Θ3). Which shows that
I2 is the best alternative. So, I2 > I1 > I4 > I3.

4.3.2 By IVPFSIWG Operator

Step-1: Attain IVPFS decision matrices (Tables 1–4).
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Step-2: Transforming the decision matrix by normalizing it and transforming the evaluations of
cost-type parameters into evaluations of benefit-type parameters through the normalization equation
given in Tables 5–8. Because e2 are cost-type parameters.

Step-3: By utilizing the proposed IVPFSIWG operator on the gathered data, we can extract the
viewpoints of the decision-makers,

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√√√√√√√√√

⎛
⎜⎜⎝
{

[0.75, 0.96]0.1 [0.64, 0.96]0.2

[0.84, 0.99]0.4 [0.51, 0.91]0.3

}0.3 {
[0.36, 0.51]0.1 [0.64, 0.99]0.2

[0.64, 0.84]0.4 [0.75, 0.84]0.3

}0.1

{
[0.75, 0.96]0.1 [0.36, 0.84]0.2

[0.51, 0.91]0.4 [0.75, 0.91]0.3

}0.2 {
[0.64, 0.96]0.1 [0.51, 0.84]0.2

[0.84, 0.96]0.4 [0.75, 0.91]0.3

}0.4

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
{

(1 − [0.2, 0.5])0.1(1 − [0.08, 0.85])0.2

(1 − [0.1, 0.41])0.4
(1 − [0.25, 0.85])0.3

}0.3 {
(1 − [0.74, 1])0.1(1 − [0.17, 0.61])0.2

(1 − [0.2, 0.85])0.4
(1 − [0.25, 0.74])0.3

}0.1

{
(1 − [0.2, 0.61])0.1(1 − [0.2, 0.73])0.2

(1 − [0.25, 0.98])0.4
(1 − [0.18, 0.61])0.3

}0.2 {
(1 − [0.08, 0.52])0.1(1 − [0.2, 0.74])0.2

(1 − [0.29, 0.65])0.4(1 − [0.18, 0.61])0.3

}0.4

⎞
⎟⎟⎠ ,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.96]0.1 [0.64, 0.96]0.2

[0.84, 0.99]0.4 [0.51, 0.91]0.3

}0.3 {
[0.36, 0.51]0.1 [0.64, 0.99]0.2

[0.64, 0.84]0.4 [0.75, 0.84]0.3

}0.1

{
[0.75, 0.96]0.1 [0.36, 0.84]0.2

[0.51, 0.91]0.4 [0.75, 0.91]0.3

}0.2 {
[0.64, 0.96]0.1 [0.51, 0.84]0.2

[0.84, 0.96]0.4 [0.75, 0.91]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√
(

[0.6772, 0.9564]0.3 [0.6337, 0.8258]0.1

[0.5550, 0.9004]0.2 [0.7151, 0.9198]0.4

)
−(

[0.2926, 0.8458]0.3 [0, 0.7064]0.1

[0.1104, 0.7854]0.2 [0.3516, 0.7793]0.4

)
,√

1 −
(

[0.6772, 0.9564]0.3 [0.6337, 0.8258]0.1

[0.5550, 0.9004]0.2 [0.7151, 0.9198]0.4

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.8128, 0.3530] , [0.2886, 0.5825]) .

Similarly, Θ2 = ([0.7909, 0.3494] , [0.2990, 0.6119]), Θ3 = ([0.7670, 0.2709] , [0.3476, 0.6416]), and
Θ4 = ([0.8049, 0.2830] , [0.3038, 0.5935]).

Step-4: To calculate the score values for all alternatives, we can employ the score function S =(
κ l
)2 + (κu)

2 − (δl
)2 − (δu)

2

2
, and is designed for the IVPFSS such as S (Θ1) = 0.1419, S (Θ2) = 0.1813,

S (Θ3) = 0.0646, and S (Θ4) = 0.1417.

Step-5: The calculation results in the ranking of alternatives S (Θ2) > S (Θ1) > S (Θ4) > S (Θ3),
indicating that alternative I2 is the most favourable. Hence, the order of preference is I2 > I1 > I4 > I3.

5 Comparative Studies

In the following part, the practicality of the proposed strategy will be evaluated by comparing it
to existing methods.
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5.1 Supremacy of the Planned Technique
This paper presents a highly efficient and feasible approach to managing MCGDM complications

in the IVPFSS setting. We propose an innovative MCGDM model incorporating the IVPFSIWA and
IVPFSIWG operators that is more advanced and capable of dealing with the complexities of MCGDM
than conventional approaches. Our model is flexible, adaptable, and can handle changing conditions
while meeting desired outputs. Different models’ ranking process varies, affecting the rankings of
the proposed method compared to their expectations. Our systematic study results demonstrate that
current procedures’ outcomes are inconsistent compared to hybrid structures. Among hybrid IVFS,
IVIFS, IVPFS, and IVIFSS, IVPFSS is a popular choice due to its ability to handle ambiguous
and uncertain data in DM procedures. Our proposed method is more efficient and effective than
other mixed FS structures, as it can better deal with ambiguous and uncertain data in the DM
process. Moreover, the details of our proposed technique and limitations of the prevailing aggregation
operators and our proposed operators are in Table 9.

Table 9: Feature analysis of different models with a proposed model

Aggregated
attributes
information

Aggregated
information in
intervals form

Interaction
aggregated
information

Limitations

IVFS [6] � Unable to deal with the
NMD interval

IVIFWA [47] � Unable to deal when
(MD)

u + (NMD)
u
> 1

IVIFWG [48] � Unable to deal when
(MD)

u + (NMD)
u
> 1

IVPFWA [23] � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

IVPFWG [25] � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

IFSWA [31] � Unable to deal with the
MD and NMD intervals

IFSWG [31] � Unable to deal with the
MD and NMD intervals

IVIFSWA [33] � � Unable to deal when
(MD)

u + (NMD)
u
> 1

IVIFSWG [33] � � Unable to deal when
(MD)

u + (NMD)
u
> 1

PFSWA [35] � Unable to deal with the
MD and NMD intervals

PFSWG [35] � Unable to deal with the
MD and NMD intervals

PFSIWA [36] � � Unable to deal with the
MD and NMD intervals

(Continued)
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Table 9 (continued)

Aggregated
attributes
information

Aggregated
information in
intervals form

Interaction
aggregated
information

Limitations

PFSIWG [36] � � Unable to deal with the
MD and NMD intervals

IVPFSWA [41] � � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

IVPFSWG [41] � � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

Proposed
IVPFSIWA

� � � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

Proposed
IVPFSIWG

� � � Unable to deal when
(MDu)

2 + (NMDu)
2
> 1

It appears that a novel challenge has recently arisen. This paper will demonstrate the justification
behind using a novel MCGDM method established to fulfil the specific requirements of a specific
business. Although the reality there are various existing strategies, the suggested method differentiates
because of its distinctive hybrids structures, which include FS, IVFS, IFS, IVIFS, PFS, IVPFS,
FSS, IVFSS, IFSS, IVIFSS, and PFSS. Such mixed structures still have constraints in thoroughly
determining the circumstance. To address these drawbacks, we proposed an MCGDM technique based
on interaction AOs for IVPFSS, which can accommodate parameters with MD and NMD in intervals
which include 0 ≤ (MDu)

2 + (NMDu)
2 ≤ 1. Compared with existing mixed structures, this novel

approach is particular in its ability to deliver a more thorough analysis of this issue. Also, as observed
in Table 9, our designed hybrid FS framework exceeds other prevailing mixed FS structures. Selecting
the appropriate TOPSIS strategy is important for a company’s success, and this creative approach
delivers a more comprehensive analysis of the scenario, which is essential to make sensible choices.

5.2 Comparative Analysis
The manuscript compares the proposed technique to existing methods in the interval-valued

Pythagorean fuzzy sets (IVPFS), interval-valued intuitionistic fuzzy soft sets (IVIFSS), and interval-
valued Pythagorean fuzzy soft sets (IVPFSS) settings, as shown in Table 10. The current IVIFWA and
IVIFWG operators [47,48] and the TOPSIS model [24] do not consider the parametrized values of
alternatives. The IVIFSWA and IVIFSWG operators [33] account for the decision-makers preferences
but face limitations when the sum of the upper values of MD and NMD exceeds one. Similarly, the
IVPFWA [23] operator and IVPFWG [25] operator also struggle to handle the parametrized values of
alternatives. Zulqarnain et al. [41] introduced the AOs for IVPFSS to address these issues. However,
when the upper values of MD and NMD add up to one or less, the IVPFSS reduces to IVIFSS, making
it a more generalized form of interval-valued Pythagorean fuzzy sets. The proposed operators in this
study are shown to be more efficient, reliable, and successful than the existing methods, as evidenced
by the comparison presented in Table 10.
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As a result, we have numerous reasons to be astounded by the illegal use and inefficiency of the
DM methodology of the predominant operators we noticed. Planned encouragement for this method-
related activity has a minor influence on adverse reasons. It reduces the structure of unreliable and
anticipated facts in the DM intensification in such a manner. Fig. 1 displays a visual illustration of the
comparative evaluation.

Table 10: Comparison of proposed operators with some existing operators

AO I1 I2 I3 I4 Alternatives ranking Optimal choice

IVIFWA [47] 0.3681 0.4573 0.3509 0.2146 I2 > I1 > I3 > I4 I2

IVIFWG [48] 0.3104 0.3952 0.2914 0.2753 I2 > I1 > I3 > I4 I2

IVPFWA [23] 0.0154 0.0251 0.0198 0.0247 I2 > I4 > I3 > I1 I2

IVPFWG [25] 0.0364 0.0856 0.0786 0.0475 I2 > I3 > I1 > I4 I2

IVIFSWA [33] 0.0235 0.0723 0.0584 0.0253 I2 > I3 > I1 > I4 I2

IVIFSWG [33] 0.2365 0.7234 0.5840 0.6525 I2 > I4 > I3 > I1 I2

IVPFSWA [41] 0.0377 0.0834 0.0113 0.0141 I2 > I1 > I4 > I3 I2

IVPFSWG [41] 0.0524 0.0754 0.0241 0.0114 I2 > I1 > I3 > I4 I2

IVPFSIWA −0.1028 −0.0275 −0.2492 −0.1795 I2 > I1 > I4 > I3 I2

IVPFSIWG 0.1419 0.1813 0.0646 0.1417 I2 > I1 > I4 > I3 I2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Figure 1: Comparative analysis of the proposed approach with existing models

5.3 Merits and Advantages of the Planned Model
The model that has been suggested has multiple features that improve its dependability and

performance, such as

• The professionals frequently address obstacles while determining features and classifying them
according to several attributes since these decisions are rarely exact. The suggested approach
examines this problem using the idea of interval-valued Pythagorean fuzzy parameterization
that reflects attribute volatility.
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• The established approach is capable of comparable values of attributes in estimates, delivering
clarification to areas with uncertainties. This helps by delivering 2D MD and NMD functions
in interval form and implementing stage variables to deal with repetition.

• The MCGDM approach allows professionals to perform judgments relying upon multiple
factors, proving more productive than relying on just one parameter. This aspect becomes
particularly beneficial in the context of IVPFSS.

• This research presents mathematical justifications for the AOs used in the suggested method,
confirming the approach’s validity. This consistency ensures impartiality and consistency in
decision-making processes, and the methodology is suitable for various applications requesting
precision and reliability.

• The research’s concentration on IVPFSS indicates a significant hypothetical incursion, as it is
the most integrated IVPFSS method. The proliferation of interactional operational laws for
IVPFSS scenarios and the case regarding their basic possessions are auxiliary propagated the
uncertain build for IVPFSS, which contributed to more unified and reliable DM approaches in
the environment of IVPFSS, which contributed to intellectual growth in FS and DM.

6 Conclusion

Decision-makers often face challenges when assessing alternatives due to the strict requirements of
DM exploration. To overcome these limitations, the IVPFSS mathematical structure can communicate
unreliable and indefinite data in real-life situations. The DM system is also robust and can help classify
the most helpful alternative while considering the existing approach to isolate statistical decision-
makers. This study presents a new method for sustainable supplier selection using the IVPFSS setting.
The proposed method considers the complexity of real-life situations and addresses the limitations of
previous methods that did not consider interactions and complicated circumstances among attributes.
We introduce interactional operational laws for IVPFSS and develop IVPFSIWA and IVPFSIWG
operators with desired properties. Based on these operators, we propose a decision-making method
to address complications in MCGDM. To demonstrate the robustness of the proposed methodology,
we provide a detailed mathematical illustration for sustainable supplier selection and compare it with
existing methods, showing that it is the most practical and effective solution for MCGDM. Future
studies will concentrate on constructing Einstein-ordered aggregation operators (AOs) and designing
distance and similarity measures with distinctive features. The technique may also be modified to
incorporate interval-valued q-ROFSS, integrating significant operations and the decision-making
procedures that go with them. Moreover, combining IVPFSNs with other MCGDM approaches
has the potential for practical applications in various fields, including medical diagnostics, material
selection, pattern recognition, information fusion, and supply chain management. Also, IVPFSNs
can be investigated by employing multiple topological, algebraic, and ordered structures and the
corresponding decision-making strategies.
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