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ABSTRACT

The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission
model (FDTM) in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network
(LM-NN) technique. The fractional dengue transmission model (FDTM) consists of 12 compartments. The human
population is divided into four compartments; susceptible humans (Sh), exposed humans (Eh), infectious humans
(Ih), and recovered humans (Rh). Wolbachia-infected and Wolbachia-uninfected mosquito population is also
divided into four compartments: aquatic (eggs, larvae, pupae), susceptible, exposed, and infectious. We investigated
three different cases of vertical transmission probability (η), namely when Wolbachia-free mosquitoes persist only
(η = 0.6), when both types of mosquitoes persist (η = 0.8), and when Wolbachia-carrying mosquitoes persist only
(η = 1). The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting
the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three
different cases of the fractional order derivatives (α = 0.4, 0.6, 0.8). LM-NN approach includes a training, validation,
and testing procedure to minimize the mean square error (MSE) values using the reference dataset (obtained by
solving the model using the Adams-Bashforth-Moulton method (ABM). The distribution of data is 80% data for
training, 10% for validation, and, 10% for testing purpose) results. A comprehensive investigation is accessible to
observe the competence, precision, capacity, and efficiency of the suggested LM-NN approach by executing the
MSE, state transitions findings, and regression analysis. The effectiveness of the LM-NN approach for solving the
FDTM is demonstrated by the overlap of the findings with trustworthy measures, which achieves a precision of up
to 10−4.
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Nomenclature

LM Levenberg-Marquardt
FSTM Fractional dengue transmission model
ANN Artificial neural network
MSE Mean square error
ABM Adams-Bashforth-Moulton

1 Introduction

Dengue fever is widespread, with an approximated 3.9 billion people at threat and 390 million new
dengue infections estimated each year [1]. The female Aedes aegypti and Aedes albopictus mosquitoes
are the main vectors spreading dengue infection [2]. The virus that causes dengue has four serotypes:
DEN1, DEN2, DEN3, and DEN4, with a probable fifth strain recently discovered [3]. Recent progress
has been made in the development of dengue vaccines that provide protection against four strains of
the virus. For example, the first vaccine called Dengvaxia has been approved in many countries. Other
dengue vaccine candidates like TAK-003 and TV003/TV005 are also in development [4–6].

Dengue is transmitted to people through the bite of a dengue-infected female mosquito. The
extrinsic incubation period (EIP) is the time it takes for the dengue virus to multiply in a mosquito’s
body before it can reach the salivary glands and be transmitted to a human through a bite. Factors
such as temperature, humidity, and rainfall affect the length of the EIP. A comprehensive approach that
includes these factors can help to reduce the EIP of dengue virus in mosquitoes and ultimately reduce
the transmission of the disease. Only mosquitoes that survive the EIP are capable of transmitting the
virus to humans [7].

Wolbachia, a bacterium, is present in certain mosquito species and about 60% of all groups of
insects. The potential use of Wolbachia-infected mosquitoes as an alternative approach to control
dengue transmission. While vaccines and insecticides are effective, they have limitations such as
incomplete protection and adverse effects on the environment. In contrast, Wolbachia-infected
mosquitoes have shown promise in reducing dengue transmission in field trials by preventing the virus
from being transmitted to humans. This method appears to have fewer environmental impacts and a
lower likelihood of insecticide-resistant mosquito populations developing [8]. Wolbachia is transferred
through vertical transmission and changes the reproductive phenotype of potentially infected insects,
providing the bacterium a reproductive advantage over uninfected insects. Depending on the insect
species and Wolbachia strain, the reproductive phenotype displayed might lead to feminization, male
death, parthenogenesis, or, most frequently, cytoplasmic incompatibility. Cytoplasmic incompatibility
(CI) is the characteristic of Wolbachia that is critical for the invasion of population and perseverance
because it provides a reproductive advantage to female mosquitoes that carry Wolbachia [9]. Fractional
models can capture the behavior of a system when classical differential equations fail, especially when
memory effects or long-range interactions are present. To obtain the results in non-integer order we use
the fractional model. Compared to ordinary differential equations, fractional differential equations
can describe more complex dynamics and can be formulated in various ways, such as in terms of
Caputo or Riemann-Liouville fractional derivatives. Fractional mathematical models can help to
better understand the dynamics of Wolbachia transfer and how it affects the invasion of dengue.
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The theory of fractional derivatives has a wide range of applications in medicine, finance,
engineering, physics, and many other fields [10–12]. Many researchers analyzed a wide range of
complicated phenomena based on the fractional derivatives, Kilicman et al. [13] worked on the SIR
fractional model for dengue transmission, Jajarmi et al. [14] investigated a fractional mathematical
model for dengue fever, Qureshi et al. [15] analyzed the derivatives of fractional-order. Zafar et al. [16]
analyzed the fractional model for the Human papillomavirus (HPV). The Caputo derivatives are easier
to utilize than the other fractional derivative concepts. The definition of Caputo derivative as defined
in [11] is:

Dα

t f (t) = 1
γ (n − α)

∫ t

0

f n(s)ds
(t − s)α−n+1

where α represents the order of the differential and α ∈ (n − 1, n), n is an integer.

An artificial neural network (ANN) is a method for simulating biological neural activity using
mathematics. The essential mathematical principles of an artificial neural network employing an
artificial neuron are multiplication, summation, and activation. At the start of the neuron, the input
values are multiplied by the specified weights. The sum function, which adds all weighted inputs and
biases, is located in the middle layer of the artificial neuron. The summation of previously weighted
inputs and bias is sent via an activation function, also known as a transfer function, at the end of an
artificial neuron [17].

In ANN, an activation function is utilized to provide nonlinear features. In a neural network,
the yn are input variables, wn are the weights, and fn shows the output in Fig. 1. Using a multilayer
perceptron (MLP), the number of hidden units can be optimized. The number mentioned in the hidden
layer shows how many neurons were utilized in the network [18].

Figure 1: Proposed structure for the neuron

In literature, many fractional-order mathematical models along with artificial neural network
approach models for real-world problems have been proposed utilizing the ANNs approach.
Pornsawad et al. [19] analyze fractional-order mathematical differential equations for the backward
heat problems by developing neural networks procedure. Qu et al. [20] analyzed the stability of the
Caputo fractional-order derivative by utilizing the cellular neural network approach. Sabir et al. [21]
analyzed the fractional order mathematical model of computer viruses by employing the Levenberg
approach. Ghazizadeh et al. [22] studied the fractional order inverse problem with the estimation of
relaxation time by utilizing the neural network approach. Souayeh et al. [23] utilized the Bayesian
regularization approach to understand the Allee effect on the food chain supply. Umar et al. [24]
investigated the neural network approach for analyzing the behavior of the nonlinear coronavirus
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model. Noinang et al. [25] worked on a system of magnetohydrodynamic (MHD) past over an
inclined plate by utilizing the artificial neural network approach. Zhuang et al. [26] analyzed parameter
estimation of inverse problem heat conduction problem in a composite medium utilizing Levenberg-
Marquardt. Sabir et al. [27] studied nonlinear singular second-order delay differential equation
utilizing the ANN approach.

The aim of this work was to develop and numerically solve a fractional dengue transmission model
(FDTM) with Wolbachia using neural network. In the present model, we incorporated Wolbachia-
infected mosquitoes along with Wolbachia-free mosquitoes and humans. The impact of vertical
transmission probability on the persistence of dengue transmission in humans and mosquitoes has
been analyzed using the Levenberg-Marquardt neural network (LM-NN) approach. The convergence
and accuracy of the proposed LM-NN technique have been checked through mean square error,
regression analysis plots, and state transition results. The results obtained from the proposed LM-NN
approach for FDTM have been compared with the reference solutions obtained using the Adams-
Bashforth-Moulton (ABM) method and they were found to be in good agreement.

2 Mathematical Model

A fractional dengue transmission model in the presence of Wolbachia is developed to observe
the dynamics of dengue between humans and mosquitoes. The model consists of 12 compartments,
namely, susceptible human (Sh), exposed human (Eh), infectious (Ih), recovered human (Rh), sus-
ceptible Wolbachia-infected mosquitoes Sw, Wolbachia-infected mosquitoes that are exposed but
not yet infected Ew, Wolbachia-infected mosquitoes that are Infectious to dengue virus Iw, and the
aquatic stage (eggs, larvae, pupae) of the Wolbachia-infected mosquitoe Aw. Similarly, Wolbachia-
free mosquito compartments are denoted with Sn, En, In, and An. The subscript w stands for
Wolbachia-carrying mosquitoes, subscript n represents Wolbachia-free mosquitoes, and the subscript
h denotes the human classes. The death rates of Wolbachia-carrying and Wolbachia-free mosquitoes
are denoted by μw and μn, respectively. Wolbachia-infected mosquitoes have a higher death rate than
that of Wolbachia-free mosquitoes. This leads to reduced dengue virus load in Wolbachia-carrying
mosquitoes and a lower probability of transmission from Wolbachia-carrying mosquitoes to humans
than for Wolbachia-free mosquitoes. The maturation rate of Wolbachia-carrying aquatic mosquitoes
to become adult Wolbachia-carrying mosquitoes is denoted with ηρw, where η denotes the probability
of becoming Wolbachia-infected mosquitoes and 1 − η is the probability for the Wolbachia-free
mosquitoes.

The reproduction rate of Wolbachia-carrying and Wolbachia-free mosquitoes are denoted by φw

and φn, respectively. It has been observed that Wolbachia can cause a bendy proboscis, which inhibits
feeding and results in a reduction in the biting rate. This decreased biting rate also accounts for the
fact that some Wolbachia-carrying mosquitoes are efficiently not infected by dengue because of the
viral replication limitation, resulting in a lower transmission rate from humans (i.e., βw τn < βn τn) [28].

The model flowchart is given in Fig. 2.
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Figure 2: Schematic diagram: fractional dengue transmission model (FDTM) when Wolbachia-
carrying and Wolbachia-free mosquitoes are present. Dashed lines represent disease transmission and
solid lines show population progression

All the parameters that appear in model (1) are defined in Table 1. The FDTM model in the
presence of Wolbachia is given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα

t Sh = μ − βnτnLInSh − βwτhwLIwSh − μSh,

Dα

t Eh = βnτnLInSh + βwτhwLIwSh − γhEh − μEh,

Dα

t Ih = γhEh − σ Ih − μIh,

Dα

t Rh = σ Ih − μRh,

Dα

t An = φn

(Sn + En + In)
2

2(Sn + En + In + Sw + Ew + Iw)
(1 − (An + Aw)) − (ρn + μna) An,

Dα

t Sn = ρn

An

2
+ (1 − η) ρw

Aw

2
− (βnτnIh + μn0) Sn,

Dα

t En = (βnτnIn) Sn − (γn + μn0) En,

Dα

t In = γnEn − μn0In,

Dα

t Aw = φw

Sw + Ew + Iw

2
(1 − (An + Aw)) − (ρw + μwa)Aw,

Dα

t Sw = ρwη
Aw

2
− (βwτnIh + μw0)Sw,

Dα

t Ew = βwτnIhSw − (γw + μw0)Ew,

Dα

t Iw = γwEw − μw0Iw.

(1)

According to the model, a susceptible human becomes exposed to a bite from an infected
mosquito. The biting rates of Wolbachia-infected and Wolbachia-free mosquitoes are βw and βn,
respectively. The transmission probability from Wolbachia-infected mosquitoes to humans is denoted
by τhw. Although there are differences in the probability of transmitting dengue from Wolbachia-
carrying or Wolbachia-free mosquitoes to humans, the probability of transmitting dengue from
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humans to both types of mosquitoes are considered to be equal and is presented with τn. The
ratio between the number of breeding sites available for mosquitoes, which determines the carrying
capacity denoted by K, and the total human population (Nh) is expressed as L. The exposed humans
become infected at the rate of γh and σ is the recovery rate of infected humans. The non-Wolbachia
aquatic mosquito population increases when non-Wolbachia female mosquitoes (Fn) mate with non-
Wolbachia males (Mn), then, φn

Fn Mn
(Fn+Mn+Fw+Mw)

. Since, we are assuming Fn = Mn and Fw = Mw,

we get, φn
Fn Fn

(Fn+Fn+Fw+Fw)
= φn

F2
n

2 (Fn+Fw)
. Further using Fn = Sn + En + In (total Wolbachia-free adult

female mosquitoes) and Fw = Sw + Ew + Iw (total Wolbachia-infected adult female mosquitoes), we
get, φn

(Sn+En+In)2

2(Sn+En+In+Sw+Ew+Iw)
. Similarly, when the Wolbachia-carrying female mosquitoes mate with both

Wolbachia-free or Wolbachia-infected males, the result will be φw
Fw(Mn+Mw)

(Fn+Mn+Fw+Mw)
. Since, we are assuming

Fn = Mn and Fw = Mw, we get, φw
Fw(Mn+Mw)

(Mn+Mn+Mw+Mw)
= φw

Fw(Mn+Mw)

2(Mn+Mw)
. After simplifying, we get, φw

Fw
2

. Further
using value of Fw = Sw + Ew + Iw (total Wolbachia-infected female mosquitoes), we get, φw

Sw+Ew+Iw
2

.

Table 1: Description and values of parameters [28,29]

Parameters Description Unit Min Used values Max

τn Transmission probability of dengue from
Wolbachia-free mosquitoes

N/A 0 0.2614 1

τhw Transmission probability from Wolbachia-infected
mosquitoes to humans

N/A 0 0.1307 1

βn The biting rate of Wolbachia-free mosquitoes day−1 0 0.63 1
μn0 Adult mosquito death rate of non-Wolbachia

mosquitoes
day−1 1/30 1/14 1/10

μn Death rate of non-Wolbachia mosquitoes day−1 1/30 1/14 1/10
σ rate of infected humans day−1 1/14 1/5 1/3
ρw Maturation rate of mosquitoes that carrying

Wolbachia
day−1 1/12 1/10 1/8

φn Reproduction rate of mosquitoes that are
Wolbachia-free

day−1 1 1.25 2.5

φw Reproduction rate of Wolbachia-carrying mosquitoes day−1 0.7 1.1875 2.5
η Vertical transmission probability N/A 0.6 0.8 1
γw The rate at which exposed become infectious day−1 1/12 1/10 1/8
ρn Maturation rate of mosquitoes that are Wolbachia-free day−1 1/17 1/10 1/6
μwa The death rate of the aquatic (egg, larvae, and pupae)

stage of Wolbachia-infected mosquitoes
day−1 1/20 1/14 1/7

γh Progression rate from exposed to infectious human day−1 1/7 1/5.5 1/4
μna Death rate of aquatic mosquitoes that are

Wolbachia-free
day−1 1/20 1/14 1/7

γn Progression rate from exposed to infectious
non-Wolbachia

day−1 1/12 1/10 1/8

Eh0 Initial exposed human N/A 1 2 5
L = K/Nh Ratio of K and Nh N/A 3
βw The biting rate of Wolbachia-infected mosquitoes day−1 0 0.5985 1
K maximum carrying capacity N/A 3N

(Continued)
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Table 1 (continued)

Parameters Description Unit Min Used values Max

N Total human population N/A 150, 000
μw0 The death rate of Wolbachia-infected adult mosquitoes day−1 1/30 1/14 1/10
μw Death rate the Wolbachia-infected mosquito day−1 1/30 1/14 1/10

μ Recruitment/death rate of the human compartments day−1
1

(70)(365)

The exposed Wolbachia-free and Wolbachia-carrying mosquitoes move to the infected class after
biting the dengue-infected human with rate γn and γw, respectively.

3 Methodology

In this section, we explained the proposed Levenberg-Marquardt neural network (LM-NN)
method that is used to solve the FDTM model (1). The Pseudocode of the proposed LM-NN technique
is also given in Table 2. The construction of neuron is given in Fig. 3. The details of steps involved in
utilizing the LM-NN technique to solve the FDTM model in the presence of Wolbachia given in Fig. 4.

Table 2: Pseudocode of proposed artificial neural network

Levenberg-Marquardt neural network

LM-NN Construction: The input dataset (reference dataset) is generated by solving the fractional
dengue transmission using the Adams method.
Selection of dataset: The datasets for input should be in matrices or vectors form
Start: Distribution of datasets:
(1) Training data-80%
(2) Testing data-10%
(3) Validation data-10%
(4) Hidden neurons-10
Construction: The algorithm gives each input a weight. By adding up all of the input weights and
bias, a transfer function of the input is produced.
Stopping criteria: For the procedure to be completed, the following conditions must be fulfilled.
(1) Maximum iteration has been achieved
(2) Mu achieve its maximum value
(3) Value of performance should be minimum
(4) The value of the gradient becomes smaller than the minimum gradient
If the required results are achieved, save the outputs otherwise retrain the network.
Retrain network: By changing the values of parameters, train the network again and save outputs:
Ending of LM-NN
Save results: Save graphical results
Ending of LM-NN
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Figure 3: Construction of single neuron

Figure 4: Flowchart for solving the FDTM model in the presence of Wolbachia using the proposed
LM-NN technique
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The novel properties of the proposed research work is as follows:

• Levenberg-Marquardt neural network (LM-NN) is based on a backpropagation process with a
novel methodology or design is created for solving the fractional-order model (1) dealing with
Wolbachia carrying and Wolbachia-free mosquitoes with humans.

• For the fractional dengue transmission model (FDTM), a stochastic-based back propagated
numerical Levenberg-Marquardt neural network (LM-NN) procedure is utilized to obtain the
best-approximated solution.

• Adams-Bashforth-Moulton (ABM) numerical method has been employed to generate the
reference dataset.

• Numerical results obtained from the proposed LM-NN technique show good agreement with
the reference solutions achieved using the ABM method.

• The reliability and consistency of the proposed LM-NN approach are investigated through
statistical analysis.

• The best performance of the proposed LM-NN technique is analyzed using regression analysis
(RA) plots, mean square error (MSE) graphs, fitness curves, and state transitions (STs) for
different classes.

• Error analysis performed for different classes of FDTM is used to check the accuracy of the
proposed LM-NN technique.

4 Numerical Simulations

This section describes the numerical simulations based on the outcomes of three scenarios of
the nonlinear fractional dengue transmission model (FDTM) performed with the suggested LM-
NN approach. The simulations were conducted on scenarios with only Wolbachia-free mosquitoes
present, both Wolbachia-free and Wolbachia-carrying mosquitoes present, and only Wolbachia-
carrying mosquitoes present. The mathematical structure for each case is given as:

4.1 Case-1: Only Wolbachia-Free Mosquitoes Persist
For this case, we consider the following values of the parameters α = 0.4, η = 0.6, μ = 1

(70)(365)
,

τn = 0.2614, τw = 0.2614, τhw = 0.1307, βn = 0.63, βw = 0.5985, μn0 = 1/14, σ = 1/5, ρw = 1/10,
ρn = 1/10, φn = 1.25, φw = 1.1875, γw = 1/10, γh = 1/5.5, γn = 1/10, μwa = 1/14, μna = 1/14,
μw0 = 1/14, L = 3, with initial condition Sh(0) = 1 − Eh(0) − Ih(0) − Rh(0), Eh(0) = 2

(1.5×105)
, Ih(0) = 0,

Rh(0) = 0, Sn(0) = 0.1326, En(0) = 0, In(0) = 0, An(0) = 0.0138, Sw(0) = 0.9400, Ew(0) = 0, Iw(0) = 0,
Aw(0) = 0.7535, then the resulting model (1) takes the following form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.4
t Sh = 1

(70)(365)
− (0.63)(0.2614)(3)InSh − (0.63)(0.1307)(3)IwSh − 1

(70)(365)
Sh,

D0.4
t Eh = (0.63)(0.2614)(3)InSh + (0.5985)(0.1307)(3)IwSh − (1/5.5)Eh − 1

(70)(365)
Eh,

D0.4
t Ih = (1/5.5)Eh − (1/5)Ih − 1

(70)(365)
Ih,

D0.4
t Rh = (1/5)Ih − 1

(70)(365)
Rh,

D0.4
t An = (1.25)

(Sn + En + In)
2

2
(1 − (An + Aw)) − (1/10 + 1/14) An,

D0.4
t Sn = (1/10)

An

2
+ (1 − 0.6) (1/10)

Aw

2
− ((0.63)(0.2614)Ih + (1/14)) Sn,

D0.4
t En = ((0.63)(0.2614)In) Sn − (1/10 + 1/14) En,

D0.4
t In = (1/10)En − (1/14)In,

D0.4
t Aw = (1.1875)

(Sw + Ew + Iw)

2
(1 − (An + Aw)) − (1/10 + 1/14)Aw,

D0.4
t Sw = (1/10)(0.8)

Aw

2
− ((0.5985)(0.2614)Ih + 1

14
)Sw,

D0.4
t Ew = (0.5985)(0.2614)IhSw − (1/10 + 1

14
)Ew,

D0.4
t Iw = (1/10)Ew − 1

14
Iw.

4.2 Case-2: Both Type of Mosquitoes Wolbachia-Free and Wolbachia-Carrying Persist
For this case, the parameter values being examined are α = 0.6, η = 0.8, μ = 1

(70)(365)
, τn = 0.2614,

τw = 0.2614, τhw = 0.1307, βn = 0.63, βw = 0.5985, μn0 = 1/14, σ = 1/5, ρw = 1/10, ρn = 1/10,
φn = 1.25, φw = 1.1875, γw = 1/10, γh = 1/5.5, γn = 1/10, μwa = 1/14, μna = 1/14, μw0 = 1/14, L
= 3, with initial condition Sh(0) = 1 − Eh(0) − Ih(0) − Rh(0), Eh(0) = 2

(1.5×105)
, Ih(0) = 0, Rh(0) = 0,

Sn(0) = 0.1326, En(0) = 0, In(0) = 0, An(0) = 0.0138, Sw(0) = 0.9400, Ew(0) = 0, Iw(0) = 0,
Aw(0) = 0.7535, then the model (1) becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.6
t Sh = 1

(70)(365)
− (0.63)(0.2614)(3)InSh − (0.5985)(0.1307)(3)IwSh − 1

(70)(365)
Sh,

D0.6
t Eh = (0.63)(0.2614)(3)InSh + (0.5985)(0.1307)(3)IwSh − (1/5.5)Eh − 1

(70)(365)
Eh,

D0.6
t Ih = (1/5.5)Eh − (1/5)Ih − 1

(70)(365)
Ih,

D0.6
t Rh = (1/5)Ih − 1

(70)(365)
Rh,

D0.6
t An = (1.25)

(Sn + En + In)
2

2(Sn + En + In + Sw + Ew + Iw)
(1 − (An + Aw)) − (1/10 + 1/14) An,

D0.6
t Sn = (1/10)

An

2
+ (1 − 0.8) (1/10)

Aw

2
− ((063)(0.2614)Ih + (1/14)) Sn,

D0.6
t En = ((0.63)(0.2614)In) Sn − (1/10 + 1/14) En,

D0.6
t In = (1/10)En − (1/14)In,

D0.6
t Aw = Rw

(Sw + Ew + Iw)

2
(1 − (An + Aw)) − (1/10 + 1/14)Aw,

D0.6
t Sw = (1/10)(0.8)

Aw

2
− ((0.5985)(0.2614)Ih + 1

14
)Sw,

D0.6
t Ew = (0.5985)(0.2614)IhSw − (1/10 + 1

14
)Ew,

D0.6
t Iw = (1/10)Ew − 1

14
Iw.

4.3 Case-3: Only Wolbachia-Carrying Mosquitoes Persist
Similarly, after putting the values of parameters in the model (1) α = 0.8, η = 1, μ = 1

(70)(365)
,

τn = 0.2614, τw = 0.2614, τhw = 0.1307, βn = 0.63, βw = 0.5985, μn0 = 1/14, σ = 1/5, ρw = 1/10,
ρn = 1/10, φn = 1.25, φw = 1.1875, γw = 1/10, γh = 1/5.5, γn = 1/10, μwa = 1/14, μna = 1/14,
μw0 = 1/14, L = 3, with initial condition Sh(0) = 1 − Eh(0) − Ih(0) − Rh(0), Eh(0) = 2

(1.5×105)
, Ih(0) = 0,

Rh(0) = 0, Sn(0) = 0.1326, En(0) = 0, In(0) = 0, An(0) = 0.0138, Sw(0) = 0.9400, Ew(0) = 0, Iw(0) = 0,
Aw(0) = 0.7535, then the model (1) is expressed in the following form:
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D0.8
t Sh = 1

(70)(365)
− 0.6302614(3)InSh − (0.5985)(0.1307)(3)IwSh − 1

(70)(365)
Sh,

D0.8
t Eh = (0.63)(0.2614)(3)InSh + (0.5985)(0.1307)(3)IwSh − (1/5.5)Eh − 1

(70)(365)
Eh,

D0.8
t Ih = (1/5.5)Eh − (1/5)Ih − 1

(70)(365)
Ih,

D0.8
t Rh = (1/5)Ih − 1

(70)(365)
Rh,

D0.8
t An = (1.25)

(Sn + En + In)
2

2(Sn + En + In + Sw + Ew + Iw)
− (1/10 + 1/14) An,

D0.8
t Sn = (1/10)

An

2
+ (1 − 1) (1/10)

Aw

2
− ((0.5985)(0.2614)Ih + 1/14) Sn,

D0.8
t En = ((0.63)(0.2614)In) Sn − (1/10 + 1/14) En,

D0.8
t In = (1/10)En − (1/14)In,

D0.8
t Aw = Rw

(Sw + Ew + Iw)

2
(1 − (An + Aw)) − (1/10 + 1/14)Aw,

D0.8
t Sw = (1/10)(1)

Aw

2
− ((0.5985)(0.2614)Ih + 1

14
)Sw,

D0.8
t Ew = (0.5985)(0.2614)IhSw − (1/10 + 1

14
)Ew,

D0.8
t Iw = (1/10)Ew − 1

14
Iw.

The numerical results of the FDTM model is obtained through LM-NN technique which is
implemented in MATLAB using the built-in package ‘nftool’ together with 10 neurons. To train the
model using the Levenberg method, we used 80% of the data for training purposes, 10% of the data is
used for validation and the remaining 10% of the data is used for testing. Fig. 3 shows the structure of a
single neuron used for the best solution of the FDTM. The MSE performance for training, validation,
and testing along with the number of epochs and gradient are presented in Table 3.

Table 3: Statistics of FDTM using LM-NN

Features Case I Case II Case III

Training 3.45 × 10−08 3.84 × 10−8 1.21 × 10−8

Validation 3.71 × 10−8 2.93 × 10−8 7.82 × 10−9

Testing 1.68 × 10−9 1.68 × 10−9 1.68 × 10−9

Gradient 9.64 × 10−8 9.58 × 10−8 9.95 × 10−8

Performance 4.17 × 10−8 3.84 × 10−8 1.21 × 10−8

Mu 1 × 10−09 1 × 10−09 1 × 10−09

Epoches 176 426 146
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The mean square error results obtained from the proposed neural network approach for each
scenario of the FDTM are presented in Fig. 5. At epochs 176, 426, and 146 the mean square error is
very small and the best performance values are 9.90 × 10−09, 5.21 × 10−09 and 5.29 × 10−09, respectively.

Figure 5: Mean square error analysis for FDTM
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Figs. 6–8 present the graphs of gradient, Mu, and validation performances of the proposed LM-
NN to solve the fractional dengue transmission model (FDTM). The values of gradient, and Mu,
for Case I are 9.7776 × 10−08, 1 × 10−11, for Case II the values range 9.9631 × 10−08, 1 × 10−10, and
for Case III these values are 9.6248 × 10−08, 1 × 10−10. These values of gradient, Mu, and validation
performances indicate the convergence and accuracy of the proposed LM-NN to solve the fractional
dengue transmission model (FDTM). The fitting curve values for each case of the FDTM model are
also shown in Figs. 9–11. These graphs show good agreement between the solution obtained from
LM-NN and the reference solution.
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Figure 6: Case I: state transitions for FDTM
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Figure 7: (Continued)
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Figure 7: Case II: state transitions for FDTM
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Figure 8: Case III: state transitions for FDTM
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Figure 9: Case I: comparison of the outcomes through LM-NN for solving FDTM

Figure 10: Case II: comparison of the outcomes through LM-NN for solving FDTM

Figure 11: Case III: comparison of the outcomes through LM-NN for solving FDTM
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Regression is a graphical representation of the precision of the LM-NN solution to the reference
values for training, validation, and testing points separately. A straight line represents an available
reference solution in these plots, while dots or small circles represent LM-NN results. The numerical
value of regression can also be used to assess the computation’s accuracy and precision. R = 1 indicates
that the LM-NN solution is very near to the reference values, whereas R = 0 indicates that the
relationship between the reference and the LM-NN solution is very weak. The regression plots are
shown in Figs. 12–14. From the regression plots, we observe that R value is 1 for all the three different
cases. The testing, validation, and training plots demonstrate that the developed LM-NN technique is
efficient for solving the FDTM model.

Figure 12: Case I: regression plots utilizing the LM-NN solving the FDTM

Figure 13: (Continued)
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Figure 13: Case II: regression plots utilizing the LM-NN solving the FDTM

Figure 14: Case III: regression plots utilizing the LM-NN solving the FDTM

Fig. 15 illustrates the comparison of the numerical results of model (1) using the ABM approach
to the solution of the FDTM using the LM-NN technique. Fig. 15a shows the comparison of the Sn

class for three different cases, similarly Figs. 15b–15d represent the comparison of the classes Sw, Eh

and Ih, respectively. Fig. 15 shows that the numerical results obtained using the LM-NN technique
lie on the target solution lines. The perfect matching of the results shows that the proposed stochastic
approach for solving the FDTM is accurate and reliable. The Fig. 15 shows the impact of varying levels
of vertical transmission of Wolbachia on mosquito populations and dengue transmission. In case-1
and case-2, of Fig. 15a populations of Wolbachia-free mosquitoes persist, while in case-3, populations
of Wolbachia-free mosquitoes decrease with increasing vertical transmission probability of Wolbachia.
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Fig. 15b shows the population of Wolbachia-carrying mosquitoes increases with increasing vertical
transmission probability of Wolbachia and decreases with decreasing vertical transmission probability.
Fig. 15c has shown that when η = 0.6 ( case-1), the number of exposed humans are high. Since
for η = 0.6, only Wolbachia-uninfected mosquitoes persist, so the number of exposed humans is
high compared to when we have Wolbachia-free along with Wolbachia-infected (case-2). The number
of exposed humans decreases significantly when η = 1 (case-3). Fig. 15d shows the rate of dengue
infection in humans is highest at a vertical transmission probability of 0.6, but decreases when
the vertical transmission (η) probability is grows up. For example in case-2 vertical transmission
probability is 0.8 and in case-3 vertical transmission probability is 1, the dengue infection dropped
down, respectively.

Figure 15: Comparison values of the presented LM-NN and the reference solutions for solving the
FDTM
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Error plots were generated for three different scenarios involving the classes Sn, Eh, and Ih. The
error analysis used a reference dataset (obtained from the Adams-Bashforth-Moulton method) and the
best-approximated solution of the FDTM model solved by the Levenberg-Marquardt Neural Network
(LM-NN) approach. The error plot for the susceptible non-Wolbachia Sn class has been provided in
Fig. 16a, exposed human Eh provided in Fig. 16b, and infected human Ih class presented in Fig. 16c
and their range is up to 10−4.

Figure 16: Error values of the presented LM-NN and the reference solutions for solving the FDTM

5 Conclusion

The purpose of this research study was to develop the fractional dengue transmission model
(FDTM) in the presence of Wolbachia-carrying mosquitoes. The model incorporated the vertical
transmission of Wolbachia in mosquitoes. In this study, we proposed the numerical solution of the
fractional dengue transmission model (FDTM) using the stochastic-based Levenberg-Marquardt
neural networks (LM-NN) technique. The FDTM model was solved using the Adams-Bashforth-
Moulton (ABM) technique to create a reference dataset. The created dataset was used for training
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(80%), testing (10%), and validation (10%) of the proposed LM-NN technique with 10 hidden layers
of neurons. The graphs of mean square error were presented for three different cases, when Wolbachia-
free mosquitoes persist only (η = 0.6), when both types of mosquitoes persist (η = 0.8), and
when only Wolbachia-infected mosquitoes persist (η = 1). The reduction in dengue occurs when the
vertical transmission probability of Wolbachia increases in mosquitoes. The accuracy of the proposed
Levenberg-Marquardt neural networks (LM-NN) technique is assessed by comparing results obtained
from the proposed LM-NN technique with the reference solutions. The plots of state transitions,
fitness curves, error, and regression analysis were also presented. These results suggest the accuracy
and reliability of the proposed LM-NN technique.
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