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ABSTRACT

Real-world engineering design problems with complex objective functions under some constraints are relatively
difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as
industry, automotive, construction, machinery, and interdisciplinary research. However, there are established
optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives
a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve
distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization
(TSO), equilibrium optimizer (EO), grey wolf optimizer (GWO), moth-flame optimization (MFO), whale opti-
mization algorithm (WOA), slime mould algorithm (SMA), harris hawks optimization (HHO), chimp optimization
algorithm (COA), coot optimization algorithm (COOT), multi-verse optimization (MVO), arithmetic optimization
algorithm (AOA), aquila optimizer (AO), sine cosine algorithm (SCA), smell agent optimization (SAO), and
seagull optimization algorithm (SOA), pelican optimization algorithm (POA), and coati optimization algorithm
(CA). As far as we know, there is no comparative analysis of recent and popular methods against the concrete
conditions of real-world engineering problems. Hence, a remarkable research guideline is presented in the study for
researchers working in the fields of engineering and artificial intelligence, especially when applying the optimization
methods that have emerged recently. Future research can rely on this work for a literature search on comparisons
of metaheuristic optimization methods in real-world problems under similar conditions.
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1 Introduction

Experts involved in the design, manufacturing, and repair processes of an engineering system must
make managerial and technological decisions about the system under certain constraints. Optimization
is an attempt to achieve the best result under existing constraints. The most important aim of the
optimization process is to minimize the effort and time spent on a system or to obtain maximum
efficiency. So, if the design cost of the system is expressed as a function, optimization can be defined
as the attempts to reach the minimum or maximum value of this function under certain conditions [1].
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Constraint optimization is a critical component of any engineering or industrial problem. Most
real-world optimization problems include a variety of constraints that affect the overall search space.
Over the last few decades, a diverse spectrum of metaheuristic approaches for solving constrained
optimization problems have been developed and applied. Constrained optimization problems provide
more challenges in comparison to unconstrained optimization problems, primarily because they
include the association of many constraints from different types (such as equalities or inequali-
ties) and the interdependence between the objective functions. Nonlinear objective functions and
nonlinear constraints in such problem instances may exhibit characteristics of being continuous,
mixed, or discrete. There are two general categories of optimization techniques for such problems or
functions: mathematical programming and metaheuristic methods. To solve such problems, various
mathematical programming methods have been used, such as linear programming, homogeneous
linear programming, dynamic, integer, and nonlinear programming. These algorithms use gradient
information to explore the solution space in the vicinity of an initial beginning point. Gradient-based
algorithms converge more quickly and generate more accurate results than stochastic approaches
while performing local searches. However, for these methods to be effective, the generators’ variables
and cost functions must be continuous. Furthermore, for these methods to be successful, a good
starting point is required. Many optimization problems require the consideration of prohibited zones,
non-smooth, and side limits or non-convex cost functions. As a result, traditional mathematical
programming methods are unable to solve these non-convex optimization problems. Although mixed-
integer nonlinear programming or dynamic programming as well as its variants provide a limited
number of possibilities for solving non-convex problems, they are computationally expensive [2].

Metaheuristic optimization approaches have been used as a viable alternative to conventional
mathematical procedures in order to achieve global or near-global optimal solutions [3]. The afore-
mentioned approaches are very suitable for conducting global searches, as they possess the capability
to effectively explore and identify potential places within the search space with a high accuracy
degree and efficiency value. Additionally, these techniques eliminate the necessity for continuous cost
functions and variables, which are frequently utilized in mathematical optimization. Although these
are approximation approaches, their solutions are acceptable but not necessarily be optimal. They do
not necessitate the objective function’s derivatives or constraints, and they employ probabilistic rather
than deterministic transition rules. As a result, the searchers concentrate on metaheuristic strategies
that seek a good constructive answer in a reasonable amount of time [4]. Classic algorithms, on the
other hand, desire derivatives for all nonlinear constraint functions to evaluate system performance.
However, due to the system’s high computational complexity, it is difficult to derive a real-world prob-
lem. These disadvantages of classical methods have prompted researchers to employ nature-inspired
metaheuristic methods according to simulations to clarify engineering design problems. Metaheuristic
optimization algorithms are well recognized as a prominent global optimization approach used to
address complex search and optimization problems of significant size. They are frequently utilized to
solve optimization problems of a broad variety [5]. Metaheuristic methods often work by combining
rules and randomness to mimic events in nature and the behavior of animals. Due to their inherent
inflexibility, these algorithms provide superior performance in optimization problems and several
other problem domains compared to conventional approaches. Numerous studies have provided
evidence to support the notion that nature-inspired algorithms, consisting of genetic algorithms
(GA), particle swarm optimization (PSO), differential evaluation (DE), and evolution strategies (ES),
possess inherent advantages due to their lack of reliance on mathematical assumptions in address-
ing optimization problems. Moreover, these algorithms exhibit superior global search capabilities
compared to conventional optimization algorithms. These metaheuristic techniques have been widely
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used to accomplish constrained optimization problems in different fields, including structural design
problems, engineering problems, decision-making, reliability optimization, and so on.

Even though there are several optimization techniques in the academic literature, no one method
has been shown to universally provide the optimal answer for all optimization issues. The assertion
is rationally substantiated by the “no free lunch theorem”. The aforementioned theorem has inspired
by several scholars by prompting them to develop novel algorithms. Therefore, several methodologies
have been lately suggested. However, there are not many studies on which of these suggested methods
perform well in which areas. In this study, seventeen recently proposed and popular methods are
employed to twelve constrained design problems in engineering with different constraints, objective
functions, and decision variables, and performance analysis has been performed. For the problems;
speed reducer, tension-compression spring, pressure vessel design, welded beam design, three-bar
truss design, multiple disc clutch brake design, himmelblau’s function, cantilever beam, tubular
column design, piston lever, robot gripper, and corrugated bulkhead design are investigated. The
types of the problems differ considering the problem domains. The reason for this is to obtain
better comparison results by comparing the optimization algorithms with each other according to
their distinct capabilities in several types of problems. The algorithms used to solve these problems
can be stated as; transient search optimization (TSO), equilibrium optimizer (EO), grey wolf opti-
mizer (GWO), moth-flame optimization (MFO), whale optimization algorithm (WOA), slime mold
algorithm (SMA), harris hawks optimization (HHO), chimp optimization algorithm (COA), coot
optimization algorithm (COOT), multi verse optimization (MVO), arithmetic optimization algorithm
(AOA), aquila optimizer (AO), sine cosine algorithm (SCA), smell agent optimization (SAO), and
seagull optimization algorithm (SOA), pelican optimization algorithm (POA), and coati optimization
algorithm (CA). Each algorithm’s performance is evaluated in terms of solution quality, robustness,
and convergence speed.

The subsequent sections in the paper are structured in the following manner. Section 2 introduces
a comprehensive review of the optimization approaches used in the study to address the complex
challenges faced. Section 3 of this paper describes and examines the practical engineering design
challenges and experimental findings that were encountered. In conclusion, Section 4 provides a
comprehensive overview of the obtained results and offers suggestions for further investigations.

2 Literature Review

Metaheuristic optimization methods can be examined in five general groups: physics-based,
swarm-based, game-based, evolutionary-based, and human-based. Optimization algorithms based on
swarm intelligence are the methods that emerged from examining the movements of animals living
in swarms. Numerous methodologies grounded in swarm intelligence have been put forward. Some
of these are Red fox optimization algorithm [6], Cat and mouse based optimizer [7], Siberian tiger
optimization [8], Dwarf mongoose optimization algorithm [9], Chimp optimization algorithm [10],
Dingo optimizer [11], Flamingo search algorithm [12], and Orca predation algorithm [13].

Evolutionary-based metaheuristic optimization approaches have been generated by using mod-
eling ideas in genetics, the law of natural selection, biological concepts, and random operators. GA
and DE are widely utilized evolutionary algorithms that simulate the reproductive process, natural
selection, and Darwin’s theory of evolution. These algorithms employ randomly selection, crossover,
and mutation operators to optimize solutions. Physics-based metaheuristic optimization approaches
draw inspiration from the fundamental principles of physics. Some of these are Henry gas solubility
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optimization [14], Archimedes optimization method [15], Multi verse optimization [16], Equilibrium
optimizer [17], Transient search algorithm [18].

Game-based metaheuristic optimization methods have been created by mimicking the rules and
circumstances that govern different games, as well as the behavior of the participants. Some of these are
World cup optimization [19], League championship algorithm [20], Ring toss game based optimization
algorithm [21], Darts game optimizer [22]. Human-based metaheuristic optimization methods have
been created using mathematical models of human activities, behaviors, and interactions in both
individual and societal settings. Some of these are Forensic-based investigation optimization [23],
Political optimizer [24], Human urbanization algorithm [25], Teamwork optimization algorithm [26].

There are many algorithms that solve engineering problems with metaheuristic optimization
algorithms. Table 1 presents a comprehensive overview of the methods used throughout the last
decade. As seen in the literature, different optimization techniques have been effectively used in a
variety of constrained optimization situations. When obtaining an ideal or near-optimal solution, the
performance obtained, on the other hand, reveals a statistically significant difference. Due to this
rationale, despite the existence of several optimization algorithms documented in scholarly literature,
a single algorithm capable of finding the best solution to every optimization problem has yet to be
discovered.

Table 1: An overview of some of the algorithms investigated

Reference Method Problem Year Publisher

[27] Water cycle algorithm Pressure vessel design
Three-bar truss design
Multiple disk clutch brake
design
Tension-compression
spring design
Speed reducer design
Rolling element bearing
design
Welded beam design

2012 Elsevier

[28] Cuckoo search
algorithm

Three-bar truss design
Speed reducer design
Cantilever beam
I-beam design
Tubular column design
Piston lever
Corrugated bulkhead
design
Gear train

2013 Springer

[29] Grey wolf optimizer Pressure vessel design
Tension-compression
spring design
Welded beam design

2014 Elsevier

(Continued)
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Table 1 (continued)

Reference Method Problem Year Publisher

[30] Whale optimization
algorithm

Pressure vessel design
Tension-compression
spring design
Welded beam design

2016 Elsevier

[31] Crow search algorithm Pressure vessel design
Belleville spring design
Three-bar truss design
Welded beam design
Gear train design
Tension-compression
spring design

2016 Elsevier

[16] Multi-verse optimizer Gear train design
Three-bar truss design
Welded beam design
Cantilever beam design

2016 Springer

[2] Hybrid PSO-GA Pressure vessel design
Gear train design
Welded beam design

2016 Elsevier

[32] Salp swarm algorithm Cantilever beam design
Welded beam design
Three-bar truss design
I-beam design
Tension-compression
spring design

2017 Elsevier

[33] Spotted hyena
optimizer

Multiple disk clutch brake
design
25-bar truss design

2017 IEEE

[34] Iterative topographical
global optimization

Tension-compression
spring design
Welded beam design
Three-bar truss design
Pressure vessel design
Multiple disk clutch brake
design
Speed reducer design
Gear train design

2018 Elsevier

(Continued)
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Table 1 (continued)

Reference Method Problem Year Publisher

[35] Artificial algae Gear train design
Welded beam design
Spring design
Multi-plate disk brake
design
Speed reducer design

2018 Springer

[36] Harris hawks
optimization

Pressure vessel design
Three-bar truss design
Multi-plate disc clutch
brake
Tension-compression
spring design
Rolling element bearing
design
Welded beam design

2019 Elsevier

[37] Seagull optimization
algorithm

Optical buffer design
Pressure vessel structure
Speed reducer design
Constraint handling
Tension-compression
spring design
Welded beam design

2019 Elsevier

[38] Butterfly optimization
algorithm

Welded beam design
Spring design
Gear train design

2019 Springer

[39] Marine predators
algorithm

Welded beam design
Tension-compression
spring design
Pressure vessel structure

2020 Elsevier

[40] Slime mould algorithm Welded beam structure
Pressure vessel structure
Cantilever structure
problem
I-beam structure

2020 Elsevier

[10] Chimp optimization
algorithm

Heat exchanger network
design (case 1)
Reactor network design
Two-reactor problem

2020 Elsevier

(Continued)
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Table 1 (continued)

Reference Method Problem Year Publisher

[41] Hybrid
grasshopper
optimization

Car side crash problem
Design of the robot
gripper
Rough grinding
Multiple disc clutch brake

2021 Wiley

[17] Equilibrium optimizer Welded beam design
Pressure vessel design
Tension-compression
spring design

2021 Elsevier

[42] Arithmetic optimization
algorithm

Tension-compression
spring design
Welded beam design
3-bar truss design problem
Pressure vessel structure
Speed reducer problem

2021 Elsevier

[43] Aquila optimizer Pressure vessel structure
Tension-compression
spring design
Cantilever beam design
Welded beam design
3-bar truss design
Speed reducer
Multiple disc clutch brake
problem

2021 Elsevier

[44] Enhanced grasshopper
optimization

Three-bar truss
Car side crash problem
Welded beam design
problem
Hydrostatic thrust bearing
Multiple clutch disc
problem
Cantilever beam problem

2021 Springer

[45] Chaotic Lévy flight
distribution
optimization

Gear train design
Coupling with a bolted
rim design
Belleville spring
Pressure vessel structure
Rolling element bearing

2022 Wiley

(Continued)
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Table 1 (continued)

Reference Method Problem Year Publisher

[46] Pelican optimization
algorithm

Pressure vessel design
problem
Speed reducer design
problem
Welded beam design
problem
Tension-compression
spring design

2022 MDPI

[13] Orca predation
algorithm

Welded beam design
Pressure vessel design
Speed reducer design
Tension-compression
spring design
Three-bar truss design
problem

2022 Elsevier

[47] Coati optimization
algorithm

Pressure vessel design
problem
Speed reducer design
problem
Welded beam design
problem
Tension-compression
spring design

2023 Elsevier

3 Metaheuristic Optimization Algorithms

This section provides a brief description of each algorithm that is employed in this study. Only the
most significant parts are described; accordingly, interested readers can get all of the information they
need in the cited papers.

3.1 Transient Search Algorithm
As a physics-based metaheuristic approach, Qais et al. introduced the transient search algorithm

(TSO) in 2020. The source of motivation for this study is derived from the transient dynamics seen in
switched electrical circuits having storage components, i.e., capacitance and inductance [18].

Electrical circuits consist of many components capable of storing energy. The components in
question may be classified as inductors (L), capacitors (C), or a hybrid configuration consisting of
both (LC). Typically, an electrical circuit that incorporates a resistor (R), capacitor (C), or inductor
(L) exhibits a transient response as well as a steady-state response. Circuits that include both an energy
storage device and a resistor are categorized as first-order circuits. When two energy storage devices
are positioned next to a resistor inside a circuit, the resulting configuration is referred to as a second-
order circuit. The TSO method is introduced, drawing inspiration from the transient response shown
by these circuits in the vicinity of 0.
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3.2 Equilibrium Optimizer (EO)
In the year 2020, Faramarzi et al. developed an equilibrium optimizer (EO), a metaheuristic

algorithm that simulates the fundamental well-mixed dynamic mass balance in a control volume [17].
It is used in this method to describe the concentration of the non-reactive component in a control
volume as a result of different source and sink components, based on the mass balance equation.
When the dynamic mass balance against the control volume is compared, this comparison serves
as the motivation for the balance optimization process. The equation of mass balance is utilized for
characterizing the concentration of a non-reactive component inside the control volume, taking into
account the numerous sources and leakage mechanisms that exist within the control volume. The
conservation of mass principle is satisfied in a control volume due to the positive nature of the mass
balance equation.

3.3 Grey Wolf Optimizer (GWO)
Mirjalili et al. introduced the grey wolf algorithm (GWO) in 2014, which is an optimization

algorithm influenced by the population of grey wolves, their natural leading capabilities, and hunting
habits [29]. Grey wolves are classified into four major classes based on their social hierarchy as well
as the abilities of each wolf in the group: Alpha, Beta, Delta, and Omega. The leader of the group is
called as the alpha wolf and is in charge of making critical decisions such as sleeping location, hunting,
waking time, and so on. The tracking, the encircling, and the attacking are the three steps in the grey
wolf hunting technique.

3.4 Moth-Flame Optimization (MFO)
The moth-flame optimization (MFO) is a metaheuristic method affected by the population of

moths and offered by Mirjalili in 2015. The MFO is based upon a simulation of a distinctive nocturnal
navigation system used by moths. It begins the optimization procedure, like other meta-heuristics. In
other words, it randomly generates a set of candidate solutions. When traveling at night, the moth uses
a mechanism known as transverse orientation to navigate. In the MFO method, candidate solutions
are postulated as moths, while the variables of a given issue are postulated as the locations of these
moths inside the search space [48].

3.5 Whale Optimization Algorithm (WOA)
Mirjalili et al. [30] developed the whale optimization algorithm (WOA), another nature-inspired

metaheuristic optimization algorithm that replicates the social behavior of humpback whales to tackle
complicated optimization problems. Predators are able to recognize the location of humpback whales
and cover them fully when they approach. During iterations of WOA, target prey is presumed to be
the greatest available search tool, and humpback whales update their position by considering the best
search tool as they progress through the game. However, despite their enormous size, these creatures
are distinguished by their intellect and sophisticated methods of collaborative work throughout the
hunting process. In addition to the initiation stage, the WOA consists of the surrounding hunt, the
bubble-net hunting method, and the hunt for prey, among other activities.

3.6 Slime Mould Algorithm (SMA)
Li et al. proposed a new optimization algorithm inspired by the behavior of slime mould in

obtaining the optimal way to bind foods [40]. Slime mould is a type of eukaryote that thrives in cold,
moist environments. Plasmodium, in its active and dynamic phase, is the primary source of sustenance
for the parasite. Additionally, this stage serves as the foundation for the SMA. Slime mould is on the
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lookout for food that contains an organic substance in this phase. After the slime mould has finished
its hunt, it wraps itself around the meal and secretes enzymes to break it down. The front end enhances
into a fan-shaped mesh during the migration phase. It then spreads into a network of interconnecting
veins, allowing blood to flow in. Due to its distinctive patterns and structure, it is capable of forming a
venous network for multiple foods at the same time. By grouping these negative vs. positive responses,
the slime mould can construct the optimal food route to add food in a more meaningful way. Thus,
SMA was modeled mathematically and applied to solve engineering problems [49].

3.7 Harris Hawks Optimization (HHO)
Heidari et al. [36] proposed a population-based metaheuristic optimization algorithm inspired by

the behavior and hunting model of Harris hawks. Harris hawks optimization (HHO) is a stochastic
algorithm that can be used to search for optimal solutions in large search spaces. The fundamental
steps of HHO can be achieved at a variety of energy levels. The exploration phase replicates the
technique by which the Harris hawk loses track of prey. Hawks take a break in this situation to trace
and locate new prey. At each step of the HHO process, possible solutions are referred to as hawks, and
the optimal solution is determined by hunting. Hawks randomly settle into different sites and wait for
prey using two probability-based operators [36].

3.8 Chimp Optimization Algorithm (COA)
The chimp optimization algorithm (COA) was designed by Khishe et al. as a biology-based

optimization algorithm originated by the individual intellect and sexual motives of chimps during
group hunts [10]. There are some differences between it and other social carnivores. Four different
stages are employed to model various intelligence in this methodology. The chaser, the driver, the
attacker, and the barrier are all believed to be more familiar with the first option in this case. The four
optimal solutions produced in the previous step are kept, and the other chimps are urged to change
placements to the chimp’s optimal locations.

3.9 Coot Optimization Algorithm (COOT)
The metaheuristic technique presented by Naruei et al. (2021) draws inspiration from the behav-

ioral patterns shown by birds navigating on the surface of water. The behavior of the coot swarm
on water includes three major movements [50]. These are irregular activity movement, synchronized
movement, and chain movements on the water surface. Coots have different collective behaviors. There
are four different water paddle movements on the water surface. These include acting randomly, chain
movement, adjusting the position relative to the group leaders, and directing the group to the optimal
area by the leaders. As in all optimization algorithms, the initial population is created first. After the
initial population is created, the fitness value of the solution is calculated using the objective function.

3.10 Multi-Verse Optimization (MVO)
The notion of multi-verse optimization (MVO) was presented as a metaheuristic approach by

Mirjalili et al. (2016), drawing inspiration from the field of cosmology. MVO explores search spaces
with the concepts of black and white holes while exploiting search spaces with wormholes. Similar to
other evolutionary algorithms, this method commences the optimization procedure by generating an
initial population and endeavors to enhance these solutions via a predetermined number of iterations.
Enhancement of individual performance inside each population may be attained via the utilization of
this algorithm, which is grounded in one of the postulations about the presence of many universes. In
the context of these theories, it is conceptualized that every solution to an optimization issue represents
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a distinct universe, whereby each constituent item is considered a variable within the specific problem
at hand. In addition, they assign to each solution an inflation rate proportional to the value of the
fitness function to which the solution corresponds [16].

3.11 Arithmetic Optimization Algorithm (AOA)
The arithmetic optimization algorithm (AOA), as presented by Abualigah et al. [42], is a meta-

heuristic approach that leverages the distribution characteristics of fundamental arithmetic operators
in mathematics, such as division, multiplication, addition, and subtraction. Four traditional arithmetic
operators are modeled into the position update equations to search for the global optimization
solution, as the name implies. Division and multiplication are employed for the exploration search,
producing enormous steps in the search space due to the varied impacts of these four arithmetic
operators. It is applied to execute exploitation searches, which can create small step sizes in the addition
and subtraction search space [42].

3.12 Aquila Optimizer (AO)
The aquila optimizer (AO) is a population-based metaheuristic approach developed by

Abualigah et al. [43]. It draws inspiration from the natural behavior of the Aquila bird while hunting
its prey. The Aquila employs four distinct hunting techniques. The first technique used by the Aquila is
vertically inclined high-flying, which enables the bird to capture avian prey while soaring at significant
altitudes above the Earth’s surface. The second method, known as contour flying with a brief glide
attack, involves the Aquila ascending at a relatively low level from the surface. The third method
involves using flying movement characterized by a gradual fall in order to execute an assault. This
approach involves the Aquila descending to the ground and engaging in a slow pursuit of its prey.
Additionally, the fourth way has the Aquila strolling on land and using tactics to capture its victim
[43].

3.13 Sine Cosine Algorithm (SCA)
The sine cosine algorithm (SCA) is a recently developed meta-heuristic algorithm that is based

on the properties of trigonometric sine and cosine functions [51]. SCA has gained a lot of attention
from researchers since its debut by Mirjalili in 2016, and it is been extensively employed to achieve
various optimization solutions of various fields. SCA employs a mathematical model depending on
sine and cosine functions to create several beginning populations and afterwards select the optimal
answer. A large number of random and adaptive variables are incorporated into the algorithm to
ensure exploration and exploitation of the search space at various phases of the optimization process.
The SCA optimization method begins with a random solution set, which is then refined. According to
the method, the best solution produced is saved and assigned to a specific target point, after which all
other solutions are updated in accordance with this solution. Meanwhile, as the number of iterations
increases, the range of sine and cosine functions is updated to guarantee that they are exploitation. As
a default, when the number of optimization iterations exceeds the maximum number of iterations, the
optimization process is terminated by the algorithm [52].

3.14 Smell Agent Optimization (SAO)
The smell agent optimization (SAO) is a metaheuristic method responsible for implementing the

relationships that exist between a smell agent and an object that evaporates a smell molecule [53]. The
sniffing, trailing, and random modes are used to describe these relationships, and each mode has its
own set of parameters. The sniffing mode simulates the capacity of an agent to perceive smells by
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causing the scent molecules to diffuse from a smell source toward the agent throughout the sniffing
process. Using the trailing mode, the agent can simulate the ability to trace a portion of the scent
molecules until the source of the smell molecules is determined. In contrast, the agent uses the random
mode as a strategy to avoid becoming stuck in local minima.

3.15 Seagull Optimization Algorithm (SOA)
The seagull optimization algorithm (SOA) is an algorithm that pulls inspiration from the natural

behavior of seagulls while migrating and attacking prey [37]. In this regard, these behaviors may be
defined in a manner that is closely linked to the objective function that is to be improved. SOA, an
optimization algorithm inspired by biology, starts the study with a randomly generated population.
During position duplication operations, search agents are able to update their positions according to
the best search agent. Migration represents exploration behavior and shows how a group of seagulls
move from one location to another. There are three conditions that a seagull must meet at this stage.
These are avoiding the collisions, moving towards best neighbor’s direction, and remaining close to
the best search agent. The attacking phase represents exploitation behavior. Hunting for seagulls aims
to take advantage of all the experience and experience gained from the search processes in the past.
During migration, seagulls can also change their attack angle from time to time, apart from their speed.
However, they take advantage of their long wingspan and body weight to maintain their high altitude.
Seagulls exhibit spiraling behavior in the air when attacking prey, they have identified.

3.16 Pelican Optimization Algorithm (POA)
The pelican optimization algorithm (POA) is a swarm-based optimization technique that draws

inspiration from the hunting behavior and methods shown by pelicans. In POA, exploration agents
are represented by pelicans that look for sustenance sources. POA is made up of two stages that are
carried out consecutively in each iteration. In the first phase, there is a global objective to which all
pelicans will migrate. This global target is chosen at random inside the issue space at the start of each
cycle. The pelican has two options for mobility. If this goal is more desirable than the pelican’s present
position, the pelican will migrate toward it. Otherwise, the pelican will flee from this location. POA
employs an acceptance-rejection method. The pelican will only relocate if the new place is superior
to its present location. The pelican circles its present location throughout the second phase. Although
this phrase is not always applicable, it might be thought of as a local or neighborhood search. During
this step, a new location is chosen at random inside the local problem space of the pelican. With each
iteration, the diameter of this local issue space rapidly decreases. It indicates that the local issue space
is sufficiently large to begin with, and it may be seen as an exploration. This inquiry, on the other
hand, progresses from investigation to exploitation with each repetition. In addition to the process
of iteration, the current location of the agent has an impact on the problem space at a local level. In
its initial form, the current positioning close to zero restricts the range of the local problem domain.
Similar to the first phase, the pelican only advances toward the new location if the new location is
superior to its current location [46].

3.17 Coati Optimization Algorithm (CA)
The coati optimization algorithm (CA) is a new metaheuristic method that imitates the coati’s

natural behavior when it encounters and flees from predators. The process of modifying the positions
of candidate solutions in the CA is derived from the emulation of two distinct behaviors shown by
coatis in nature. These behaviors include: (i) coatis’ assault method on iguanas, and (ii) coatis’ predator
escape strategy. As a result, the CA population is updated in two stages. The first phase of enhancing
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the coati population in the designated region is shown via a simulation that models their strategies for
targeting iguanas. In this particular strategy, a considerable number of coatis ascend the tree in order
to closely approach an iguana and elicit a startled response. A group of coatis congregates under a
tree, observing the descent of an iguana to the ground. Upon the iguana’s descent, the coatis engage in
aggressive behavior by launching an assault and pursuing the iguana. By using this approach, coatis
demonstrate their ability to travel to different regions within the search area, hence highlighting the
worldwide search capabilities of the COA within the realm of problem-solving. The subsequent phase
of updating the locations of coatis inside the search space is formulated using mathematical modeling
techniques, which take into account the coatis’ inherent behavior while encountering and evading
predators. When a predator initiates an attack on a coati, the coati promptly vacates its position.
Coati’s actions in this approach place it in a secure position near to its present location, indicating the
CA’s exploitation ability to utilize local search. The iteration of a CA concludes when all coordinates
of the coatis in the solution space have been modified according to the results of the first and second
phases. The best solution discovered across all rounds of the method is provided as the result after CA
has finished running [47].

4 Engineering Design Problems and Experimental Results

In this section, the most prevalent design challenges in engineering are stated. To make the
problems more understandable, the mathematical form and definition are provided. The following
are the problems investigated in the study:

• Speed reducer problem

• Tension-compression spring design problem

• Pressure vessel design problem

• Welded beam design problem

• Three-bar truss design problem

• Multiple disk clutch brake design problem

• Himmelblau’s function

• Cantilever beam problem

• Tubular column design problem

• Piston lever

• Robot gripper

• Corrugated bulkhead design problem

These engineering design issues are well recognized in practical applications. In order to identify
the most favorable design, it is often necessary to use an active approach for determining the ideal
parameters. In order to address each issue, some settings (variables) need adjustment. Furthermore,
some limitations are included to guarantee that the variables’ values stay within the designated range.
The specifics of the optimization issue are presented below.

The evaluation of optimization approaches often involves selecting bound-constrained and
common-constrained optimization problems. Each design vector must consistently provide a con-
strained solution to any engineering or optimization problem [54,55]:

lb(j) ≤ x(i,j) ≤ ub(j), j = 1, 2, 3, . . . , n (1)
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where lb(j) and ub(j) are the lower and upper bounds of the problem defined for position x(i,j),
respectively, and n is vector size. In addition, the real-world constrained optimization problem is
typically given as follows [56]:

Minimize, f (x), x = (x1, x2, . . . , xn) (2)

Subject to : gi (x) ≤ 0, i = 1, . . . , n

hj (x) = 0, j = n + 1, . . . , m

The bound-constrained structure incorporates the cost function into the assessment of the
selected optimization process to describe all the stated constrained issues in Eq. (2). The cost function
associated with each infeasible option may be included into the goal function that is being employed.
The determination of the cost function arises from its property of situational homogeneity. The use of
a single helper cost function renders this approach applicable to a diverse array of challenges.

The above-mentioned real-world constrained problems are used to create a benchmark suite. The
benchmark suite includes a total of 12 problems designed from the problems listed above. Table 2
summarizes the specifics of these issues. D denotes the entire decision variables in the problem, h
indicates the number of equality constraints, g denotes the total of inequality constraints, and fmin

represents the best known optimal objective function value.

Table 2: Details of real world constrained engineering design problems

Name D g h f min

Speed reducer 7 11 0 2.9944244658E+03
Tension-compression spring
design (case 1)

3 3 0 1.2665232788E-02

Pressure vessel design 4 4 0 5.8853327736E+03
Welded beam design 4 5 0 1.6702177263E+00
Three-bar truss design problem 2 3 0 2.6389584338E+02
Multiple disk clutch brake
design problem

5 7 0 2.3524245790E-01

Himmelblau’s function 5 6 0 −3.0665538672E+04
Cantilever beam 5 1 0 1.3399576
Tubular column design 2 6 0 26.486361473
Piston lever 4 4 0 8.41269832311
Robot gripper 7 7 0 2.5287918415E+00
Corrugated bulkhead design 4 6 0 6.8429580100808

The experiments are conducted using a computing system equipped with the Windows 11
operating system, 16 GB of RAM, and an Intel (R) Core (TM) i7-10750H CPU (2.60 GHz). The
comparison methods are coded using MATLAB R2021a. The aforementioned issues are inherently
constrained, therefore necessitating the implementation of an external penalty approach mechanism
in order to address them. The maximum number of iterations for all problems is 1000, the number of
populations is 30, and the number of evaluations is chosen as 30000. Algorithm parameters are default
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values found in the literature and are shown in Table 3. To facilitate the analysis of the convergence
behavior of the algorithms under study, the convergence curves, which represent the best fitness values
achieved for each issue, are graphically shown. Each algorithm is subjected to 30 separate experimental
runs. This study compares the best, mean, worst, standard deviation (SD), and Friedman mean rank
(FMR) values. The method that yields the best answer is emphasized in bold to enhance readability.

Table 3: Parameters of employed algorithms

Algorithm Parameter settings

TSO k = 1, z = [0, 2]
EO GP = 0.5, a1 = 2, a2 = 1
GWO a = Linearly decreased from 2 to 0
MFO a = Linearly decreased from −1 to −2
WOA a = Linearly decreased from 2 to

a2 = Linearly decreased from −1 to −2, b = 1
SMA z = 0.03
HHO Eo = (−1, 1)

COA f = Linearly decreased from 2 to 0
COOT R = [−1, 1]
MVO WEP_Max = 1, WEP_Min = 0.2
AOA MOPMax = 1, MOP_Min = 0.2, Alpha = 5, Mu = 0.499
AO alpha = 0.1, delta = 0.1
SCA a = 2
SAO olf = 0.9, K = 0.6, T = 0.95, M = 0.9, Step = 0.02
SOA fc = 1, A = Linearly decreased from 2 to 0
POA –
CA –

4.1 Speed Reducer Problem
This problem is simply a gearbox problem that allows the aircraft engine to rotate at maximum

efficiency [57]. In this problem, the minimum values of the seven decision variables must be optimized
by finding the face width b (x1), the tooth modulus m (x2), the number of teeth on the pinion z (x3), the
length of the first shaft between the bearings l1(x4), the length of the second shaft between the bearings
l2(x5), the diameter of the first shaft d1(x6), and the diameter of the second shaft d2(x7). The schematic
representation of the speed reducer is given in Fig. 1. The aim of the design issue is discovering the
speed reducer with the lowest cost weight. The issue is mathematically represented in the following
manner:

Minimize:

f (x) = 0.7854x2
2x1

(
14.9334x3 − 43.0934 + 3.3333x2

3

) + 0.7854
(
x5x2

7 + x4x2
6

) − 1.508x1

(
x2

7 + x2
6

)
+ 7.477(x3

7 + x3
6) (3)
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Subject to:

g1 (x) = −x1x2
2x3 + 27 ≤ 0 (4)

g2 (x) = −x1x2
2x

2
3 + 397.5 ≤ 0 (5)

g3 (x) = −x2x4
6x3x−3

4 + 1.93 ≤ 0 (6)

g4 (x) = −x2x4
7x3x−3

5 + 1.93 ≤ 0 (7)

g5 (x) = 10x−3
6

√
16.91 × 106 + (745x4x−1

2 x−1
3 )2 − 1100 ≤ 0 (8)

g6 (x) = 10x−3
7

√
157.5 × 106 + (745x5x−1

2 x−1
3 )2 − 850 ≤ 0 (9)

g7 (x) = x2x3 − 40 ≤ 0 (10)

g8 (x) = −x1x−1
2 + 5 ≤ 0 (11)

g9 (x) = x1x−1
2 − 12 ≤ 0 (12)

g10 (x) = 1.5x6 − x4 + 1.9 ≤ 0 (13)

g11 (x) = 1.1x7 − x5 + 1.9 ≤ 0 (14)

with bounds:

0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 2.6 ≤ x1 ≤ 3.6, 5 ≤ x7 ≤ 5.5, 7.3 ≤ x5, x4 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9

Figure 1: Speed reducer problem

Table 4 presents the comparative performance values of several approaches, including TSO, EO,
GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and CA,
on the speed reducer issue. Table 4 displays the optimal, mean, suboptimal, and standard deviation
measurements of the used methodologies. Furthermore, Table 5 presents the choice factors that are
contingent upon the optimal value derived from the outcomes of 30 iterations conducted on this
particular issue using the employed methodologies. Upon examination of Table 4, it becomes apparent
that both EO and MFO exhibit superiority over other approaches in terms of the greatest value.
Furthermore, when considering the average value, EO demonstrates greater success. Furthermore,
Fig. 2 displays the convergence curve of the strategies used for the speed reducer issue.
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Table 4: The statistical outcomes of the methods used for the speed reducer problem

Algorithm Best Mean Worst SD FMR

TSO 3009.168854 399699.6461 1866150.765 597066.8458 15.37
EO 2994.422564 2994.422564 2994.422564 1.12621E-12 1.52
GWO 2999.884112 3006.149462 3014.184087 3.940870538 6.47
MFO 2994.422564 3003.320088 3043.034924 15.1867409 3.28
WOA 3002.230767 3107.084757 3612.31405 108.8572293 10.77
SMA 2994.422746 2994.424409 2994.428914 0.001656383 3.17
HHO 3007.417731 3425.055497 5080.047182 563.1360869 12.47
COA 3048.060533 3144.81531 3200.120506 40.11920307 12.60
COOT 2994.422579 2994.750943 3003.757984 1.673399569 3.37
MVO 3001.692079 3035.025167 3072.59999 16.33049716 8.93
AOA 3080.128866 3160.273461 3222.260728 40.2220024 13.07
AO 3048.786991 3850.139838 5143.275696 592.7613846 15.00
SCA 3061.137019 3114.63376 3199.643275 37.84743803 11.67
SAO 3252.352584 3915.597815 5763.29265 535.425852 15.63
SOA 3010.99658 3032.883533 3060.656495 13.93473393 8.93
POA 2994.424736 3000.035806 3007.515500 5.090249 5.30
COA 2994.555032 3001.492670 3016.723380 6.619445 5.47

Table 5: A comparative analysis of the best optimal solutions to the speed reducer problem

Algorithm Parameters values f min

x1 x2 x3 x4 x5 x6 x7

TSO 3.50151 0.7 17 7.3 8.073032 3.371746 5.288003 3009.168854
EO 3.49999 0.7 17 7.3 7.715319 3.350541 5.286654 2994.422564
GWO 3.500937 0.7 17 7.364591 7.809638 3.356307 5.288191 2999.884112
MFO 3.49999 0.7 17 7.3 7.715319 3.350541 5.286654 2994.422564
WOA 3.499959 0.7 17 7.443682 7.8541 3.351684 5.291651 3002.230767
SMA 3.499991 0.7 17 7.300002 7.715326 3.350541 5.286655 2994.422746
HHO 3.520425 0.7 17 7.38595 7.881842 3.352585 5.286711 3007.417731
COA 3.535505 0.7 17 7.3 8.3 3.428059 5.297065 3048.060533
COOT 3.49999 0.7 17 7.3 7.715319 3.350541 5.286654 2994.422579
MVO 3.500589 0.7 17 7.536276 7.764337 3.364298 5.287189 3001.692079
AOA 3.6 0.7 17 8.3 8.3 3.413136 5.299554 3080.128866
AO 3.531807 0.7 17 7.781691 8.162154 3.399743 5.310019 3048.786991
SCA 3.6 0.7 17 8.195417 8.046403 3.364929 5.300037 3061.137019
SAO 3.50601 0.7 17.19404 8.128777 8.174155 3.645772 5.469817 3252.352584
SOA 3.516004 0.7 17 7.689567 7.84431 3.356036 5.29075 3010.99658

(Continued)
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Table 5 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4 x5 x6 x7

POA 3.134689 0.773 18.56372 7.635233 7.529978 3.082312 5.296658 2994.424736
CA 2.779031 0.732381 23.68085 7.30957 7.508113 3.72635 5.404868 2994.555032

Figure 2: Convergence curve of the methods used on the speed reducer problem

4.2 Tension-Compression Spring Design Problem (Case 1)
The tension-compression spring design problem is a problem defined by Arora [58] which aims

to create a spring design with the least amount of weight possible. This minimization problem,
schematically illustrated in Fig. 3, has certain limitations such as cut-off voltage, ripple frequency
and minimum deviation. The tension-compression spring problem has three decision variables: wire
diameter d (x1), average coil diameter D (x2), and number of active coils N (x3). This problem is
mathematically represented as follows:

Minimize:

f (x) = (x3 + 2) x2
1x2 (15)

Subject to:

g1 (x) = 1 − x3
2x3

71785x4
1

≤ 0 (16)

g2 (x) = 4x2
2 − x1x2

12566(x2x3
1−x4

1)
+ 1

5108x2
1

≤ 0 (17)

g3 (x) = 1 − 140.45x1

x3
2x3

≤ 0 (18)
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g4 (x) = x1 + x2

1.5
− 1 ≤ 0 (19)

with bounds:

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.0

Figure 3: Tension-compression spring design problem

Table 6 presents the comparative values of the performance results of several approaches, namely
TSO, EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA,
POA, and CA, on the tension-compression issue. Table 6 displays the optimal, mean, suboptimal,
and standard deviation values of the used methodologies. Furthermore, Table 7 presents the choice
factors that are contingent upon the optimal value derived from the outcomes of 30 iterations
conducted on this particular issue using the employed methodologies. Upon examination of Table 6,
it becomes evident that CA outperforms other approaches in terms of the highest value, but POA
has more performance when evaluated based on the average value. Furthermore, Fig. 4 illustrates the
convergence graph of the approaches used for the tension-compression issue.

Table 6: The statistical outcomes of the methods used for the tension-compression spring design
problem (case 1)

Algorithm Best Mean Worst SD FMR

TSO 0.01280243 0.013419896 0.014640884 0.000546907 10.77
EO 0.012667047 0.012986249 0.014034056 0.000332122 7.07
GWO 0.012689887 0.012754846 0.013321233 0.000114098 4.80
MFO 0.012665686 0.013483807 0.017773158 0.001262609 8.67
WOA 0.012672465 0.013835231 0.015996637 0.000988024 10.97
SMA 0.012665885 0.013381332 0.015753456 0.000933324 8.03
HHO 0.012667145 0.013340624 0.016382034 0.000827094 9.00
COA 0.012735806 0.01340736 0.015791487 0.000755935 10.00
COOT 0.012665238 0.013331169 0.016001858 0.000906209 8.07
MVO 0.012803582 0.017131704 0.018147631 0.001737585 15.27
AOA 0.013142152 0.014388631 0.030631821 0.004325386 11.27
AO 0.013684295 0.016522416 0.025325732 0.002220195 15.33
SCA 0.012741025 0.013037944 0.013209119 0.000144589 8.50
SAO 0.013644472 0.018418919 0.026253801 0.002940077 15.93
SOA 0.01272481 0.012841598 0.014484334 0.000310579 6.03
POA 0.012665237 0.012668098 0.012690486 0.000005677 1.47
COA 0.012665233 0.012672088 0.012712224 0.000013390 1.83
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Table 7: A comparative analysis of the best optimal solutions to the tension-compression spring design
problem

Algorithm Parameters values f min

x1 x2 x3

TSO 0.054349629 0.424139632 8.218576613 0.01280243
EO 0.052005294 0.364373243 10.85386669 0.012667047
GWO 0.051729218 0.357405988 11.26857001 0.012689887
MFO 0.051846967 0.360528432 11.0690043 0.012665686
WOA 0.051063365 0.341850846 12.21692125 0.012672465
SMA 0.051519654 0.352654671 11.53131506 0.012665885
HHO 0.052013772 0.364579812 10.84249563 0.012667145
COA 0.05 0.317414002 14.04945763 0.012735806
COOT 0.05170472 0.357094576 11.26690843 0.012665238
MVO 0.05 0.316143553 14.199707 0.012803582
AOA 0.05 0.312114718 14.84271945 0.013142152
AO 0.053425204 0.395649521 10.11767744 0.013684295
SCA 0.052092338 0.365517089 10.84543941 0.012741025
SAO 0.050385213 0.316156139 15 0.013644472
SOA 0.05 0.317362481 14.03820349 0.01272481
POA 0.528153 0.934051 6.921844 0.012665237
CA 0.710522 1.026576 3.942698 0.012665233

Figure 4: Convergence curve of the methods used on the tension-compression spring design problem

4.3 Pressure Vessel Design Problem
The primary aim of this challenge is to optimize the cost associated with welding, as well as the

expenses related to materials and the creation process of a vessel [59]. This problem has four constraints
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that must be satisfied, and the objective function is calculated with respect to four variables: shell
thickness (x1), head thickness (x2), inner radius (x3), and length (x4) without including vessel height.
The schematic structure of the pressure vessel design problem is shown in Fig. 5. This problem is
mathematically represented as follows:

Minimize:

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (20)

Subject to:

g1 (x) = −x1 + 0.0193x3 ≤ 0 (21)

g2 (x) = −x2 + 0.00954x3 ≤ 0 (22)

g3 (x) = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0 (23)

g4 (x) = x4 − 240 ≤ 0 (24)

with bounds:

0.51 ≤ x1, x2 ≤ 99.49, 10 ≤ x3, x4 ≤ 200

Figure 5: Pressure vessel

Table 8 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA,
and CA, on the pressure vessel design issue. Table 8 displays the optimal, mean, suboptimal, and
standard deviation of the methodologies used. Furthermore, Table 9 presents the choice factors that
are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on this
particular issue using the employed methodologies. Upon examination of Table 8, it becomes evident
that EO, POA, and CA exhibit superiority over other approaches in terms of the greatest value.
Conversely, GWO has more success when evaluated based on the average value. Furthermore, Fig. 6
displays the convergence graph of the approaches used for the pressure vessel issue.
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Table 8: The statistical outcomes of the methods used for the pressure vessel design problem

Algorithm Best Mean Worst SD FMR

TSO 6879.866741 8704.301853 13069.25436 1582.300611 13.93
EO 6058.71988 6518.793086 7544.492518 512.0568854 6.68
GWO 6058.801906 6219.805205 7365.851023 356.5801053 3.63
MFO 6058.72346 6722.668915 7544.492518 508.6435023 8.25
WOA 6192.752799 8192.085505 11684.79247 1274.125452 13.47
SMA 6058.719892 6596.192699 7544.492519 549.8023233 7.10
HHO 6091.615788 6792.936176 7544.492518 365.7904697 9.30
COA 6340.732653 7846.678347 8548.44731 447.1938273 13.70
COOT 6058.720225 6406.088039 7352.612207 315.2009216 6.10
MVO 6091.584113 6741.27325 7419.29367 421.1743251 8.80
AOA 7177.685796 10134.5141 21033.80706 3059.849954 15.20
AO 6060.226707 6572.408065 7547.794432 474.7811046 7.63
SCA 6192.682512 6929.151724 8752.385245 588.2808671 9.70
SAO 8794.883762 13888.48817 21019.53969 3282.14935 16.73
SOA 6059.667071 6358.863021 7546.780769 466.1025508 5.50
POA 6058.719878 6224.114264 7273.278824 284.930973 3.33
CA 6058.719878 6249.526308 7273.278824 303.558052 3.93

Table 9: A comparative analysis of the best optimal solutions to the pressure vessel design problem

Algorithm Parameters values f min

x1 x2 x3 x4

TSO 1.0625 0.5 50.60431861 93.67943093 6879.866741
EO 0.8125 0.4375 42.11479983 176.4340461 6058.71988
GWO 0.8125 0.4375 42.11775397 176.3995752 6058.801906
MFO 0.8125 0.4375 42.11575702 176.4221977 6058.72346
WOA 0.8125 0.4375 41.04114852 190.1938826 6192.752799
SMA 0.8125 0.4375 42.11511876 176.4300983 6058.719892
HHO 0.875 0.4375 45.32724166 140.3511195 6091.615788
COA 0.8125 0.4375 42.23592297 184.6334807 6340.732653
COOT 0.8125 0.4375 42.1150819 176.4305544 6058.720225
MVO 0.875 0.4375 45.33090975 140.3280126 6091.584113
AOA 0.8125 0.6875 41.09783997 200 7177.685796
AO 0.8125 0.4375 42.10333757 176.6195632 6060.226707
SCA 0.8125 0.4375 42.02127579 182.8885334 6192.682512
SAO 1.0625 0.875 52.572008 86.52438795 8794.883762
SOA 0.8125 0.4375 42.12719613 176.2965619 6059.667071

(Continued)
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Table 9 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4

POA 3.4375 2.0625 193.1607 36.37869 6058.719878
CA 4.5625 0.25 67.12759 188.4114 6058.719878

Figure 6: Convergence curve of the methods used on the pressure vessel design problem

4.4 Welded Beam Design Problem
The primary aim of the welded beam design challenge is to optimize the cost of producing a beam

while adhering to certain limitations [5]. Fig. 7 depicts a welded beam structure comprised of beam
A and the requisite weld to join this beam to object B. The problem includes four decision variables
and five nonlinear inequality constraints. These design parameters are h (x1), l (x2), t (x3) and b (x4)
representing the weld thickness, weld joint length, element width and element thickness, respectively.
This problem is mathematically represented as follows:

Minimize:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (25)

Subject to:

g1 (x) = τ (x) − τmax ≤ 0 (26)

g2 (x) = σ (x) − σmax ≤ 0 (27)

g3 (x) = x1 − x4 ≤ 0 (28)

g4 (x) = 1.10471x2
1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0 (29)

g5 (x) = 0.125 − x1 ≤ 0 (30)
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g6 (x) = δ (x) − δmax ≤ 0 (31)

g7 (x) = P − Pc(x) ≤ 0 (32)

where,

τ (x) =
√

(τ ′)2 + (2τ ′τ ′′)
x2

2R
+ (τ ′′)2, τ ′ = 6000√

2x1x2

, τ ′′ = MR
J

, M = 6000
(

14.0 + x2

2

)
,

R =
√

x2
2

4
+

(
x1 + x3

2

)2

J =
{

x1x2

√
2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

, σ (x) = 504000
x4x2

3

, δ (x) = 2.1952
x4x3

3

,

Pc (x) = 4.013E
√

x2
3x6

4
36

196

⎛
⎝1 −

x3

√
E

4G

28

⎞
⎠

Pc (x) = 4.013E
√

x2
3x6

4
36

196

⎛
⎝1 −

x3

√
E

4G

28

⎞
⎠

τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in, E = 30 × 106 psi, G = 12 × 106 psi

with bounds:

0.125 ≤ x1 ≤ 2, 0.1 ≤ x4 ≤ 2 ve 0.1 ≤ x2, x3 ≤ 10

Figure 7: Schematic representation of welded beam

Table 10 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA,
and CA, on the welded beam design issue. Furthermore, Table 11 presents the choice factors that
are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on
this particular issue using the employed methodologies. Upon examination of Table 10, it becomes
evident that EO and CA exhibit superiority over other ways in terms of greatest value, whereas POA
demonstrates superiority over other methods in terms of average value. Furthermore, Fig. 8 illustrates
the convergence graph of the approaches used for the welded beam design issue.



CMES, 2024, vol.139, no.1 1063

Table 10: The statistical outcomes of the methods used for the welded beam design problem

Algorithm Best Mean Worst SD FMR

TSO 1.716054986 2.546468795 3.536807483 0.62365212 14.83
EO 1.6702177 1.670408299 1.675227413 0.000899033 1.93
GWO 1.671333735 1.673168037 1.678231819 0.001793212 5.37
MFO 1.670217701 1.722023637 1.975024976 0.073257707 6.80
WOA 1.73679486 2.170615908 4.197028463 0.530483963 13.63
SMA 1.670333603 1.674309181 1.726803703 0.010036131 5.03
HHO 1.690460887 1.891009449 2.227283322 0.13871246 12.00
COA 1.694398105 1.797886006 1.844566653 0.035111486 10.83
COOT 1.670482669 1.697798136 1.820191362 0.037171837 6.83
MVO 1.672676563 1.699051309 1.798001792 0.030387746 7.77
AOA 1.844129548 2.199481858 2.477850773 0.185303016 15.00
AO 1.725270134 1.953209489 2.220842457 0.122797404 13.30
SCA 1.726200239 1.804224071 1.874302512 0.040114991 11.00
SAO 1.918621628 3.204991211 6.074979783 0.876216532 16.47
SOA 1.679461577 1.690710091 1.754063757 0.014743169 7.63
POA 1.670217701 1.670271663 1.671045069 0.000156738 1.97
CA 1.670217700 1.670343953 1.671357022 0.000253049 2.60

Table 11: A comparative analysis of the best optimal solutions to the welded beam design problem

Algorithm Parameters values f min

x1 x2 x3 x4

TSO 0.177884 3.819348 9.111658 0.202596 1.716054986
EO 0.198832 3.337364 9.192023 0.198832 1.6702177
GWO 0.198818 3.339296 9.191158 0.198966 1.671333735
MFO 0.198832 3.337364 9.192024 0.198832 1.670217701
WOA 0.181394 3.819648 9.424811 0.197769 1.73679486
SMA 0.198723 3.339432 9.192039 0.198833 1.670333603
HHO 0.185601 3.604042 9.199277 0.199369 1.690460887
COA 0.194345 3.404508 9.358266 0.198105 1.694398105
COOT 0.198834 3.33681 9.193963 0.198834 1.670482669
MVO 0.197168 3.372209 9.193376 0.198846 1.672676563
AOA 0.16434 4.163106 10 0.196826 1.844129548
AO 0.183829 3.589614 9.445074 0.199088 1.725270134
SCA 0.174972 3.942854 9.143209 0.201813 1.726200239
SAO 0.159253 4.713681 10 0.198437 1.918621628
SOA 0.193833 3.440986 9.192654 0.199217 1.679461577

(Continued)



1064 CMES, 2024, vol.139, no.1

Table 11 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4

POA 0.888043 6.126506 2.058919 0.910335 1.670217701
CA 0.749239 6.679802 8.02718 0.969918 1.670217700

Figure 8: Convergence curve of the methods used on the welded beam design problem

4.5 Three-Bar Truss Design Problem
This problem is a structural optimization problem in civil engineering. The main objective of this

problem introduced by Nowacki is to minimize the volume of the three-bar truss by adjusting the
cross-sectional areas (x1 and x2), taking into account the stress (σ ) on each of the truss members [27].
The value ranges that these values can take are 0 ≤ x1, x2 ≤ 1. The mathematical definition of this
problem, whose schematic representation is given in Fig. 9. This problem is mathematically represented
as follows:

Minimize:

f (x) = l
(

x2 + 2
√

2x1

)
(33)

Subject to:

g1 (x) = x2

2x2x1 + √
2x2

1

P − σ ≤ 0 (34)

g2 (x) = x2 + √
2x1

2x2x1 + √
2x2

1

P − σ ≤ 0 (35)

g3 (x) = 1

x1 + √
2x2

P − σ ≤ 0 (36)
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where,

l = 100, P = 2, and σ = 2

with bounds:

0 ≤ x1, x2 ≤ 1

Figure 9: Three-bar truss design

Table 12 presents the comparative values of the performances of several approaches, including
TSO, EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA,
and CA, on the three-bar truss design issue. Furthermore, Table 13 presents the choice factors that
are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on this
particular issue using the employed methodologies. Upon examination of Table 12, it becomes evident
that EO, COOT, POA, and CA exhibit superiority over other approaches in terms of the greatest
value. Furthermore, when considering the average value, POA and CA demonstrate greater success.
Furthermore, Fig. 10 illustrates the convergence graph of the methodologies used in addressing the
three-bar truss design issue.

Table 12: The statistical outcomes of the methods used for the three-bar truss design problem

Algorithm Best Mean Worst SD FMR

TSO 263.8962383 264.4652982 270.4725405 1.289643914 10.40
EO 263.8954081 263.8954132 263.8954469 8.56826E-06 3.70
GWO 263.8954858 263.8976257 263.9054651 0.002128135 5.97
MFO 263.8954304 263.9483466 264.4238545 0.10154114 8.30
WOA 263.8959272 264.9041197 268.7812754 1.309740127 12.37
SMA 265.2278409 269.8360947 272.5174213 1.924796679 16.03
HHO 263.8959527 263.981987 264.4710671 0.142168454 9.20
COA 263.9057513 264.0519785 264.3448934 0.115646492 10.80
COOT 263.8954081 263.8954747 263.8962154 0.00018314 3.35
MVO 263.8954144 263.8963591 263.8986298 0.000930608 5.57
AOA 263.9974295 265.4147112 282.8427125 3.29158132 14.15
AO 263.9107145 264.1310168 264.5574435 0.158136239 11.83
SCA 263.9012431 264.6511963 282.8426491 3.379030311 10.93

(Continued)
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Table 12 (continued)

Algorithm Best Mean Worst SD FMR

SAO 264.996317 274.5928341 308.6800351 10.15582073 16.17
SOA 263.8985813 268.9840652 282.8427125 8.357099664 11.22
POA 263.8954081 263.8954081 263.8954081 0.0000000 1.53
CA 263.8954081 263.8954081 263.8954081 0.0000000 1.48

Table 13: A comparative analysis of the best optimal solutions to the three-bar truss design problem

Algorithm Parameters values f min

x1 x2

TSO 0.788658774 0.40827384 263.8962383
EO 0.788674018 0.408242743 263.8954081
GWO 0.788350591 0.409157785 263.8954858
MFO 0.788498637 0.408739011 263.8954304
WOA 0.787833323 0.410625778 263.8959272
SMA 0.81669173 0.342325367 265.2278409
HHO 0.787812977 0.410683581 263.8959527
COA 0.790361227 0.40357838 263.9057513
COOT 0.788672536 0.408246935 263.8954081
MVO 0.788580396 0.408507606 263.8954144
AOA 0.799935949 0.377413758 263.9974295
AO 0.792467196 0.397589981 263.9107145
SCA 0.79032088 0.403647416 263.9012431
SAO 0.799979814 0.387278564 264.996317
SOA 0.790744046 0.402416516 263.8985813
POA 0.613176 0.047329 263.8954081
CA 0.303088 0.936761 263.8954081

4.6 Multiple Disk Clutch Brake Design Problem
The primary aim of this topic is to decrease the bulk of a clutch braking system consisting of

numerous disks. Inner radius (x1), outer radius (x2), disk thickness (x3), force of actuators (x4), and
number of frictional surfaces (x5) are the five integer choice variables employed in this problem [27].
There are nine nonlinear constraints in this problem. Fig. 11 depicts a schematic depiction of the issue.
The issue is mathematically represented in the following manner:

Minimize:

f (x) = π ∗ (
x2

2 − x2
1

) ∗ x3(x5 + 1)ρ (37)
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Subject to:

g1 (x) = −Pmax − Prz ≤ 0 (38)

g2 (x) = PrzVsr − Vsr,maxPmax ≤ 0 (39)

g3 (x) = ΔR + x1 − x2 ≤ 0 (40)

g4 (x) = −Lmax + (x5 + 1)(x3 + δ ≤ 0 (41)

g5 (x) = sMs − Mh ≤ 0 (42)

g6 (x) = T ≥ 0 (43)

g7 (x) = −Vsr,max + Vsr ≤ 0 (44)

g8 (x) = T − Tmax ≤ 0 (45)

where,

Mh = 2
3
μx4x5

x3
2 − x3

1

x2
2 − x2

1

N.mm, ω =
πn
30

rad

s
, A = π

(
x2

2 − x2
1

)
mm2, Prz =

x4

A
N

mm2
, Vsr =

πRsrn
30

mm

s
,

Rsr = 2
3

x3
2 − x3

1

x2
2x2

1

mm, T = Izω

Mh + Mf

�R = 20 mm, Lmax = 30 mm, μ = 0.6, Vsr,max = 10 m/s, δ = 0.5 mm, s = 1.5, Tmax = 15 s, n = 250 rpm,

Iz = 55 kg.m2, Ms = 40 Nm, Mf = 3 Nm, and Pmax = 1

with bounds:

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9

Figure 10: Convergence curve of the methods used on the three-bar truss design problem
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Table 14 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and
CA, on the multiple disc clutch brake design issue. Furthermore, Table 15 presents the choice factors
that are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on
this particular issue using the employed methodologies. Upon examination of Table 14, it becomes
evident that EO, MFO, WOA, SMA, HHO, COOT, POA, and CA exhibit superiority over other
approaches in terms of the best value. Furthermore, when considering the average value, EO, HHO,
POA, and CA demonstrate greater success. Furthermore, Fig. 12 displays the convergence graph of
the strategies used for the multiple disc clutch brake design issue.

Figure 11: Multiple disk clutch brake design problem

Table 14: The statistical outcomes of the methods used for the multiple disk clutch brake design
problem

Algorithm Best Mean Worst SD FMR

TSO 0.235247188 0.235301639 0.235512629 5.92468E-05 10.63
EO 0.235242458 0.235242458 0.235242458 1.66533E-16 2.82
GWO 0.235243674 0.235269454 0.235367508 2.9044E-05 9.77
MFO 0.235242458 0.235242458 0.235242458 1.39792E-16 2.92
WOA 0.235242458 0.23524247 0.235242629 3.29813E-08 7.37
SMA 0.235242458 0.2352425 0.235242764 6.85923E-08 7.60
HHO 0.235242458 0.235242458 0.235242458 1.00841E-16 4.55
COA 0.235251931 0.235623716 0.236440761 0.000328328 12.73
COOT 0.235242458 0.235242459 0.235242485 4.79376E-09 5.12
MVO 0.235251002 0.23530991 0.235494147 5.82208E-05 10.90
AOA 0.235613936 0.239784504 0.253856183 0.006455082 15.20
AO 0.2355855 0.236635663 0.241295448 0.001083075 15.03
SCA 0.235257655 0.236260012 0.239379612 0.000916363 13.93
SAO 0.256485329 0.418898864 0.558433209 0.066573468 17.00

(Continued)
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Table 14 (continued)

Algorithm Best Mean Worst SD FMR

SOA 0.235247016 0.235459629 0.236194322 0.000233995 11.80
POA 0.235242458 0.235242458 0.235242458 0.000000000 2.82
CA 0.235242458 0.235242458 0.235242458 0.000000000 2.82

Table 15: A comparative analysis of the best optimal solutions to the multiple disk clutch brake design
problem

Algorithm Parameters values f min

x1 x2 x3 x4 x5

TSO 69.99954044 90 1 871.2362442 2 0.235247188
EO 70 90 1 707.2368619 2 0.235242458
GWO 69.999836 90 1 152.2987899 2 0.235243674
MFO 70 90 1 958.6228265 2 0.235242458
WOA 69.99999994 90 1 1000 2 0.235242458
SMA 69.99999859 90 1 3.854620109 2 0.235242458
HHO 70 90 1 579.8999954 2 0.235242458
COA 69.99907953 90 1 1.103077777 2 0.235251931
COOT 70 90 1 859.8058151 2 0.235242458
MVO 69.99916981 90 1 999.8337472 2 0.235251002
AOA 70.01155738 90.0370556 1 1000 2 0.235613936
AO 69.96666064 90 1 668.7072249 2 0.2355855
SCA 69.99852333 90 1 1000 2 0.235257655
SAO 77.03512282 97.07407812 1 383.959645 2 0.256485329
SOA 69.99955715 90 1 965.9255451 2 0.235247016
POA 62.32327 94.44017 2.776293 659.5425 4.399259 0.235242458
CA 60.75571 108.0781 2.612441 321.4522 8.080696 0.235242458

4.7 Himmelblau’s Function
The issue proposed by Himmelblau serves as a widely used benchmark problem for the analysis

of nonlinear constrained optimization methods. This issue consists of a set of five variables and six
nonlinear constraints. The issue is mathematically represented in the following manner.

Minimize:

f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (46)

Subject to:

g1 (x) = −G1 ≤ 0 (47)
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g2 (x) = G1 − 92 ≤ 0 (48)

g3 (x) = 90 − G2 ≤ 0 (49)

g4 (x) = G2 − 110 ≤ 0 (50)

g5 (x) = 20 − G3 ≤ 0 (51)

g6 (x) = G3 − 25 ≤ 0 (52)

where,

G1 = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

G2 = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 − 0: 0021813x2
3

G1 = 9.300961 + 0.0047026x3x5 + 0.00125447x1x3 − 0.0019085x3x4

with bounds:

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3, x4, x5 ≤ 45

Figure 12: Convergence curve of the methods used on the multiple disk clutch design problem

Table 16 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA,
and CA, on Himmelblau’s function issue. Furthermore, Table 17 presents the choice factors that
are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on
this particular issue using the employed methodologies. Upon examination of Table 16, it becomes
apparent that EO, MFO, SMA, COOT, POA, and CA exhibit superiority over other approaches in
terms of the greatest value. Additionally, SMA demonstrates greater success when evaluated based
on the average value. Furthermore, Fig. 13 displays the convergence graph of the strategies used for
solving Himmelblau’s function issue.



CMES, 2024, vol.139, no.1 1071

Table 16: The statistical outcomes of the methods used for the Himmelblau’s function

Algorithm Best Mean Worst SD FMR

TSO −30632.46188 −30386.82957 −29753.31028 207.7208276 12.37
EO −30665.55912 −30665.55912 −30665.55912 1.62288E-11 2.65
GWO −30665.12066 −30660.90023 −30656.45398 2.430583688 7.00
MFO −30665.55912 −30660.83703 −30560.13316 19.23734071 2.93
WOA −30610.82885 −29938.37317 −29522.34584 232.4049417 15.30
SMA −30665.55912 −30665.55910 −30665.55902 2.19388E-05 5.63
HHO −30660.54681 −30570.18237 −30249.66843 123.1622639 9.93
COA −30648.19157 −30443.71357 −30199.17052 104.3200577 12.43
COOT −30665.55912 −30665.55742 −30665.52782 0.006229751 4.93
MVO −30662.88669 −30532.84249 −30174.63609 114.3691665 10.87
AOA −30627.87236 −29647.40327 −29130.41487 351.1225784 16.10
AO −30646.13075 −30510.79641 −30254.06331 104.7187249 11.40
SCA −30625.43612 −30487.51895 −30254.36315 90.87025306 11.70
SAO −30224.24522 −29764.05291 −29434.89999 231.1897481 16.03
SOA −30662.92388 −30630.3406 −30483.17315 33.77070124 8.63
POA −30665.55912 −30665.55911 −30665.55894 0.00003 2.78
CA −30665.55912 −30665.55912 −30665.55912 0.00000 2.30

Table 17: A comparative analysis of the best optimal solutions to the Himmelblau’s function

Algorithm Parameters values f min

x1 x2 x3 x4 x5

TSO 78 33 30.03659921 44.19390758 37.07924883 −30632.46188
EO 78 33 29.99511433 45 36.77588429 −30665.55912
GWO 78 33 29.99728969 45 36.77219738 −30665.12066
MFO 78 33 29.99511434 45 36.77588429 −30665.55912
WOA 78 33 30.06458145 43.34405862 37.27272535 −30610.82885
SMA 78 33 29.99511546 45 36.77588291 −30665.55912
HHO 78 33 30.02118597 44.98433631 36.72447873 −30660.54681
COA 78 33 30.0732883 45 36.65666221 −30648.19157
COOT 78 33 29.99511433 45 36.77588429 −30665.55912
MVO 78.01538223 33.01207678 30.00686017 45 36.74166225 −30662.88669
AOA 78 33 30.22256747 45 36.22854345 −30627.87236
AO 78 33.02480065 30.08903458 44.8996988 36.61041061 −30646.13075
SCA 78 33.21663991 30.23023995 45 36.22779393 −30625.43612
SAO 79.20636734 33 31.68999069 42.44374862 33.74096769 −30224.24522
SOA 78 33 30.007539 45 36.75534739 −30662.92388

(Continued)
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Table 17 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4 x5

POA 87.47638 37.11719 30.29814 29.01444 34.208 −30665.55912
CA 85.56589 33.91255 30.06284 44.55554 37.89919 −30665.55912

Figure 13: Convergence curve of the methods used on the Himmelblau’s Function

4.8 Cantilever Beam Problem
A cantilever beam design problem is a common optimization problem faced in the area of

engineering. In this problem, the minimum values of five choice variables x1, x2, x3, x4, x5 must be found
[28]. All variables provided are positive integers that belong to predetermined intervals. The schematic
representation of the cantilever beam design problem is shown in Fig. 14. This design problem aims to
find the minimum cost weight of the cantilever beam. The issue is mathematically represented in the
following manner.

Minimize:

f (x) = 0.6224(x1 + x2 + x3 + x4 + x5) (53)

Subject to:

g (x) = 60
x3

1

+ 27
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

− 1 ≤ 0 (54)

with bounds:

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

Table 18 presents the comparative values of the performances of several approaches, including
TSO, EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA,
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and CA, on the cantilever beam design issue. Furthermore, Table 19 presents the choice factors that
are contingent upon the optimal value derived from the outcomes of 30 iterations conducted on this
particular issue using the employed methodologies. Upon examination of Table 18, it becomes evident
that the CA technique exhibits superiority over other ways in terms of greatest value, while the POA
approach demonstrates superiority over other methods in terms of average value. Furthermore, Fig. 15
displays the convergence curve of the strategies used in the cantilever beam design issue.

Figure 14: Cantilever beam

Table 18: The statistical outcomes of the methods used for the cantilever beam design problem

Algorithm Best Mean Worst SD FMR

TSO 1.3808707 1.541428057 1.850529526 0.091666864 14.70
EO 1.339957787 1.339966064 1.339995913 8.27917E-06 1.47
GWO 1.339966023 1.340019779 1.340214936 4.85162E-05 3.63
MFO 1.340025322 1.340847969 1.342240497 0.000574436 7.83
WOA 1.355727617 1.48076134 1.744840151 0.101969482 14.10
SMA 1.339965208 1.34016411 1.340754168 0.000157703 5.17
HHO 1.340774991 1.342737909 1.346081888 0.001413135 10.27
COA 1.349655902 1.378232115 1.415968514 0.015606172 12.57
COOT 1.339993404 1.340515489 1.341698811 0.000404625 6.90
MVO 1.340107417 1.340557897 1.3412843 0.000348472 7.07
AOA 1.416490577 2.611250407 5.635836036 1.06543395 16.17
AO 1.340409794 1.343149904 1.347341023 0.00150102 10.33
SCA 1.354050532 1.389569289 1.427391273 0.02153387 12.77
SAO 1.560583449 5.787432723 10.70600435 2.740561266 16.70
SOA 1.340122039 1.340921536 1.342383254 0.000666399 8.10
POA 1.339958155 1.339984347 1.340036022 0.000024296 2.50
CA 1.339957392 1.339989731 1.340061639 0.000026726 2.73

Table 19: A comparative analysis of the best optimal solutions to the cantilever beam design problem

Algorithm Parameters values f min

x1 x2 x3 x4 x5

TSO 5.670155785 6.565312011 4.438323127 3.058677027 2.396870184 1.3808707

(Continued)
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Table 19 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4 x5

EO 6.009289686 5.31362623 4.495212338 3.502169327 2.153385515 1.339957787
GWO 6.021199168 5.308142494 4.490878061 3.500059078 2.153535662 1.339966023
MFO 5.982614347 5.350053873 4.500958815 3.497849413 2.143288223 1.340025322
WOA 5.714239494 5.117700403 4.757927854 3.465958349 2.670577941 1.355727617
SMA 6.007546137 5.307390778 4.507549834 3.503500314 2.14779716 1.339965208
HHO 6.072162327 5.412647819 4.49417035 3.423292247 2.084505887 1.340774991
COA 5.90969382 5.029028706 4.560689666 3.724153518 2.405535284 1.349655902
COOT 6.008751259 5.322951972 4.506063177 3.475725155 2.160761628 1.339993404
MVO 6.051023626 5.292876108 4.520661102 3.452340484 2.159179081 1.340107417
AOA 5.356286396 6.48053284 4.297025888 4.562178276 2.004146109 1.416490577
AO 6.123160098 5.244389814 4.453868547 3.527086297 2.132421426 1.340409794
SCA 6.634403914 5.010629598 4.321109865 3.539258349 2.194126028 1.354050532
SAO 4.999434962 5.003299123 4.999791919 5.000239438 5.006584696 1.560583449
SOA 6.066732579 5.287415377 4.487803249 3.481966957 2.152396558 1.340122039
POA 45.79272 74.26591 74.93475 69.57448 76.50655 1.339958155
CA 78.03137 23.95073 64.59176 63.55044 5.513643 1.339957392

Figure 15: Convergence curve of the methods used on the cantilever beam problem

4.9 Tubular Column Design Problem
Fig. 16 shows an example of how to construct a uniform tubular column to handle a compressive

load of P = 2.500 kgf for the lowest possible cost. The material used in the column has an
elasticity modulus (E) of 0.85 × 106 kgf/cm2, a yield stress (σy) of 500 kgf/cm2, and a density (ρ) of
0.0025 kgf/cm3. The column’s length (L) is 250 cm. The stress in the column should be smaller than
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the yield stress (constraint g1) and the buckling stress (constraint g2). The column’s mean diameter is
limited between 2 and 14 cm (constraints g3 and g4), because thicknesses greater than 0.2–0.8 cm are
not commercially accessible (constraint g5 and g6). The column’s cost includes both construction costs
and material [28]. It is assumed to be the objective function. The following is the optimization model
for this problem:

Minimize:

f (d, t) = 9.8dt + 2d (55)

Subject to:

g1 = P
πdtσy

− 1 ≤ 0 (56)

g2 = 8PL2

π 3Edt (d2 + t2)
− 1 ≤ 0 (57)

g3 = 2.0
d

− 1 ≤ 0 (58)

g4 = d
14

− 1 ≤ 0 (59)

g5 = 0.2
t

− 1 ≤ 0 (60)

g6 = t
0.8

− 1 ≤ 0 (61)

Figure 16: Tubular column design
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Table 20 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and
CA, in relation to the tubular column design issue. Furthermore, Table 21 presents the choice factors
that are contingent upon the optimal value obtained from the outcomes of 30 iterations conducted
on this particular issue using the employed methodologies. Upon examination of Table 20, it becomes
evident that EO, MFO, COOT, POA, and CA exhibit superiority over other ways in terms of the best
value. Furthermore, when evaluated based on the average value, EO, MFO, POA, and CA demonstrate
greater success. Furthermore, Fig. 17 displays the convergence graph of the strategies used in solving
the tubular column design issue.

Table 20: The statistical outcomes of the methods used for the tubular column design problem

Algorithm Best Mean Worst SD FMR

TSO 26.48723538 26.52215446 26.71670925 0.047627405 10.03
EO 26.48636047 26.48636047 26.48636047 9.66443E-15 2.25
GWO 26.48669444 26.48898613 26.4923826 0.001406003 7.80
MFO 26.48636047 26.48636047 26.4863605 8.49963E-09 4.23
WOA 26.49142814 26.71389042 27.45916398 0.227930742 13.33
SMA 26.48636253 26.48644974 26.48677412 0.000106177 6.00
HHO 26.48817488 26.53351021 26.6437574 0.041042248 10.73
COA 26.51914471 26.61126269 26.73052204 0.064046766 13.07
COOT 26.48636047 26.4863627 26.48638274 4.88377E-06 4.67
MVO 26.48693664 26.48836793 26.49001498 0.000941322 7.40
AOA 26.97263461 27.88226718 28.71081678 0.540678369 16.87
AO 26.51558685 26.64085432 27.01857854 0.113082598 13.23
SCA 26.54809579 26.62667613 26.7792609 0.056449013 13.63
SAO 26.58472642 27.14467325 28.46629505 0.498784512 15.67
SOA 26.49154645 26.51134498 26.53977444 0.012814277 10.23
POA 26.48636047 26.48636047 26.48636047 0.00000000 1.97
CA 26.48636047 26.48636047 26.48636047 0.00000000 1.88

Table 21: A comparative analysis of the best optimal solutions to the tubular column design problem

Algorithm Parameters values f min

x1 x2

TSO 5.452278337 0.291633911 26.48723538
EO 5.452181285 0.291626342 26.48636047
GWO 5.452331108 0.29161899 26.48669444
MFO 5.452181287 0.291626342 26.48636047
WOA 5.450793798 0.291847411 26.49142814

(Continued)



CMES, 2024, vol.139, no.1 1077

Table 21 (continued)

Algorithm Parameters values f min

x1 x2

SMA 5.45218243 0.291626231 26.48636253
HHO 5.451684151 0.291705525 26.48817488
COA 5.453818274 0.292090964 26.51914471
COOT 5.452181285 0.291626342 26.48636047
MVO 5.452450386 0.291612678 26.48693664
AOA 5.32711782 0.312578548 26.97263461
AO 5.44908817 0.292455043 26.51558685
SCA 5.451693783 0.292826204 26.54809579
SAO 5.463051474 0.292477332 26.58472642
SOA 5.453665515 0.291588485 26.49154645
POA 7.706642 0.767859 26.48636047
CA 4.573024 0.633764 26.48636047

Figure 17: Convergence curve of the methods used on the tubular column design problem

4.10 Piston Lever
Piston lever problem was first raised by Vanderplaats [60]. When the piston lever is raised from 0

to 45 degrees, the main objective is to position the piston components H(x1), B(x2), D(x3), and X(x4)

by limiting the oil volume, as shown in Fig. 18. The mathematical representation of this problem is as
follows:

Minimize:

f (H, B, D, X) = 1
4
πD2 (L2 − L1) (62)
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Subject to:

g1 = QLcosθ − RF ≤ 0 at θ = 45
◦

(63)

g2 = Q (L − X) − Mmax ≤ 0 (64)

g1 = 1.2(L2 − L1) − L1 ≤ 0 (65)

g1 = D
2

− B ≤ 0 (66)

where,

R = |−X (Xsinθ + H) + H(B − Xcosθ)|√
(X − B)2 + H2

, F = πPD2/4, L1 = √
(X − B)2 + H2,

L2 = √
(Xsin45 + H)2 + (B − Xcos45)2

Figure 18: Piston lever

The payload is given as P = 10.000 lbs, the lever is given as L = 240 in, the maximum allowable
bending moment of the lever is given as 6 max M = 1.8×10 lbs.in, and the oil pressure is given as 1500
psi. Inequality limitations are enforced in a number of ways. Maximum bending moment of the lever,
force equilibrium, geometrical conditions, and minimum piston stroke are all taken into account.

Table 22 presents the comparative performance values of several approaches, namely TSO, EO,
GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and CA, on
the piston lever issue. Furthermore, Table 23 presents the choice factors that are contingent upon the
optimal value derived from the outcomes of 30 iterations conducted on this particular issue using the
employed methodologies. Upon examination of Table 22, it becomes evident that EO, MFO, POA,
and CA exhibit superiority over other approaches in terms of the greatest value. Conversely, COA
demonstrates more success when evaluated based on the average value. Furthermore, Fig. 19 illustrates
the convergence graph of the approaches used for the piston lever issue.
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Table 22: The statistical outcomes of the methods used for the lever problem

Algorithm Best Mean Worst SD FMR

TSO 17.42196241 397.5988085 2093.692333 373.4766691 14.37
EO 8.412697953 109.1507183 167.4727301 76.6501403 6.73
GWO 8.42233969 135.7896189 167.7832157 63.67587429 10.10
MFO 8.412697953 119.7547204 167.4727301 72.89046371 6.97
WOA 8.497928904 100.1318812 512.0065077 118.1165766 10.00
SMA 8.412698478 87.94276045 167.4732992 79.53005361 6.43
HHO 8.457048093 303.2021541 790.7522755 173.8110544 13.93
COA 8.534000505 8.815060267 9.21985017 0.167712838 5.67
COOT 8.412697954 123.8580549 203.1498737 76.06694022 9.10
MVO 8.472950733 140.9412925 284.7751907 117.3137109 10.23
AOA 185.0680395 325.5729621 501.3193251 100.46379 15.27
AO 8.444228253 20.49567107 190.9228266 44.62725153 4.87
SCA 8.625292195 9.313147737 10.70516073 0.404245037 6.97
SAO 283.1874112 15297.60183 77744.75245 22761.39193 16.60
SOA 8.433373601 19.26894305 170.2505714 40.15273808 4.47
PA 8.412697953 96.997720073 167.472730052 77.825586069 5.48
CA 8.412697953 100.753413785 167.472730052 76.533411694 5.82

Table 23: A comparative analysis of the best optimal solutions to the piston lever problem

Algorithm Parameters values f min

x1 x2 x3 x4

TSO 0.071101082 4.304278939 4.05075328 119.9216191 17.42196241
EO 0.05 2.041513399 4.083027183 120 8.412697953
GWO 0.050132638 2.042506155 4.08410152 119.9542691 8.42233969
MFO 0.05 2.041513399 4.083027183 120 8.412697953
WOA 0.05 2.062664782 4.083411529 119.9550817 8.497928904
SMA 0.05 2.041513292 4.083027241 119.9999998 8.412698478
HHO 0.05 2.04610059 4.089278683 119.6218262 8.457048093
COA 0.05 2.065759358 4.089137843 120 8.534000505
COOT 0.05 2.041513382 4.083027184 120 8.412697954
MVO 0.05 2.046975471 4.092356386 119.9180173 8.472950733
AOA 500 500 2.302404367 61.12128883 185.0680395
AO 0.05 2.04729087 4.085132655 120 8.444228253
SCA 0.05010724 2.072171185 4.104600675 120 8.625292195
SAO 469.2131864 403.4320025 2.716971944 65.42688267 283.1874112

(Continued)



1080 CMES, 2024, vol.139, no.1

Table 23 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4

SOA 0.05 2.045182942 4.084523234 120 8.433373601
POA 376.3677 22.52272 347.7443 116.6528 8.412697953
COA 120.8287 67.23463 329.0836 14.40809 8.412697953

Figure 19: Convergence curve of the methods used on the piston lever

4.11 Robot Gripper
The difference between the robot gripper’s minimum and maximum force is used as an objective

function in this challenge. The robot is involved in this challenge, which has six nonlinear design
constraints and seven design variables [41]. The schematic representation of the problem is shown
in Fig. 20. This problem is mathematically defined as follows:

Minimize:

f (x) = |maxFk (x, z) − minFk (x, z)| (67)

Subject to:

g1 (x) = y (x, zmax) − Ymin ≤ 0 (68)

g2 (x) = −y (x, zmax) ≤ 0 (69)

g3 (x) = Ymax − y(x, 0) ≤ 0 (70)

g4 (x) = y (x, 0) − YG ≤ 0 (71)

g5 (x) = l2 + e2 − (a + b)2 ≤ 0 (72)

g6 (x) = b2 − (a − e)2 − (l − zmax)
2 ≤ 0 (73)
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g7 (x) = zmax − l ≤ 0

where,

a = cos−1

(
a2 + g2 − b2

2a × g

)
+ θ , g =

√
e2 + (z − l)2, θ = tan−1( e

l−z),

β = cos−1

(
b2 + g2 − a2

2b × g

)
− θ , y (x, z) = 2 (f + e + c × sin (β + δ))

Fk =
(

b × p × sin(a + β)

2c × cos(a)

)
, Ymin = 50, Ymax = 100, YG = 150, zmax = 100, P = 100

with bounds:

10 ≤ f , a, b ≤ 150, 0 ≤ e ≤ 50, 100 ≤ c ≤ 200, 100 ≤ l ≤ 300, 1 ≤ β ≤ 3.14

Figure 20: Robot gripper

Table 24 presents the comparative values of the performances of several approaches, namely TSO,
EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and
CA, on the robot gripper issue. Furthermore, Table 25 presents the decision variables associated with
the optimal values obtained from the outcomes of 30 iterations conducted on this particular topic.
Upon examination of Table 25, it becomes evident that the Simple Moving Average (SMA) approach
outperforms other methods in terms of both the best value and the average value. Furthermore, Fig. 21
illustrates the convergence graph of the strategies used in addressing the robot gripper issue.

Table 24: The statistical outcomes of the methods used for the robot gripper problem

Algorithm Best Mean Worst SD FMR

TSO 4.289551866 22872475335 2.26915E+11 4.289551866 14.77
EO 2.558265959 3.225935001 6.055703362 2.558265959 4.67
GWO 2.636395337 3.325110862 4.094105793 2.636395337 5.87
MFO 3.528008708 5.29421131 12.60060882 3.528008708 11.38
WOA 3.287423023 6.58577709 38.88747796 3.287423023 12.17
SMA 2.545958371 2.715800832 3.50251645 2.545958371 1.60
HHO 3.205121938 18.35609682 79.90636828 3.205121938 14.00

(Continued)
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Table 24 (continued)

Algorithm Best Mean Worst SD FMR

COA 2.795786758 4.064341655 4.289317141 2.795786758 9.13
COOT 2.680610563 3.503447897 4.590989339 2.680610563 6.70
MVO 2.695840012 3.197078896 4.574383286 2.695840012 4.93
AOA 3.690498919 4.998068535 10.2444732 3.690498919 11.43
AO 4.519607097 22.29788938 104.556152 4.519607097 15.17
SCA 4.123780873 4.447648925 7.017991237 4.123780873 10.62
SAO 5.190176925 6424961932 93324638481 5.190176925 16.07
SOA 2.621287418 3.38339899 4.289317141 2.621287418 5.43
POA 2.63467106 3.06246168 3.62569846 0.22417816 4.27
CA 2.63248350 3.12543950 3.89424622 0.24904286 4.80

Table 25: A comparative analysis of the best optimal solutions to the robot gripper problem

Algorithm Parameters values f min

x1 x2 x3 x4 x5 x6 x7

TSO 150 150 200 0 150 100.0027 2.404797 4.289551866
EO 149.7029 149.5393 199.9916 0.040805 149.9667 101.4237 2.334378 2.558265959
GWO 149.7173 149.5536 200 0 30.59937 105.1643 1.709293 2.636395337
MFO 150 145.711 200 0 150 165.1683 2.566817 3.528008708
WOA 148.0163 147.8544 160.7647 0 149.9996 104.385 2.601234 3.287423023
SMA 150 149.8805 200 0.001158 149.2655 101.0626 2.299768 2.545958371
HHO 150 149.3707 183.248 5.26E-05 148.6101 125.2552 2.539905 3.205121938
COA 150 149.7792 200 0 10 110.2619 1.623498 2.795786758
COOT 150 149.8301 195.8189 0.001801 149.7434 105.4282 2.379592 2.680610563
MVO 149.2102 142.5991 196.4037 6.458731 142.5376 103.1736 2.374035 2.695840012
AOA 150 122.1327 200 26.25289 150 139.686 2.671189 3.690498919
AO 149.2919 93.109 199.0805 49.46878 145.6248 160.2051 3.006883 4.519607097
SCA 150 147.3924 175.7737 0 109.8487 155.8737 2.374302 4.123780873
SAO 112.2475 96.3309 157.2066 15.29257 148.262 108.467 2.797333 5.190176925
SOA 150 149.8639 199.681 0 148.5837 103.2267 2.341468 2.621287418
POA 18.96377 117.8522 180.8935 27.38139 121.1049 176.5338 2.257163 2.63467106
CA 111.7183 65.50549 165.8307 3.049145 62.06039 230.6625 2.715952 2.63248350

4.12 Corrugated Bulkhead Design Problem
Corrugated bulkhead designs are frequently employed in chemical tankers and product tankers

in order to aid in the efficient cleaning of cargo tanks at the loading dock [61]. This problem serves as
an illustration of how to construct corrugated bulkheads for a tanker to be as light as possible while
maintaining structural integrity. A tanker’s corrugated bulkheads are designed to be as light as possible
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while maintaining their structural integrity. The problem has four design variables: width b (x1), depth
h (x2), length l (x3), and plate thickness t (x4). The mathematical formula for the optimization problem
is as follows:

Minimize:

f (b, h, l, t) = 5.885t(b + l)

b + √
(l2 − h2)

(74)

Subject to:

g1 = th
(

0.4b + 1
6

)
− 8.94

(
b + √

(l2 − h2)
)

≥ 0 (75)

g2 = th2

(
0.2b + 1

12

)
− 2.2

(
8.94

(
b + √

(l2 − h2)
)) 4

3 ≥ 0 (76)

g3 = t − 0.0156b − 0.15 ≥ 0 (77)

g4 = t − 0.0156l − 0.15 ≥ 0 (78)

g5 = t − 1.15 ≥ 0 (79)

g6 = l − h ≥ 0 (80)

with bounds:

0 ≤ b, h, l ≤ 100 and 0 ≤ t ≤ 5

Figure 21: Convergence curve of the methods used on the robot gripper problem

Table 26 presents the comparative values of the performances of several approaches (TSO, EO,
GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA, AO, SCA, SAO, SOA, POA, and CA) on
the corrugated bulkhead design issue. Furthermore, Table 27 presents the decision variables associated
with the optimal values obtained from the outcomes of 30 iterations conducted on this particular topic.
Upon examination of Table 26, it becomes evident that EO, MFO, and CA exhibit superiority over
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other ways in terms of the best value. Additionally, when considering the average value, EO emerges as
the more effective approach. Furthermore, Fig. 22 illustrates the convergence graph of the strategies
used in addressing the corrugated bulkhead design issue.

Table 26: The statistical outcomes of the methods used for the corrugated bulkhead design problem

Algorithm Best Mean Worst SD FMR

TSO 6.855395898 7.515017746 10.98772723 0.892030186 11.07
EO 6.842957472 6.842957472 6.842957472 2.50569E-11 1.17
GWO 6.84594174 6.849404911 6.857978732 0.00329714 6.40
MFO 6.842957472 6.95886219 10.31538608 0.623291412 2.67
WOA 6.868197444 7.234972405 8.666867301 0.463809051 10.50
SMA 7.953976548 11.66989827 12.57187707 1.108933488 16.93
HHO 6.855228127 7.085261807 7.505850206 0.192900564 10.03
COA 6.18061627 7.46789485 8.743988275 0.657396042 11.23
COOT 6.842961718 6.84395948 6.855249262 0.002264306 4.53
MVO 6.844112205 6.854550423 6.891634775 0.009622446 6.70
AOA 7.147273011 7.94042808 10.50177315 0.889597343 13.67
AO 6.892071425 7.346390448 8.332439081 0.400497798 11.17
SCA 7.021747181 7.936506325 8.617725871 0.621047699 13.37
SAO 7.020186794 8.536171185 10.79430556 1.006701203 14.33
SOA 6.863150498 7.609158004 8.30725787 0.642814739 11.67
POA 6.842957474 6.843508225 6.846584381 0.001067412 3.83
CA 6.842957472 6.843177079 6.845076983 0.000488454 3.73

Table 27: A comparative analysis of the best optimal solutions to the corrugated bulkhead design
problem

Algorithm Parameters values f min

x1 x2 x3 x4

TSO 55.94375825 34.12553171 57.63213667 1.049990562 6.855395898
EO 57.69229443 34.14762159 57.69229626 1.049999774 6.842957472
GWO 57.40760601 34.14377986 57.63211944 1.050001441 6.84594174
MFO 57.6922948 34.1476216 57.6922968 1.04999978 6.842957472
WOA 53.75332544 34.11435394 57.67117989 1.050052281 6.868197444
SMA 38.6549421 37.15897337 66.97119063 1.194658396 7.953976548
HHO 57.64186443 34.33682599 57.57011798 1.049999674 6.855228127
COA 4.93434E-07 0 0 1.050199052 6.18061627
COOT 57.69158469 34.14761555 57.69229153 1.049999734 6.842961718
MVO 57.67291664 34.14655471 57.68941522 1.050156185 6.844112205
AOA 54.86760749 37.15326823 54.86760749 1.054086491 7.147273011

(Continued)
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Table 27 (continued)

Algorithm Parameters values f min

x1 x2 x3 x4

AO 55.60404503 34.45085913 56.91844174 1.050288305 6.892071425
SCA 55.21204025 35.58586585 58.65384066 1.067117361 7.021747181
SAO 54.15668556 34.76085576 58.12707556 1.070304388 7.020186794
SOA 57.70299259 34.16103858 57.92914589 1.053813338 6.863150498
POA 66.76194 8.339457 21.65966 4.846303 6.842957474
CA 68.80847 51.83041 73.10743 1.992981 6.842957472

Figure 22: Convergence curve of the methods used on the corrugated bulkhead design problem

5 Discussions

This study introduces the investigation of 17 different metaheuristic optimization algorithms,
which have been proposed in recent years and are popular in the literature, on 12 real-world
engineering problems. In this study, an external penalty is imposed on algorithms that are used to
cope with inequality and equality constraints when they are implemented. Although the use of such
a method is relatively straightforward, determining the optimal values of penalty terms, particularly
for optimization problems with a high number of constraints, proves to be a challenging optimization
issue in and of itself.

According to the experimental results, CA produced the best optimum value in 10 problems,
EO in 9 problems, and POA and MFO in 6 problems. Following these, COOT managed to produce
the best optimum value in 4 problems and WOA in 3 problems. Although GWO could not find the
best optimum value in any of the 12 different engineering problems, statistically, it showed the sixth-
best performance among the methods. Furthermore, COOT could not find the mean value in any of
the 12 different engineering problems; statistically, it showed the fourth-best performance among the
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methods. It is thought that statistical analysis has great importance, especially in the comprehensive
examination of the performance of metaheuristic optimization methods.

Friedman statistical analysis is performed, and mean ranks are calculated to analyze the results of
the investigation. According to these calculated values, the performances of metaheuristic optimiza-
tion methods in all problems are presented in Table 28 by taking the average value. It is clear from
the comparative results presented in the subheadings of Section 3 that the POA technique exhibits a
distinct advantage over other algorithms. When the obtained results are examined in more detail, EO
performed better in 5 of the 12 problems, CA in 4, and POA in 3 of them. It is also seen that the
POA method is significantly superior to other methods statistically when Table 28 is examined. POA
is followed by CA, EO, and COOT. SAO, AOA, and TSO are the methods with the worst performance
among the methods compared. In light of the results obtained, it can be said that CA has the fastest
convergence rate among the 17 different metaheuristic optimization methods used in the study and
also has the best balance between exploration and exploitation stages.

Table 28: Mean of Friedman mean rank

Algorithm Mean FMR Mean manuel rank

TSO 12.77 15
EO 3.55 3
GWO 6.40 6
MFO 6.19 5
WOA 12.00 13
SMA 7.39 7
HHO 10.45 10
COA 11.23 12
COOT 5.81 4
MVO 8.70 9
AOA 14.45 16
AO 12.03 14
SCA 11.23 12
SAO 16.11 17
SOA 8.30 8
POA 3.10 1
CA 3.28 2

The research conducted a rigorous analysis by using the Wilcoxon signed-rank test, a non-
parametric statistical test, to provide a robust comparison between the suggested and competing
algorithms and to provide statistical validation for the findings obtained. The statistical analyses at a
significance level of 5% are shown in Table 29 using the Wilcoxon signed-rank test and the objective
function values. While performing the Wilcoxon signed rank test, statistical analyses were performed
based on the method that was found to be the best according to the Friedman mean rank value.
According to the FMR value, out of 12 different problems, EO in 4, POA in 3, CA in 3, SMA in 1, and
SOA in 1 problem achieved the best results. In light of these results, the results obtained in real-world
engineering problems according to the Wilcoxon signed rank test are given in Table 29. � indicates that
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the first method, based on the FMR value, is substantially superior to the other competitive methods,
whereas ≈ indicates that its performance is negligible. - indicates the method that gives the best result
according to the FMR value.

When Table 29 is examined, the EO method, which achieved the best result according to the FMR
value in the speed reducer problem (Problem-1), provided a significant superiority to all methods
compared to the Wilcoxon signed rank test. POA, which gave the best result according to the FMR
value in the tension-compression spring design problem (Problem-2), could not provide a significant
superiority to the CA method compared to the Wilcoxon signed rank test, but it outperformed all other
methods. The POA method, which gave the best result according to the FMR value in the pressure
vessel design problem (Problem-3), provided a significant superiority over the Wilcoxon signed rank
test for all methods except GWO, SOA, and CA. The EO method, which gave the best result according
to the FMR value in the welded beam design problem (Problem-4), provided a significant superiority
to all other methods except POA compared to the Wilcoxon signed rank test. In the three-bar truss
design problem (Problem-5), the CA method, which gave the best result according to the FMR value,
provided a significant superiority to all other methods except POA compared to the Wilcoxon signed
rank test. The POA method, which gives the best result according to FMR value in the multiple disc
clutch brake design problem (Problem-6), provides a significant superiority over the Wilcoxon signed
rank test over all other methods except EO, MFO, HHO, COOT, and CA. The CA method, which
gave the best result according to the FMR value in Himmelblau’s Function (Problem-7), provided a
significant superiority over the Wilcoxon signed rank test over all other methods except EO, MFO,
and POA. In the cantilever beam problem (Problem-8), the EO method, which gave the best result
according to the FMR value, provided a significant superiority to all methods compared to the
Wilcoxon signed rank test. In the tubular column design problem (Problem-9), the CA method, which
gave the best result according to the FMR value, provided a significant superiority to all other methods
except EO and POA compared to the Wilcoxon signed rank test. The SOA method, which gave
the best result according to the FMR value in the piston lever (Problem-10), provided a significant
superiority to all other methods except AO compared to the Wilcoxon signed rank test. The SMA
method, which gave the best result according to the FMR value in the robot gripper (Problem-11),
provided a significant superiority to all methods compared to the Wilcoxon signed rank test. The EO
method, which gave the best result according to the FMR value in the corrugated bulkhead design
problem (Problem-12), provided a significant superiority to all methods compared to the Wilcoxon
signed rank test.

Table 29a: Wilcoxon signed ranks test results for all metaheuristic optimization algorithms

Metaheuristic
optimization
algorithms

Real-world engineering design problem
Problem-1 Problem-2 Problem-3 Problem-4 Problem-5 Problem-6

TSO 1.73E-06 1.73E-06 1.92E-06 1,73E-06 1.73E-06 1.73E-06
� � � � � �

EO – 1.73E-06 4.20E-04 – 1.73E-06 1.00E+00
– � � – � ≈

GWO 1.73E-06 1.73E-06 4.53E-01 1,36E-05 1.73E-06 1.73E-06
� � ≈ � � �

(Continued)
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Table 29a (continued)

Metaheuristic
optimization
algorithms

Real-world engineering design problem
Problem-1 Problem-2 Problem-3 Problem-4 Problem-5 Problem-6

MFO 1.95E-03 2.35E-06 2.05E-04 7,69E-06 1.73E-06 1.00E+00
� � � � � ≈

WOA 1.73E-06 1.73E-06 1.73E-06 1,73E-06 1.73E-06 1.73E-06
� � � � � �

SMA 1.73E-06 1.73E-06 1.48E-03 1,73E-06 1.73E-06 1.73E-06
� � � � � �

HHO 1.73E-06 1.73E-06 3.41E-05 1,73E-06 1.73E-06 1.00E+00
� � � � � ≈

COA 1.73E-06 1.73E-06 1.73E-06 1,73E-06 1.73E-06 1.73E-06
� � � � � �

COOT 1.73E-06 3.52E-06 2.11E-03 1,73E-06 1.22E-05 1.25E-01
� � � � � ≈

MVO 1.73E-06 1.73E-06 2.61E-04 1,73E-06 1.73E-06 1.73E-06
� � � � � �

AOA 1.73E-06 1.73E-06 1.73E-06 1,73E-06 1.73E-06 1.72E-06
� � � � � �

AO 1.73E-06 1.73E-06 2.41E-03 1,73E-06 1.73E-06 1.73E-06
� � � � � �

SCA 1.73E-06 1.73E-06 1.13E-05 1,73E-06 1.73E-06 1.73E-06
� � � � � �

SAO 1.73E-06 1.73E-06 1.73E-06 1,73E-06 1.73E-06 1.73E-06
� � � � � �

SOA 1.73E-06 1.73E-06 1.92E-01 1,73E-06 1.70E-06 1.73E-06
� � ≈ � � �

POA 1.73E-06 – – 8,13E-01 1.00E+00 –
� – – ≈ ≈ –

CA 1.73E-06 1.41E-01 6.06E-01 1,11E-02 – 1.00E+00
� ≈ ≈ � – ≈

Table 29b: Wilcoxon signed ranks test results for all metaheuristic optimization algorithms
(Continued)

Metaheuristic
optimization
algorithms

Real-world engineering design problem
Problem-7 Problem-8 Problem-9 Problem-10 Problem-11 Problem-12

TSO 1.73E-06 1,73E-06 1.73E-06 1,73E-06 1,73E-06 1.73E-06
� � � � � �

EO 1.00E+00 – 1.00E+00 4,99E-03 4,07E-05 –
≈ – ≈ � � –

(Continued)
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Table 29b (continued)

Metaheuristic
optimization
algorithms

Real-world engineering design problem
Problem-7 Problem-8 Problem-9 Problem-10 Problem-11 Problem-12

GWO 1.73E-06 3,18E-06 1.73E-06 4,86E-05 2,88E-06 1.73E-06
� � � � � �

MFO 2.50E-01 1,73E-06 1.73E-06 1,20E-03 1,73E-06 3.88E-06
≈ � � � � �

WOA 1.73E-06 1,73E-06 1.73E-06 7,51E-05 1,73E-06 1.73E-06
� � � � � �

SMA 1.73E-06 1,92E-06 1.73E-06 8,97E-02 – 1.73E-06
� � � � – �

HHO 1.73E-06 1,73E-06 1.73E-06 2,60E-06 1,73E-06 1.73E-06
� � � � � �

COA 1.73E-06 1,73E-06 1.73E-06 2,11E-03 1,73E-06 1.06E-04
� � � � � �

COOT 1.82E-05 1,73E-06 5.61E-06 2,61E-04 1,73E-06 1.73E-06
� � � � � �

MVO 1.73E-06 1,73E-06 1.73E-06 9,32E-06 3,52E-06 1.73E-06
� � � � � �

AOA 1.73E-06 1,73E-06 1.73E-06 1,73E-06 1,73E-06 1.73E-06
� � � � � �

AO 1.73E-06 1,73E-06 1.73E-06 1,20E-01 1,73E-06 1.73E-06
� � � ≈ � �

SCA 1.73E-06 1,73E-06 1.73E-06 3,59E-04 1,73E-06 1.73E-06
� � � � �

SAO 1.73E-06 1,73E-06 1.73E-06 1,73E-06 1,73E-06 1.73E-06
� � � � � �

SOA 1.73E-06 1,73E-06 1.73E-06 – 4,86E-05 1.73E-06
� � � – � �

POA 9.38E-02 4,53E-04 1.00E+00 2,18E-02 4,45E-05 1.73E-06
≈ � ≈ � � �

CA – 2,60E-05 – 6,04E-03 2,37E-05 1.92E-06
– � – � � �

As a result, in the study conducted, EO and POA in 7 different problems, CA in 6 different
problems, SOA and MFO in 2 different problems, and GWO, HHO, COOT, and SMA in 1 different
problem showed the most successful results, or the method showing the most successful results could
not provide a significant superiority to these methods.

6 Conclusion

The efficient resolution of real-world engineering design optimization issues is widely acknowl-
edged as a significant difficulty for any new metaheuristic algorithm presented to the market.
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Moreover, these issues include several goals and diverse variables, including integers, continuous
values, and discrete elements. Additionally, they involve a range of nonlinear restrictions related to
kinematic conditions, performance parameters, operational situations, and manufacturing specifica-
tions, among others. The TSO, EO, GWO, MFO, WOA, SMA, HHO, COA, COOT, MVO, AOA,
AO, SCA, SAO, SOA, POA, and CA algorithms are used to address design optimization of twelve
real-world engineering issues. Accordingly, their performances are compared considering the quality
of solution, robustness, and convergence speed of the solutions obtained by various approaches. The
outcomes reveal that EO and POA produce better optimized results against other available techniques.
However, the results of statistical comparisons show that EO and POA achieve more competitive and
better performance outcomes among most of the constraint problems investigated. In addition, as a
consequence of the statistical examination, it was reported that the CA approach is at a level that can
compete with these two methods.

This study discusses the most important subjects in engineering and artificial intelligence dis-
ciplines. Future research confidently relies on this review to investigate metaheuristic optimization
approaches and engineering design challenges in greater depth in the near future. Moreover, by
examining the studies in question, the researchers can more easily identify a beginning point for future
researchers.
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