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ABSTRACT

Graph Convolutional Neural Networks (GCNs) have been widely used in various fields due to their powerful
capabilities in processing graph-structured data. However, GCNs encounter significant challenges when applied to
scale-free graphs with power-law distributions, resulting in substantial distortions. Moreover, most of the existing
GCN models are shallow structures, which restricts their ability to capture dependencies among distant nodes
and more refined high-order node features in scale-free graphs with hierarchical structures. To more broadly and
precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level
aggregation of GCNs for capturing high-level information in local representations, we propose the Hyperbolic
Deep Graph Convolutional Neural Network (HDGCNN), an end-to-end deep graph representation learning
framework that can map scale-free graphs from Euclidean space to hyperbolic space. In HDGCNN, we define
the fundamental operations of deep graph convolutional neural networks in hyperbolic space. Additionally, we
introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme
based on a novel non-local message passing framework. In addition, we present a neighborhood aggregation
method that combines initial structural features with hyperbolic attention coefficients. Through the above methods,
HDGCNN effectively leverages both the structural features and node features of graph data, enabling enhanced
exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.
Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-of-
the-art GCNs in node classification and link prediction tasks, even when utilizing low-dimensional embedding
representations. Furthermore, when compared to shallow hyperbolic graph convolutional neural network models,
HDGCNN exhibits notable advantages and performance enhancements.
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1 Introduction

Graph Convolutional Neural Networks (GCNs), as a state-of-the-art model for graph repre-
sentation learning, have gained significant traction in various fields and demonstrated remarkable
achievements [1–4]. GCNs enable efficient learning of graph representations by embedding the
nodes in a Euclidean space and performing message passing and aggregation within this space.
However, when applied to scale-free graphs characterized by tree-like structures or hierarchies [5,6],
utilizing GCNs to embed such graphs in Euclidean space gives rise to severe distortion issues
[7,8]. Notably, real-world graphs, including disease transmission networks, social networks, trade
networks, and drug trafficking organization networks, consistently exhibit prominent tree structures.
In many applications of GCN models, data from various domains exhibit hierarchical structures. For
instance, in domains such as transportation, finance, social networks, and recommendation systems
[9], clear hierarchical structures are prevalent, such as the main road branches in transportation, the
branching structures in financial transactions, social relationships in social networks, and tree-like
structures in recommendation systems. To address the challenge of embedding distortion, hyperbolic
geometry arises as a promising solution. Embedding nodes in hyperbolic space allows for enhanced
preservation of the hierarchical structure and relationships within the graph. Hyperbolic geometry,
being non-Euclidean in nature, provides a more effective description of tree-like structures and
hierarchical relationships, resulting in more accurate node embedding representations. Nevertheless,
current hyperbolic embedding techniques still grapple with challenges associated with issues like over-
smoothing and over-squeezing, which tend to emerge when applying multi-layer stacking.

The depth of a neural network plays a pivotal role in the performance of the model across various
applications. For instance, Convolutional Neural Networks (CNNs) employed in computer vision
typically consist of dozens or even hundreds of layers, whereas most Graph Convolutional Networks
(GCNs) exhibit shallow structures. In the domain of computer vision, shallow CNN models effectively
capture fundamental features such as edges and object shapes. However, deep models have the ability
to further comprehend and grasp high-level semantic information by building upon the primary
features extracted from the shallow layers. Theoretically, a deep CNN can extract more abstract and
sophisticated information from an image, equipping the model with image understanding capabilities
akin to those of a human observer. In various emerging industrial applications, constructing deep
neural network architectures to achieve superior model performance has become paramount. For
instance, in applications such as bearing fault diagnosis [10,11], it is essential to enhance the network’s
depth by establishing residual networks or by increasing the depth of adversarial graph networks to
obtain more accurate results in diagnosing rolling element bearing faults. Inspired by CNNs, our
objective is to incorporate the depth framework of CNNs into GCNs, aiming to construct a deep
GCN model for effective aggregation of distant node information, capturing non-local structural
features, and acquiring high-level abstract node features. However, stacking an excessive number of
graph convolution layers results in nodes continuously aggregating information from global nodes.
Eventually, this leads to uniform node features, making it challenging to distinguish between nodes
and causing over-smoothing or over-squeezing [1,2,12].

To extend GCNs in hyperbolic geometry and incorporate a deep network architecture to fully
leverage rich node features, we encounter the following challenges: (1) Achieving end-to-end processing
necessitates investigating methods for mapping Euclidean input features to the hyperbolic space. This
is crucial to enable seamless transmission throughout the network. (2) Performing graph convolution
operations in hyperbolic space requires the development of techniques for feature transformation,
neighborhood aggregation, and nonlinear activation. These operations must be adapted to the
unique properties of hyperbolic geometry. (3) Developing a deep graph convolutional neural network
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framework and mitigating the challenges associated with model degradation due to its depth are crucial
endeavors for investigating distant dependency relationships among nodes and extracting more refined
node features. This framework should be capable of capturing intricate dependencies across multiple
layers to enhance the expressive power of the model. Addressing these challenges will pave the way for
extending GCNs into the hyperbolic space, enabling the integration of deep learning techniques and
facilitating the exploitation of rich node features in graph data.

To address the aforementioned challenges, we propose a novel end-to-end graph representation
learning framework called Hyperbolic Deep Graph Convolutional Neural Network (HDGCNN).
HDGCNN combines deep graph convolutional neural networks with hyperbolic geometry to over-
come these problems. Firstly, HDGCNN employs a hyperbolic model to transform input features in
Euclidean space into hyperbolic embeddings, leveraging the unique properties of hyperbolic space.
Furthermore, HDGCNN introduces an identity mapping mechanism within the hyperbolic space for
feature transformation, ensuring effective utilization of hyperbolic representations. In the process of
neighborhood aggregation, HDGCNN incorporates an approach based on initial structural features
and hyperbolic attention coefficients. This technique harnesses the structural information and node
features, enabling comprehensive utilization of available information. To enable a deep network
structure, we introduce a novel non-local message passing framework that densely connects the
hyperbolic features generated by each layer, fostering feature reuse and enhancing the expressive
power of the model. Experimental results demonstrate that HDGCNN outperforms GCN based on
Euclidean space in node classification and link prediction tasks on scale-free graphs. Additionally, the
deep architecture of HDGCNN captures more refined node features compared to shallow hyperbolic
neural network models, leading to significant performance improvements in node classification tasks.
The contributions of this paper can be summarized as follows:

(1) We propose an end-to-end hyperbolic deep graph convolution neural network framework.
This framework combines deep graph convolution neural network with hyperbolic geometry,
defines the core operation of deep graph convolution neural network in hyperbolic space, and
realizes the mapping of input graph from Euclidean space to hyperbolic space.

(2) We propose a hyperbolic feature transformation method based on identity mapping. This
method can perfectly adapt to the hyperbolic deep graph convolution neural network archi-
tecture, addressing the performance degradation issue caused by frequent feature transforma-
tions in deep network models. Consequently, the proposed method ensures that the model’s
performance remains unaffected by the network’s depth.

(3) We propose a neighborhood aggregation method based on initial structural features and
hyperbolic attention coefficients. This method harnesses the structural features of the input
graph and the attention coefficients calculated after updating node features during message
aggregation at each layer. By fully utilizing the structural information and node features, our
method enhances the model’s ability to capture important graph features.

(4) We introduce a dense connection scheme based on a non-local messaging framework. This
scheme effectively explores remote dependency relationships between nodes and extracts more
refined node features in scale-free graphs or hierarchical graphs with power-law distributions.
Furthermore, it facilitates feature reuse and non-local message transmission, addressing the
problem of over-smoothing caused by excessively deep models.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of
the related work on deep graph convolutional neural networks and hyperbolic neural networks.
Section 3 presents the background knowledge on hyperbolic neural networks. Section 4 presents a
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comprehensive description of our proposed method, HDGCNN, including its key details. Section 5
presents the experimental results, providing an evaluation of the performance of HDGCNN. Finally,
Section 6 concludes the paper, summarizing the key findings and contributions.

2 Related Work

Graph Neural Networks (GNNs) represent one of the forefront techniques for graph repre-
sentation learning in contemporary research. By leveraging the graph’s structural information and
initial node features, GNNs adeptly acquire embedding representations for nodes [13–18], and have
demonstrated outstanding performance across various domains, attaining state-of-the-art results.
Notably, recent studies have integrated hyperbolic geometry into GNNs, an advancement that enables
the embedding of hierarchical graphs with reduced distortion. This augmentation of hyperbolic
geometry enhances the applicability of GNNs to a wider array of fields.

2.1 Deep Graph Neural Networks
Despite the strong advantages of Graph Neural Networks (GNNs) in processing graph data, most

state-of-the-art GNN models are shallow structures. This limitation significantly hampers the ability of
GNNs to extract high-order node features. However, deepening GNNs gives rise to several challenges,
such as over-smoothing [12,19,20], graph bottleneck [21], and over-squeezing [22,23].

To address these issues, various research efforts have proposed methods for deepening GNNs.
For instance, Li et al. [24] drew inspiration from Residual Neural Networks (ResNet) [25], intro-
duced residual connections to deep GNNs, successfully training a model with a depth of 56 layers.
Chen et al. [26] incorporated residual connections by adding the output of the graph convolutional
layer to the previous layer, thereby reducing the strong correlation between each layer and achieving
successful training with a depth of 64 layers. Xu et al. [27] adopted residual connections in the last
layer of the network to combine the output of each previous layer and trained a deep GNN.

The aforementioned methods all involve architectural modifications, and a portion of the efforts
is dedicated to incorporating normalization and regularization techniques. For instance, PairNorm
proposed by Zhao et al. [28], NodeNorm proposed by Zhou et al. [29], MsgNorm proposed by
Li et al. [30], Energetic Graph Neural Networks (EGNNs) proposed by Zhou et al. [31], and other
methods utilize normalization and regularization techniques to alleviate the aforementioned problems
and facilitate deepening GNNs.

Additionally, GNNs can be deepened through the random dropout technique. For instance,
Rong et al. [32] proposed the DropEdge model, which addresses the over-smoothing problem caused
by deep models by randomly deleting a certain number of edges during training. Huang et al. [33]
introduced the DropNode model, optimizing deep models by randomly dropping a certain number of
nodes during training.

2.2 Hyperbolic Graph Neural Networks
Hyperbolic spaces have garnered significant attention owing to their constant negative curvature

and their capacity to capture hierarchical relationships in data structures [34,35]. Recently, hyperbolic
spaces have emerged as a promising continuous approach for learning latent hierarchical represen-
tations in real-world data [36]. In the context of recommender systems, Yang et al. [37] proposed the
Hyperbolic Information Collaborative Filtering (HICF) method, which tightly couples the embedding
learning process with hyperbolic geometry to enhance personalized recommendations. Chen et al. [38]
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introduced a knowledge-aware recommendation approach based on the hyperbolic geometric Lorenz
model, effectively modeling the scale-free tripartite graph after data unification.

In natural language processing, Liu et al. [39] devised a novel approach based on a multi-relational
hyperbolic graph neural network, enabling pre-diagnosis through inquiries about patients’ symptoms
and medical history. To achieve more accurate product search, Choudhary et al. [40] presented
an innovative attention-based product search framework, representing query entities as two vector
hyperboloids, learning their intersections, and employing attention mechanisms to predict product
matches in the search space.

Furthermore, hyperbolic graph neural networks have found application in various fields, including
molecular learning [41,42], word embedding [43], graph embedding [44], multi-label learning [45], and
computer vision [46,47]. These versatile applications demonstrate the potential of hyperbolic spaces
in addressing diverse challenges across different domains.

3 Background
3.1 Problem Setting

We aim to develop an end-to-end deep learning framework, wherein the primary learning objective
is to acquire the function f , as defined in Eq. (1), which maps input nodes to embedding vectors. These
learned node embeddings can serve as inputs for various downstream tasks. Let G = (V ,E) represent
a single graph, where V denotes the set of nodes with |V | = N nodes, and E denotes the set of edges.
We employ

(
x0,E

i

)
i∈V

∈ R
n to denote the n-dimensional input node features, where the superscripts 0

and E correspond to the node features of the initial layer and the node features in Euclidean space,
respectively.

f
(
V , E,

(
x0,E

i

)
i∈V

) = (
xl,H/E

i

)
i∈V

(1)

In the above Eq. (1), xl,H/E
i ∈ R

n′ signifies the n′-dimensional output feature vector of node i,
where the superscript l denotes the output of the l-th layer of the model. The H/E in the superscript
offers the flexibility to opt for either the l-th layer’s node embeddings on hyperbolic space or the node
embeddings on Euclidean space.

While Zhang et al. [48] proposed that the input node features can be pre-trained embedding
features, we are specifically interested in studying an end-to-end deep learning framework. Conse-
quently, we directly employ the original node features of the dataset as input. In the following, we
use superscripts To and H to denote tangent features located in the tangent space at o and hyperbolic
features located in hyperbolic space, respectively.

3.2 Riemannian Manifolds and Tangent Spaces
The Riemannian manifold [49] can be denoted as

(
M, gM

)
, where M represents a smooth and

differentiable n-dimensional manifold equipped with a Riemannian metric gM. In this context,
(
M, gM

)
is a topological space, extending the concept of a 2-dimensional plane to n dimensions, and each point
within the manifold can be locally approximated by Euclidean space. Since M is differentiable at every
point, the tangent space TxM of a point x in M can be defined as the first-order linear approximation
of the local space around x, which is isomorphic to R

n. The Riemannian metric gM on M can be
represented as

{
gM

p

}
p∈M, defining a positive definite inner product 〈·, ·〉 : TxM × TxM → R over the

tangent space TxM, smoothly varying with x. This enables the definition of geometric properties and
local information, such as angle, geodesic distance, and curvature of the tangent vectors in TxM.
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3.3 Geodesic and Induced Distance Function
The shortest path γ : [α, β] → M, connecting a curve between any two points on the manifold

M with constant velocity, is referred to as a geodesic. The length of the curve on the manifold M

can be obtained through integration. For two connected points u and v on the manifold M, where
γ (α) = u and γ (β) = v, we consider the segmented curve P comprising all connected points from
u to v. Here, inf (·) denotes the minimum value under the limit. Consequently, the induced distance
function between point u and point v on M is expressed as Eq. (2):

dM (u, v) = infγ∈P

∫ β

α

||γ ′ (t)||g dt (2)

3.4 Maps and Parallel Transport
The function that projects the tangent vector v ∈ TxM as the initial velocity vector onto M is

denoted as an exponential map expx : TxM → M. The exponential map expx realizes the projection
of the tangent vector v from the tangent space TxM at x onto the manifold M, resulting in the point
expx (v) ∈ M. In general, the mapping of TxM → M corresponds to moving unit length along the
geodesic line uniquely defined by γ (0) = x, with the direction of movement given by γ ′ (0) = v.

The inverse function of the exponential map is recorded as a logarithmic map logx : M → TxM,
which facilitates the mapping of points on the manifold back to the tangent plane. It is important to
note that different manifolds have distinct exponential and logarithmic maps. Subsequently, we will
present the corresponding mapping functions for specific manifolds.

Furthermore, parallel transport PTx→y : TxM → TyM represents a linear equidistant connection
between tangent spaces. This process allows tangent vectors to move along geodesics and defines a
canonical method to connect tangent spaces.

3.5 Lorentz Model
A hyperbolic space is characterized as a smooth Riemannian manifold with constant negative

curvature, locally resembling a Euclidean space. In hyperbolic space, several isometric models are
commonly employed, including the Lorentz (Hyperboloid or Minkowski) model, Poincaré ball model,
Poincaré half-space model, Klein model, hemisphere model, and others. Presently, the most frequently
used models are the Lorentz model and the Poincaré model. However, Nickel et al. [50] discovered that
the Lorentz model exhibits greater numerical stability during optimization. Given that our proposed
hyperbolic deep graph convolutional network architecture comprises a deep model structure, the
exponential mapping and logarithmic mapping will be executed repeatedly during the training process.
As the numerical stability of the Lorentz model is well-suited for scenarios involving deep model
architectures, we have chosen the Lorentz model to define our model.

As previously discussed regarding the Riemannian manifold, the Lorentz model L
n of the

n-dimensional hyperbolic space is a Riemannian manifold embedded in the n + 1-dimensional
Minkowski space. Its representation is denoted as Ln = (

H
n,k, gL

)
, where Hn,k refers to a n-dimensional

hyperbolic manifold with a constant negative curvature −1/k (where k > 0). The H
n,k is defined as

Eq. (3):

H
n,k = {

x = (x0, . . . , xn) ∈ R
n+1 : 〈x, x〉L = −k, x0 > 0

}
(3)

In the above Eq. (3), 〈, 〉L denotes the Lorentz inner product. For any x, y ∈ R
n+1, the Lorentz

inner product can be expressed as Eq. (4):
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〈x, y〉L = xTgLy = −x0y0 +
∑n

i=1
xnyn (4)

Among these, gL is a diagonal matrix with all elements equal to 1 except for the first element,
which is −1. In other words, the metric tensor gL = diag [−1, 1, 1, . . . , 1]. For any pair of points
x, y ∈ H

n,k on H
n,k, the following Eq. (5) of distance function can be derived using the metric tensor

gL:

dk
L

(x, y) = √
karcosh

(
−〈x, y〉L

k

)
(5)

The tangent space at the point x on the hyperbolic manifold H
n,k is denoted as TxH

n,k. This n-
dimensional Euclidean space, TxH

n,k, can be locally approximated to the neighborhood of the point x
on H

n,k. In TxH
n,k, the element v is referred to as a tangent vector, and it is represented as: TxH

n,k :={
vεRn+1 : 〈v, x〉L = 0

}
. Notably, ||v||L = √〈v, v〉L denotes the norm of v ∈ TxH

n,k.

3.6 Exponential Mapping and Logarithmic Mapping in the Lorentz Model
For x ∈ H

n,k and v ∈ TxH
n,k (where v �= 0), the exponential mapping of the Lorentz model is given

as Eq. (6):

expk
x (v) = cosh

( ||v||L√
k

)
x + √

k sinh
( ||v||L√

k

)
v

||v||L (6)

For x, y ∈ H
n,k, and y �= x, the logarithmic mapping formula of the Lorentz model is presented in

Eq. (7):

logk
x (y) = √

karcosh
(

−〈x, y〉L
k

) y + 1
k

〈x, y〉L x∣∣∣∣
∣∣∣∣y + 1

k
〈x, y〉L x

∣∣∣∣
∣∣∣∣
L

(7)

4 Method

In this section, we present the specific architecture of HDGCNN. Initially, we map the input
graph, which lies in Euclidean space, to a hyperbolic manifold using an inception layer. Subsequently,
node embeddings situated in hyperbolic space are further mapped to the tangent space of a reference
point through logarithmic mapping. Next, the graph convolution operation is performed on the
Euclidean plane within the tangent space, and the resultant node embeddings obtained after the graph
convolution operation are projected to the next hyperbolic manifold using an exponential map. This
process is iteratively repeated, applying logarithmic mapping and exponential mapping, and eventually
incorporating dense connections for the hyperbolic node embeddings produced by each layer. As a
result, the architecture effectively captures long-range dependencies and finer node features between
nodes in scale-free graphs or hierarchical graphs with power-law distributions. The overall architecture
of HDGCNN is depicted in Fig. 1, with each component described in detail in the next subsections.
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Figure 1: The overall architecture of hyperbolic deep graph convolutional neural network (HDGCNN)

As depicted in Fig. 1, we designate the origin o as the reference point for the hyperbolic space.
We initiate the embedding of the initial node located in the hyperbolic space H

n,k0
0 as x0,H and then

project it onto the tangent space ToH
n,k0
0 through the logarithmic mapping logo (·). Subsequently, a

graph convolution operation is executed in ToH
n,k0
0 to aggregate neighborhood information and yield

x1,E. This newly obtained node embedding x1,E is then projected into the subsequent hyperbolic space
H

n,k1
1 using the exponential mapping expo (·), resulting in x1,H. The above operations are repeated

iteratively until the final output xl,H is achieved. Furthermore, HDGCNN employs a dense connection
architecture to link the output of each layer of the hyperbolic space with the initial node embedding,
thereby effectively encoding high-order neighborhood information.

4.1 Hyperbolic Initialization Layer of HDGCNN
As an end-to-end graph representation learning framework, HDGCNN is designed to directly

process raw graph data as input. However, since the original input graph is defined in the Euclidean
space, we aim to enhance feature representation and alleviate graph embedding distortion by embed-
ding the scale-free or hierarchical graph into the hyperbolic space. To achieve this, the node features
in the Euclidean space are initially mapped into the hyperbolic space through the inception layer of
HDGCNN.

Let G = (V ,E) denote the input graph, and
(
x0,E

i

)
i∈V

∈ R
n represent the input Euclidean node

features. We establish the origin o :=
{√

k, 0, . . . , 0
}

∈ H
n,k as a reference point for the hyperbolic

space Hn,k, which possesses a constant negative curvature of −1/k. This choice of origin facilitates the
embedding of nodes from the hyperbolic space into the projection into the tangent space ToH

n,k.

Fig. 2 shows how to project the initial input node
(
x0,E

i

)
i∈V

of the Euclidean space onto the
hyperboloid manifold H

n,k
0 . Here, the subscript l of Hn,k

l denotes the l-th layer hyperbolic manifold.
Utilizing the exponential mapping function expk

o (·) from Eq. (6), we can project xTo = (
0, x0,E

)
to

H
n,k
0 . In this context, o represents the origin of Hn,k

0 , and
(
0, xE

)
can be represented as a point in the

tangent space ToH
n,k, satisfying

〈(
0, xE

)
, o

〉 = 0. In the initial layer, we denote the initial input nodes
as

(
0, x0,E

)
, and

(
0, x0,E

)
is mapped by expk

o (·) to obtain
(
x0,H

i

)
i∈V

. To summarize, through the initial
layer of HDGCNN, the initial node embeddings in Euclidean space are mapped to the first layer of
hyperbolic manifold embeddings, as shown in Eq. (8):

x0,H = expk
o

((
0, x0,E

))
(8)
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Figure 2: Projection of input nodes from euclidean space to hyperboloid manifold

4.2 Feature Transformation Based on Identity Mapping in Hyperbolic Space
Feature transformation plays a pivotal role in the graph convolution operation, serving as a crucial

data enhancement technique to elevate low-dimensional node embeddings into a higher-dimensional
space. By capturing inter-feature relationships, feature transformation enables the learning of more
refined node features, thereby significantly enhancing graph representation learning performance.
Moreover, for datasets with excessively high node feature dimensions, feature transformation can
effectively reduce the computational complexity and improve overall efficiency.

The essence of feature transformation lies in mapping the node embeddings from the previous
layer to the embedding space of the subsequent layer. Let X l,E ∈ R

|V |×nl and X l−1,E ∈ R
|V |×nl−1 denote the

node feature matrices of the l-th and l − 1-th layers of the GCN in the Euclidean space, respectively.
Additionally, let W ∈ R

nl−1×nl be a learnable weight matrix. The feature transformation adopted by
GCN can be formulated as Eq. (9):

X l,E = X l−1,EW l (9)

In our endeavor to conduct feature transformation operations on XH ∈ H
n,k within hyperbolic

space, we encounter a challenge due to the absence of a vector space structure in this setting.
Consequently, it becomes necessary to execute feature transformations in the tangent space ToH

n,k,
which is situated at the reference point o within the hyperbolic space.

4.2.1 Feature Transformation Based on Identity Mapping in GCNs

To exploit remote dependencies and non-local structural features among nodes, our objective is to
develop a deep graph convolution network model. The iterative aggregation and update operations of
the graph convolution layer facilitate the extraction of more refined non-local node features. However,
a concern arises from the work of Klicpera et al. [51], who identified that frequent interactions between
feature matrices of different dimensions can lead to performance degradation in the model. To address
this issue, Chen et al. [26] drew inspiration from the concept of identity mapping in ResNet and
propose the incorporation of both unit and weight matrices with varying weights. Specifically, as
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the number of layers deepens, the weight of the unit matrix increases while the weight value of the
weight matrix diminishes. This feature transformation approach using identity mapping is expressed
as follows, denoted by Eq. (10):

X l,E = X l−1,E
(
(1 − δl) In + δlW l

)
(10)

δl =
(

λ

l
+ 1.8

)
(11)

In the Eq. (10), In denotes the identity matrix, while δl represents the weight decay parameter, which
adapts dynamically with the layer index l. As the number of layers deepens, the value of δl gradually
decreases. Additionally, λ in Eq. (11) is a manually set hyperparameter, controlling the decay rate of
δl. This design guarantees that the deep model can achieve performance at least on par with that of
the shallow model.

4.2.2 Hyperbolic Feature Transformation Based on Identity Mapping

To perform feature transformation in the hyperbolic space H
n,k, a two-step process is employed.

Firstly, nodes in the hyperbolic space are projected to the tangent space ToH
n,k near the hyperbolic

reference point using the logarithmic mapping function logk
o (·) from Eq. (7). Subsequently, feature

transformation based on the identity mapping is carried out in the tangent space, and the resulting
node features are then mapped back to the hyperbolic space using the exponential map expk

o (·) from
Eq. (6).

Let X l,H ∈ R
|V |×n and W l ∈ R

n×n′ respectively represent the node feature matrix and weight matrix
in the l-th layer of the hyperbolic space. We define the matrix multiplication in the hyperbolic space
based on identity mapping as Eq. (12):

X l,H ⊗k W l := expk
o

(
logk

o

(
X l,H

) (
(1 − δl) In + δlW l

))
(12)

The functions logk
o : H

k → ToH
k and expk

o : ToH
k → H

k represent the logarithmic mapping
and exponential mapping, respectively. The aforementioned Eq. (12) facilitates the hyperbolic trans-
formation of X l,H ∈ R

|V |×n to X l,H ∈ R
|V |×n′ . It is important to elucidate the significance of introducing

identity mapping mechanisms in hyperbolic transformations. As pointed out by He et al. [52], the
benefits of feature transformation in the graph convolution process are minimal. However, we aim to
employ the feature transformation mechanism to enhance the model’s flexibility. Consequently, with
our proposed hyperbolic transformation method, HDGCNN evolves towards direct neighborhood
information aggregation as the number of layers deepens. This approach reduces model overfitting
and accelerates training and inference processes.

4.3 Neighborhood Aggregation on Hyperbolic Manifolds
Neighborhood aggregation plays a crucial role in GCNs. It involves updating a node embedding

xi by aggregating information from its first-order neighbors
(
xj

)
j∈N(i)

. In deep models, iterative graph
convolution layers enable the aggregation of high-order neighborhood information to capture global
features. For hyperbolic neighborhood aggregation, the first step is to calculate the neighborhood
weight coefficients. These weights can be computed using various methods, such as structural
information [13,53], node distance [54], or feature attention [55]. Next, we can aggregate neighborhood
information using the computed neighborhood weight coefficients. However, these coefficients are
calculated based on node features and reflect the importance between different nodes. As the number
of layers increases, learned node features gradually stabilize. Continuing to use node features for
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calculating the weight coefficients may lead to overfitting. Therefore, we aim to primarily employ
neighborhood weight coefficients for neighborhood aggregation in the shallow part of HDGCNN,
and rely on the graph’s structural features for aggregation in the deeper layers. This way, HDGCNN
can effectively utilize both structural and node feature information, adapting to deep model archi-
tectures. As for dynamically allocating the weight coefficients for structural and node features for
neighborhood information aggregation, we will adaptively learn based on the model’s layer changes.
Further details on this approach can be found in the subsequent sections.

4.3.1 Computation of Attention Coefficient between Nodes on Hyperbolic Manifold

In our approach, we update the inter-node attention coefficients based on the hyperbolic node
features learned in each layer of HDGCNN. This enables us to aggregate neighbor information
considering both the structural information and the significance of the first-order neighbor nodes
with respect to the central node. Our attention coefficient calculation method is inspired by the Graph
Attention Network (GAT) proposed by Veličković et al. [56]. However, the original GAT calculates
attention coefficients based on node features in the Euclidean space. In our work, we extend this
method to hyperbolic manifolds. Given the hyperbolic embeddings of two nodes at layer l, denoted as(
xl,H

i , xl,H
j

)
, we utilize the following Eq. (13) to compute attention weights between nodes:

(
Al

GAT

)
ij
=

exp
(

LeakyReLU
((

al
)T [

W llogk
o

(
xl,H

i

) ‖ W llogk
o

(
xl,H

j

)]))
∑

u∈Ni
exp

(
LeakyReLU

(
(al)

T
[
W llogk

o

(
xl,H

i

) ‖ W llogk
o

(
xl,H

u

)])) (13)

Among them, logk
o (·) maps points from the hyperbolic manifold to the tangent space at the

origin, “||” represents the concatenation operation, and the superscript T denotes the transpose
operation. The embedding representation logk

o

(
xl,H

) ∈ R
n on the Euclidean plane undergoes a linear

transformation using the weight matrix W l ∈ R
n′×n, followed by a concatenation operation to obtain

the concatenated vector
(
W llogk

o

(
xl,H

·
) ‖ W llogk

o

(
xl,H

·
)) ∈ R

2n′ . The weight vector al ∈ R
2n′ is then

applied to project the concatenated vector onto a scalar. It is important to note that, for the adjacency
matrix, if the edge does not exist between two nodes, the corresponding element in AGAT is set to 0,
ensuring that the edge information is appropriately handled.

4.3.2 Neighborhood Aggregation Based on Structural Features and Hyperbolic Attention Coefficient

To fully leverage structural information and node features for neighborhood aggregation, we
propose a method based on initial structural features and hyperbolic attention coefficients, and
construct an adjacency matrix using skip connections. Specifically, the adjacency matrix used in the
l-th layer of HDGCNN is composed of the initial adjacency matrix Aadj ∈ R

N×N and the Al
GAT ∈ R

N×N

matrix.

The initial adjacency matrix Aadj contains the structural information of the input graph G =
(V ,E). Each element of Aadj is either 1 or 0, indicating the presence or absence of an edge at the
corresponding position, respectively. It is defined as Eq. (14):

(
Aadj

)
ij
=

{
1, eij ∈ E
0, eij /∈ E

(14)

In order to incorporate both structural information and inter-node attention coefficients during
the process of aggregating neighborhood information, we propose the following method to calculate
the adjacency matrix, as shown in Eq. (15).
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Al = (1 − δl) Aadj + δlAl
GAT (15)

The parameter δl in Eq. (15) represents the weight decay parameter that adapts with the number
of layers l. As the number of layers deepens, δl gradually decreases. The value of δl follows the
same formulation as in Eq. (11), where λ is a hyperparameter. We adopt this approach because the
node features learned by the shallow model may not be as refined, so we assign more weight to
the adjacency matrix AGAT , which contains node feature information, to facilitate its updates during
backpropagation. Conversely, as the number of layers increases, the learned node features tend to
stabilize. We aim to capture long-range dependencies and non-local structural features between nodes
through the iterations of the deep model. Thus, we assign more weight to the adjacency matrix Aadj,
which contains structural information, while reducing the weight of AGAT . The adjacency matrix
construction method using skip connections is illustrated in Fig. 3.

Figure 3: The adjacency matrix A is constructed using Aadj and AGAT with skip connections

4.3.3 Hyperbolic Neighborhood Aggregation

In order to effectively compute neighborhood aggregation weights by leveraging both structural
information and feature attention, we introduce the adjacency matrix construction method with
skip connections as described earlier. In the shallow layers, the aggregation of first-order neighbor
information by central nodes is primarily influenced by the attention coefficient in AGAT . As the
model goes deeper, the aggregation of neighborhood information by central nodes is predominantly
influenced by the adjacency matrix Aadj, which represents the structural information. AGAT and Aadj

dynamically adjust their respective weight values according to the changes in the number of layers,
ultimately forming an integrated adjacency matrix A. Consequently, our proposed neighborhood
aggregation method on hyperbolic manifolds can be summarized as Eq. (16):

AGGk
(
xH

)
i
= expk

o

(∑
j∈N(i)

Aijlogk
o

(
xH

j

))
(16)

4.4 Non-Linear Activation
The nonlinear activation method is performed as Eq. (17). Initially, the node embeddings on the

hyperbolic manifold H
n,kl−1 with curvature −1/kl−1 are mapped to the tangent plane ToH

n,kl−1 at the
origin o using log

kl−1
o (·). Then, a nonlinear activation σ (·) is applied in the Euclidean space to the

mapped embeddings. Finally, expkl
o (·) is used to map the results after nonlinear activation back to the

hyperbolic manifold H
n,kl :

σ ⊗kl−1, kl (
xH

) = expkl
o

(
σ

(
logkl−1

o

(
xH

)))
(17)

Since our HDGCNN adopts learnable curvature, each layer of the hyperbolic manifold has a
different curvature, and non-linear activation enables the curvature to be updated across layers. Hence
hyperbolic nonlinear activations σ ⊗kl−1, kl

(·) [55] with different curvatures are introduced.
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4.5 Dense Connections Based on Non-Local Message Passing Framework
To construct a hyperbolic deep graph convolutional neural network (HDGCNN) model that can

effectively capture remote dependencies between nodes in scale-free graphs or hierarchical graphs with
power-law distributions, as well as finer node features, and address the over-smoothing issue caused by
deep models, we draw inspiration from the design principles of ResNet and DenseNet [57]. We adopt
the concept of skip connections to propagate the initial node features x0,H embedded in the hyperbolic
space from the initial layer of HDGCNN to the output of each subsequent layer, and further pass the
output of each layer to the subsequent layers. This non-local message passing framework enables us
to effectively build hyperbolic deep graph convolutional neural network models, as shown in Eqs. (18)
and (19):

zl,H
i =

∑
j∈N(i)

Ml

(
xl−1,H

i , xl−1,H
j

)
(18)

xl,H
i = Ul

(
zl,H

i , xl−1,H
i , x0,H

i

)
(19)

In the above Eq. (18), Ml represents the message function of the l-th layer. It aggregates the features
of node i and its first-order neighbors in the hyperbolic space of the l − 1-th layer, obtaining the
hyperbolic node features zl,H

i after neighbor information aggregation in hyperbolic space. Ul in Eq. (19)
denotes the update function of the l-th layer. Leveraging dense connections, it adaptively accumulates
and updates the initial node features, the output results of the previous layer, and the results of the
hyperbolic graph convolution of this layer, ultimately obtaining the hyperbolic embedding of node i in
the l-th layer. The specific update method is defined as shown in Eq. (20):

Ul

(
zl,H

i , xl−1,H
i , x0,H

i

) = αl
1z

l,H
i + αl

2x
l−1,H
i + αl

3x
0,H
i (20)

Among them, αl
1, αl

2, and αl
3 are learnable weight coefficients, and the model automatically learns

these weight coefficients during the backpropagation process to aggregate the values of zl,H
i , xl−1,H

i , and
x0,H

i , respectively. Through this densely connected design, HDGCNN achieves feature reuse, ensuring
that it attains at least the same level of performance as shallow models. Additionally, the deep network
structure facilitates the non-local information aggregation of nodes, leading to the extraction of more
refined node features.

4.6 Architecture of HDGCNN
This section provides a comprehensive summary of all the modules employed in HDGCNN as

mentioned earlier. Given an input graph G = (V ,E), where the input Euclidean features are denoted
as

(
x0,E

i

)
i∈V

. Firstly, the hyperbolic input features,
(
x0,H

i

)
i∈V

, are obtained by mapping the Euclidean
features to the hyperbolic space through the initial layer, as explained in Section 4.1. These hyperbolic
input features then undergo a hyperbolic transformation based on identity mapping, utilizing Eq. (21),
as explained in Section 4.2.

Next, neighborhood aggregation is performed on nodes using structural features and hyperbolic
attention coefficients, achieved by Eq. (22), as explained in Section 4.3. Subsequently, a nonlinear
activation is applied to the neighborhood aggregation results using a learnable curvature, as presented
in Eq. (23), as explained in Section 4.4. Finally, Eq. (24) is employed to create dense connections
among the output results of each HDGCNN layer based on the novel non-local message passing
framework, facilitating the capture of more refined high-order features of nodes, as elucidated in
Section 4.5.
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The aforementioned four steps constitute a hyperbolic graph convolutional layer, and HDGCNN
is formed by stacking multiple hyperbolic graph convolutional layers. The algorithm description of
the HDGCNN is shown in Algorithm 1.

hl,H
i = xl−1,H

i ⊗kl−1 W l (21)

yl,H
i = AGGkl−1

(
hl,H

)
i

(22)

zl,H
i = σ ⊗kl−1, kl (

yl,H
i

)
(23)

xl,H
i = Ul

(
zl,H

i , xl−1,H
i , x0,H

i

)
(24)

Algorithm 1: HDGCNN Algorithm
Inputs: graph G = (V ,E), initial Euclidean node features x0,E, adjacency matrix Aadj, number of layers
of HDGCNN num_layers.
Functions: exponential mapping function expk

o, matrix multiplication ⊗k in the hyperbolic space based
on identity mapping, neighborhood aggregation function AGGk on hyperbolic manifolds, nonlinear
activation function σ ⊗kl−1, kl in hyperbolic space, update function Ul of the lth layer of the model,
sequence generation function Range.
Outputs: hyperbolic node embeddings xoutput in the output layer.
1. # Mapping input nodes in Euclidean space to hyperbolic space
2. x0,H = expk

o

((
0, x0,E

))
3. # Traverse each layer of the HDGCNN
4. for l in Range (num_layers):
5. # Feature transformation based on identity mapping for node features in hyperbolic space
6. hl,H = xl−1,H ⊗kl−1 W l

7. # Neighborhood aggregation based on structural features and hyperbolic attention
coefficient

8. yl,H = AGGkl−1
(
hl,H

)
9. # Nonlinear activation
10. zl,H = σ ⊗kl−1, kl

(
yl,H

)
11. # Update function based on non-local message passing framework
12. xl,H = Ul

(
zl,H, xl−1,H, x0,H

)
13. # Node embeddings in hyperbolic space of HDGCNN’s output
14. xoutput = xnum_layers, H

5 Experiments

In this section, we present an extensive series of experiments to thoroughly evaluate the perfor-
mance of HDGCNN on both node classification and link prediction tasks. The main objective is
to showcase the effectiveness and capabilities of HDGCNN in addressing these crucial graph-related
tasks. To achieve this, we conduct a comparative analysis by benchmarking HDGCNN against shallow
methods, neural network-based methods, GNN-based methods, hyperbolic GNN-based methods, and
other state-of-the-art approaches. Moreover, we perform ablation experiments to assess the impact and
effectiveness of our proposed building blocks. Through these rigorous and diverse experiments, we aim
to establish the superiority of HDGCNN over existing methods. The results of these experiments will
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underscore the potential and significance of HDGCNN as a powerful tool for graph representation
learning.

5.1 Experiment Setup
5.1.1 Datasets

The HDGCNN proposed in this paper is specifically designed to handle scale-free or hierarchical
graphs with tree structures, enabling the embedding of such graphs into hyperbolic spaces with reduced
distortion. To assess the effectiveness of HDGCNN in handling tree-structured graphs, we carefully
selected four datasets with varying degrees of tree-like characteristics. The details of these datasets
are summarized in Table 1 for reference and comparison purposes. By conducting experiments on
these datasets, we aim to demonstrate how HDGCNN performs in capturing and preserving the tree
structures, and how it outperforms other methods in terms of node classification and link prediction
tasks.

Table 1: Dataset statistics

Dataset Nodes Edges Features Classes δ-Hyperbolicity

Disease 1044 1043 1000 2 0
Airport 3188 18631 4 4 1
Pubmed 19717 44338 500 3 3.5
Cora 2708 5429 1433 7 11

We evaluate the tree-like characteristics of the datasets using Gromov’s δ-Hyperbolicity [58].
A smaller value of δ-Hyperbolicity indicates a higher degree of treeness in the dataset. For our
experiments, we carefully selected four datasets with varying δ values, namely Disease, Airport,
Pubmed, and Cora, to thoroughly assess the effectiveness of our proposed method. The Disease
dataset represents a disease propagation tree, simulating the SIR disease transmission model [59],
with each node representing either an infection or a non-infection state. The Airport dataset consists of
airports and routes, where nodes represent airports, and edges represent routes between them. Pubmed
and Cora [60] are citation datasets, where nodes represent scientific papers, edges represent citation
relationships, and the node labels correspond to the academic fields of the papers.

5.1.2 Baselines

To comprehensively evaluate the performance of HDGCNN, we compare it against a variety
of state-of-the-art methods, which can be categorized as follows: shallow methods, neural network-
based methods (NN), graph neural network-based methods (GNN), and hyperbolic graph neural
network-based methods. The shallow methods we consider are Euclidean-based embedding (EUC)
and Poincare sphere-based embedding (HYP) [35]. As for the NN methods, we include feature-based
MLP and its hyperbolic variant (HNN) [34]. For the GNN category, we select GCN [13], GAT [56],
SAGE [14], and SGC [61], as these methods have demonstrated exceptional performance in various
applications by fully leveraging node features and structural characteristics. Additionally, we evaluate
hyperbolic GNN methods, including HGCN [55], HGNN [53], HGAT [62], and HGCF [63], which
represent hyperbolic versions of the GNN approaches mentioned earlier. By comparing HDGCNN
with these state-of-the-art methods, we can thoroughly assess its performance and demonstrate its
advantages in various scenarios.
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5.1.3 Parameter Settings

For the sake of fairness, we adopt consistent dataset splits for all baseline methods and models. In
the node classification (NC) task, we employ a 30/10/60% split for Disease, and a 70/15/15% split for
Airport, which are designated for training, validation, and testing, respectively. As for the Pubmed and
Cora datasets, we follow the same split strategy as proposed by Yang et al. [64]. In the link prediction
task, the edges in all datasets are randomly distributed with a ratio of 85/5/10%. Across all datasets,
we set the learning rate to 0.01, dropout to 0, weight decay parameter to 0, bias parameter to 1, and λ

in Eq. (11) to 0.9. We configure the curvature to self-learn mode and employ the Adam optimizer [65]
for model optimization. The maximum number of training epochs is set to 5000, with early stopping
based on a window size of 100 epochs, where training stops if the validation loss does not decrease
continuously for 100 epochs. The minimum number of training epochs is set to 100. We employ ReLU
activation as the linear activation for hidden layers. The LeakyReLU activation function is used as
the linear activation function in the hyperbolic attention coefficient module, with its negative slope
set to 0.2. For numerical stability in optimization, we choose the Lorentz (Hyperboloid) model as the
Riemannian manifold. The parameters r and t for the Fermi-Dirac decoder used in the link prediction
task are set to 2 and 1, respectively.

To ensure a fair comparison between HDGCNN and the hyperbolic GNN baseline method, we
represent node features using a 16-dimensional representation. In this paper, we deploy a 32-layer
HDGCNN model, while the hyperbolic GNN baseline method adopts a 4-layer model structure.
These choices are made to provide a comprehensive assessment of the performance of HDGCNN
in comparison with the hyperbolic GNN baseline method. The detailed model configurations and
parameter settings can be accessed at the following link: https://github.com/FrancisJUnderwood/
hdgcnn/tree/master.

5.2 Results
We present the performance comparison of HDGCNN with other baseline methods in Table 2.

For the link prediction task, we employ the area under the ROC curve (AUC) on the test set as the
evaluation metric. For the node classification task, we use the F1 score to assess the performance of
node classification.

Table 2: AUC for link prediction (LP) and F1 score for node classification (NC) tasks

Dataset Disease Airport Pubmed Cora
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11
Method LP NC LP NC LP NC LP NC

EUC 69.4 ± 1.4 32.5 ± 2.0 92.0 ± 0.0 60.0 ± 3.4 79.8 ± 2.8 48.2 ± 0.7 84.9 ± 1.2 23.8 ± 0.8
HYP 73.0 ± 1.4 45.5 ± 3.0 94.5 ± 0.0 70.3 ± 0.4 84.9 ± 0.2 68.5 ± 0.3 86.6 ± 0.6 22.1 ± 0.9

MLP 63.7 ± 2.6 28.8 ± 2.2 89.8 ± 0.6 68.9 ± 0.5 83.3 ± 0.6 72.4 ± 0.2 83.3 ± 0.6 51.9 ± 1.2
HNN 71.3 ± 1.9 41.1 ± 1.8 90.8 ± 0.2 80.6 ± 0.5 94.7 ± 0.1 69.8 ± 0.4 90.9 ± 0.4 54.8 ± 0.6

GCN 64.7 ± 0.5 69.7 ± 0.5 89.3 ± 0.4 81.4 ± 0.6 89.6 ± 3.6 78.1 ± 0.2 90.5 ± 0.2 81.5 ± 0.5
GAT 69.8 ± 0.3 70.4 ± 0.4 90.8 ± 0.2 81.5 ± 0.3 91.2 ± 1.1 79.0 ± 0.3 93.2 ± 0.2 83.0 ± 0.5
SAGE 65.9 ± 0.3 69.1 ± 1.2 90.4 ± 0.5 82.1 ± 0.5 86.2 ± 0.9 77.4 ± 2.2 85.5 ± 0.5 77.9 ± 2.5
SGC 65.1 ± 0.2 69.5 ± 0.8 89.8 ± 0.3 80.6 ± 0.1 94.1 ± 0.0 78.9 ± 0.0 91.5 ± 0.2 81.3 ± 0.5

(Continued)

https://github.com/FrancisJUnderwood/hdgcnn/tree/master
https://github.com/FrancisJUnderwood/hdgcnn/tree/master
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Table 2 (continued)

Dataset Disease Airport Pubmed Cora
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11
Method LP NC LP NC LP NC LP NC

HGCN 90.8 ± 0.3 88.2 ± 0.8 96.4 ± 0.1 89.2 ± 1.2 95.1 ± 0.1 76.5 ± 0.6 92.9 ± 0.1 78.0 ± 0.9
HGNN 81.5 ± 1.2 81.3 ± 3.5 96.4 ± 0.4 84.7 ± 0.9 92.7 ± 0.3 77.1 ± 0.8 91.6 ± 0.4 78.3 ± 1.2
HGAT 87.6 ± 1.7 90.3 ± 0.6 97.8 ± 0.1 89.6 ± 1.0 94.1 ± 0.2 77.4 ± 0.6 93.1 ± 0.9 78.3 ± 1.4
HGCF 68.6 ± 1.3 70.1 ± 1.6 89.7 ± 0.8 60.4 ± 1.5 94.6 ± 0.3 78.7 ± 0.5 93.4 ± 0.6 78.9 ± 1.8

HDGCNN
(Ours)

92.9 ± 0.8 95.6 ± 1.3 98.0 ± 2.1 95.6 ± 1.8 95.3 ± 0.3 80.0 ± 0.5 91.6 ± 1.1 80.8 ± 0.7

Analyzing the results in Table 2, we observe that HDGCNN outperforms a considerable number
of baseline methods on datasets with evident tree structures (low δ values). In the Disease dataset
with δ = 0, HDGCNN achieves an average accuracy approximately 26.5% higher in link prediction
(LP) and 24.8% higher in node classification (NC) compared to the Euclidean-based GNN baseline
method. Moreover, HDGCNN shows an average of about 10.8% higher accuracy in LP and 17.5%
higher accuracy in NC than the hyperbolic GNN baseline method. HDGCNN also demonstrates
competitive performance on the Airport and Pubmed datasets.

However, on the Cora dataset where the tree structure is less apparent (high δ value), the
Euclidean-based GNN methods HGCF and GAT attain the best results in link prediction and node
classification tasks, respectively. Despite this, HDGCNN still achieves notable performance on the
Cora dataset, showcasing its versatility and potential in various graph-related tasks.

5.2.1 Analysis

We Analysis reveals the following key insights:

(1) By comparing the experimental results of HDGCNN with those of the Euclidean-based GNN
method, we discern that graph data exhibiting a tree structure can indeed benefit from hyperbolic
geometry. The experimental findings across the Disease, Airport, and Pubmed datasets substantiate
this assertion. Notably, HDGCNN shines remarkably on the Disease dataset, which exhibits the
highest degree of tree-like structure (δ = 0), showcasing a substantial performance advantage over
the Euclidean-based GNN baseline method. As the tree-like structure weakens (δ value increases),
HDGCNN maintains its significant performance lead over the GNN baseline method on the Airport
and Pubmed datasets, albeit with a diminished margin compared to the Disease dataset.

(2) A comparative analysis between HDGCNN and hyperbolic GNN methods illustrates that
hyperbolic GNN methods can indeed benefit from a deep model structure. This deduction is corroborated
by results across the four datasets and is further validated in the subsequent node embedding visual-
ization analysis in Section 5.4.3. Empirical findings demonstrate that HDGCNN, with its deep model
architecture, surpasses all shallow hyperbolic GNN baseline methods in link prediction and node
classification tasks. It is notable that HGCF and GAT achieve optimal outcomes in link prediction
tasks and node classification on Cora datasets, respectively. Our analysis posits that this could be
attributed to the fact that HGCF employs fewer operations on hyperbolic maps and extensively
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utilizes graph convolution operations within the Euclidean tangent space. Additionally, given the Cora
dataset’s diminished tree-like nature, it tends to benefit more from Euclidean geometry.

(3) Furthermore, it is worth noting that MLP and its hyperbolic variant, HNN, are feature-based
methods that do not leverage graph structural information and lack an information aggregation step.
The discernible performance disparity observed between MLP, HNN, and HDGCNN, along with
other hyperbolic GNN baseline methods, in the context of node classification tasks, demonstrates the
significance and efficacy of neighborhood information aggregation in learning node feature representa-
tions. This observation reinforces the conclusions drawn by Chami et al. [55].

Collectively, these findings underscore the efficacy and versatility of HDGCNN across various
graph-related tasks, reaffirming its position as a promising approach in graph representation learning.

5.3 Ablation Experiment
In this section, we conduct a series of ablation experiments aimed at systematically validating

the indispensability of each proposed component within HDGCNN. We meticulously assess the
contributions of the identity mapping-based feature transformation module, the neighborhood
aggregation module, and the non-local message passing framework, individually. To achieve
this, we progressively exclude these modules from HDGCNN and evaluate the resulting model
performance. The derived variant models, denoted as HDGCNN-Trans, HDGCNN-Agg, and
HDGCNN-NoneLocal, correspondingly represent models in which the feature transformation
method, neighborhood aggregation method, and non-local message passing framework have been
substituted. In more detail, HDGCNN-Tran substitutes the feature transformation method with a
conventional linear transformation [53,55,63], while HDGCNN-Agg employs a conventional weighted
aggregation [13] as a replacement for the neighborhood aggregation method. The performance of
HDGCNN and the three variant models across node classification tasks on the four datasets is
comprehensively summarized in Table 3.

Table 3: F1 score of HDGCNN and its variant models in node classification task

Method Disease Airport Pubmed Cora

HDGCNN-Trans 85.0 ± 0.8 94.8 ± 0.5 74.2 ± 1.1 79.0 ± 0.7
HDGCNN-Agg 87.0 ± 1.3 93.1 ± 1.0 73.5 ± 0.4 76.8 ± 1.5
HDGCNN-NoneLocal 85.8 ± 1.8 91.0 ± 1.5 74.3 ± 2.1 79.0 ± 2.2
HDGCNN 95.6 ± 1.3 95.6 ± 1.8 80.0 ± 0.5 80.8 ± 0.7

5.3.1 Analysis

The analysis of the results presented in Table 3 reveals a consistent trend of decreased model
performance upon the removal of each individual component. Notably, on datasets such as Disease
and Airport, characterized by a pronounced treeness degree, the non-local message passing framework
emerges as a pivotal element. The absence of this module leads to a conspicuous decline in HDGCNN’s
performance. Similarly, on the Pubmed dataset, the omission of any module leads to a substantial
reduction in performance. In the case of the Cora dataset, the removal of our proposed neighborhood
aggregation module results in a significant performance degradation.
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These observations provide further substantiation of our findings in Section 5.2.1, indicating that
datasets characterized by a lower tree structure degree are more likely to benefit from Euclidean geom-
etry. Moreover, these results underscore the essential role of neighborhood information aggregation
in the effective acquisition of node feature representations. Concurrently, they affirm the superior per-
formance of our proposed neighborhood aggregation approach in contrast to conventional methods.

5.4 Quantitative and Qualitative Analysis of Over-Smoothing
In this section, we will conduct a quantitative analysis of HDGCNN’s capacity to alleviate over-

smoothing, while also undertaking a qualitative assessment of its aptitude in capturing distant high-
order node features through node embedding visualization. Initially, we introduce a smoothness
evaluation metric to quantify the smoothness of each layer’s output in the model—smoothness, in
this context, refers to the similarity among nodes within the graph. By comparing the smoothness
across various layers of three hyperbolic graph neural network models—namely HDGCNN, HGCN,
and HGCF—we substantiate HDGCNN’s suitability for constructing hyperbolic deep graph neural
network architectures. These architectures excel in extracting refined node features from graph data
characterized by tree-like structures, thereby mitigating issues related to over-smoothing. Subse-
quently, we proceed to visualize the node embeddings generated by the aforementioned hyperbolic
graph neural network models. By discerning clustering patterns among different categories of nodes
in the visualization space, we qualitatively underscore HDGCNN’s proficiency in capturing intricate
node features.

5.4.1 Evaluation Metric of Smoothness

The over-smoothing problem caused by deep graph neural network models originates from the fact
that each node in the graph aggregates information from almost the entire graph due to the multi-layer
graph convolution operation. This ultimately leads to the convergence of all node features, resulting in
closely embedded nodes spatially. To address this, we employ the Mean Average Distance (MAD), as
proposed by Chen et al. [66], as a quantitative measure. MAD assesses smoothness by calculating the
average distance between nodes. Smoothness is utilized to represent the similarity of node embeddings:
a larger MAD value signifies lower embedding similarity, while a smaller MAD value indicates higher
similarity. The calculation method for the MAD value is presented in Eqs. (25) to (28).
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∑n

i=0D
tgt

i∑n

i=01
(

D
tgt

i

) (25)

D
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i =
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(
Dtgt

ij

) (26)

Dtgt = D ◦ Mtgt (27)

Dij = 1 − xH
i · xH

j∣∣xH
i

∣∣ · ∣∣xH
j

∣∣ i, j ∈ [1, 2, . . . , n] (28)

Eq. (25) delineates the procedure for computing the MAD value of a given pair of target nodes,
where 1(x) equals 1 if x > 0, and 0 otherwise. Eq. (26) is utilized to determine the average of non-zero
elements within each row of matrix Dtgt. Within Eq. (27), Mtgt symbolizes an N × N mask matrix,
while © denotes the element-wise multiplication operation that filters information from the N × N
distance matrix D using the mask matrix Mtgt. The calculation of the distance matrix D is presented
in Eq. (28). Here, xH

i and xH
j denote the hyperbolic feature vectors of nodes i and j, respectively, and
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the distance matrix D is computed by evaluating the cosine values between all pairs of nodes. It is
important to highlight that the node feature matrix xH represents the hyperbolic output from the final
layer of HDGCNN.

5.4.2 Quantitative Analysis of Over-Smoothing

Ordinary GCN models typically exhibit a shallow architecture comprising 3 to 4 layers. To
enhance the depth of the graph convolutional network and effectively capture non-local structural
features and long-range interdependencies among nodes, we seek to extend the network’s depth.
However, deeper networks often encounter the challenge of excessive smoothing. To address this
concern, we present HDGCNN, a solution that facilitates the creation of deep network architectures
without succumbing to the issue of excessive smoothing, thereby enhancing node feature extraction.

In Table 4, we present the F1 scores of three hyperbolic graph neural network models—namely,
HGCN, HGCF, and HDGCNN—across varying layer model structures during node classification
tasks on the Disease dataset. Our observations reveal that HGCN fails to yield performance improve-
ments upon increasing the number of network layers. Notably, as the network depth reaches 16 layers,
the model encounters a gradient disappearance issue, rendering it untrainable. Similarly, while HGCF’s
performance deteriorates significantly with deeper network architectures, HDGCNN’s performance
remains stable and even exhibits improvement. These findings underscore that hyperbolic graph neural
networks are susceptible to over-smoothing, a challenge effectively addressed by HDGCNN.

Table 4: F1 score variation in node classification on the disease dataset by hyperbolic graph neural
networks with varying layer depths

Method 4-layer 8-layer 16-layer 32-layer

HGCN 88.6 88.3 - -
HGCF 67.3 70.1 50.0 50.0
HDGCNN 92.1 ± 0.8 92.5 ± 0.6 93.7 ± 1.1 95.6 ± 1.3

Subsequently, we embark on a quantitative analysis of the smoothness exhibited by distinct
hyperbolic neural network models across varying depths. Depicted in Fig. 4 are the Mean Average
Distance (MAD) values of three models–HGCN, HGCF, and HDGCNN–across different layers while
performing node classification tasks on the Disease dataset. Lighter colors indicate smaller MAD
values, signifying more pronounced node over-smoothing. The outcomes observed in the analysis
indicate a pivotal trend. Specifically, as the depth of HGCN reaches 16 layers, the MAD value
converges to 0, indicating that the nodes in the graph have become indistinguishable. Notably, the
MAD value of HGCF progressively diminishes with increasing network depth, with a particularly
substantial decline by the time the depth reaches 16 layers. Conversely, HDGCNN’s MAD value
remains consistently within a stable range as the network depth increases, exhibiting even a propensity
to rise. This conspicuous trend reaffirms the efficacy of our proposed HDGCNN in seamlessly
amalgamating a deep graph neural network architecture with hyperbolic geometry. More remarkably,
it adeptly circumvents the over-smoothing conundrum characteristic of hyperbolic graph neural
networks.
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Figure 4: MAD values for HGCN, HGCF, and HDGCNN across layers in the disease dataset

5.4.3 Node Embedding Visualization

In order to visualize the node classification results, we project the node embeddings generated by
the three hyperbolic graph neural network models into a 3-dimensional space. As depicted in Fig. 5,
each row illustrates the visualization outcomes of node embeddings produced by HGCN, HGCF,
and HDGCNN across the four datasets. Correspondingly, each column corresponds to the node
embeddings of the Disease, Airport, Pubmed, and Cora datasets from left to right.

Figure 5: Visualization of node embeddings
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The visualization in the Fig. 5 reveals that HDGCNN consistently attains superior classification
performance on all datasets. Within the hyperbolic space, nodes of each class exhibit distinct clustering,
with minimal confusion in node embedding representations. It is noteworthy that nodes closer to the
hyperboloid’s origin generally occupy higher hierarchy levels within the tree structure. These outcomes
underscore HDGCNN’s capability to seamlessly transform Euclidean-based node embeddings into
hyperbolic embeddings, effectively preserving the hierarchical structure.

By comparing HDGCNN with HGCN and HGCF, we further confirm that deep model structures
confer an advantage to hyperbolic graph neural networks.

5.5 Attention Distribution and Parameter Sensitivity Analysis
5.5.1 Attention Distribution

In this section, we will delve into an analysis of the attention coefficients acquired by three models:
HGCN, HGCF, and HDGCNN. The aim is to ascertain whether HDGCNN effectively employs
the hyperbolic neighborhood aggregation method, grounded in structural features and hyperbolic
attention coefficients, to learn attention weights. To initiate this examination, we introduce a disparity

metric on the attention coefficient matrix A pertaining to node i, denoted as 	i = A[i,:] − Ui

degree (vi)
[67], where Ui signifies the uniform distribution score of node i. The metric 	i serves to gauge
the degree of deviation between the acquired attention coefficient and the uninformative uniform
distribution. Notably, a larger 	i value indicates a more meaningful learned attention coefficient.
By contrasting the discrepancy metric distributions across the attention coefficient matrix (as given
by Eq. (15)) obtained from HDGCNN’s output layer with those yielded by HGCN and HGCF, we
present the specific outcomes in Fig. 6a. Illustrated in Fig. 6a are the disparity metric distributions of
attention matrices learned by the aforementioned models on the Airport dataset. The figure distinctly
reveals that the attention coefficients learned by HDGCNN exhibit larger variance. Conversely,
the attention coefficients acquired by HGCN and HGCF primarily distributed in the range of
small values of 	i. This compellingly signifies HDGCNN’s proficiency in differentiating significant
nodes, thus providing further substantiation for the augmented performance capabilities conferred
by the hyperbolic neighborhood aggregation method grounded in structural features and hyperbolic
attention coefficients.

Figure 6: (a) Attention weight distribution on Airport; (b) The number of model parameters varies with
the number of layers of the model; (c) Influence of hyperparameter λ on HDGCNN performance
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5.5.2 Parameter Sensitivity Analysis

In this section, we will conduct a comprehensive sensitivity analysis to investigate the impact of the
number of layers in HDGCNN on the total model parameters, as well as the influence of the adaptive
decay parameter δl (as described in Eq. (11)) on the overall model performance. Fig. 6b depicts the
variation in HDGCNN’s model parameters as the 4-layer model structure doubles to a 32-layer model
across four datasets. Notably, the model parameters for the Disease, Pubmed, and Cora datasets do
not exhibit a doubling pattern with the increase in the number of layers. Meanwhile, Fig. 6c depicts
the fluctuations in node classification accuracy for the 32-layer HDGCNN across the four datasets as
the hyperparameter λ within δl is adjusted. By manipulating the value of λ, the extent of information
decay during the feature transformation stage can be controlled. It is evident from Fig. 6c that the
performance of HDGCNN remains consistently stable within the λ range of 0.1 to 1.5. This resilience
indicates the robustness and reliability of the model.

6 Conclusion

In this study, we introduced an end-to-end hyperbolic deep graph convolutional neural network
model named HDGCNN for enhancing graph representation learning. This model was designed to
effectively harness the structural insights of scale-free graphs featuring hierarchical arrangements,
capturing extensive node dependencies, and extracting nuanced node features. Initially, we facilitated
the seamless transition of input features from Euclidean space to hyperbolic space, thereby conserving
the graph’s hierarchical structure with minimal distortion. This amalgamation of hyperbolic geometry
and GCN yielded a potent framework for capturing both structural and node-specific attributes more
efficiently. Subsequently, our proposed methodologies spanning feature transformation, neighbor-
hood aggregation, and message passing stages contribute to the creation of a robust deep network
architecture that circumvents over-smoothing issues. By capitalizing on the inherent strengths of
this deep network structure, we adeptly grasp long-range dependencies among nodes and extract
more intricate node features. Ultimately, our empirical findings underscore the remarkable superiority
of HDGCNN over Euclidean GCN approaches and shallow hyperbolic graph neural networks,
particularly when applied to graph datasets characterized by pronounced tree-like structures.

In the future, we intend to further investigate the effective integration of multi-dimensional
edge feature learning within the framework of HDGCNN. This is driven by the realization that,
in real-world graphs, aside from the potential manifestation of scale-free or hierarchical structural
characteristics, edges also encompass a plethora of valuable features. Our aim in the forthcoming
research is to explore how to concurrently embed scale-free or hierarchical graphs into hyperbolic
space while efficiently acquiring multi-dimensional edge features, in order to enhance the precision of
node feature learning.
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