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ABSTRACT

Regular fastener detection is necessary to ensure the safety of railways. However, the number of abnormal fasteners
is significantly lower than the number of normal fasteners in real railways. Existing supervised inspection methods
have insufficient detection ability in cases of imbalanced samples. To solve this problem, we propose an approach
based on deep convolutional neural networks (DCNNs), which consists of three stages: fastener localization,
abnormal fastener sample generation based on saliency detection, and fastener state inspection. First, a lightweight
YOLOv5s is designed to achieve fast and precise localization of fastener regions. Then, the foreground clip region
of a fastener image is extracted by the designed fastener saliency detection network (F-SDNet), combined with data
augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and
normal samples. Finally, a fastener inspection model called Fastener ResNet-8 is constructed by being trained with
the augmented fastener dataset. Results show the effectiveness of our proposed method in solving the problem of
sample imbalance in fastener detection. Qualitative and quantitative comparisons show that the proposed F-SDNet
outperforms other state-of-the-art methods in clip region extraction, reaching MAE and max F-measure of 0.0215
and 0.9635, respectively. In addition, the FPS of the fastener state inspection model reached 86.2, and the average
accuracy reached 98.7% on 614 augmented fastener test sets and 99.9% on 7505 real fastener datasets.
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1 Introduction

As an essential transportation mode, urban rail transit has been widely recognized and applied in
various domains due to its advantages, including high transportation efficiency, large transportation
volume, and low energy consumption. Therefore, the safety and reliability of urban railway trans-
portation have become a significant issue for researchers and scholars. In urban rail transportation,
the track bears the weight of the train. As shown in Fig. 1, the fastener, as a key component of the track
structure, stably fixes the steel rail to the rail sleeper and provides cushioning and shock absorption.
Therefore, fasteners are vital for the safety and reliability of railway transportation.
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Figure 1: Railway image. (a) Includes WJ7 fasteners (b) Includes WJ8 fasteners

In general, prolonged high-speed and high-load operation of trains and the influence of the
railway environment will result in fasteners experiencing a certain degree of wear and tear, such
as fracture, offset loosening, and deformation, and even become lost or experience other complex
defects [1]. These abnormal fasteners can seriously threaten the safety of railway transportation if
they are not detected and repaired in time. Therefore, this paper focuses on the automatic positioning
and detection method of railway fasteners on the basis of sample generation to enhance the safety of
rail transit.

In recent years, the emerging, popular technology of computer vision has made non-destructive
testing of railway transportation feasible and improved the efficiency and accuracy of inspecting. The
common methods currently used in the field of computer vision include traditional image processing,
machine learning, and deep learning. However, when dealing with complex images, traditional image
processing and machine learning methods [2,3] may not be able to extract the features of objects
accurately, and they require manual design of features and classifiers, which usually increases the time
cost and reduces the detection efficiency. With the development of deep learning, defect detection
methods based on deep convolutional neural networks (DCNNs) are capable of automatically learning
features within images. These methods exhibit a high degree of adaptability, enabling them to perform
localization, classification, and prediction on large-scale datasets. These methods have been extensively
studied and applied to defect detection in the railway domain. References [4,5] used DCNNs for fast
and automated detection of train wheel defects, coupled with data augmentation techniques to achieve
condition monitoring and fault diagnosis. Wang et al. [6] proposed a cascade DCNN to solve the
loosening detection problem of bolts. In literature [7], Wei et al. proposed a condition monitoring
method based deep learning for the pantograph slide plate. References [8,9] developed various models
for rail surface and fastener defect detection based on DCNN. In this paper, we mainly focus on railway
fasteners. Existing automated detection methods for fasteners still present numerous challenges, such
as the following:

1) Sample imbalance in the railway fastener dataset is not considered. Gibert et al. [10] proposed
a multitask learning framework to detect defects on fasteners. Wei et al. [11] studied the localization
of fastener regions by using vertical and horizontal projections in traditional image processing
techniques, followed by fastener classification using support vector machine (SVM). Bai et al. [12]
applied the support vector data description (SVDD) algorithm to classify defective fasteners on the
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basis of the detection results of the improved Faster R-CNN. However, the failure rate of fasteners is
typically low in real railway lines, resulting in far fewer abnormal fastener samples than normal fastener
samples. DCNN requires a balanced training sample size, and training on an imbalanced fastener
dataset cannot extract sufficient features of abnormal fastener. This condition leads to the detection
model being unable to accurately identify abnormal fasteners, thus reducing the stability and accuracy
of the model and significantly affecting the fastener inspection task and line maintenance scheduling.
Therefore, solving the problem of imbalanced fastener samples is imperative.

2) Data augmentation methods for fastener images can only increase the number of abnormal
fastener images and in essence cannot increase the defective state of fasteners, i.e., it cannot consider
the diversity of different broken positions and offset orientations in fasteners. Chandran et al. [13]
expanded a dataset by applying rotation, flip, and scale transformations to fastener images.
Xiao et al. [14] used copy-and-paste method to enhance the defects in the training images and then
used ResNet-101 backbone to extract the features of fasteners. Liu et al. [15] proposed template
matching with prior knowledge of fasteners, which reduced the imbalance of samples by random
sorting. Liu et al. [16] improved the inspection performance by constructing fastener sample pairs.
Wang et al. [17] used generative adversarial network (GAN) for fastener image generation to improve
the inspection performance. Yao et al. [18] utilized GAN to track the distribution of faulty data
and established a mapping relationship between image data to generate negative samples. However,
the abnormal state of railway fasteners exhibits various patterns. Simply increasing the quantity
of abnormal fastener images would prevent the inspection model from fully learning the features
of abnormal fasteners, thereby limiting its effectiveness in practical inspection task. Therefore, we
simulate field-based defect scenarios by adding fastener abnormal states to effectively improve the
accuracy and robustness of the actual fastener inspection task.

In addition, few shot learning methods can partially address the problem of imbalanced samples,
such as Siamese network [19], matching network [20], learning to learn [21], and prototypical network
[22]. However, the existing methods cannot fundamentally solve the problem because of the limited
abnormal fasteners, resulting in insufficient detection performance. Moreover, these few shot learning
models need to be retrained at each actual inspection and cannot be universally applied to the fastener
inspection task.

Through a review of the above literature, one can conclude that defect detection on unbalanced
fastener datasets still faces challenges. Therefore, this paper solves the problem by generating a large
number of abnormal fastener samples.

The specific contributions are as follows:

1. In this paper, we propose a hierarchical learning method to solve the sample imbalance
problem in supervised fastener detection, which has three stages: fastener localization based
on lightweight YOLOv5s, abnormal fastener sample generation based on saliency detection,
and fastener state detection.

2. A novel fastener saliency detection network called F-SDNet, which extracts the foreground
clip region of fastener images, is proposed. On the basis of the clip region, data augmentation
is used to generate abnormal fastener samples (e.g., broken, loosen and missing fasteners). Our
method can balance normal and abnormal fastener samples, which is beneficial for training a
robust inspection model.

3. A ResNet-based [23] model called fastener ResNet-8 is proposed for fastener state inspection.
We evaluate our method by using 7505 real fastener images, achieving a precision of 99.9%. Our
method demonstrates outstanding performance regarding accuracy and speed. It effectively
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solves the problem of imbalanced fastener samples, proving its effectiveness in real railway
inspection scenarios.

In the following sections of this paper, we provide an overview of the proposed method and
introduce the detailed model architecture in Section 2, including fastener localization model, abnormal
fastener sample generation based on saliency detection, and fastener inspection model. We show exper-
imental results and comparison results with other methods in Section 3. We present the conclusion and
outlook in Section 4.

2 Method Overview

This paper proposes a hierarchical learning method to solve the problem of imbalanced dataset.
The method consists of three stages. First, a lightweight object detection network is used for rapid
fastener localization. Second, the clip region is extracted based on a saliency detection model. This
step is followed by the application of random cropping, rotation, and background fusion to generate
abnormal fastener samples. Finally, a CNN-based fastener state inspection model is constructed,
which includes normal and abnormal fasteners. The framework of the proposed method is illustrated
in Fig. 2.

Stage 1: Fastener localization

Stage 2: Abnormal fastener samples generation based on saliency detection

Stage 3: Fastener state inspection

F-SDNet

...

Railway images
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YOLOv5s
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Original fastener dataset
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Normal
WJ7

Abnormal
WJ7

Normal
WJ8

Abnormal
WJ8

Classification results

Generated abnormal fasteners

...

...

Foreground Clip region 

...

...

...

Fastener ResNet-8

Figure 2: Framework of the proposed method
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2.1 Fastener Localization Based on Lightweight YOLOv5s
2.1.1 Related Works

Traditional fastener localization methods are mainly based on a prior information such as track
structure and geometric features of fasteners [24–26], which cannot be adapted to new track and
fastener types. In recent years, deep learning-based object detection methods have been widely applied
to fastener localization. In [11], Faster R-CNN-based fastener localization model has a high parameter
count and slow detection speed. Wei et al. [27] proposed an improved YOLOv3 model to locate
fasteners. Chen et al. [28] designed a lightweight YOLO architecture to locate fasteners, reducing
runtime memory and increasing detection speed. Qi et al. [29] introduced MYOLOv3-Tiny and
reduced the model parameters, but the accuracy of fastener detection was not satisfactory.

The actual railway environment is complex, and railway inspection images have problems such
as small object segmentation, low contrast between fasteners and background, and grayscale images
instead of color images, thus requiring a finer model that can balance detection accuracy and inference
speed in practical fastener inspection tasks. Therefore, You Only Look Once (YOLO) [30], which is a
single-stage algorithm, is more suitable for the application scenario of high-accuracy, high-efficiency,
and real-time detection in this paper.

2.1.2 Lightweight YOLOv5s

We considered the YOLOv5 series, which offers a balance between detection speed and per-
formance, because of the specific nature of railway images and the demand for efficiency in daily
fastener detection. Compared with YOLOv3 and YOLOv4, YOLOv5 has undergone improvements
in algorithmic structure and network architecture, thereby exhibiting superior performance and
scalability. Among the YOLOv5 models, we selected YOLOv5s, which is the smallest network model
with the lowest GFLOPs, as the base network for fastener localization tasks. Starting from the
redundancy of information, we utilize sparse training and channel pruning techniques to design a
lightweight YOLOv5s (Fig. 3). The aim is to improve localization speed while maintaining a certain
level of accuracy, making it more suitable for the localization and segmentation of fastener regions. The
final results consist of fastener images and missing fastener images, which form the original fastener
datasets.

YOLOv5s
Pre-

training
Sparse training

Channel 
pruning

Model fine-
tuning

Lightweight
YOLOv5s

Performance evaluation

Figure 3: Lightweight flowchart of the fastener localization model

A pruning factor γi is introduced for each input channel of the batch normalization (BN) layer
in YOLOv5s. Unimportant channels are removed based on the absolute value of this factor, thereby
reducing the complexity of the network while preserving overall accuracy. γi is defined as follows:

μ = 1
m

m∑
i=1

xi (1)

δ2 = 1
m

m∑
i=1

(xi − μ)
2 (2)
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yi = γi × xi − μ√
σ 2 + ε

+ βi (3)

where xi and yi denote the input and output data of the BN layer, respectively; μ and σ 2 denote the
mean and variance of the batch, respectively; and γi and βi are the scaling and shifting transformation
factors, respectively.

Inspired by the pruning strategy in [31], a global threshold-based approach is adopted to prune
the model, as illustrated in Fig. 4. First, |γ | in each BN layer of the model after sparse training are
sorted in ascending order. A global threshold η is determined. Then, a mask matrix is generated by
comparing η with each convolution layer in the model, and channels smaller than η are directly pruned.
However, a minimum channel retention ratio φ is set simultaneously during channel pruning to ensure
the integrity of the network structure. If all γ in a certain convolution layer are smaller than η, then a
portion of channels larger than γ can still be retained.

Figure 4: Channel pruning process

2.2 Abnormal Fastener Sample Generation Based on Saliency Detection
2.2.1 Related Works

Saliency detection is extensively utilized in image processing and computer vision, playing an
important role in segmentation tasks by quickly and accurately locating salient regions in images and
highlighting the foreground clip region of fasteners. Earlier saliency detection algorithms [32,33] were
based on manually designed features, which were time consuming and had inadequate performance.
Currently, saliency detection has advanced rapidly with the development of deep learning. References
[34,35] applied multiscale feature fusion strategies that help combine feature information from differ-
ent scales, which can extract the information of salient objects more effectively. Wei et al. [36] designed
F3-Net, which contains a cross-feature fusion mechanism. The feature maps of most saliency detec-
tion models can generally reflect the approximate location of the objects but are not effective in
recovering object details for complex structures. Zhao et al. [37] proposed an edge-guided strategy
to generate high-quality edge information by using local edge information and global location
information. Liu et al. [38] used side output supervision to obtain clear boundaries of salient objects.
Qin et al. [39] proposed BASNet, which accurately segments salient objects while maintaining high-
quality boundaries.

Accurately segmenting the foreground clip region of fastener images is necessary to improve the
authenticity of the generated abnormal fastener samples. However, the existing saliency detection
models [26–33] can extract most of the features of the fasteners but still cannot accurately segment
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the boundaries due to the low contrast and similar grayscale features between the foreground
and the background in real fastener images. Therefore, we designed a fastener saliency detection
network (F-SDNet) to segment the foreground clip region of fastener images. As shown in Fig. 5,
F-SDNet generates a coarse clip saliency map through a feature extraction module and a saliency
prediction module, and then refines the clip edges through a boundary aware module. F-SDNet
facilitates multiscale learning, enhances boundary features, and generates more accurate saliency maps,
providing a basis for generating abnormal fastener samples. The detailed descriptions of the network
modules and loss function can be found in Section 2.2.2.

Figure 5: Architecture of our proposed clip saliency detection network F-SDNet

2.2.2 F-SDNet

F-SDNet consists of three main modules. The first module is the clip feature extraction module
based on the improved ResNet-50. The second module is the clip saliency prediction module, which
generates clip coarse saliency maps. In addition, referring to the deep supervision mechanism in [37],
the proposed joint loss function is supervised for each layer of the output feature maps. The third
module is the encoder-decoder-based clip boundary-aware module, which mainly serves to refine the
coarse saliency map.

(1) Feature extraction module

ResNet is one of the most commonly used feature extraction networks in deep learning. Its deeper
network structure, fewer parameters, and good generalization ability make it well suited for image
feature extraction tasks. To better extract the features of fasteners, we choose the improved ResNet-50
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as the backbone network and designed a clip feature extraction module. This module aims to address
the problems of low contrast and similarity between foreground and background features in fastener
images. It enhances the attention and discriminability of the clip regions in fastener images, enabling
more accurate feature extraction of clip regions.

The feature extraction module consists of five stages. Stage 1 is SE-Resblock, as shown in Fig. 6.
Unlike the input convolution layer of original ResNet-50, SE-Resblock has 64 convolution filters
with a size of 3 × 3 and a stride of 1, and it incorporates the SE [40] attention mechanism. A basic
residual block consists of three convolution layers and a residual connection, where the first and third
convolution layers use a 1 × 1 kernel, and the second convolution layer uses a 3 × 3 kernel. However,
this structure fails to accurately capture the edge feature information of clips. We introduce the SE
attention mechanism named SE-Basic resblock in the last residual block of stages 2–5 (Fig. 7). By
incorporating the SE attention mechanism at each stage, the feature extraction module adaptively
emphasizes significant feature channels, contributing to better extraction of important information
such as the shape and localization of the clip.

Figure 6: SE-resblock

Figure 7: SE-basic resblock

(2) Saliency prediction module and joint loss

Inspired by U-Net [41] and U2-Net [42], this section designs a clip saliency prediction module
based on a decoder structure. Five stages are set up in the saliency prediction module to match the input
and output feature maps at the corresponding scale. Each stage consists of three convolution layers,
and each convolution is followed by a BN and a ReLU activation function. Bilinear interpolation is
used as the upsampling method.

Furthermore, we propose a joint loss to supervise the output feature maps of the last layer in each
stage, aiming to improve the accuracy of the coarse saliency map structure.

BCE loss, which is widely used for binary classification problems, aims to minimize the difference
between the true labels and the predicted labels. Dice loss is a commonly used loss function for image
segmentation problems. The formulas are as follows:

Lbce(P, G) = G log P + (1 − G) log(1 − P) (4)
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Ldice (P, G) = 1 − 2 · G · P
||G|| + ||P|| (5)

where G and P denote the ground truth and the predicted map, respectively; · is the dot product; and
|| || is l1 norm. BCE loss evaluates the model’s performance by comparing the pixel-wise differences
between the ground truth and the predicted map, while Dice loss focuses more on exploring the
foreground region.

We propose a joint loss by integrating BCE loss and Dice loss, which is defined as follows:

loss = α · Lbce(P, G) + (1 − α) · Ldice(P, G) (6)

where α is empirically set to 0.5.

(3) Boundary-aware module

The unclear edges of the coarse saliency map generated by the saliency prediction module can lead
to differences between the subsequently generated abnormal fasteners and the real abnormal fasteners,
which affects the performance of the inspection model. Therefore, we design a boundary-aware module
to optimize the clip regions and the boundaries (Fig. 8).

Figure 8: Detailed structure of clip boundary-aware module

The boundary-aware module references the U-shaped encoder-decoder and residual architecture.
This module performs boundary refinement on the coarse saliency maps generated by the saliency
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prediction module and adds the coarse saliency maps Scoarse to the processed saliency maps Sba to obtain
the final refined maps Srefined, as shown in Eq. (7).

Srefined = Scoarse + Sba (7)

The boundary-aware module consists of an input layer, an encoder, a bridge stage, a decoder,
and an output layer. Unlike the structure of the feature extraction module and the saliency prediction
module, the encoder and decoder of the boundary-aware module include only four stages, and each
stage consists of a cascade structure of 3 × 1 and 1 × 3 convolution layers, followed by max pooling.
We adopt a convolution with 64 kernels of size 3 × 3 in the bridge stage at the bottom layer, followed by
a BN and a ReLU. Boundary details are optimized further by using CBAM [43] to connect the feature
maps before max pooling in the encoder with the corresponding stage of feature maps after upsampling
in the decoder, which helps capture boundary details and important contextual information within the
clip region, thereby improving the recognition accuracy of clip boundary details.

2.2.3 Abnormal Fastener Sample Generation

The high-speed railway WJ7 fastener is composed of a screw spike, clip, flat washer, insulated
gauge block, gauge baffle, under-rail pad, iron pad, insulation plate under iron pad, and pre-embedded
sleeves (Fig. 9).

Figure 9: Assembly forms of the fastener system. (a) Fastener assembly image (b) Real fastener image

As shown in Fig. 10a, the stress is highest in the curved section where the rear end of the clip
contacts the gauge baffle. The maximum stress reaches 1312 MPa, which is nearly equivalent to the
strength of the clip material 60Si2Mn. When the train passes, the movement mode of the clip generally
takes on a butterfly shape, resulting in fatigue fracture of the clip. The real broken position of the clip is
consistent with the finite element stress analysis result, with the broken position primarily concentrated
in the curved section where the rear end of the clip contacts the gauge baffle.

The detailed process of generating abnormal fastener samples based on the foreground clip region
images obtained from Section 2.2 is as follows (Fig. 11):

1) Different broken positions are chosen manually based on the fastener’s force analysis result,
and broken positions of the clip are chosen randomly at the same time.

2) The clip region is cropped based on the broken position, or a rotation factor is used to rotate
the clip to obtain an abnormal clip.

3) The abnormal clip is combined with the background image to generate abnormal fasteners. In
this study, completely missing fastener images are used as background image.
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Figure 10: Fastener analysis. (a) Fastener finite element stress analysis result (b and c) Real broken
fastener

Figure 11: Process of abnormal fastener sample generation

2.3 Fastener State Inspection Model
We propose a fastener state inspection model called Fastener ResNet-8, which is based on a

lightweight version of ResNet (Fig. 12). The model can detect four types of fastener states: normal
WJ7, normal WJ8, abnormal WJ7, and abnormal WJ8, where abnormal fasteners contain defects
such as breakage, loosening, and loss. To improve the classification speed of the network, we design a
lightweight classification network, reducing the redundant classification performance. In addition,
contextual features are connected and degradation is prevented through skip connection, thereby
facilitating better training and optimization of the network and ensuring detection accuracy.

Figure 12: Architecture of fastener ResNet-8

The model mainly consists of an input convolution layer, three residual blocks, and a fully
connected layer. The input convolution layer has 64 convolution filters with a size of 3 × 3, stride of 2,
and padding of 1. The residual blocks have 64 convolution filters with a size of 3 × 3, stride of 1, and
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padding of 1, but the first convolution layer in the second and third residual blocks has a stride of 2.
The rest of the design follows ResNet-18, including the initial 7 × 7 convolution and max pooling, and
the final global average pooling layer and fully connected layer. Compared with the original minimal
ResNet-18, Fastener ResNet-8 reduces the number of stacked residual blocks, significantly reducing
the parameter calculation and improving the speed of classification prediction. The model is trained
using a cross-entropy loss function, which is defined as follows:

Loss = − 1
N

[
N∑

i=1

C∑
j=0

l
(
Y (i) = j

)
log

eWjX(i)∑C

l eWlX(i)

]
(8)

where N is the number of training samples, C is the number of classes, Y (i) denotes the class label of the
i-th sample, and W denotes the weight parameter matrix. Moreover, l is the truth expression, which
takes the value of 1 when the predicted label matches the true label and 0 otherwise. In addition, we
use the Adam method to optimize the Loss and update W .

3 Experiments and Analysis
3.1 Image Acquisition

The fastener image acquisition system in this study primarily consists of the linear image
acquisition unit and the track inspection beam (Fig. 13). The image acquisition system includes an
industrial high-speed linear CCD camera and non-visible light sources. A high-precision speed sensor
is installed on the wheelset to achieve synchronized image capture and spatial equidistant sampling
with two CCD linear cameras. The main parameters of the image acquisition unit are shown in Table 1.

Figure 13: Image acquisition system

Table 1: Parameters of the image acquisition unit

Parameter Value

Camera lens 8 mm
Line array camera resolution 2048 pixels
Data output GigE
Laser power 15 W
Laser center wavelength 808 nm
Divergence angle of light source 75°

(Continued)
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Table 1 (continued)

Parameter Value

Camera field of view angle 67°
Sunlight interference resistance Resistant to diffuse sunlight

The maximum inspection speed of the track inspection vehicle is about 180 km/h, each image field
of view has a size of 1500 mm × 1500 mm, and a single image acquisition unit can capture about 33
images per second, containing about 200 fasteners.

3.2 Experimental Setup
3.2.1 Experimental Environment

To verify the performance of the proposed fastener defect detection method based on data
expansion, we conducted experiments on railway fastener region localization, abnormal fastener
sample generation based on saliency detection, and fastener state inspection under the same computer
hardware configuration (Table 2).

Table 2: Configuration of the experimental environment

Parameter Value

Operating system Windows 10
Deep learning framework PyTorch 1.7.0
GPU NVIDIA RTX 2080Ti
CPU Intel Xeon(R) Silver 4214 CPU 2.2 GHz
Memory 64 GB

3.2.2 Overall Training Process

The overall training process of this paper is shown in Fig. 14 and can be described as follows:

Figure 14: Overall training process

Step 1: Labelimg software is used to annotate real railway images collected in railway lines, and
lightweight YOLOv5s is trained for the fastener localization model.
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Step 2: Labelme software is used to annotate the original fastener dataset, and F-SDNet is trained
to generate abnormal fasteners.

Step 3: Fastener ResNet-8 is trained with the generated abnormal fastener samples and original
fastener images to obtain the fastener state inspection model.

3.3 Fastener Localization
3.3.1 Fastener Localization Dataset

Currently, there is no publicly available dataset of railway fasteners. In this paper, a total of 225
railway images containing WJ7 fasteners and 80 images containing WJ8 fasteners were collected.
Table 3 provides detailed information.

Table 3: Detailed information of fastener localization dataset

Railway image no. Fastener region no. Fastener types

225 1329 WJ7
80 477 WJ8

3.3.2 Lightweight Results

This experiment uses the railway images that we collected for training, and the training parameters
of YOLOv5s based on sparse training are shown in Table 4. Fig. 15 shows the channel numbers in
each layer of the model before and after pruning, with a total of 6294 channels pruned. Table 5
provides a comparison of the model parameters before and after pruning. Following fine-tuning of
the pruned model, the parameter count decreased by 76.6%, while the mean average precision (mAP)
of model decreased by only 3.2% compared with the value before pruning. The experimental results
show that the sparse training and channel pruning strategy used in this section can significantly reduce
the model’s parameters and size while improving detection speed, with only a minimal loss in model
performance.

Table 4: Parameters of sparse training

Parameter Value

Input size 1024 × 512
Epochs 180
Batch size 6
Learning rate 0.0026
Pruning factor 0.0015
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Figure 15: Number of channels in each layer of the model before and after pruning

Table 5: Comparison of model metrics before and after pruning

Parameter Original model Pruned and fine-tuned model

Number of parameters (M) 7.07 1.65
Detection time (s) 0.0146 0.0121
Model size (MB) 13.70 3.80
mAP (%) 98.51 95.06

3.3.3 Inspection Results

To further validate the performance of our proposed lightweight YOLOv5s, this study conducts
comparative experiments with four other object detection methods: Faster-RCNN [44], YOLOv3 [45],
Tiny-YOLOv3, YOLOv4 and the original YOLOv5s, where the backbone of Faster-RCNN is ResNet-
50 and the backbone of YOLOv3 is Darknet53. The comparative results of the five methods are shown
in Table 6.

Table 6: Performance comparison of different object detection methods

Method Precision (%)↑ Recall (%)↑ mAP (%)↑ FPS (f/s)↑ Model size (MB)↓ λ ↑
Faster R-CNN 96.73 99.84 99.12 10.3 254.3 0.623
YOLOv3 95.81 98.59 98.14 52.4 113.4 0.708
Tiny-YOLOv3 63.72 88.67 82.43 141.6 16.1 0.805
YOLOv4 95.66 97.80 98.40 55.6 105.7 0.716
YOLOv5s 95.31 99.63 98.51 68.5 13.7 0.769
Ours 93.14 97.86 95.33 82.6 3.8 0.858
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In the experiments for fastener localization, we evaluate the effectiveness of the proposed method
by using the following evaluation metrics: precision, recall, mAP, model size, FPS, and comprehensive
evaluation indicator λ.

precision = TP
TP + FP

(9)

recall = TP
TP + FN

(10)

FPS = N
te − ts

(11)

xij =

⎧⎪⎪⎨
⎪⎪⎩

xij

xj
best

j = 1, 2, 3, 4

xj
best

xij

j = 5
(12)

λi =
5∑

i,j=1

xij × wj (13)

where TP, TN, FP, FN represent true positives, true negatives, false positives, and false negatives,
respectively. N is the total number of predicted images, te denotes the detection end time, and ts denotes
the detection start time. xij is the normalized value of xij, and xj

best represents the optimal value of each
index. The larger the value of precision, recall, mAP, and FPS, the better, and the smaller the value
of model size, the better. w is the weight parameter of each index. This fastener localization model
emphasizes detection speed and accuracy, thus, we set w1 = 0.2, w2 = w5 = 0.3,w3 = w4 = 0.1.
According to Table 6, Tiny-YOLOv3 has significantly faster detection speed than other methods, but
its precision of 63.72% falls short of the required detection accuracy. Although Faster R-CNN achieves
the best detection accuracy, it has the slowest detection speed. Lightweight YOLOv5s performs
similarly to Faster R-CNN and YOLOv5s in terms of detection performance, but its detection speed
is noticeably faster than Faster R-CNN, with a 17.12% improvement compared with the original
YOLOv5s. In addition, our model has a low parameter count and a compact size of only 3.8 MB,
making it suitable for deployment on resource-constrained detection platforms. The comprehensive
evaluation indicator of our proposed method is 0.858, which clearly shows the best performance.

Therefore, in this paper, we employ lightweight YOLOv5s to accomplish fast localization and
segmentation of railway fastener regions. The localization results are shown in Fig. 16.

3.4 Abnormal Fastener Sample Generation Based on Saliency Detection
3.4.1 Experimental Setup

In this experiment, 1750 fastener images were resized to 512 × 512 × 3 and allocated to the training
set, validation set, and test set in an 8:1:1 ratio. We choose the Adam optimizer to train F-SDNet,
setting the training to 50 epochs. We set the batch size to 8 because of GPU memory limitations. The
learning rate is fixed at 0.001, and we do not incorporate learning rate decay because this strategy can
lead to an increase in training error.
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(a) (b)

Figure 16: Results of fastener positioning. (a) WJ7 fasteners. (b) WJ8 fasteners

3.4.2 Evaluation Metrics

To further quantify and compare the performance of our proposed F-SDNet, we introduce MAE,
max F-measure (max-Fm), mean F-measure (mean-Fm), max E-measure (max-Em), mean E-measure
(mean-Em), S-measure (Sm), AP, and AUC in the saliency detection experiment.

MAE is defined as the difference between predicted saliency map S ∈ [0, 1]W×H and the binary
ground truth G ∈ {0, 1}W×H . A small MAE score corresponds to more accurate predictions and better
detection performance.

MAE = 1
W × H

W∑
i=1

H∑
j=1

|G(i, j) − S(i, j)| (14)

F-measure, denoted as Fβ , is computed by the weighted harmonic mean of precision and recall:

Fβ =
(
1 + β2

)
precision × recall

β2precision + recall
(15)

where β2 is set to 0.3. On the basis of Eq. (15), an F-measure curve can be constructed. The maximum
value of this curve is max-Fm, and the average value is mean-Fm.

QS = 1
W × H

W∑
i=1

H∑
j=1

φs(i, j) (16)

where φs is an enhanced permutation matrix, which reflects the correlation between the saliency map S
and the ground truth G after subtracting their global mean values. The E-measure curve is constructed
by simultaneously considering the global mean of the image and the local pixel matching method. The
maximum value of this curve is max-Em, and the average value at its adaptive threshold is mean-Em.
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S-measure evaluates the structural similarity between the predicted saliency map and the binary
ground truth based on object perception So and region perception Sr.

S = α × So + (1 − α) × Sr (17)

where α is set to 0.5.

On the basis of the values of true positive rate (TPR) and false positive rate (FPR), an ROC curve
can be constructed. The area under the ROC curve is known as the AUC.

TPR = TP
P

= TP
TP + FN

= |S ∩ G|
|G| (18)

FPR = FP
N

= FP
FP + TN

= 1 − TPR (19)

3.4.3 Comparisons with State-of-the-Arts

The superiority of the proposed F-SDNet was demonstrated by using seven existing salient object
detection methods for visual comparison: BASNet [39], EDRNet [46], EGNet [37], PoolNet [38],
R2-Net [47], RESCSFNet [48], and U2-Net [42]. Fig. 17 displays the predicted saliency maps of the
fasteners, with the first and ninth rows being abnormal fasteners. The first row represents broken
fasteners, while the ninth row represents loose fasteners. The remaining rows are normal fasteners.
Evidently, other existing models exhibit poor performance in detecting normal and broken fasteners
and fail to detect loose fasteners. In contrast, the predicted saliency maps of F-SDNet are closest to the
ground truth, not only accurately identifying the foreground clip region of fasteners but also effectively
suppressing background noise with better stability and robustness.

(a) (b) (d) (e)(c) (f) (g) (h) (i) (j)

Figure 17: Visual comparison of fastener saliency maps. (a) Source image (b) GT (c) Ours (d) BASNet
(e) EDRNet (f) EGNet (g) PoolNet (h) R2-Net (i) RESCSFNet (j) U2-Net
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Quantitative comparative experiments were conducted using the evaluation metrics introduced
in Section 3.3.2 to further evaluate the effectiveness of the proposed F-SDNet for fastener saliency
detection. BASNet, EDRNet, EGNet, PoolNet, R2-Net, RESCSFNet, and U2-Net were compared,
as shown in Table 7. Our proposed method consistently achieves the highest scores in all evaluation
metrics, providing objective evidence of its superior detection accuracy and segmentation performance.
As depicted in Fig. 18, the curves of “Ours” consistently remain above those of other methods in
the F-measure curve, E-measure curve, and P-R curve, with the largest S-measure score. This finding
indicates that our method’s predicted saliency maps closely match the ground truth.

Table 7: Comparison of the proposed method with seven other methods based on eight quantitative
evaluation metrics

Indicator Ours BAS EDR EGNet PoolNet R2 RESCSF U2

MAE↓ 0.0215 0.0634 0.0495 0.0393 0.0482 0.0437 0.0774 0.0503
max-Fm↑ 0.9635 0.8667 0.8889 0.9325 0.8832 0.8843 0.8731 0.8876
mean-Fm↑ 0.9350 0.8434 0.8617 0.8920 0.8544 0.8679 0.8330 0.8514
max-Em↑ 0.9826 0.9371 0.9116 0.9574 0.9101 0.9166 0.9203 0.9397
mean-Em↑ 0.9729 0.9253 0.9023 0.9450 0.9004 0.9082 0.8942 0.9281
S-measure↑ 0.9484 0.8658 0.8790 0.9115 0.8793 0.8909 0.8719 0.8835
AP↑ 0.9836 0.8416 0.9013 0.9394 0.8963 0.8675 0.8778 0.8633
AUC↑ 0.9948 0.9405 0.9404 0.9707 0.9405 0.9414 0.9652 0.9521

(a) (b)

Figure 18: (Continued)
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(c) (d)

Figure 18: Evaluation curves on the eight models. (a) F-measure curves (b) E-measure curves (c) PR
curves (d) S-measure curves

3.4.4 Abnormal Fastener Sample Generation

With the use of the abnormal fastener sample generation method based on F-SDNet, a total of
6330 abnormal WJ7 fasteners and 1275 abnormal WJ8 fasteners are generated. As shown in Fig. 19,
the generated abnormal fasteners include broken and loose ones.

Figure 19: Generated abnormal fastener samples

3.5 Fastener State Inspection
3.5.1 Training Process

Among the abnormal fastener samples generated in Section 2.2 and the original fastener samples
obtained in Section 2.1, 4000 images were selected as the pre-training dataset, where the ratio of four
classes (normal WJ7, abnormal WJ7, normal WJ8, abnormal WJ8) is set to 1:1:1:1 to ensure the
balance of sample numbers. The ratio of training set, validation set, and test set is 7:1.5:1.5, i.e., the
training set contains 2772 fastener samples; the validation set and test set each contain 614 fastener
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samples; and the input image sizes for training, validation, and testing are set to 224 × 224 × 3 in this
section. The above dataset is fed into Fastener ResNet-8 with the parameter configuration in Table 8
for training to generate the fastener state inspection model, and the training loss function curve is
shown in Fig. 20.

Table 8: Configuration for pre-training

Parameter Value

Epochs 20
Batch size 32
Learning rate 0.0005
Weight decay 0.0002

Figure 20: Training loss function curve of Fastener ResNet-8

3.5.2 Experimental Results

We compared Fastener ResNet-8 with six state-of-the-art models, using detection accuracy (Acc),
FPS, and model size as the evaluation index. The results are shown in Table 9, and Acc is defined as
follows:

Acc = TP + TN
TP + FP + TN + FN

(20)

Our model significantly outperforms the lightweight networks MobileNetv3 [49] and Efficient-
Netv2 [50] in terms of accuracy. In addition, our model achieves a classification speed of 86.2 f/s,
i.e., the detection time for each fastener image is 11.6 ms, surpassing other classification networks.
Although the MobileNetv3 model is the smallest in size, it achieves an accuracy of only 47.8% and is
unable to accomplish the fastener inspection task.
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Table 9: Comparative results of fastener inspection using different methods

Method

Ours ResNet18 MobileNetv3 [49] AlexNet [51] EfficientNetv2 [50] GoogLeNet [52]

Acc (%) 98.7 100 47.8 100 87.4 100
Time (ms) 11.6 20.5 12.6 15.1 13.0 16.1

Model size
(MB)

5.42 21.80 2.23 14.60 20.18 10.32

FPS (f/s) 86.2 48.7 78.8 65.9 76.6 62.0

To verify the detection accuracy of Fastener ResNet-8, we test 614 fastener samples from the test
set. As depicted in Fig. 21, the detection accuracy for abnormal fasteners reaches 100%. However, there
are prediction errors for normal fasteners, with 2 normal WJ7 fasteners being incorrectly predicted as
abnormal WJ7 fasteners and 6 normal WJ8 fasteners being incorrectly predicted as abnormal WJ8
fasteners. These prediction errors fall within an acceptable range, and Fastener ResNet-8 achieves an
average accuracy of 98.7%. Thus, satisfactory results were obtained overall.

Figure 21: Classification confusion matrix of Fastener ResNet-8

To further validate the feasibility of our proposed fastener state inspection model in practical
applications, we randomly localize and segment 7505 fastener samples from real railway images. These
samples are fed into the trained Fastener ResNet-8 model for detection, and the classification results
are shown in Table 10 and Fig. 22.

As observed from the confusion matrices in Figs. 21 and 22, Fastener ResNet-8 can classify WJ8
fasteners accurately, while a minor classification error occurs in identifying normal WJ7 fasteners. On
a total of 6908 normal WJ7 samples, 6907 samples were correctly classified, while one sample was
misclassified as an abnormal WJ7 fastener. The misclassified fastener is depicted in Fig. 23. Manual
inspection found that the normal fastener is located at the ends of the railway image. The saved images
are cropped based on a fixed length because of the continuous capturing of railway images using a
linear CCD camera. As a result, incomplete fastener regions are present at the ends of images, which
visually resemble broken fasteners, leading to the erroneous classification. In addition, fasteners that
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are obscured by foreign objects are misclassified as abnormal fasteners but are reclassified after manual
review. This paper can detect broken fasteners, loose fasteners and missing fasteners, as shown in
Fig. 24.

Table 10: Results of the real fastener inspection task (7505 fasteners)

Fastener class Precision (%) Recall (%) F1 (%)

Normal WJ7 100 99.9 99.9
Abnormal WJ7 98.1 100 99.0
Normal WJ8 100 100 100
Abnormal WJ8 100 100 100

Figure 22: Classification confusion matrix of 7505 real fasteners

Figure 23: Misclassified WJ7 fastener

(a) (b) (c) (d)

Figure 24: Abnormal fastener detection results. (a and b) broken fasteners (c) loose fastener (d) missing
fastener
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4 Conclusion

In real railway scenarios, the occurrence of abnormal fasteners is significantly lower than that
of normal fasteners. Imbalanced datasets can affect the stability and accuracy of inspection models.
Therefore, we proposed a novel data augmentation-based method for fastener defect detection. This
method used a saliency detection network to segment the foreground clip region of fasteners. Then, on
the basis of the segmented clips, random cropping, rotation, and background fusion were performed
to generate a large number of abnormal fastener samples. Finally, we fed the augmented fastener
dataset into the classification model to classify WJ7 and WJ8 fasteners into normal and abnormal
states. Experimental results demonstrate the outstanding performance of our fastener defect detection
method in imbalanced datasets, achieving remarkable accuracy and speed with strong robustness. It
can be applied to various types of fastener detection tasks and has significant theoretical and practical
value.

The fastener inspection system in this paper adopts the offline inspection method. First, inspec-
tion images are collected using a track inspection vehicle. Then, the collected inspection images
are processed using the server in the background. Finally, the inspection results are published after
manual review. The limitation of the proposed method is that the detection speed of the fastener state
inspection model, Fastener ResNet-8, is 86 frames per second, whereas a single image acquisition unit
can collect around 200 fasteners per second. As a result, it cannot meet the demand for real-time
detection.

In the future, we will further optimize the inspection model to improve its accuracy and speed
to achieve real-time detection. Meanwhile, we will extend the proposed method to research on
imbalanced sample defect detection in track surface structures based on deep learning.
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