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ABSTRACT

With the rapid development of mobile Internet, spatial crowdsourcing has become more and more popular. Spatial
crowdsourcing consists of many different types of applications, such as spatial crowd-sensing services. In terms
of spatial crowd-sensing, it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to
construct intelligent traffic prediction models. Besides collecting sensing data, spatial crowdsourcing also includes
spatial delivery services like DiDi and Uber. Appropriate task assignment and worker selection dominate the
service quality for spatial crowdsourcing applications. Previous research conducted task assignments via traditional
matching approaches or using simple network models. However, advanced mining methods are lacking to explore
the relationship between workers, task publishers, and the spatio-temporal attributes in tasks. Therefore, in this
paper, we propose a Deep Double Dueling Spatial-temporal Q Network (D3SQN) to adaptively learn the spatial-
temporal relationship between task, task publishers, and workers in a dynamic environment to achieve optimal
allocation. Specifically, D3SQN is revised through reinforcement learning by adding a spatial-temporal transformer
that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.
Extensive experiments are conducted over real data collected from DiDi and ELM, and the simulation results verify
the effectiveness of our proposed models.
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1 Introduction

With the development of intelligent transportation, spatial crowdsourcing attracts more and more
attention. Various applications of spatial crowdsourcing appear, such as spatial crowd-sensing which
may collect and analyze traffic data from edge clients (e.g., vehicles, traffic lights) to help predict
and solve traffic jams. Besides, spatial crowdsourcing platforms like DiDi and Uber also utilize edge
vehicles to provide intelligent services. For these spatial crowdsourcing applications, how to choose
the appropriate crowdsourcing worker is an essential task. Therefore, in this paper, we study how
to assign appropriate workers (i.e., spatial vehicles and drivers) for spatial delivery tasks on spatial
crowdsourcing platforms by analyzing workers’ historical behavior data.
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Similar to traditional crowdsourcing platforms, spatial crowdsourcing platforms comprise three
components: the task/request, the worker, and the platform. However, the tasks released on spatial
crowdsourcing platforms are spatial tasks with spatio-temporal attributes. Spatial delivery tasks have
spatio-temporal constraints, such as start and target locations, start times, and deadlines. A spatial
delivery task is completed only if the requester is picked up at the source location within the requested
time and successfully delivered to the target location before the deadline. In spatial crowdsourcing
platforms, the positions of workers and requesters may change dynamically, especially the spatio-
temporal attributes of workers during the completion of tasks are always changing. This paper focuses
on common spatial delivery tasks in daily real-time ride-hailing services, such as Uber and DiDi
Chuxing.

In terms of spatial delivery task assignment on spatial crowdsourcing platforms, the key is to
recommend a suitable task list to workers in a dynamic environment to maximize the benefits of
workers, requesters and the platform. Traditional task assignment approaches to spatial crowdsourc-
ing platforms mainly utilize matching approaches. However, with the explosive growth of vehicles in
intelligent transportation, task allocation should take into account not only the location matching
information but also the workers’ preferences. The preferences of the workers and the requestors have
a greater impact on the completion of the task. This can be critical to the user experience in real
applications. For instance, DiDi Chuxing needed to serve 25 million ride requests a day and have
more than 21 million registered drivers (i.e., workers). Some requesters may choose a female driver
for safety, while others may choose a male driver for speed. Some drivers may prefer delivery orders
over downtown to get more future orders, while some drivers may prefer orders nearby to avoid traffic
jams. In addition, we observed that the preferences of requesters and workers may change over time,
making the presetting of preferences is impractical in real-world applications [1–3].

To deal with the complex preferences of requesters and workers, neural networks are utilized
to find appropriate task assignments. Shan et al. [4] was a state-of-the-art study that proposed a
deep reinforcement learning model to solve the task scheduling problem in traditional non-spatial
crowdsourcing platforms. However, task assignment of spatio-temporal delivery tasks is more complex
since it is closely related to the spatio-temporal attributes of requesters and workers, and the constraints
of task completion are also complex. The deep Q-network in [4] cannot deal with the input types
of spatio-temporal tasks and workers well, moreover, it cannot extract the interrelation between
workers, tasks, and the workers/requesters’ preferences. As a result, it is impossible to recommend
appropriate spatial delivery tasks to spatial crowdsourcing workers, resulting in poor revenue for the
entire platform.

In order to apply reinforcement learning models to solve task assignments on spatial crowdsourc-
ing platforms, we refine the deep Q-network model in [4] by revising the architecture of deep Q-
Network, including a State Transformer to process spatio-temporal input information. We propose a
Double Dueling Deep Spatial Q Network (D3SQN) based on deep reinforcement learning framework
specifically for spatio-temporal crowdsourcing task scheduling. In detail, we model the interaction
between the spatiotemporal crowdsourcing environment (workers and requests) and the agent (plat-
form) as a new Markov decision process (MDP), taking into account the longitude and latitude
information of the task and worker. We apply our proposed D3SQN network to estimate the reward
for recommending each task to an upcoming worker. D3SQN takes into account both current and
future returns in the online environment, as well as workers’ and requesters’ preferences and how these
preferences interrelate with spatio-temporal properties in the task. Applying reinforcement learning
models to utilize user preferences in spatial crowdsourcing platforms has not been studied in previous
literature, but this information is very important as the completion degree and satisfaction of the next
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task in the spatio-temporal crowdsourcing scenario are strongly related to it. Our contributions can
be summarized as follows:

• As far as we know, we are the first to apply deep reinforcement learning to assign tasks in
spatial crowdsourcing platforms, and our proposed D3SQN can handle both current and future
rewards to achieve long-term optimal allocation. In addition, the Q-value is quantified by using
the user’s historical behavior, so that the model can reflect the user’s preference adaptively.

• In addition to using the structure of Double DQN, we also modify the loss function and include
a state transformer, which further improves the overall performance.

• We use real data sets to demonstrate the effectiveness and efficiency of our framework.

2 Related Work

In this section, most related research is discussed.

2.1 Deep Q Networks and Transformer
Deep Q Network (DQN) [5] is a combination of deep learning and reinforcement learning, that

is, neural networks are used to replace the Q table in Q-learning. In addition to being widely used in
reference scenarios, more and more improved models have been proposed for the defects of DQN
[5]. For example, DDQN [6], a target network is added on the basis of DQN, which can reduce
overestimation to some extent. D3QN uses Dueling Network [7] architecture on the basis of DDQN. It
uses the network to express two estimators, namely the state value function and the action advantage
function depending on the state. This factorization generalizes the learning of actions. Rainbow [8]
combines 6 extended improvements to the DQN [5] algorithm, including DDQN [6], Dueling DQN
[7], Prioritized Boy-Replay [9], Multi-step Learning [10], Distributional RL [11] and Noisy Net [12].

EndToEnd [4] proposed the framework of deep reinforcement learning (RL) for task scheduling,
which is a key issue for the success of crowdsourcing platforms. However, the original DQN [5] model
is still used in EndToEnd [4], and the original DQN [5] and its variants are not well adapted to the
spatio-temporal crowdsourcing problem.

The transformer [13] has excelled in a wide variety of areas, including language modeling [14],
summarization [15], question answering [16], and machine translation [17], etc. The transformer has
made a significant breakthrough in reinforcement learning (RL) with the work of Parisotto et al. [18].
The GTrxl architecture proposed by this work enables it to learn dependencies beyond a fixed
length without breaking the temporal coherence. This allows it to make predictions using current
input trajectories plus past trajectories. Not only that, but Transformer-XL introduces a new relative
location encoding scheme that not only learns longer term dependencies, but also addresses context
fragmentation. However, GTrxl cannot cope well with the input in the spatio-temporal crowdsourcing
environment because of the permutation invariance of the input.

2.2 Sptial Crowdsourcing
Spatio-temporal crowdsourcing is a process in which a group of crowdsourcing tasks with spatio-

temporal attributes are given to a group of workers. The spatio-temporal attributes of the workers
must meet the spatio-temporal constraints of the tasks before they can perform the corresponding
tasks. The research on spatial crowdsourcing has been very popular in recent years. Hassan et al. [19]
defined an online space task allocation framework based on the formalization of the multi-armed
robber problem to solve the online space task allocation problem. Wang et al. [20] designed a new
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adaptive batch-based constant competitive ratio solution framework to solve the dynamic bipartite
graph matching (DBGM) problem. Liu et al. [21] proposed a two-stage solution to the on-demand food
delivery problem in FooDNet. Cheng et al. [22] proposed two optimization methods, task-first greed
(TPG) and game theory (GT), to solve the cooperative perceptual spatial crowdsourcing (CA-SC)
problem. Shan et al. [4] proposed a deep reinforcement learning (RL) task assignment framework and
used DQN for task recommendation in traditional non-spatial crowdsourcing platforms. However,
their model cannot work well for spatial delivery tasks directly.

In summary, none of the existing models can work well for spatial delivery task assignments.
Inspired by the existing literature, we propose a variation of D3QN which applies transformer to
reinforce learning to solve spatio-temporal crowdsourcing task assignment problems.

3 Problem
3.1 Problem Summary

The goal of the task scheduling system of spatio-temporal crowdsourcing is to recommend a
sorted list of tasks to a coming valid worker. As the platform’s profit model is to complete tasks on
commission, the system should satisfy both workers and requesters.

For each worker, as many suitable tasks as possible can be found (within the acceptable time
and space of the worker). Requesters expect their tasks to be served as efficiently and comfortably as
possible. That is, the task is picked up at the designated location before the expected start time of the
task and the task is completed at the destination as early as possible before the specified time.

In addition, since tasks and staff change dynamically, the system should cope with dynamically
changed workers’ and requesters’ sets as well as their various and changeable preferences globally in
real-time.

3.2 Problem Definition
In this section, we formally define our spatio-temporal crowdsourcing task allocation problem.

In the spatio-temporal crowdsourcing platform, a worker is represented by wi, where i is the
moment when the worker goes online. The coordinate of the worker at this moment is Lwi , and the
worker can wait for WWi to allocate the task at most. RWi represents the maximum distance radius
between the starting coordinate of the worker accepting the task and Lwi . The worker will be marked
as invalid while performing the task and will be reset to valid when the task is complete.

Let T =< LSt , LDt , tSTj
, tDTj

>, denote the task/request that appears on the platform, the start
coordinate of the task is LST

, the target coordinate is LDT
, the expected start time of the task is tST

, and
the expected arrival time is tDT

. The task is completed only when the worker picks up the request on
LST

and successfully delivers it at a coordinate LDT
.

Unlike commercial crowdsourcing, a spatio-temporal crowdsourcing task is considered successful
even if the workers take the order after the estimated start time or delays the completion after the
estimated completion time, as long as the worker completes the two actions of pick and deliver.
However, both late pickup and late delivery will affect the quality of task completion, reducing both
requesters’ satisfaction and workers’ reward. Therefore, this paper studies the case of pickup before
the expected time. Therefore, the task will only be completed if the worker picks up the request on LST

before tST
and successfully delivers it at a coordinate LDT

before tDT
.

In summary, tasks that conform to the following constraints are optional tasks for wi:
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• The task is within the acceptable range of the worker, i.e., distance (LST
, Lwi

) < Rwi
.

• The task appears before the worker leaves, i.e., i + Wwi
>= tST

. Workers need to arrive
at the starting point to pick up the task before the expected start time of the task, i.e.,
Costtime(LST

, LWi) <= tST
.

4 System Overview

We model the task scheduling problem in spatio-temporal crowdsourcing as a reinforcement
learning problem. When a spatio-temporal crowdsourcing platform (broker) interacts with requesters
and workers (environment), the requester influences the pool of available tasks in the broker by setting
the start and end dates and start and end coordinates of tasks, and getting the results of the tasks after
the completion of each task. The agent recommends tasks to future workers, and workers influence the
agent through the completion of the tasks. Following the end-to-end MDP setting, since workers and
requestors have different optimization goals, we use two Markov decision processes (MDP) to optimize
workers and requestors separately, and finally combine them together for simultaneous optimization.

For a coming worker wi at timestamp i, his available tasks Ti are obtained. The features of wi and
all tasks in Ti constitute the state feature f si

. With f si
, Q-Network(W) and Q-Network(R) compute the

Q-values that are aggregated to determine the action ai . ai recommends a sorted list of tasks and the
worker selects one accordingly. The action’ s feedback as well as corresponding reward ri are passed
to the predictor for future state estimation si+1. Finally, ri , ai , si and si+1 are stored in the Memory for
the Learner to train Q-Networks continuously.

Fig. 1 illustrates the system framework of the overall process. The timestamp i requestor release
tasks on the platform. At the moment, a driver wi online platform (Step 1) at the moment. We picked
out a set of drivers from the task pools available task T∗, T ∗ length less than or equal to maxT , these
tasks are according to the above constraints (Step 2). Driver wi features and T ∗ ailable in the task of
location information by geohash and one-hot coding or word2vec embedding coding, generation task
pool each task fTj vector feature vector and the driver’s fwi , connection alignment padding constitutes
fsi , which represents the platform of state vector (Step 3). Then, we input fsi into two D3SQN-networks,
namely D3SQN-Networks (W) and D3SQN-networks (R). considering the worker’s benefit Qw(si, ai)

and the requester’s benefit Qr(si, ai), respectively, and predict the Q-value of each possible action ai in
state si where ai represents which task the user chooses. Each network outputs a vector of maxT × 1,
where each value represents the Q value of the corresponding task T (Step 4). According to the
aggregator will two network output Qw(si, ai) and Qr(si, ai) polymerization to produce the final task
list σwi = {Tj1, Tj2, Tj3, . . .}, the aggregator performs a weighted calculation of the two network output
values to balance the workers and requesters, with a default value of 0.5. Corresponding Q(si, Tj∗),
∗ in descending order aggregation scores Q(si, Tj∗) as a recommended list of tasks for the drivers
(step 5). When wi sees a sorted task list, we assume that the driver follows a cascade model to view
the task list and complete the first task of interest, which is the task with the largest Q-value as the
driver’s ai at the moment. The feedback is the completed tasks and the unfinished tasks suggested to
wi (Step 6). Then through quantitative feedback rewarded ri (Step 7). The predictor postulates that the
outcome of D3SQN determines the ultimate action of the present worker. Subsequently, it constructs
the following state, assuming the current sequence is chosen, by aggregating the set of available tasks
for the next incoming worker and the relevant details of the next worker, culminating in the formation
of the resultant future state si+1 (step 8). Then, we will be successful tuples (si, ai, ri, si+1) in the memory
pool, the ai is to complete tasks, and the memory pool is used for storing training data (Step 9). Each
time we store an extra tuple into the memory pool, we use learners to update the parameters of the two
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D3SQN Networks, obtain good estimates of Qw(si, ai) and Qr(si, ai), and derive the optimal strategy
(Step 10).

Figure 1: System framework

In the next section, we will introduce the characteristics of these parts of the system in detail. The
model is introduced in Section 5.

5 Feature Construction

For Task Tj =< LSTj
, LDTj

, tSTj
, tDTj

>, we use fTj = (VLSTj
, VLDTj

, rTj , ΔtTj , dTj , GTj) represents the

eigenvector of task j. Where VLSTj
and VLDTj

is the GeoHash encoded one pot vector of the starting

coordinate and destination coordinate, Δt is the estimated time consumed by the task, GTj is the
estimated fuel cost consumed, and dTj is the distance span of the whole task. The formal expression is
as follows:

VLSTj
= OneHot

(
GeoHash

(
LSTj

))
, VLDTj

= OneHot
(

GeoHash
(

LDTj

))
, Δt = tDTj

− tSTj

dTj = distance(LSTj
, LDTj

), GTj = dTj ∗ G (1)

where G is the average fuel consumption per kilometer.

For worker wi =< Lwi , Rwi , Wwi >, we use fwi =< VLwi
, hwi > to represent the feature vector of the

worker that goes online on the platform at time i.

where VLwi
is the one-hot vector encoded by the GeoHash of the coordinates of worker i, and hwi

is the feature vector composed of the historical completed tasks of worker wi. We believe that each
worker has its own task preferences, which are often reflected in his past task history. For example,
some drivers prefer long journeys. The ratio of time consuming to distance length usually reflects some
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attributes of the task. For example, long time consuming but short distance is usually in the urban
road section with heavy traffic; short time consuming but long distance is usually in the suburban
road section of the city, etc. To sum up, we combine the historical task feature vector of workers with
the current position vector of workers to represent the feature vector of workers, so as to better capture
the preference of workers and the relationship between tasks. The formal expression is as follows:

VLwi
= OneHot(GeoHash(Lwi)), hwi = ((f 1

wi
· γ1 + f 2

wi
) · γ1 . . . + f maxT −1

wi
) · γ1 + f maxT

wi
(2)

where γ1 ∈ [0, 1] is the attenuation factor. In order to capture the long-term and short-term preferences
of workers, we attenuated the historical task information so that the short-term interest accounted for
more and the long-term preferences of workers could also be reflected.

When the wi online platform seeks for task orders at time i, the system will select the available
task list for the wi according to the constraints in Section 3.2. Then, the feature vectors of the tasks
in the available list and the feature vectors of the workers are concatenated to obtain the feature
representation vector fsi of the state at time i. Since the number of available tasks varies at different
timestamps, we set the maximum number of available tasks maxT and use zero padding, that is, adding
zero to the end of fsi , so that each fsi is denoted as: [maxT , |fTjn | + |fwi |], where Tjn ⊆ σ(wi), which σ(wi)

is wi available task set.

6 Double Dueling Deep Spatial Q Network (D3SQN)

In this section, we introduce our proposed Q-learning-based deep reinforcement learning network
model specifically for spatio-temporal crowdsourcing.

As shown in Fig. 2, based on the system state vector fsi at time i, the optimal allocation of
spatiotemporal tasks is achieved through D3SQN. Specifically, this model uses the architecture of
Dueling Network and two Spatial State Transformers to respectively predict the State Q-value and the
dominant feature vector composed of the advantages of each action. Finally, Vsi and Va are spliced
into the final action value vector VQa .

Figure 2: (Continued)
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Figure 2: Double dueling deep spatial Q network (D3SQN) framework and details. (a) shows the
framework of D3SQN. The network architecture is divided into two parts: the upper spatial state
transformer used to predict the action advantage value Va and the lower spatial state transformer
used to predict the state value Qsi . (b) shows the specific details of the encoder and decoder of the
spatial state transformer

Different from the traditional DQN, the states that need to be processed by our proposed D3SQN
are significantly different from the traditional DQN network under spatio-temporal crowdsourcing.

Most of the traditional DQN, including its variants, are suitable for the input of temporal or
sequentially related feature vectors. For example, in a game scenario, the representation of state may
be a vector matrix of continuous pictures, and the sorting of these pictures and the distribution of pixels
inside the pictures are fixed. Once the distribution of these pixels changes, the prediction results of the
network will be affected. However, in our spatial crowdsourcing environment, the representation of the
state is the connection of a string of available lists and worker feature vectors, which is a set feature.
The sorting order of these available lists will not affect the result of the final predicted action. It is
difficult for traditional DQN and DQN variants to mine and learn the complex and dynamic spatio-
temporal correlations in such permutation invariant inputs. Because this permutation invariant set
feature is a global feature, the ability of CNN or traditional neural network architecture to extract
local structural features limits the extraction ability of such global high-dimensional features. The
spatial state Transformer is better able to handle high-dimensional and global information, mainly
because the structure of the Transformer itself is better suited to extract this information. Therefore,
this paper proposes Spatial State Transformer, a new deep reinforcement learning network model for
spatial-temporal crowdsourcing. It will not affect the result of prediction even if he faces the state
vector with a changed order.

We use the structure of Double DQN and Dueling Network to alleviate the overestimation
problem in Q-learning. Next, we will introduce the details and functions of Dueling Network and
Spatial State Transformer, respectively.

6.1 Dueling Network
When we recommend a task set to a worker, the tasks in the optional task set are all the tasks

that the worker may take orders from next, and each task represents an action. When there are several
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actions with multiple redundant or approximately equal Q-values, the original network will prefer to
choose the first task, but in fact, different actions will lead to different states, and we may not be able to
jump out of the optimal action under the current state, so the structure of Dueling network is adopted.
Instead of relying solely on the value of the action, the state can make a separate value prediction. The
performance of the network model is better.

Using the structure of Dueling Network, the original direct predictive action value is divided
into predictive state value and dominant value of each action. This effectively avoids the original
over-estimation problem of Q-learning. The traditional network of DQN is approximate Q∗(s, a) =
maxπQπ(s, a) by network, which represents the value function of optimal action a under strategy π

and state s. The architecture of Dueling Network is to separate State from action to a certain extent,
which is formalized as follows:

Q∗ (s, a) = A∗ (s, a) + V∗ (s, a), V∗ (s, a) = max
π

Vπ (s) = max
π

Q∗ (s, a) ,

A∗(s, a) = Q∗(s, a) − V ∗(s), max
a

A∗(s, a) = max
a

Q∗(s, a) − V ∗(s) = 0 (3)

As can be seen in Fig. 2a, the Dueling Network in our proposed D3SQN consists of two Spatial
State Transformer, which are formalized as follows:

A∗ (s, a) = SpatialStateTransformerQ

(
fsi

)
, V ∗ (s, a) = SpatialStateTransformerAdvantage

(
fsi

)

max
a

Q∗(s, a) = max
a

A∗(s, a) + V ∗(s) (4)

6.2 Spatial State Transformer
In this section, we introduce the spatial state Transformer: an attention-based neural network for

processing state vectors under spatial crowdsourcing.

As shown in Fig. 2a, Spatial State Transformer consists of EnCoder and DeCoder, our motivation
for designing the spatial state converter is that self-attention allows the extraction of key global
associations in the collection data, as well as spatio-temporal information associations. This makes the
spatial state converter a more effective and efficient way to encode the entire collection simultaneously.
At the same time, our model needs to extract high-level feature representations in order to use the
self-attention mechanism to extract associations between information, which is why our model is
designed as Encoder and Decoder architecture. Encoder and Decoder are the attention-based spatial
set operation modules defined by us. The main purpose of the encoder is to represent permutation
invariant state inputs, encoding independently a set of tasks of available size and each element fwi .
The decoder aggregates these encoding features fmsi and uses self-attention mechanism to extract
associations between high-level representations. All the blocks described here are neural network
blocks with their own parameters, not fixed functions.

We made improvements by referring to the structure of SetTransformer, without retaining the
original pooling operation, and made improvements in EnCoder and DeCoder modules suitable
for reinforcement learning, We tune the layerNorm layer after the feature input, instead of before
the feature input as the Transformer usually does and replace the general residual connection with
GatingLayer. In this way, the learning and training of Transformer structure in RL can be stabilized.
We use this structure of SetTransformer, but do not retain the pooling operation, because the
pooling operation in SetTransformer aims to extract the correlation between features from multiple
dimensions. However, the state expression of spatio-temporal crowdsourcing is different from 3D
data, which is three-dimensional collection data strongly correlated among multiple dimensions. The
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previous SetTransformer architecture is mainly aimed at such low-latitude replacement and unchanged
collection data. What we need to mine is the relationship between the features of each element in each
list (including task and worker address information), so it is counterproductive to try to improve the
dimension to learn. We only need to use the feature expression proposed by Encoder and use Decoder
to aggregate and finally get the prediction result.

In the remainder of this section, we’ll describe the details of individual modules.

DeCoder: As seen in Fig. 2b, the Decoder module is designed to extract various aspects of
spatio-temporal features fmsi

obtained from the Encoder through self-attention. By stacking multiple
Decoders, we can extract deeper spatio-temporal interaction information from the input set. The
decoder structure includes layer normalization, multi-head self-attention, and a gating layer. We also
use an identity map reordering technique inspired by GTrxl [18] to facilitate policy optimization, which
is used to help with policy optimization by initializing the agent in a manner that is similar to a Markov
policy/value function.

Identity Map Reordering: We applied a modification called Identity Map Reordering to the Spatial
Temporal Transformer, inspired by the GTrxl [18] design. This involved rearranging the order of
Layer Norm and applying ReLU activation to the output of each submodule before joining with the
residual connection. This reordering enables an identity mapping from the input of the Transformer
at the first layer to the output at the last layer, which facilitates policy optimization in reinforcement
learning. Specifically, this allows the agent to learn reactive actions first before focusing on memory-
based behavior. In the spatio-temporal crowdsourcing environment, this also allows the agent to learn
to select actions before using memory, even if the experience has not yet entered the memory. This
modification improves the efficiency of learning and enables the agent to effectively utilize memory to
improve performance.

Gated-Recurrent-Unit-Type Gating: We use an explicit initialization of the GRU gating mechanism
to approach the identity map. Gated recursive unit (GRU) is a recursive network, which behaves like
LSTM, but with fewer parameters. The formalization is as follows:

r = σ(Wry + Urx), z = σ(Wzy + Uzx − bg), h = tanh(Wgy + Ug(r) ∗ x)

GatingLayer(x, y) = (1 − z) ∗ x + z ∗ h (5)

where bg is the bias in the applicable gating layer. Initially setup bg > 0 can greatly improve the learning
speed.

Encoder: The Decoder architecture in the Spatial State Transformer eliminates position encoding,
enabling the network to extract mutual relationships between sets in the state embedding. However,
using the Decoder directly can result in quadratic time complexity, which is not practical for large-scale
set-structured datasets. To address this issue, we introduce trainable inducing points I into the Encoder
architecture, which reduces the time complexity. An Encoder with m inducing points I is defined as
follows:

G3 = GatingLayer(MultiHead(I , LayerNorm(X), LayerNorm(X); w), X) ∈ Rnd

G2 = GatingLayer (G3, rFF (LayerNorm (G3))) ∈ Rnd

G1 = GatingLayer (MultiHead (X , LayerNorm (G2), LayerNorm (G2); w) , G2) ∈ Rnd

Encoderm(X) : = GatingLayer(G1, rFF(LayerNorm(G1))) ∈ Rnd (6)
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Encoder first converts I through multi-head processing of input set, and then enters GRU
processing through input set X , and finally generates a set containing N elements.

The Encoder’s objective is to extract a high-dimensional representation of the set state while
mitigating the computational complexity resulting from the set’s size. In this study, the Encoder is
responsible for extracting an attention-based spatio-temporal state embedding representation, which
serves as a basis for discerning the spatio-temporal relationships between Workers and Requesters.
Attention is computed between sets of size m and n, with the Encoder’s time complexity being O(mn),
a substantial improvement over the quadratic complexity of the Decoder. Both set operations (Encoder
and Decoder) are permutation invariant.

Loss Function: we adopt a recently developed loss function, DQNReg, which is inspired by earlier
researches [23–27]. The formula for DQNReg is presented below:

Yt = rt + γ ∗ maxaQtrag(st, a), δ = Q(st, at) − Yt, LDQNReg = k ∗ Q(st, at) + δ2 (7)

The first term of the loss function introduces regularization by multiplying Q-values with an
adjustable weighted term, which helps to alleviate overestimation of Q-values. The second term
encourages Q-values to approach target Q-values. DQNReg effectively prevents overestimation by
directly regularizing Q-values with a weighted term that is always active. The adjustable weighted term
in the loss function is set to 0.1 in the experiment.

7 Experiment
7.1 Experimental Setup

Dataset: We conducted experiments on two real-world datasets, collected by DiDi Chuxing in
Xi’an, China, the DiDi dataset released through its GAIA initiative, and the dataset from ELM
released by Tianchi. Each piece of DiDi’s dataset contains drivers’ ID, task ID, timestamp, longitude
and latitude. From this data, we can get information about each task and worker. For our experiment,
we utilized a sample of 80,000 orders that were recorded continuously throughout October 2016 in the
didi dataset [28]. We obtained the ELM dataset [29] which contains identical information and used
the same methodology to acquire an equivalent amount of data. The ELM and DiDi datasets contain
different numbers of workers because the average completion time per order on the ELM platform,
which is a food delivery service, is much smaller than that of taxis. Therefore, the difference in the
number of workers required for the same number of orders is significant. As shown in Table 1, the
ELM dataset of 80,000 orders only has 857 workers, while DiDi has 15,367 workers.

Table 1: Differences in number of workers in the data set

Dataset # of worker

Elm 857
DiDi 15367

Settings: Over time, we will resume the process of staff arrival, task creation, or task expiration.
The collected dataset records each timestamp I at which a worker wi starts a task, and we assume
that a start corresponds to a worker arrival and that the tasks completed by workers in the dataset
are considered interesting. Since we do not know the available task list information that the platform
assigns to the wi when it arrives, we cannot use the tasks completed by the wi in the original data
set as our target for predicting success. Therefore, when wi arrives, we will use the completed orders
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of a worker in the real data as the workers’ preference and match a target task ttargetw from the current
available event pool based on this preference. Considering the interests of workers, if the recommended
task is ttargetw , then the reward/label (for reinforcement/supervised learning) is 1. For the benefit of
requesters, the reward/tag is the quality gain of tj. And the final reward will be the sum of the ratio
of the workers and requesters, in our experiment, this ratio is split equally between the workers and
requesters.

Evaluation Measures: Considering that we are recommending a task or a list of tasks, we use CR
and nDCG-CR as the metrics:

CR =
∑

j Rj

number of completed tasks
, nDCG − CR =

∑
j

∑N

r=1

yjr

log2(1+r)

number of completed tasks
(8)

• CR: Worker Completion Rate (CR). When the workeri arrives at timestamp i, the agent
recommends a task. If the task is the same as the one actually selected by workeri, Rj is 1,
otherwise 0.

• nDCG-CR: Normalized Discount Cumulative Gain. Instead of one task, the agent recom-
mends a list of tasks. nDCGCR is more suitable for evaluating the recommended list σwi =
{Tj1, Tj2, Tj3, . . .}. r is the rank position of tasks in the list, N is the number of available tasks
when the workeri arrives. If the r(Tjn) is the same as the one actually selected by the workeri ,
yjr= 0 is 1, otherwise 0.

Competitors: We compare our method with three alternatives to reinforcement learning, namely
DDQN, D3QN, and EndToEnd. All these methods are trained on real datasets, and the characteristics
of workers and tasks are updated in real time. By aggregating the Q-values of the predicted tasks
relative to the worker and the request, an available task is selected or the available tasks are ranked
according to the aggregated Q-values. The model updates the parameters in real time after each
recommendation.

• DDQN [6]: Double DQN is the deep Learning realization of Double Q-learning, and uses
Target network to reduce the overestimation problem in Q-learning. The training is based on
the parameters of the current Q network, rather than the parameters of target-Q as in DQN. In
this way, overestimation is reduced to a certain extent, so that the Q-value is closer to the real
value.

• D3QN [7]: Dueling Double Network, using dominance function to further solve the overestima-
tion problem. Dueling DQN can estimate Q-value more accurately and select more appropriate
actions after collecting data of only one discrete action. Double DQN, selects the target Q-value
by the action of the target Q-value selection, thereby eliminating the problem of overestimating
the Q-value. D3QN combines the advantages of Dueling DQN and Double DQN.

• EndToEnd [4] proposes a DQN network model with permutation invariant input property,
which is suitable for a commercial crowdsourcing environment, and depends on the previous
task allocation model in the end-to-end crowdsourcing reinforcement learning framework.

7.2 Experimental Results
In this section, we depict the experimental results of D3SQN in terms of both effectiveness and

efficiency.

Implementation Details: Our model consists of two D3SQNs, and after experimental evaluation,
the number of neurons in each layer of D3SQN is set to 128. Moreover, for other hyper-parameters in
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D3SQN, we set target Q update frequency as 50, learning rate as 0.001, buffer size as 1200, discount
factor Gamma as 0.35 and batch size as 128. We used PyTorch to implement the entire algorithm, and
the code ran on a GeForce GTX 2080 TI GPU. We use the definition in Sections 4 and 7.1 to construct
the environment, action, state, and reward necessary for reinforcement learning, and our model learns
spatio-temporal crowdsourced task allocation strategies within this framework. The number of layers
of our encoder layer and decoder layer is the same as that of EndToEnd [4], and the complexity of our
model is on the same order of magnitude as that of endtoend in terms of neuron parameters.

Effectiveness: In Section 3, we constructed two D3SQNs, namely D3SQN(R) and D3SQN(W), for
requesters and workers, respectively, and evaluated their benefits along with the aggregated balance in
our experiment. We presented the CR, CR(W), CR(R), nDCG, nDCG(W), and nDCG(R) measures
for each method and dataset in Fig. 3. CR(W) and CR(R) denote the proportion of maximum Q-
values chosen by the two sub-networks of D3SQN that align with the final target. Similarly, nDCG(W)
and nDCG(R) have the same interpretation. To account for both workers and requesters, we employed
a ratio of 1:1 to aggregate the Q-values computed by the two sub-networks. This approach ensures that
the workers and requesters contributions to the overall reward are equally weighted.

Figure 3: (Continued)
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Figure 3: Benefits of workers & requesters

The results, as depicted in Fig. 3, demonstrate that D3SQN outperforms all competitors in terms
of aggregated CR and aggregated nDCG-CR for both datasets. In contrast, DDQN performs poorly
because it ignores the preferences of requesters and workers. Additionally, neither DDQN nor D3QN
can handle permutation-invariant feature inputs, which leads to suboptimal performance.

The D3SQN algorithm demonstrates superior performance in CR(W) and nDCG-CR (W)
compared to the End-to-End method due to its consideration of spatio-temporal constraints and
features. Our model outperforms all other competitors in both datasets. However, in terms of CR(R)
and nDCG-CR (R), our model surpasses all competitors in the ELM dataset, performs better than
most competitors in the DiDi’s dataset, and slightly lags behind the End-to-End method. This is
attributed to our model’s attention to spatio-temporal attributes, which gives more weight to workers in
each task’s spatio-temporal attributes. In datasets with relatively less user data, our model prioritizes
the weight associated with learning workers, resulting in the best aggregation effect. Moreover, our
model exhibits exceptional efficiency, achieving the fastest convergence rate and outperforming all
metrics in both datasets.

7.3 Ablation Study
In this section, we will test the effect of each Module, we will test the SetTranformer architecture,

GatingLayer & Identity Map Reordering and Dueling Network architecture in D3SQN.

As shown in Fig. 4, removing each improvement from the model reduces the prediction of the
model. Especially when the SetTransformer structure is removed, the prediction effect of the model
decreases most obviously. This is because the SetTransformer structure learns the worker preferences
of all the training samples and is not affected by the variable task order.

However, removing the GatingLayer & Identity Map Reordering significantly decreases the
performance of the model, as the absence of the identity mapping makes it harder for the trans-
former architecture to learn memory-based policies in complex feature representations within the RL
environment. In addition, removing the Dueling structure slows down the training process since the
Dueling network architecture allows for feature sharing between different actions, which accelerates
the learning process.

7.4 Limitations
Our experiments still have some limitations. For instance, there are too few open source spatio-

temporal crowdsourcing datasets for us to verify the generalization of our model on more datasets,
which may limit the generalizability of our proposed model to other platforms. However, we believe
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that the data from these two platforms (DiDi and ELM) are representative of a significant portion of
the spatial crowdsourcing platforms, as they are widely used in the transportation industry. Secondly,
our data set comes from the desensitization data of some crowdsourcing platforms, which lack more
information of users and order feedback. The influence of this part of real information on the
verification of the model effect also increases the limitation of our experiment.

Figure 4: Ablation experiments with different point

8 Conclusion

This study proposed a deep reinforcement learning framework network D3SQN for spatial
delivery task assignment in spatial edge intelligence platforms. It considered the critical role of spatio-
temporal attributes in task assignment, and the spatio-temporal preferences of workers and requesters
with respect to published tasks to facilitate better task assignment. The spatial temporal transformer
proposed herein can effectively extract the interchangeable spatial-temporal state vector, and excavate
the complex deep relationship between spatial-temporal attributes, workers and requesters in the
task. This enables D3SQN to achieve optimal assignment in dynamic spatio-temporal crowdsourcing
scenarios. The experimental results show that D3SQN provides effective and efficient assignment
performance.
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