
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.029987

ARTICLE

Performance Prediction Based Workload Scheduling in Co-Located Cluster

Dongyang Ou, Yongjian Ren and Congfeng Jiang*

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China

*Corresponding Author: Congfeng Jiang. Email: cjiang@hdu.edu.cn

Received: 17 March 2023 Accepted: 11 December 2023 Published: 29 January 2024

ABSTRACT

Cloud service providers generally co-locate online services and batch jobs onto the same computer cluster, where
the resources can be pooled in order to maximize data center resource utilization. Due to resource competition
between batch jobs and online services, co-location frequently impairs the performance of online services. This
study presents a quality of service (QoS) prediction-based scheduling model (QPSM) for co-located workloads. The
performance prediction of QPSM consists of two parts: the prediction of an online service’s QoS anomaly based on
XGBoost and the prediction of the completion time of an offline batch job based on random forest. On-line service
QoS anomaly prediction is used to evaluate the influence of batch job mix on on-line service performance, and batch
job completion time prediction is utilized to reduce the total waiting time of batch jobs. When the same number
of batch jobs are scheduled in experiments using typical test sets such as CloudSuite, the scheduling time required
by QPSM is reduced by about 6 h on average compared with the first-come, first-served strategy and by about 11 h
compared with the random scheduling strategy. Compared with the non-co-located situation, QPSM can improve
CPU resource utilization by 12.15% and memory resource utilization by 5.7% on average. Experiments show that
the QPSM scheduling strategy proposed in this study can effectively guarantee the quality of online services and
further improve cluster resource utilization.
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1 Introduction

With the expansion of Internet applications and the growth of the cloud computing industry,
the number and size of data centers are also expanding globally. The average annual growth rate of
the global IDC (Internet Data Center) industry scale was 22% from 2014 to 2020 [1]. According to the
public data of the China Information and Communications Research Institute, the global data center
market has maintained a steady growth trend from 2017 to 2021. The market size has increased from
$46.55 billion to $67.93 billion, with an average annual compound growth rate of 9.91% in five years.
It is expected that the global data center market size will further increase to $82.05 billion in 2023.

The continuous growth of the cloud computing industry has resulted in a rapid expansion of data
center size and a massive increase in energy consumption [2]. The total global power consumption
of data centers has reached 3% of global electricity generation, and this percentage is expected to
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double by 2025 [3,4]. In stark contrast to its enormous energy consumption, the data center’s resource
utilization rate has always been low. Data indicates that the current resource utilization rate of the
majority of data centers is only 10% to 20% [1]. Clearly, the daily running of data centers generates
a significant amount of waste. Therefore, improving data center resource utilization will reduce
construction costs and energy consumption.

Online services and offline batch tasks are the two categories of applications deployed in data
centers [5]. Search engines, e-commerce websites, and online social services are all examples of online
service programs that passively handle user requests and generate profit. Online services are sensitive
to response delays and have stringent availability and stability requirements. Service level agreements
(SLA) are commonly used by cloud service providers to assure the performance and quality of online
services. Distributed batch jobs, also known as offline jobs, are mainly based on computational logic
[6], mainly representing data analysis jobs, data warehouse jobs, and machine learning model training
jobs related to distributed computing models such as MapReduce [7]. The main feature of such jobs
is that they are not sensitive to delays. Even if the procedure fails, it can be attempted again at a later
time. Therefore, batch tasks typically have a lower priority than online services.

In the early days of cloud computing, when the number of users was limited, platforms typically
deployed online services and batch jobs to distinct clusters. Due to the rapid development of big data
processing, artificial intelligence, and other technologies, the scale and complexity of batch tasks have
increased significantly, resulting in frequent resource shortages in clusters of batch jobs. In the cluster
where online services are located, however, there are frequently a large number of gratis resources due
to the characteristics of the access mode. Under the premise of ensuring the performance of online
services, many cloud service providers, including Alibaba, Google, and others, progressively deploy
online services and batch tasks to the same cluster with shared resources. This technology is known as
hybrid deployment.

In normal circumstances, online services are unable to completely utilize CPU resources, whereas
batch jobs have an immediate CPU resource requirement. In order to give online services higher
priority, it is customary for hybrid deployment technology to simultaneously allocate a CPU core
to online services and batch tasks. The competition between online services and batch jobs for CPU
and memory resources frequently results in performance degradation for both [8–11], despite the fact
that hybrid deployment technology has increased resource efficiency. The term for this phenomenon is
performance interference. When severe performance interference occurs, online service quality cannot
be guaranteed, and efficiency and throughput of bulk job execution are drastically diminished. In
addition, the complexity and dynamic nature of jobs, as well as the diversity of hardware resources,
make scheduling challenging in a hybrid deployment system. The effective task scheduling technique
of a co-located deployment cluster, which can effectively ensure the performance of online services and
batch jobs while optimizing resource usage, is therefore of immense economic value. The following are
the principal contributions made by this paper:

• We propose an online service anomalous QoS (quality of service) prediction method based on
XGBoost. This method can determine, following a hybrid deployment of batch jobs and online
services, whether the response time of online services will exceed the upper limit.

• To reduce the total waiting time of batch jobs, we present a random forest-based method for
predicting the completion time of batch jobs.

• We design a mixed load scheduling model QPSM (prediction-based scheduling model) based on
the performance prediction of online services and batch jobs. The experimental results confirm
the model’s validity and precision.
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The rest of the paper is organized as follows: we briefly outline related work in Section 2 and
introduce hybrid deployment load performance prediction in Section 3. Then, we elaborate on the
hybrid deployment load scheduling strategy in Section 4. The experiment evaluation and analysis of
the proposed strategy are presented in Section 5. Finally, in Section 6, we explain the conclusion and
future work.

2 Related Works

The hybrid load scheduling method is more complicated than the traditional strategy built for
a single load since it must simultaneously consider the characteristics of different loads. Currently, a
variety of cluster management systems may schedule mixed loads. These cluster management systems
typically implement resource allocation and work scheduling via a centralized design. Using Google’s
Borg cluster management system [12] as an illustration, the resource isolation method minimized
interference between distinct activities to the greatest extent possible. Contrary to Borg’s solution,
Mesos [13] solved the problem of resource allocation through negotiation in order to support several
computing frameworks, such as Spark and Flink simultaneously. Omega [14] and Apollo [15] embraced
the concept of decentralization to shorten the scheduling time of jobs as much as possible. They would
simultaneously manage numerous schedulers. These schedulers might monitor each other’s status in
real-time, and each scheduler could be aware of the cluster’s available resources. In actual production
environments, the decentralized technique is utilized less frequently since it is typically difficult to
achieve the worldwide optimal scheduling impact. In the above scheduling system, the scheduler does
not rigorously differentiate between online services and batch jobs when scheduling tasks. Alibaba and
Baidu both use distinct scheduling techniques for online services and batch activities. Taking Alibaba
as an example, online services are deployed in a containerized manner by the Sigma scheduler [16],
while offline jobs are scheduled by Fuxi [17], and all offline jobs run directly on the physical machine.
Conflicts between Sigma and Fuxi are coordinated by a global coordinator.

The aforementioned scheduling systems typically employ heuristic strategies, such as over-
provisioning, over-subscribing, and over-commitment to improve resource utilization [18]. Several
studies [19–22] have optimized these heuristic algorithms, but there is no comprehensive performance
analysis for diverse workloads; task preemption and rescheduling are prevalent. In addition, the
majority of task rescheduling algorithms base their decisions on the static resource requirements of
tasks, which may result in arbitrary task scheduling. However, online services cannot guarantee QoS
(quality of service).

Delimitrou et al. [23–26] discussed how to effectively guarantee the QoS of online services while
improving system resource utilization. Both Bubble [25,27] and Prophet [28] predicted performance
disturbances to determine the hybrid deployment of various online services and batch jobs but neither
makes any restrictions on the resources available to the load and still manages and distributes the
shared resources in the cluster through the operating system. Smite [29] extended Bubble-Up [25] to
multi-core platforms by evaluating the interference between distinct CPU cores. Quasar [23] catego-
rized various workloads based on their runtime characteristics and then executed hybrid deployment
procedures while guaranteeing online service performance was not impacted. Only focusing on the
combination of loads, the aforementioned research results fail to efficiently manage cluster resources.
Therefore, if these results can be utilized in conjunction with the cluster resource management, cluster
resource utilization will be enhanced. For instance, Avalon [30] used this procedure. It first calculated
the appropriate hybrid deployment approach between various loads, and then combined the self-
designed resource management strategy to improve the cluster’s resource utilization.



2046 CMES, 2024, vol.139, no.2

Different from the above method of ensuring QoS by determining the load combination, Heracles
[24] ensured that the QoS of online services is always maintained within a reasonable range by adjusting
the resource allocation strategy. Ubik [31] explored the impact of cache partitioning on online service
QoS in the case of hybrid deployment through simulation. Dirigent [32] described the change in online
service response time in the case of memory resource competition. At the same time, it limited the
performance of batch jobs through DVFS [33] to ensure that the service quality of online services was
not significantly affected. The disadvantage of the above feedback resource management strategies is
that to ensure the service quality of online services, the performance of batch jobs will be affected to a
certain extent. When the performance of batch jobs is reduced, the resource utilization of clusters will
still be low.

At present, some studies propose that parallel query technology can be used to reduce the long-
tail latency of online services when the system is under high load. Haque et al. [34] believed that
their parallelism could be appropriately increased for time-consuming query operations so that these
operations did not violate QoS. Contrary to Haque et al., since increasing the parallelism of time-
consuming operations would increase the waiting delay of short query operations, Li et al. [35] believed
that the parallelism of time-consuming query operations should be reduced to ensure the performance
of short query operations. These studies above only focus on the performance of online services and
do not consider the interference of batch jobs on the performance of online services.

The Internet of Things (IoT) has grown rapidly recently, and it is also a hot research topic,
with researchers studying the data characteristics of its internal elements (server nodes, sensors, and
networks), predicting and controlling resources, and finally forming an effective scheduling policy.
In [36], the memory-augmented autoencoder method was used to detect anomalies in the time series
feature data within the IoT. In [37], the reinforcement learning method was used to schedule virtual
machines in the industrial IoT in real time. Gao et al. [38] used reinforcement learning to offload
location-privacy-oriented tasks to the edge for calculation. Exploring effective resource scheduling
strategies in the IoT will attract continued interest from industry and academia.

Different from the adaptive co-located scheduling model proposed by Yuan et al. [39], this
study determines the load combination for hybrid deployment by predicting the interference between
online services and batch jobs. However, unlike Bubble and Prophet, which predicted the degree of
interference through hardware resource utilization, we use the types of batch jobs, the amount of data
processed, and the number of online services. In addition, the scheduling model proposed in this paper
takes optimization measures for the scheduling of batch jobs, which ensures the QoS of online services
and improves the execution efficiency of batch jobs.

3 Hybrid Deployment Load Performance Prediction
3.1 Prediction of QoS Anomalies in Online Services Based on XGBoost

The co-located deployment technology brings a huge challenge to the scheduling of online services
and batch jobs while improving resource utilization. The performance of both online services and
offline jobs degrades because of the competition for resources between them. When the competition
for resources between different loads is too fierce, the task scheduler must adopt certain strategies to
mitigate the situation. Most of the current schedulers, such as Google’s Borg and Alibaba’s Level-0
policy, prioritize the QoS of online services by stopping the execution of batch jobs to allow online
services to have as many resources as possible. For the stopped offline jobs, the scheduler selects a
server with sufficient resources to redeploy them. Although this approach guarantees the performance
of online services, it increases the data center’s energy consumption and causes some resource waste
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because the stopped batch jobs still need to re-execute the previously executed computational logic
after being rescheduled. Therefore, this study tries to propose a QoS exception prediction model for
online services that can determine whether the QoS of an online service will be violated after the
deployment of the offline job when a batch job needs to be scheduled to the same server if the server
has already deployed the online service, so as to avoid repeated computations as much as possible. In
this paper, we use the response time of the online service to characterize the QoS of the online service.

Many indicators can be used to predict the abnormal QoS of online services. For example,
resource utilization can be predicted by utilizing hardware resources such as CPU and memory [40].
Furthermore, from the perspective of time, it can be predicted according to the historical visits in the
same period [41]. In addition, it can also be predicted from the perspective of microarchitecture using
the relevant indicators of hardware counters [42].

The above prediction schemes only use a single dynamic feature or static feature. The dynamic
feature will change over time, while the static feature is fixed. Using a certain feature alone will make
the trained model adapt to a relatively single situation. The abnormal QoS prediction model proposed
in this paper takes the type of batch jobs (workload_type), the amount of data to be processed by batch
jobs (input_size) and the current access to online service (RPS request per second) as the feature vector
of model training. The QoS of online service can be expressed by formula (1).

QoS = Model(Workload_type, input_size, RPS) (1)

The model considers both dynamic and static information. The types of batch jobs and the amount
of data to be processed by batch jobs are static features, and the RPS of online services is dynamic
information. It should be noted that the abnormal QoS prediction model proposed in this paper is
not to predict the specific response time of online services but to judge whether the response time of
online services will break through the upper limit value after the hybrid deployment of batch jobs and
online services, which is one of the bases for subsequent batch job scheduling.

The XGBoost model is used to predict if the online service response time will surpass the upper
limit, which is essentially a binary classification problem. Before training the model, the relevant
online service response time is obtained based on various feature value combinations. The data is
then manually labeled to provide a dataset for model training. After classification, the data set is
proportionally divided into the training and test sets. The parameters of the XGBoost model are then
trained using the training set, and the model’s validity is validated using the test set.

The input of the online service abnormal QoS prediction model is the combination of some
dynamic and static characteristics of the current mixed load and a binary classification value. These
combinations together form the training data set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. The feature set
affects the online service QoS, including the type of batch jobs, the amount of data processed by batch
jobs, and access to online service. {y1, y2, . . . , yn} is the binary value corresponding to the sample, which
indicates whether the QoS is violated. If the QoS is violated, it means that the QoS value is abnormal.

XGBoost [43] is an ensemble learning model composed of several CART decision trees [44].
Compared with the traditional reinforcement learning model, the main advantage of XGBoost is that
Taylor expansion is adopted for the second derivative of the loss function. In addition, the regular term
is added to improve the training accuracy of the model. Furthermore, when finding the best partition
point, XGBoost does not use a greedy strategy but uses an approximate algorithm, which greatly
reduces the training time of the model. The following is a brief introduction to the key operational
processes in the XGBoost model.
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For each decision tree in XGBoost, the region defined by split node J is recorded as formula (2).

Ij = {i |q (xi) = j} (2)

Suppose that IL and IR are the left and right child nodes after the node split, denoted as I = IL ∪IR.
Then, XGBoost uses formula (3) to calculate the maximum profit that each node can generate when
the feature is split.
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After calculating the profit value of each splitting case, it is necessary to select the splitting method
with the largest profit value to split the data set, as shown in formula (4).

selected_split_feature = max
(
Gainsplit

)
(4)

After determining the utmost profit value, the decision tree is divided based on the characteristic
corresponding to the revenue value. The preceding procedure is repeated for the remaining features
to be selected until the model can no longer be separated, at which point the decision tree model is
complete.

The procedure for developing a QoS anomaly prediction model for an online service is as follows:
The initial stage is to collect data. In this study, which captures the 95th quantile value of the QoS of
online services under certain batch jobs with a fixed amount of processing data and fixed traffic, we
primarily collect all data that may impact the Quality of Service (QoS) of online services. The next stage
is to label the data. In this paper, the maximum limit of the online service’s Quality of Service (QoS) is
set to 10 ms. Exceeding this value indicates that the online service’s QoS has been compromised, and
this QoS value is the outlier. The next step is model generation. On the basis of the aforementioned
labeled data, the data set is divided into a training set and a test set at a ratio of 3:1. The training
set and XGBoost model are then used to train an online service. QoS anomaly prediction model that
matches the data distribution of the training set, and the test set is used to evaluate the performance
of the trained model. Model application represents the final stage. This sample will be used to train an
anomaly prediction model for online service QoS anomalies, which will then be deployed to the online
environment to aid in the scheduling of online services and batch tasks. The scheduling history data
will be used to continuously update the existing model, thereby increasing its predictive accuracy.

3.2 Batch Jobs Completion Time Prediction Based on Random Forest
To achieve the least possible total waiting time in the batch jobs scheduling process, the scheduler

must alter the task execution order based on the batch jobs’ completion times. However, because the
completion time of batch jobs cannot be correctly predicted prior to their execution, it is important to
develop a prediction model of the batch jobs’ completion times, which can provide effective scheduling
recommendations.

Due to the different execution logic for various categories of Hadoop jobs, a Hadoop job may
be divided into multiple MapReduce tasks simultaneously, resulting in varying execution times. In
addition, the execution time for the same type of Hadoop jobs can vary depending on the quantity
of data processed. Even in a mixed deployment environment, online services have minimal impact on
the completion time of batch jobs, as batch jobs consume the majority of CPU resources. In contrast,
online services typically have low CPU resource demands. In conclusion, the execution duration of
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batch jobs is affected by the types of batch jobs and the volume of data they must process. As shown
in formula (5), this paper selects the categories of batch jobs and the amount of data that batch jobs
must process as feature vectors for the prediction model of batch job completion time.

CompleteTime = Model(workload_type, input_size) (5)

Unlike the online service abnormal QoS prediction model, which is a classification problem,
the prediction of batch jobs completion time is a regression problem. Because the training data set
contains relatively little data and the feature dimensions used in training are few, the general machine
learning model is difficult to apply to this scenario. In order to effectively solve this problem, this paper
chooses a random forest as the training model. Compared with the more powerful neural network, the
random forest can maintain a higher prediction accuracy even when the data set is small. It can also
effectively deal with the nonlinear relationship between the characteristics of offline operations and
the completion time. Furthermore, there is no need to manually mark the data, so the construction of
the prediction model of batch jobs completion time mainly includes three steps:

(1) Data collection. This step mainly extracts the data needed for training the random forest model
from the log data, including the types of batch jobs, the amount of data processed by batch jobs and
the completion time of batch jobs.

(2) Model generation. The collected sample data are divided into a training set and a test set at
a ratio of 3:1. Then, the training set is used to train the random forest model, and then the test set is
used to verify the validity of the trained random forest model. If the prediction effect of the model is
not good, the relevant parameters need to be adjusted to improve the prediction accuracy of the model
further.

(3) Model application. After the training, the prediction model of batch jobs completion time will
guide the scheduling of batch jobs in real-time. If any batch jobs have never appeared before that need
to be scheduled during the scheduling process, the model will be retrained.

4 Hybrid Deployment Load Scheduling

This section proposes a hybrid load scheduling model, QPSM, comprised primarily of online
service and batch jobs scheduling, based on the online service abnormal QoS prediction method and
the prediction method of batch jobs completion time, respectively. Experimental results demonstrate
that the hybrid load scheduling model proposed in this paper can reduce the total waiting time of batch
tasks while maintaining the quality of online services.

4.1 Online Service Scheduling
Multiple online services deployed on the same server have caused memory resources to become a

bottleneck limiting the efficacy of online services due to their extremely high memory requirements.
In addition, online services are typically required to reserve resources to deal with high-volume events,
such as large promotions on e-commerce websites and high-volume events in online social services.
Therefore, in designing the mixed load scheduling model, it is stipulated that only one form of online
service is permitted to be deployed on a server, so that online services will not interfere with one
another.

Fig. 1 depicts the scheduling procedure for the online service. First, the scheduler will compile
the running information of every server in the cluster, and then it will randomly select one of the idle
servers as the target machine. After determining the target server and determining that the online
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service must be containerized, the scheduler will distribute the online service’s image to the server and
launch the online service.

Figure 1: Online service scheduling process

4.2 Batch Jobs Scheduling
Comparatively to online service scheduling, the scheduling strategy for batch jobs is more

complex. Since each batch job has varying importance, each batch job submitted must be prioritized
beforehand. In this scheduling policy, the user who submits the task specifies the priority of the
available batch jobs. The higher the job’s priority value, the higher its priority. If the user does not
specify a priority for batch jobs, the system default priority will be applied. Additionally, it is necessary
to measure the job scale for each batch of submitted tasks. In the case of equal priority, the batch
job scheduling strategy designed in this paper will tend to execute smaller batch jobs and follow the
temporary jobs-first principle with preference. This paper uses the batch job completion time to define
the job scale in order to quantitatively assess the scale of batch tasks. The scale of a task is greater
the longer it takes to complete it. Using the prediction method proposed in the previous section, the
completion time of batch tasks can be anticipated in advance. The priority principle for small tasks is
predicated primarily on two factors: First, the majority of batch tasks in the current hybrid deployment
cluster execute quickly. Second, prioritizing the execution of jobs with shorter runtimes can reduce the
long-tail latency of batch tasks, resulting in the shortest possible total waiting time. In conclusion, the
scheduling order of all batch jobs can be determined if the priority and execution duration of each
batch job are known.

As depicted in Fig. 2, the scheduler uses an independent queue to store all batch tasks submitted to
the cluster during the scheduling process. In contrast to conventional queues, the batch task scheduling
queue proposed in this paper consists of multiple sub-queues. The batch jobs held in each sub-queue
have the same priority, with the exception of those stored in the sub-queue closest to the queue’s head,
which have a higher priority. In addition, the head task of each sub-queue is guaranteed to be the
smallest job with the same priority, so each sub-queue is essentially a priority queue. When the newly
submitted task arrives, the subqueue’s characteristics must remain unchanged.

T1 T4 T3 T2 T5

Priority 1 Priority 2 Priority 3 …

Figure 2: Schematic diagram of batch jobs scheduling queue

Fig. 3 depicts the interaction between batch tasks and the job queue as they are submitted and
executed. Fig. 3a illustrates the process of enqueuing a job when a user submits a new job. When a
new job is added to the queue, the priority of the task should be determined first. If no precedence is
specified, the system default priority is applied. Then, locate the sub-queue that corresponds with the
job’s priority and insert the task at the end of the sub-queue. The relative position of the job order in
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the sub-queue is then readjusted based on the job’s size. It can be seen from the above steps that the
time complexity of finding sub-queues and inserting jobs from the end of the queue is O(n log n), and
the time complexity of adjusting the job sequence is also O(n log n). Therefore, the time complexity
of job enqueuing is O(n log n), where n is the total number of jobs in the sub-queue after placing the
newly submitted job. Fig. 3b shows the process of the scheduler taking batch jobs from the job queue.
According to the first-in, first-out principle, the queue head is located first, and the sub-queue has the
highest priority. Then, determine whether the sub-queue is empty. If it is not empty, the corresponding
batch jobs are directly taken from the head of the sub-queue. Then adjust the batch jobs in the sub-
queue according to the size of the remaining jobs. Otherwise, search in sequence according to the
priority size until the job is found or at the queue’s end. From the time complexity analysis, when the
sub-queue is not empty, the time complexity of locating the sub-queue and taking out jobs is O (n log n)

also the time complexity of re-adjusting the job sequence O(n log n). Therefore, the time complexity of
taking batch jobs from the queue is also O(n log n), where n represents the number of remaining batch
jobs after taking batch jobs from the queue.

Figure 3: Batch jobs queue interaction process

4.3 Hybrid Deployment Load Scheduling Strategy
According to the above-mentioned online service and batch job scheduling strategies, this paper

designs a hybrid load scheduling model (QPSM) that can effectively ensure the QoS of online services.
The scheduling process of this model is shown in Algorithm 1.

The hybrid load scheduling model QPSM proposed in this paper is divided into two parts. The
first part distributes all online jobs to idle servers, and the second part schedules batch jobs. When
judging whether batch jobs can be deployed to a server, the service running on the server must be
judged first.

If no online service is deployed, just deploy batch jobs directly on the server. Otherwise, it is
necessary to judge whether the response time of the online service will be too high after the batch
jobs are deployed according to the online service’s abnormal QoS prediction algorithm. If not, the
batch jobs can also be deployed directly. In addition, jobs that are not successfully scheduled the first
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time will be downgraded in priority and then rescheduled. This is because a job that is unsuccessfully
scheduled for the first time generally requires more resources and takes longer to execute. Therefore,
downgrading its priority can ensure that jobs with low resource requirements and short execution
times are scheduled preferentially.

Algorithm 1: Mixed load scheduling algorithm
Input: M = {m1, m2, . . . , mn} // Collection of available servers

serviceQueue// Online service queue
jobQueue// batch job queue

Output: None
1: idleMachines = M
2: for service in serviceQueue: // Deploy all online services
3: if idleMachines is not empty:
4: machine = getIdleMachine(idleMachines) // Looking for idle servers
5: removeMachine(machine, idleMachines)
6: deployService(service,machine) // Deploy current online services
7: end if
8: end for
9: while jobQueue is not empty: // Schedule all batch jobs
10: job = pop(jobQueue) // Team leader’s homework leaves the team
11: machine = findProperMachine(M) // Search for a suitable server according to the abnormal
QoS prediction model
12: if find a proper machine:
13: run(job,machine) // Execute the batch job if the server is found
14: else:
15: wait for next schedule // Wait for the next round of scheduling if no suitable server is
found
16: end while

5 Experiment and Evaluation
5.1 Construction of Hybrid Deployment Environment

According to certain strategies, this paper selects several different online services and batch jobs
from two well-known benchmark test suites, CloudSuite and BigDataBench. Then, deploy different
workloads into the same cluster with shared resources to achieve a hybrid deployment environment.
Finally, this mixed deployment cluster is the experimental environment for all subsequent experiments.

5.1.1 Online Service and Batch Jobs Selection

1) Selection of Online Services

Online services generally deployed in data centers with high frequency include e-commerce, social
services, and search engines. To reduce the service response time as much as possible, all large and
medium-sized online services currently use data caching services. Its function is to put most of the hot
data or data likely to be accessed soon from the back-end storage devices such as databases into the
cache in advance. In addition, most cache services are designed based on memory, so manipulating
the data in the cache is much more efficient than manipulating the data in the database or file system.
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For common online services currently deployed in data centers, the cache service’s response time
largely determines the online service’s QoS. As a result, in this paper, the cache service is used as the
online service in the mixed load running environment. To make the deployed cache service as close
to the actual production environment as possible, this paper selects the Data-Caching load from the
CloudSuite benchmark suite as the online cache service. Because CloudSuite has been iterated through
multiple versions, the load performance has been relatively close to the service performance of the
actual production environment.

2) Selection of Batch Jobs

Most of the batch jobs currently executed in the data center are distributed batch tasks based
on big data computing frameworks such as Hadoop, Spark, and Flink. Therefore, in order to be
closer to the production environment, this paper selects eight representative batch jobs from the
BigDataBench benchmark suite. Depending on how jobs are implemented, they can be divided into
two categories, one is computing jobs and the other is data warehouse jobs. First, the five computing
jobs are introduced.

Grep: The Grep algorithm will search for qualified strings in the file based on a given string or
regular expression and count the number of occurrences of each string.

MD5: The MD5 algorithm is a relatively common encryption algorithm at present. The dis-
tributed version of the MD5 algorithm mainly parallelizes it, which further improves the execution
efficiency of the algorithm.

RandSample: The RandSample algorithm mainly performs random sampling operations, and the
sampling ratio needs to be specified by the user.

WordCount: The WordCount algorithm mainly counts the word frequency of each word in the
file, and the output result is each word and the number of times each word appears.

TeraSort: TeraSort algorithm is a sort algorithm designed for distributed systems. The industry
usually uses the TeraSort algorithm to measure the performance of each distributed data processing
framework by processing 1 TB of data.

In addition, the jobs related to the three data warehouses are mainly implemented by SQL
statements, which respectively select, aggregate and join the data in multiple tables. Therefore, the
implementation of these three batch jobs needs to rely on Hive and Hadoop simultaneously. The main
function of Hive is to analyze SQL statements, transform them into one or more MapReduce tasks,
and then invoke the interfaces provided by Hadoop to perform these tasks.

5.1.2 Online Service and Batch Jobs Deployment

In this paper, two nodes are utilized to construct the mixed load deployment scenario. The
scheduling model proposed in this paper is not concerned about the batch job throughput, which is
one of the primary reasons for not using more nodes. Hadoop’s master node is one of the two nodes,
while the slave node is the other. The cluster has Java version 1.8 and Hadoop version 2.8.5 installed.
In addition, the master node is solely responsible for scheduling and performs no actual work. Table 1
lists the configurations of the two nodes.

Table 1 demonstrates that the subordinate node has five times the number of CPU cores and
eight-and-a-half times the amount of available memory as the master node. The master node is only
responsible for processing read-write requests and generating the execution plan for MapReduce tasks.
Since processing requests and generating the execution plan require fewer CPU and memory resources,
the master node does not require excessive resource allocation. The slave node must store data and
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execute MapReduce operations, so its number of CPU cores and available memory is significantly
greater than that of the master node.

Table 1: Configuration of each node

Node name Master node Slave node

CPU Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.40 GHz

Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.20 GHz

CPU cores 8 40
L1 data cache 32 KB 32 KB
L1 instruction cache 32 KB 32 KB
L2 cache 256 KB 256 KB
L3 cache 25600 KB 25600 KB
Total memory 15 GB 125 GB

Deployment of Online Services: Data Caching requires the discrete deployment of the server
and client, both of which are containerized. Therefore, the Docker environment must be deployed
beforehand on the slave node. To minimize the impact of the external network on the response time
of the server, both the server and the client are simultaneously deployed on the subordinate node. In
addition, 4 servers and 1 client are deployed to handle the high concurrent request volume.

Deployment of Batch Jobs: For the eight batch jobs selected in this article, the BigDataBench
benchmark suite provides two shell scripts for each task. One is used to generate the data that the
task needs to process, and the other is used to call the relevant Java package to start the Hadoop
program. Therefore, from the perspective of compatibility, all batch jobs in the experimental cluster
will be deployed in the form of Shell scripts. In addition, in order to be as close as possible to the
deployment environment of Alibaba Cloud, all batch jobs are run directly on the physical machine
rather than deployed through containers like online services.

5.2 Evaluation of Online Service Abnormal QoS Prediction
5.2.1 Feature Validity Analysis

Through the statistical analysis of the experimental data, we chose the type of offline jobs, the
amount of data processed by batch jobs, and the number of visits to online services as indicators to
predict the QoS anomaly of online services.

First, we count the average QoS values of online services for different batch jobs under different
input data volumes and different access volumes, so as to represent the impact of different types of
batch jobs on the QoS of online services, as shown in Fig. 4.

Fig. 4 demonstrates that the impact of various offline loads on online services is inconsistent. This
is primarily due to the fact that various offline loads have distinct computing logic, resulting in varying
resource requirements. Sort has the smallest impact on online service among the eight offline tasks
chosen for the experiment. When hybrid deployment with Sort demand occurs, the online service’s
average response time is less than 1 millisecond, which has almost no task impact. This is due to the
fact that Sort load does not involve, or rarely involves, a variety of CPU operations, instead focusing
on memory and disk operations. Therefore, when memory and disk storage space are sufficient, the
sort load has a negligible influence on the online service. Grep, MD5, and RandSample have the same
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impact on online services, with Grep having a slightly lesser impact on online service response time.
Regular expression matching is the primary execution logic of Grep load in the execution logic of tasks.
The primary function of MD5’s execution logic is to encrypt sequences, so a significant portion of the
execution logic of MD5 consists of logical operations. This has a similar effect on online services as
Grep load and MD5 load. RandSample can use the pipeline mechanism of CPU instructions to get
all the data it needs. Hard and soft interrupts will not happen often, so the effect on online services
is moderate. WordCount is the batch job that has the largest effect on online services. During the
execution of this task, it will be necessary to enumerate the occurrences of each word, necessitating a
large number of arithmetic operations. The arithmetic operation will consume numerous CPU time
slices, slowing the CPU’s processing speed for requests for online service access.

Figure 4: The impact of different batch jobs on the response time of the cache service

In terms of SQL load, the Select operation has the least effect on online service response time,
whereas the Join operation has the greatest effect. This is due to the fact that Select only entails data
filtering, which is comparable to Grep load but requires fewer CPU resources. On the other hand, the
Join operation includes the Cartesian product, grouping, and statistical operations, and its demand
for CPU and memory resources is greater than that of the relatively simple Select operation. This
demonstrates that as the complexity of SQL load logic operations increases, their effect on online
service performance will become increasingly significant.

Fig. 5 depicts the effect of different data processing volumes on the average response time of online
services when both batch tasks and traffic volumes fluctuate simultaneously. According to the overall
trend, the average response time of online services gradually increases as the volume of data processed
grows. It demonstrates that as data input increases, the impact of offline operations on online services
continually increases, which is consistent with what was anticipated prior to the experiment. Moreover,
based on experimental findings, when the amount of data processed by the offline load is less than
9 GB, the effect of each offline load on the response time of the online service changes significantly.
When more than 9 GB of data is processed, the effect of the offline load on the response time of online
services is relatively stable.

Fig. 6 illustrates the impact of different traffic volumes on the response time of online services
when batch tasks are deployed. Before the hybrid deployment of batch tasks and online services, the
separately deployed online services were subjected to a stress test. The experiment determined that
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when the number of visits per second exceeds 290, the 95th percentile value of the response time
for the online service will exceed the predetermined response time threshold. Therefore, the traffic
is divided into three main categories and ten minor categories based on the maximum value of 290 K.
The number of visits for the three main categories is, respectively, one thousand, ten thousand, and one
hundred thousand. Fig. 6 depicts the classification of subcategories. According to the overall trend,
the average response time of online services will progressively increase as the number of visits rises.
This is because the server must utilize more CPU and memory when processing numerous network
requests, particularly TCP-based requests. Memory resources are primarily used to store the package
word for each TCP connection, whereas CPU resources are primarily used to monitor and process
read and write events for each TCP connection. Therefore, the average response time of online services
decreased as the number of visits increased within each broad category.

Figure 5: The impact of different data processing volumes on online services

Figure 6: The impact of different RPS on online services

In contrast, there was typically an increase in average response time between categories. Fig. 6
reveals that although batch jobs will affect the response time of online services when the access volume
of online services is small, the impact of batch jobs on online services will not violate the QoS of online
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services for batch jobs with a fixed amount of input data. However, when traffic increases, batch tasks
can easily affect the quality of online services.

Fig. 7 is a three-dimensional representation of the data in these four dimensions that demonstrates
the influence of the types of batch jobs, the quantity of data processed by batch jobs, and the number
of visits to online services on the performance of online services in a more comprehensive manner.
The three axes represent the type of batch jobs, the quantity of data processed by batch jobs, and the
number of online service visits per second. Each point’s color represents the 95th percentile response
time for online services. The darker the color, the faster the online service’s response time and the
higher its efficacy. In contrast, it indicates that the online service has a slower response time.

Figure 7: The impact of different characteristics on online service performance from a three-
dimensional perspective

Fig. 7 provides a more precise view of the performance variations of online services along multiple
dimensions. First, it can be observed that the number distribution of dark points and weak points
is relatively uniform and that there are no apparent biases, indicating that the data collected in the
experiment are highly representative. Therefore, the QoS prediction model for online services trained
with this data set can have greater universality.

In addition, most light spots are related to three types of offline loads: WordCount, Join and
RandSample. With the increase in traffic and data processing, WordCount, Join and RandSample
offline loads are more likely to affect the QoS of online services. However, when the number of visits
and data processing is small, no matter what kind of batch jobs is used, it has an obvious impact
on online service QoS. This is consistent with the conclusion from the previous analysis of a single
dimension.

To sum up, the load type of batch jobs, the amount of data processed by batch jobs and the number
of visits to online services can affect the QoS of online services to varying degrees. Therefore, it is
reasonable to use these three indexes as feature vectors in an online service abnormal QoS prediction
model.
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5.2.2 Experimental Evaluation and Comparison

Because the online service abnormal QoS prediction model proposed in this study is essentially
a classification problem, the Accuracy, Recall and F1 scores are used to evaluate the effect of the
model in the experiment. To prove the efficiency of the online service abnormal QoS prediction
method proposed in this paper, Logistic Regression and Support Vector Machine (SVM) are used
as comparison methods in the experiment. Logistic regression adopts the loss function as shown in
formula (6). Finally, the weight vector of the final solution of logistic regression can be obtained by
using the gradient descent method to get the minimum value of the loss function. In this paper, the most
commonly used Gaussian kernel function is used as the kernel function in the comparison method
when using a support vector machine. Its mathematical expression is shown in formula (7).

J(W) = −
∑n

i=1
yiln φ (zi) + (1 − yi) ln (1 − φ (zi)) (6)

k(x, y) = exp
(

−‖x − y‖
2σ 2

)
(7)

where y is the center of the kernel function, ‖ x − y ‖ is the Euclidean distance between vector x and
vector y, and the value of the Gaussian kernel function decreases as the distance between vector x and
vector y increases. σ is used to control the action range of the Gaussian kernel function. The larger the
value of σ, the larger the local action range of the Gaussian kernel function.

5.2.3 Experimental Result Analysis

During the experiment, dividing the data into a training set and a test set in a certain proportion
is necessary. In order to avoid the accidental effect of model training caused by a specific data
segmentation method in one experiment, this experiment is conducted ten times. Before each training
session, the sample data will be randomly segmented and then combined into different training and
test sets.

Fig. 8 shows the accuracy changes of different models over 10 training sessions. As can be seen
from the figure, the results obtained by the same model after each training are quite different, which
indicates that dividing the sample data set into different training sets and test sets greatly influences
the training results.

Figure 8: Comparison of model accuracy
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From the comparison of models, the accuracy of the XGBoost model is always not lower than
that of the logistic regression model and the SVM model. However, the comparison results between
the logistic regression and SVM models depend on the training and test set. For example, in 10
experiments, the average accuracy of the XGBoost model is 0.86, that of the logistic regression model
is 0.80, and that of the SVM model is 0.82. Therefore, the XGBoost model is slightly better than the
logistic regression model and the SVM model in terms of average accuracy.

Since the accuracy of the model does not completely reflect its quality, it is also necessary to
compare the pros and cons of each model by combining the recall rate and F1 score. The recall and F1
ratings of three models are displayed in Fig. 9. The recall rate of the SVM model is always lower than
that of the XGBoost and logistic regression models, as shown in Fig. 9a. In only two out of ten training
sessions, the recall rate of the XGBoost model is lower than that of the logistic regression model. In
contrast, the recall of the logistic regression model is marginally greater or equal to that of XGBoost.
In 10 experiments, the average recall of the XGBoost model was 5% and 21% greater than that of the
logistic regression and SVM models, respectively.

Figure 9: Comparison of model recall rate and F1 score

Furthermore, it can be seen from Fig. 9b that the F1 score of XGBoost is 11% and 13% higher
on average than the logistic regression and SVM models, respectively, in 10 training sessions. To sum
up, the XGBoost-based online service abnormal QoS prediction method proposed in this paper can
predict the possible impact of batch jobs on online service performance at a high level. At the same
time, considering the three indicators of accuracy rate, recall rate, and F1 score and the subsequent
scheduling process, the XGBoost model of the fifth experiment is used as the online service abnormal
QoS prediction model.

5.3 Evaluation of Batch Jobs Completion Time Prediction
5.3.1 Experimental Evaluation Index

Since the prediction of the completion time of batch jobs is essentially a regression problem, the
evaluation indicators for classification problems introduced in the previous subsection are no longer
applicable. Therefore, in order to objectively evaluate the prediction model of the batch job completion
time based on the random forest proposed in this subsection. Effectiveness: This experiment uses the
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mean absolute deviation (MAE) as an evaluation indicator. The definitions and functions of the two
are introduced below.

The mathematical definition of mean absolute error is shown in formula (8), representing the true
and predicted values. The calculation principle of MAE is to sum the absolute values of the difference
between all the actual values and the predicted values and then take the average value. This indicator
can well measure the deviation from the predicted value.

MAE = 1
m

∑m

i=1

∣∣yi − ŷi

∣∣ (8)

R2 reflects the model’s fit, and its mathematical definition is shown in the formula (9). It can be
seen from formula (9) that R2 may take any value less than 1, but its value is meaningful only when
the value is in the range of [0,1]. If the value of R2 is less than 0, the model used in the experiment
is unreasonable or the assumptions about the data distribution are biased. When the value of R2 is
between [0,1], the higher the value, the better the model fitting effect. When it is equal to 1, it means
that all predicted values are equal to the true value, which is an ideal situation.

R2 = 1 −
∑

i

(
ŷi − yi

)2

∑
i (yi − y)2

(9)

5.3.2 Experimental Result Analysis

To prove the efficiency of the prediction model for offline job completion time based on the
random forest proposed in this paper, linear regression [45] and Support Vector Regression (SVR)
[46] are selected as comparison models. The main idea of linear regression is similar to that of logistic
regression. It is necessary to determine a curve to minimize the residual error from the curve at each
point. The mapping function does not need to transform the continuous result value into a discrete
value. The SVR model belongs to an application of SVM in the regression field, and their ideas are
similar. The main idea of SVR is to determine a hyperplane so that the distance between all data points
and this hyperplane is as small as possible.

To avoid the influence of the different divisions of data sets on the experimental results, each group
of experiments is also conducted 10 times, and each division of data sets is different from other times.
At the same time, 75% of the data is used to train the model and 25% of the data is used to verify
the validity of the model every time the data set is segmented. The MAE value and the experimental
results are shown in Fig. 10. Tables 2 and 3 record the average and standard deviation of the three
models MAE and R2 in 10 experiments, respectively.

It can be seen from the above chart that the performance of random forest is better than that of
linear regression and the SVR model, whether from MAE or R2. This is mainly because the random
forest is more adaptable to the data when the data distribution is unknown, and the average MAE
value is about 38 and 51 lower than that of linear regression and SVR models when the random forest is
used, and the average R2 value is 0.55 and 0.78 higher, respectively. In addition, from the experimental
results, the stability of random forest is better than that of linear regression and SVR when using
different data for training, which is quantitatively verified by the standard values in Tables 2 and 3.
The standard deviation of random forests is always lower than that of linear regression and SVR
models. The random forest model with the highest MAE value will be used as the prediction model
for batch job completion time in the subsequent scheduling process.
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Figure 10: Comparison of model MAE and R2

Table 2: Mean and standard deviation of model MAE

Model RF LR SVR

MAE 3.27 41.95 54.22
R2 0.32 3.15 2.42

Table 3: Average and standard deviation of model R2

Model R F L R SVR

MAE 0.99 0.44 0.21
R2 0.003 0.08 0.02

5.4 Hybrid Load Scheduling Evaluation
This section mainly provides a comprehensive evaluation of the hybrid load scheduling model

proposed above. The evaluation is mainly divided into batch job scheduling, waiting time, and system
resource utilization. Different from the data used in the previous training model, the experiment in
this section keeps the type of each load unchanged but adjusts the amount of data to be processed by
each batch job to be [2, 4, 6, 8, 10, 12, 14, 16] (unit: GB), so there are 64 batch jobs in total, and all
batch job requests arrive in a random and disordered manner. At the same time, the number of visits
to online services per second is adjusted to [1, 5, 10, 50, 100, 150, 200] (unit: k).

5.4.1 Batch Jobs Waiting Time Evaluation

The waiting time of batch job scheduling refers to the time between when batch jobs enter the
queue and when they exit the queue. The greater the efficiency of the scheduling strategy, the shorter
the wait time for batch assignment scheduling. Table 4 displays the total waiting time (in seconds)
demanded by the scheduling model, FIFO strategy, and random scheduling strategy proposed in this
paper in order to schedule all batch tasks under varying traffic conditions. Table 4 demonstrates that,
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when scheduling the same number of batch tasks, QPSM reduces scheduling time by up to 16 h
compared to the FIFO scheduling strategy, with an average reduction of approximately 6 h. The
maximum reduction is 30 h, and the average reduction is approximately 11 h compared to the random
scheduling strategy. Consequently, the QPSM scheduling model proposed in this paper can effectively
reduce the waiting time for batch task scheduling. Additionally, less scheduling wait time allows for
the simultaneous deployment of more batch tasks, thereby improving the batch jobs’ throughput.

Table 4: Total waiting time (second) for scheduling batch jobs under different strategies

RPS 1 K 5 K 10 K 50 K 100 K 150 K 200 K

FIFO 224,017 s 223,638 s 220,492 s 5,977 s 2,141 s 337 s 300 s
Random 273,878 s 256,348 s 265,899 s 10,812 s 3,244 s 295 s 253 s
QPSM 164,616 s 177,731 s 175,707 s 5,438 s 1,841 s 217 s 197 s

5.4.2 System Resource Utilization Evaluation

The experiment compares the system resource utilization after adopting the QPSM scheduling
model and the system resource utilization when the online service is deployed alone. The results are
shown in Fig. 11.

Figure 11: The average resource utilization of the system under different traffic

As can be seen from Fig. 11, compared with the traditional deployment method, the scheduling
model proposed in this paper can effectively improve the utilization of system resources while ensuring
the QoS of online services. %, the average memory utilization can be increased by 12.44%, with an
average increase of 5.7%. In addition, with the increase in access to online services, both CPU and
memory utilization show a downward trend in the case of hybrid deployment. This is because the
access delay of the online service itself will continue to increase as the traffic volume increases, and
the number of batch jobs that can meet the requirements of the hybrid deployment will continue
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to decrease. Therefore, the system’s resource utilization will decrease compared with the low access
volume.

There is an abnormal phenomenon in Fig. 11a that deserves attention. The average CPU utiliza-
tion of the system shows a trend of first decreasing and then increasing. When the access volume is
between 50 and 100 K, the CPU resource utilization of the system is the lowest. Theoretically speaking,
as the number of visits increases, the number of batch jobs that can be deployed will decrease, and
the average CPU utilization of the system should show a decreasing trend. After further analysis, it
is found that this phenomenon is mainly due to a certain error in the online service abnormal QoS
prediction method proposed in this paper. Since 64 batch jobs need to be scheduled under different
traffic volumes, the total number of batch jobs that need to be scheduled in the experiment is 448, and
19 of them are misjudged, with a misjudgment rate of 4.2%. The hybrid deployment of these 19 batch
jobs and online services will not destroy the QoS of online services under the traffic volume at that
time, but these jobs were not executed, and all these 19 batch jobs were misjudged under the traffic
volumes of 50 and 100 K.

Fig. 12 is a statistical diagram of the average resource utilization rate of the system after all batch
jobs that should be deployed are deployed. As can be seen from the figure, the average CPU and
memory utilization decrease with the increase in traffic, which fully demonstrates the correctness of
the above analysis.

Figure 12: The average resource utilization of the system after all offline operations that meet the QoS
requirements are deployed

6 Summary

Although hybrid deployment technology effectively improves resource utilization, resource con-
tention impacts the performance of online services and batch jobs in the same shared resource cluster.
This paper first proposed an XGBoost-based online service anomaly QoS prediction method in order
to prevent batch tasks from negatively impacting the performance of online services. By analyzing the
type of batch job, the quantity of data to be processed, and the access to the online service, the method
can determine whether a hybrid deployment of batch jobs and online services will exceed the upper
response time limit. Compared to the logistic regression model and the support vector machine model,
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the proposed method has an average accuracy that is 6% and 4% higher, and a recall rate that is 5%
and 21% higher.

Then, this paper proposed a random forest-based method for predicting the completion time of
batch jobs in order to reduce the total batch job waiting time. This method predicted the necessary
execution time of batch jobs based on the types of batch jobs and the volume of data that batch
jobs will process. Experiments indicate that the average absolute error value for this method is 39
and 52 percentage points lower than that of linear regression and support vector regression models,
respectively, while the average fitting value is 0.55 and 0.78 percentage points higher. In addition, the
experiment demonstrates that the proposed method is less sensitive to the training data and has a more
stable training effect.

Lastly, based on the performance prediction of online services and batch jobs, QPSM, a mixed
load scheduling model, is designed in this paper. Experiment results indicated that, when scheduling
the same number of batch jobs, QPSM reduces scheduling time by approximately 6 h on average
compared to the first-come, first-served strategy and approximately 11 h compared to the random
scheduling strategy. Additionally, compared to a non-hybrid deployment, QPSM can increase CPU
resource utilization by 12.15 percent and memory resource utilization by an average of 5.7 percent.
Clearly, this model assures the QoS of online services and effectively increases server resource
utilization.
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