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ABSTRACT

Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades and
wings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumption
has become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topology
optimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By using
the variable density method, lightweight design is achieved without compromising structural strength. The
optimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivity
filtering and projection to obtain a robust optimized configuration. The mechanical properties are checked by
comparing the stress distribution and displacement of the unoptimized and optimized structures under the same
load. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering key
insights for engineering lightweight, high-strength large cavity structures.
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1 Introduction

Lightweight design has always been a pivotal technology in aerospace. A well-known adage in
this realm states, “Strive to reduce the weight of every gram, and a gram is more valuable than gold”.
The lightweight design of aerial vehicles can reduce production costs and fuel consumption, bring
considerable economic benefits, and effectively reduce carbon dioxide and nitrogen dioxide emissions
from kerosene combustion. It is believed that for every kilogram of weight lost, an aircraft can conserve
2900 L of fuel annually [1]. Moreover, each ton of fuel conservation translates to a 3.15-ton decrease
in carbon dioxide emissions [2].

Numerous large cavity structures are utilized in aerospace engineering, including thin-walled
structures [3–5], wing structures [6,7], and sizable blade structures [8]. Conventional cavity support
structures typically incorporate straight beam reinforcement, quadrilateral plates, equal-thickness
reinforcement, and longitudinal beams. However, employing such rudimentary components leads
to constraints in the design of cavity support structures. Additionally, these structural elements
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necessitate time-consuming and costly bolting, riveting, or welding processes. Consequently, the
contemporary trend involves designing fewer structural components to achieve lightweight designs
while maintaining strength, reducing costs, and enhancing efficiency. This kind of thinking leads to the
development of structural unitization [9], which involves utilizing topology optimization technology
to redesign the internal structure of the cavity different from the traditional structure.

Topology optimization can be divided into discrete and continuum topology optimization accord-
ing to design objects [10]. As computer technology progresses and the urgent needs of engineering
applications, the focus of topology optimization has gradually shifted from a discrete body to a con-
tinuum one. The year 1988 witnessed the proposal of the homogenization method by Bendsoe et al. [9].
Subsequently, the method of continuum topology optimization has experienced rapid evolution. Soon
after, Bendsøe [11] and Mlejnek [12] proposed the variable density method, which reduces the complex-
ity of homogenization and improves the 0/1 convergence. The variable density method can be divided
into SIMP (Simplified Isotropic Material with Penalization) and RAMP (Rational Approximation of
Material Properties). SIMP penalizes the intermediate density elements by power exponent, which has
high optimization efficiency. RAMP penalizes intermediate density elements by rational function and
has high stability, but the optimization efficiency is much lower than SIMP. Xie et al. [13] proposed the
evolutionary structural optimization (ESO) method. This methodology is targeted at addressing the
issue of gray-scale units in the SIMP approach and finds widespread application in the architectural
design of edifices and bridges [14]. Xie et al. [13] proposed the level set method in 1988 and then applied
it to topology optimization [15,16]. A distinct boundary delineation for a specific structure, attainable
via the level set approach, necessitates the imposition of supplementary constraints, yielding increased
algorithmic complexity. This, in turn, results in diminished computational proficiency. Wang et al. [17]
implemented the velocity field level-set topology optimization method in MATLAB. Bourdin et al. [18]
first proposed the phase-field method in 2003. Guo et al. [19] proposed the MMC/MMV method
[20–22], which believes that the entity boundary can be described by explicit function. Therefore, the
topology optimization issue becomes a problem of optimizing basic parameters within the topology
description function [23]. In adopting this approach, the computational dimension of the optimization
problem is substantially diminished. Nevertheless, the following issue involves pursuing a universal,
topological descriptor function adept at representing an arbitrary array of intricate shapes. Thus,
topology optimization methods have seen broad application across diverse domains, notably yielding
considerable achievements in the optimization design of large cavity structures.

Many researchers have employed topology optimization technology in the optimization design
of large cavity structures [24,25]. For example, by combining MATLAB and APDL programming
programs, Wang et al. [26] developed the finite element-based characterization of the wind turbine
blade parameter solid model. They used the SIMP method to optimize the topology of the three-
dimensional blade solid model. The configuration obtained was almost identical to the traditional
structure. Jensen et al. [27] introduced a topology optimization method that concurrently designs
deformable functions and actuation systems in 3D deformable wing structures. Elelwi et al. [28] used
ANSYS software to optimize topology on the deformed conical wing with a varying span. They
roughly obtained the positioning layout of the internal fin, beam, and other wing structures. According
to the optimization results, the wing structure was reconstructed, and the strength was checked to verify
the structure’s compliance. Aage et al. [29] proposed a computational morphology generation method
for structural design with a gigabit voxel resolution two orders of magnitude higher than the reported
method. This method can obtain an excellent topology optimization configuration but requires much
computation. Sun et al. [30] applied the density method coupled with the integration of the equivalent
static loads (ESL) method to enhance the dynamic response topology of a rotating inflatable structure.
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Sun et al. [31] presented an approach for the representation and optimization of the topology of thin-
walled structures fitted with directional straighteners. The gradient optimization algorithm combined
with design sensitivity analysis can optimize the design of straight ribbed stiffened panels on thin-
walled structures.

The topology optimization design of the wing cavity can be used to improve the deformation
function of the wing. Optimizing the thin-walled cylinder structure is often seen in optimizing the
circumferential reinforcement layout, and the optimization results of the blade cavity are very similar
to the traditional structure. No optimization design has yet been proposed for the layout of internal
webs in such large cavity structures. The novelty of this work is to use the classical density method to
optimize the web layout of large cavity structures in the aerospace field so as to solve the problem of
large cavity structures with large mass and low stiffness and to achieve the purpose of reducing cost
and increasing efficiency. We study the effects of mesh size, load magnitude, symmetry constraints,
and volume fraction on the optimized results, aiming to obtain new web layouts that are different
from existing ones and provide further references for the design of large cavity structures.

The subsequent sections of the paper are structured as follows. In Section 2, geometric configura-
tion and finite element modeling of cavity structures are presented. In Section 3, the variable density
method of topology optimization technology describes the topology of a large cavity structure. Density
filtering and projection techniques are used to get the topology with clear boundaries. In Section 4, the
web layout of large cavity structures is optimized, and the mechanical performance of the optimized
results is checked. Finally, Section 5 presents several conclusions.

2 Modelling of a Cavity Structure
2.1 Finite Element Method

The four-node rectangular plate element shown in Fig. 1 for planar problems is used to discretize
the cavity structures in this paper. The numbering of element nodes is A, B, C, and D. The displacement
of each node is expressed as (ui, vi), i = 1, 2, 3, 4.

Figure 1: A schematic diagram illustrating a planar four-node rectangular plate element

The displacements at all nodes form a vector qe, expressed as

qe = [u1 v1 u2 v2 u3 v3 u4 v4]
T (1)

The element displacement field can then be expressed as

r = Sqe (2)
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where S = [
S1I S2I S3I S4I

]
is the matrix functioning as the interpolation function with entries

defined by⎧⎪⎨
⎪⎩

S1 (x, y) = 1
4

(1 + ξ) (1 + η), S2 (x, y) = 1
4

(1 − ξ) (1 + η)

S3 (x, y) = 1
4

(1 − ξ) (1 − η), S4 (x, y) = 1
4

(1 + ξ) (1 − η)

(3)

Here, in the rectangular plate element, ξ = x/a and η = y/b represent the dimensionless
coordinates, whereas a and b denote the half lengths of the element in the x- and y-directions,
respectively.

From the physical equation of the plane problem in elasticity, the stress expression of the plate
element is given by

σ = Dε = DBqe = Aqe (4)

where ε is element strain vector, A = DB is the stress function matrix, D is the elastic coefficient matrix
for the plane stress problem, B = [

B1 B2 B3 B4

]
is the geometric matrix, expressed as

D = E
1 − μ2

⎡
⎣1 μ 0

μ 1 0
0 0 1−μ

2

⎤
⎦ , Bi =

⎡
⎣

∂Si
∂x

0
0 ∂Si

∂y
∂Si
∂y

∂Si
∂x

⎤
⎦ , i = 1, 2, 3, 4 (5)

In Eq. (5), E represents Young’s modulus and μ is Poisson’s ratio. In the context of this study, they
correspond to values of 2.1 × 105 MPa and 0.3, respectively.

2.2 Analysis of a Cavity Structure
The study conducts topology optimization of two research objects: a circular cavity and a blade

section cavity, as shown in Fig. 2. The circular cavity can be used as an engine cavity, high-pressure
storage tank, et al. Blade cavities are commonly found in turbine blades [32], propellers [33], et al. The
circular cavity consists of a skin and an inner cavity. The geometric configuration can be determined
according to the diameter of concentric circles. The blade cavity includes skin, beam, and internal
cavity, and its geometry can be obtained by accurate positioning.

(a) (b) 

Figure 2: Cavity structures. (a) a circular cavity; (b) a blade cavity

Generally, the blade structure is mainly composed of three parts, that is skin, spar caps, and webs.
The positions of blade structural components are given in terms of straight distances and circumfer-
ential arc lengths along the cross-sectional contour. Fig. 3 shows these dimensions schematically. The
main beams are divided into pressure surface beam and suction surface beam. The pressure surface
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beam is fitted to the inner side of the pressure surface skin, while the suction surface beam is fitted
to the inner side of the suction surface skin. Together, they form the spar caps. There are two parallel
supporting webs between the two spars caps.

Figure 3: Positioning scheme of rotor blade components

The blade axis COS is an axis parallel to the chord of the reference cross-section. The defined
angle βsps in Fig. 3 is the angle between the x-axis of the blade system and the x-axis of the spar cap
axis COS for a twist angle. 4.3MW-SR152 rotor blade is selected in this paper, and angle βSps = 4◦.
The reference line of the spar system (Sps), which consists of the spar cap and the spar web, for details,
see Fig. 3, is a straight line between characteristic points defined in relation to the vertical projection
of the blade axis. The straight distance DSps is the vertical projection of the spar system reference line
onto the blade axis. The beam web structure can be located by the system reference line.

The width of the spar caps is defined by the circumferential arc lengths bLE and bTE. bLE represents
the gap between the Sps reference line and the leading edge of the spar cap, while bTE is the distance
between the Sps reference line and the trailing edge of the spar cap. The distance between the leading-
edge web and the system reference line Sps is DSWLE. The distance between the trailing-edge web and
the system reference line Sps is DSWTE. The above parameters vary linearly in the direction of blade
length. These design parameters can be used to locate the concrete position of the spar caps and webs
at any length of the blade section.

In the blade structure, the section with the largest area is cut off to obtain the blade cavity of
the traditional beam web structure. This section is used as a contrast for subsequent stiffness check
experiments. Then the two webs in the section are removed, the main beam and skin structure are
retained, and the blade cavities are filled. Thus, one of the research objects is obtained: the blade
section cavity, as depicted in Fig. 2b.

3 Topology Optimization Formulation
3.1 Density Method

As a sophisticated mathematical methodology, topology optimization methodically calibrates
the material distribution within a preordained spatial envelope based on specific load scenarios,
constraints, and performance metrics [10,34]. In order to optimize the web layout of the large cavity,
this paper employs the variable density method. The design variable, denoted as ρi, represents the
density of the i-th finite element. By modifying the value of ρi, it becomes possible to adjust the
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global structural stiffness and optimize the material arrangement within the structure. The value of ρi

corresponds to each of the three cases as follows:⎧⎨
⎩

ρi = 0 ⇔ void domain,
0 < ρi < 1 ⇔ intermediate domain,
ρi = 1 ⇔ material domain.

(6)

In general, the smaller the weight, the lower the stiffness. However, when carrying out lightweight
design, it is necessary to ensure that the stiffness of the structure does not decrease. Therefore, this
paper chooses the flexibility of the structure as the objective function and the volume fraction as
the constraint condition so that the influence of the volume fraction on the optimized configuration
can also be studied. The stiffness optimization problem is mathematically expressed in the following
manner:

minρ: R (ρ) = UTKU =
N∑

i=1

Ei (ρi) ui
Tk0ui

s.t. :
N∑

i=1

Viρi − Vf ≤ 0

KU = F
0 ≤ ρi ≤ 1

(7)

where R is the compliance of the cavity structure, N represents the total number of elements, ρ refers
to the vector of design variables, U is the global displacement, K is the global stiffness matrices, the
element stiffness matrix for an element with a unit Young’s modulus is symbolized as k0, the element
displacement vector is denoted by ui, V i is the element volume, V f corresponds to prescribed volume
fraction, F corresponds to the global force vector.

To circumvent the intermediary transition region and enhance the convergence of the binary
solution, the relationship between density variables ρi and material properties is elucidated using the
SIMP method [30,35] in the following way:

Ei (ρi) = Emin + ρp
i (E0 − Emin) (8)

where p serves as the penalization factor and is empirically established at a value of 3. E0 = 2.1 ×
105 MPa is representative of the material domain. To avoid the stiffness matrix singularity, a void
domain is introduced with Emin set to E0 × 10−8, indicating its negligible material properties.

According to Eqs. (7) and (8), the following expression elucidates the objective function R(ρ):

R (ρ) =
N∑

i=1

[
Emin + ρp

i (E0 − Emin)
]

uT
i k0ui (9)

When multiple loading conditions occur, the single-objective optimization is transformed into
multi-objective optimization. The mathematical model using the compromise programming method
can typically be articulated as follows [36,37]:

min: R (ρ) =
{

l∑
t=1

wt
q
[

Rt(ρ)−Rmin
t (ρ)

Rmax
t (ρ)−Rmin

t (ρ)

]q
} 1

q

s.t. :
l∑

t=1

(
N∑

i=1

Viρ
t
i

)
− Vf ≤ 0

KU = F
0 ≤ ρi ≤ 1

(10)
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where l is the number of loading cases, to establish a square root relationship and determine the weight
assigned to each objective, the exponent q, which influences the weight, is set to 2. wt represents the
weights of the t-th static working conditions, and the sum of weights of all working conditions is 1.
V i is the element volume for the t-th working environment, Rt (ρ) is the structure compliance of the
t-th working environment. Rmax

t (ρ) and Rmin
t (ρ) are the maximum and minimum values of compliance

under the t-th working environment. Firstly, to obtain Rt (ρ) and Rmin
t (ρ) for the corresponding loading

case, a single-objective optimization problem defined in Eq. (7) is utilized. Then Rmax
t (ρ) is obtained

by changing the objective function to take the maximum value.

3.2 Sensitivity and Projection
According to Eq. (9), the expressions for the sensitivities of the objective function R (ρ) with

regard to a design variable ρi is given as follows [38]:
∂R
∂ρi

= −pρi
p−1 (E0 − Emin) uT

i k0ui (11)

For Eq. (10), the sensitivities of the objective function R (ρ) reads

∂R
∂ρi

=
[

l∑
t=1

wt
qT (ρ)

q

] 1
q −1 [

l∑
t=1

wt
qT (ρ)

q−1 ∂T
∂ρi

]
(12)

where T (ρ),
∂T
∂ρi

, are respectively represented as

T (ρ) = Rt(ρ)−Rt
min(ρ)

Rtmax(ρ)−Rtmin(ρ)

∂T
∂ρi

=
∂Rt(ρ)

∂ρi
Rtmax(ρ)−Rtmin(ρ)

(13)

Rt (ρ) and
∂Rt (ρ)

∂ρi

can be calculated from Eqs. (11) and (12), respectively. Rmax
t (ρ) and Rmin

t (ρ) are

calculated from Eqs. (7) and (9), they are two constant terms in Eq. (13).

Topology optimization is often accompanied by mesh dependence and checkerboard. Grid
dependence generally means that the minimum size of the optimization configuration depends on the
finite element mesh. The checkerboard phenomenon refers to the alternating appearance of entities
and voids in the optimal configuration, such as a checkerboard. In order to solve these problems, the
general approach entails the utilization of a filtering technique [35,39,40]. The original densities ρi are
subjected to a transformation through the density filter, represented as
∼
ρ i = 1∑

e∈Ni
Hie

∑
e∈Ni

Hieρe

Hie = max [0, R − 	 (i, e)]
(14)

where R, defined as treble element size, is denoted as the specified filter radius, within a circular region
centered at the e-th element, with a radius of R, Ni represents the collective quantity of elements, Hie

is a weight factor, 	 (i, e) represents the distance from the e-th element to the i-th element.

Nevertheless, the application of the filter may introduce gray transition domains characterized
by densities between 0 and 1. Too many gray elements will blur the junction between the entity and
the void, affecting material recognition. This problem can be resolved by employing the projection
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technique [41]. The hyperbolic-tangent function form is commonly employed in the projection
function, expressed as follows:

ρ̂i = H
(∼
ρ i, η

)
=

tanh (βη) + tanh
[
β

(∼
ρ i − η

)]
tanh (βη) + tanh [β (1 − η)]

(15)

where β serves as the projection parameter controlling the smoothness, typically set to 8, η denotes
the projection threshold, typically set to 0.5. For values of

∼
ρ i exceeding η, the projection results in

1; otherwise, it yields 0. H refers to the projection function, which is convenient for the following
statement.

3.3 Member Size Constrain
In this paper, the member size constraints are considered, including the maximum and the

minimum member size constraints. The small force transferring paths in the optimization results
can be eliminated by the minimum member size constraint, and the minimum size of the structure
can be guaranteed to be larger than the minimum member size so as to obtain a relatively uniform
material distribution. On the contrary, the maximum member size constraint can provide multiple
force-transferring paths and eliminate material stacking in the optimization results. Product defects
caused by the manufacturing process, such as the problem of uneven heat dissipation during the casting
process, can also be avoided to improve product reliability.

The minimum member size constraint is implemented by proposing two geometric constraints by
a three-field scheme [42,43], also known as the filtering-threshold topology optimization scheme. The
three fields are formed by filtering and projection transformation of the design field in turn, and the
transformation process can be summarized as ρ → ∼

ρ → ρ̂, 0 ≤ ρ ≤ 1. The two geometric constraints
are as follows:

gs = 1
N

N∑
i=1

Is
i

[
min

{(∼
ρ i − ηe

)
, 0

}]2

≤ ε

gv = 1
N

N∑
i=1

Iv
i

[
min

{(
ηd − ∼

ρ i

)
, 0

}]2

≤ ε

(16)

where Is = ρ̂ exp
(

−c
∣∣∣∇ ∼

ρ

∣∣∣2
)

, Iv = (
1 − ρ̂

)
exp

(
−c

∣∣∣∇ ∼
ρ

∣∣∣2
)

. s represents the solid phase. v represents

the void phase.
∼
ρ is the filtering design field. ρ̂ is the projection physical field. ∇ ∼

ρ is the gradient of the
filtered variables. Is and Iv are the structure indicator functions that distinguish solid and void phases

by ∇ ∼
ρ. For

∣∣∣∇ ∼
ρ 	= 0

∣∣∣, c controls the decay rates of Is and Iv. Usually, c = (R/h)
4, h represents the

element size. For
∣∣∣∇ ∼

ρ = 0
∣∣∣, Is = ρ̂ and Iv = (

1 − ρ̂
)
. ε is used to compensate for numerical errors, and

ε = 10−6. When the above geometric constraints are satisfied, the relationship between each threshold
is 0 < ηd < η < ηe < 1.

The maximum member size constraint is based on morphological operators [44], implemented
through the erosion and dilation operations, two morphological operations. By erosion operation,
solid element sizes smaller than a given structural element will be eliminated. By dilation operation,
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void element sizes smaller than a given structural element will be eliminated. With Heaviside pro-
jections and filtering, both operations can be achieved. The conditions guaranteeing the maximum
member size on the solid and void can be written as∫

Ω
ρ̂edx = 0∫

Ω

(
1 − ρ̂d

)
dx = 0

(17)

where ρ̂d = H
(∼
ρ, η = 0

)
represents the eroded design. ρ̂e = H

(∼
ρ, η = 1

)
represents the dilated

design. Ω is the original physical design field. Thus, two geometric constraints are obtained

ρ̂
T

e V ≤ ε |V|(
1 − ρ̂d

)T
V ≤ ε |V|

(18)

where V is the vector of the element volume.

4 Case Studies
4.1 Topology Optimization of a Circular Cavity under Concentrated Load Condition

In this case, the layout optimization of a circular cavity internal web structure under concentrated
load condition is studied. As shown in Fig. 4, the outer diameter and skin thickness of the circular
cavity are 150 and 7.5 mm, respectively. A pair of concentrated forces F with the same magnitude of
1 N and opposite directions act on the vertices in the y-direction of the cavity.

Figure 4: Design domain and boundary conditions

The circular cavity is discretized into 18020 rectangular plate elements with a side length of 1 mm.
The material properties of the internal cavity and the skin are identical. The selection of the objective
function was guided by the criterion of minimum compliance. A volume fraction of 25% is assigned
for Vf . The member size constraints are also considered, where the maximum and minimum member
sizes are 12 and 6 mm, respectively.

Fig. 5 presents the optimization result along with the iterative histories of the volume ratio and
objective function. The black area represents the material domain, while the white area is the void one.
The influence of four factors, that is, mesh size, load magnitude, symmetry constraint, and volume
fraction, on the optimization results are investigated, respectively.

Firstly, an investigation is conducted to explore the influence of mesh size on the optimization
results. When employing a side length of 2 mm for the elements, there are 4613 plate elements. The
ensuing optimization outcome corresponding to this configuration is visually presented in Fig. 6a,
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while the iterative histories of the volume ratio and objective function are graphically depicted
in Fig. 7a, Figs. 5a and 6a showcase the optimization results, revealing an identical structure that
maintains four supporting webs in the y-direction, which retains four supporting webs in the y-
direction. As the element size increases, the number of elements decreases, reducing the iteration steps
from 749 to 430. Although the 1 mm-size element model has more iteration steps, its optimization
result is more refined. The similar converging trends displayed by the volume fraction and objective
function corroborate the notion that the mesh size has little impact on the optimization result. With
the aim of obtaining more refined results, other subsequent examples in this paper use an element size
of 1 mm.

Figure 5: Model with 1 mm element and F = 1 N. (a) Optimization result. (b) Objective function and
volume ratio iteration histories

Secondly, an investigation is conducted to explore the impact of load magnitude on the optimiza-
tion result. The concentrated force F is set to 100 N for this case. Fig. 6b illustrates the optimization
result, while Fig. 7b presents the historical progression of iterations for both the volume ratio and
objective function. The optimization results and iteration curves are almost the same as those in Fig. 5.
Based on the analysis, it can be inferred that the optimization model remains relatively unaffected by
variations in the magnitude of the applied load. To facilitate result comparison, the load magnitude is
normalized. In the following examples, the load magnitude is set as 1 N.

Thirdly, to examine the impact of a symmetric constraint on the optimization results and facilitate
industrial manufacturing, symmetry constraint is incorporated into the optimization outcome. The
final result mandates symmetry around both the x-z and the y-z plane as a fundamental requirement.
Fig. 6c delineates the optimization results, whereas Fig. 7c depicts the iterative progression for both
the volume ratio and the objective function of the progression of iteration curves. Compared with
Fig. 5a, the supporting webs in Fig. 6c are straight and uniform in thickness. However, on either side,
there are two straight narrow webs whose dimensions are less than the optimized minimum size. This
is the result of the projection technique eliminating many elements with densities less than 0.5.

Fourth, to eliminate these two narrow webs and further reduce the weight, the volume fraction is
reduced to 15%. At the same time, the maximum and minimum member sizes are adjusted to 6 and
3 mm. Fig. 6d delineates the optimization results, whereas Fig. 7d provides a detailed depiction of the
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iterative progression for both the volume ratio and the objective function. In the results, the number of
webs increased to 5, and the arrangement is symmetrical. The slender webs vanish, while the volume
fraction effectively satisfies the imposed volume constraint.

(a) (b)

(c) (d)

Figure 6: Optimization results. (a) 2 mm-size element, F = 1 N model; (b) 1 mm-mesh element, F =
100 N model; (c) 1 mm-mesh element, F = 1 N, symmetry constraint model; (d) 1 mm-mesh element,
F = 1 N, symmetry constraint, Vf = 0.15 model

For the purpose of authenticating the correctness of the optimization results, the ABAQUS
software has been employed to compute the displacement and stress of the model both before and
after optimization. Since the volume fraction constraint during topology optimization is set as 0.15,
to ensure the same mass of the two structures before and after optimization, the thicknesses of the
optimized and the unoptimized structures are set to be 1 and 0.15 mm, respectively.

Under the same mass condition, the optimized circular cavity structure demonstrates substantial
enhancement in mechanical properties, as indicated by the results. Table 1 and Fig. 8 collectively
exhibit the results of mechanical analysis for the two structures when subjected to a concentrated
force. The unoptimized structure exhibits a maximum stress of 2.632 MPa, along with a maximum
displacement of 5.323 × 10−5 mm. After optimization, the maximum stress is 0.786 MPa, and
the maximum displacement is 3.133 × 10−5 mm. The loading point of the unoptimized structure
manifests evident stress concentration and substantial displacement. Through optimization, the stress
concentration at the loading point is effectively mitigated, with maximum stress reduced by 70.13%.
The structure achieves a significant 41.14% reduction in maximum displacement. Under the same
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mass condition, the optimized circular cavity structure demonstrates substantial enhancement in
mechanical properties, as indicated by the results.

Figure 7: Objective function and volume ratio iteration histories. (a) 2 mm-mesh size element, F = 1 N
model; (b) 1 mm-mesh size element, F = 100 N model; (c) 1mm-mesh size element, F = 1 N, symmetry
constraint model; (d) 1 mm-mesh size element, F = 1 N, symmetry constraint, Vf = 0.15 model

Table 1: Mechanical properties check results of the unoptimized and optimized structures

Concentrated load condition Unoptimized configuration Optimized configuration Variation

Thickness 0.15 mm 1 mm
The maximum stress 2.632 MPa 0.786 MPa 70.13%↓
The maximum displacement 5.323 × 10−5 mm 3.133 × 10−5 mm 41.14%↓
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Figure 8: Mechanical properties check results. (a) Unoptimized configuration’s stress nephogram;
(b) Unoptimized configuration’s displacement nephogram; (c) Optimized configuration’s stress
nephogram; (d) Optimized configuration’s displacement nephogram

4.2 Topology Optimization of a Circular Cavity under Uniform Load Condition
In this case, the layout optimization of the web structure of a circular cavity under the uniform

load is studied. The concentrated load F is transformed into the uniformly distributed load q. The
value of q satisfies the formula.

F = ql (19)

where l is the arc length in the load range, this loading mode is closer to the force situation of the cavity
structure in actual work, which is shown in Fig. 9.

The volume constraint equals 0.25. The member size constraints are also considered, with the
maximum and minimum member sizes being 12 and 6 mm, respectively.

Fig. 10a displays the optimization result, while Fig. 11a provides a detailed depiction of the
iterative progression for both the volume ratio and the objective function. With the expansion of the
force’s loading range in the x-direction, a supportive structure oriented within the same axis emerges in
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the optimization result. The y-direction support structure presents a complex and disordered network
structure. According to the volume fraction iteration curve, the optimization result satisfies the volume
constraint.

Figure 9: Design domain and boundary conditions

Figure 10: Optimization results. (a) 1 mm-size element, qn = 1 N, model; (b) 1 mm-size element, qn
= 1 N, symmetry constraint model; (c) 1 mm-size element, qn = 1 N, symmetry constraint, Vf = 0.15
model
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Figure 11: Objective function and volume ratio iteration histories. (a) 1 mm-size element, qn = 1 N,
symmetry constraint model; (b) 1 mm-size element, qn = 1 N, symmetry constraint model; (c) 1 mm-
size element, qn = 1 N, symmetry constraint, Vf = 0.15 model

In order to facilitate industrial manufacturing, the symmetric constraint is considered. Fig. 10b
presents the optimization results, while Fig. 11b provides a detailed depiction of the iterative progres-
sion for both the volume ratio and the objective function. Compared with Fig. 10a, the web in the y-
direction in Fig. 10b is missing. Prior to the disordered network, the structure is effectively eliminated,
making the overall structure more symmetrical. It is helpful to ease production and manufacturing
challenges.

For the purpose of weight reduction, the volume fraction parameter of 0.15 has been set.
Accordingly, the maximum and the minimum member size are set as 6 and 3 mm. The optimization
result and convergence profiles of the volume ratio and objective function are visualized in Figs. 10c
and 11c, respectively. The result indicates a symmetric arrangement of the web. A new web layout of
the optimization result consists of three vertical webs and one horizontal web. The volume fraction
meets the volume constraint.
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The optimization results depicted in Fig. 10c have undergone an examination of their mechanical
properties. To ensure the same weight for the two structures, the thickness of the optimized and
unoptimized structures are set as 1 and 0.15 mm, respectively. The mechanical performance of the
optimized cavity structure can be verified by comparing the displacement and stress distribution of
two cavity structures under the same load q.

The simulation results of the unoptimized and optimized structures are shown in, thereby
enhancing the overall structural stiffness of the cavity.

The unoptimized structure exhibits a maximum stress of 0.114 MPa and a vertex displacement in
the y-direction of 3.133 × 10−5 mm. After optimization, the maximum stress is 0.095 MPa. The vertex
has experienced a displacement of 1.992 × 10−5 mm in the y-direction. The maximum stress is reduced
by 17.15%, and the displacement of the vertex is reduced by 17.17% in Table 2. The results in Fig. 12
indicate that the horizontal and vertical webs effectively inhibit the displacement of the cavity, thereby
enhancing the overall structural stiffness of the cavity.

Table 2: Mechanical properties check results of the unoptimized and optimized structures

Concentrated load condition Unoptimized configuration Optimized configuration Variation

Shell thickness 0.15 mm 1 mm
The maximum stress 0.114 MPa 0.095 MPa 17.15%↓
The vertex displacement 2.405 × 10−5 mm 1.992 × 10−5 mm 17.17%↓

Figure 12: (Continued)



CMES, 2024, vol.138, no.3 2681

Figure 12: Mechanical properties check results. (a) Unoptimized configuration stress nephogram; (b)
Unoptimized configuration displacement nephogram; (c) Optimized configuration stress nephogram;
(d) Optimized configuration displacement nephogram

4.3 Topology Optimization of a Blade Cavity for Web Layout Design
In order to provide a new structure with a more robust web layout in the blade cavity, this case

takes the blade cavity as the research object and studies the layout optimization of the web structure
in the blade cavity. Fig. 13 illustrates the conventional beam web arrangement and the corresponding
design domain. The blade airfoil is SR152, with a chord length of 150 mm. The thickness of blade skin
and spar caps are 3 and 1.5 mm. The spar caps width equals the sum of bLE and bTE, that is, 27 mm.
The skin and inner cavity share the same material composition, with the inner cavity being considered
the design domain.

Figure 13: Blade model. (a) Traditional beam web structure blade cavity; (b) Design domain

According to the results in Section 4.1, the element size is 1 mm, so 15,459 plate elements are used
to discretize the blade cavity structure. The turbulence model Spalart-Allmaras [45] can be calculated
to get the pressure distribution on the airfoil section. When the installation angle of the blade is 12
degrees, the pressure curve of the suction and pressure side is shown in Fig. 14. The pressure on both
sides is divided into two working conditions, shown in Fig. 15. In the condition I, the suction side
beam is immobilized and the load is imposed on the pressure side. In contrast, in condition II, the
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pressure side beam is immobilized and the load is imposed on the suction side. The minimum weighted
compliance for the two conditions is the objective function with the convergence tolerance ratio of
1 × 10−8. The compliance value is defined as the weighted sum of the compliance values under two
working conditions. The weighted ratios for the two conditions are both 0.5.

Figure 14: Loading curve of the blade

Figure 15: Blade loading condition. (a) Condition I; (b) Condition II

Considering the conventional blade cavity web structure, Vf = 0.1 is the volume fraction set to
ensure the same weight before and after optimization. Member size constraints are also considered,
with the maximum and the minimum member size being 6 and 3 mm.

As illustrated in Fig. 16, the optimization results without and with symmetric constraints. Fig. 17
depicts the histories of the volume ratio and objective function iterations. Fig. 16a, irregular web
structures differ from traditional web layouts. The web structures are mainly concentrated in the
middle part of the cavity. Like the traditional web layout, no web is at the trailing edge. After adding
the symmetric constraint, in Fig. 16b, the structure presents a relatively novel symmetrical network
layout. The webs in chord direction, vertical direction, and 45° angle with vertical direction appear
simultaneously. Fig. 17 shows that the results satisfy the volume constraint after convergence.
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Figure 16: Optimization results. (a) Without symmetry constraint model; (b) With symmetry constraint
model

Figure 17: Objective function and volume ratio iteration histories. (a) Without symmetry constraint
model; (b) With symmetry constraint model

As shown in Figs. 18 and 19, the mechanical simulation results of the unoptimized model and
the optimized model under two working conditions are presented. In the condition I, Table 3, the
detailed data, the unoptimized model exhibits a maximum stress of 6.408 MPa and a maximum
displacement of 5.361 × 10−3 mm. The optimized model exhibits a maximum stress of 3.646 MPa
and a maximum displacement of 4.469 × 10−3 mm. The maximum stress and displacement decrease
by 43.1% and 16.64%, respectively. Compared with Figs. 18a, 18b, 19a, and 19b, the stress on the skin
exhibits improved uniformity after optimization. The stress concentration is effectively relieved. The
skin displacement near the pressure side beam before and after optimization are 5.43 × 10−4 mm and
4.11 × 10−4 mm, respectively, and the displacement is reduced by 24.31%.

In condition II, Table 4, the detailed data, the maximum stress, and the maximum displacement
of the unoptimized model are 1.707 MPa and 3.513 × 10−3 mm. In the optimized model, maximum
displacement and maximum stress are 1.777 MPa and 1.693 × 10−3 mm, respectively. However,
the maximum stress increases by 4.1%, Figs. 18c, 18d, 19c and 19d demonstrate that the load acting on
the pressure side is better transmitted to the web, which also significantly reduces the displacement of
the blade. The maximum displacement is reduced by 51.81%. The skin displacement near the suction
side beam before and after optimization is 0.0332 and 0.0293 mm respectively, which decreased by
11.75% after optimization. The results demonstrate a substantial enhancement in the mechanical
properties of the blade cavity under both condition I and condition II.
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Figure 18: Mechanical properties check of the unoptimized model. (a) The stress nephogram of
condition I; (b) The displacement nephogram of condition I; (c) The stress nephogram of condition II;
(d) The displacement nephogram of condition II

Figure 19: (Continued)
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Figure 19: Mechanical properties check of the optimized model. (a) The stress nephogram of
condition I; (b) The displacement nephogram of condition I; (c) The stress nephogram of condition II;
(d) The displacement nephogram of condition II

Table 3: Mechanical properties of the unoptimized and optimized structures

Condition I Unoptimized configuration Optimized configuration Variation

The maximum stress 6.408 3.646 43.10%↓
The maximum displacement 5.361 × 10−3 mm 4.469 × 10−3 mm 16.64%↓
The skin displacement near
the beam

5.43 × 10−4 mm 4.11 × 10−4 mm 24.31%↓

Table 4: Mechanical properties of the unoptimized and optimized structures

Condition II Unoptimized configuration Optimized configuration Variation

The maximum stress 1.707 1.777 4.10%↑
The maximum displacement 3.513 × 10−3 mm 1.693 × 10−3 mm 51.81%↓
The skin displacement near
the beam

0.0332 mm 0.0293 mm 11.75%↓

5 Conclusion

In this paper, the web layout design of large cavity structures based on topology optimization is
carried out. Detailed topology of the large cavity structures is described using SIMP. By using element
densities as design variables, the web layouts are optimized for circular and blade cavities by minimizing
structural compliance and constraining volume fraction. Optimizing the circular cavity structure
involves investigating two load conditions: concentrated and distributed loads. Additionally, the
influence of mesh size, load magnitude, symmetry constraint, and volume fraction on the optimization
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results is explored. The findings reveal that mesh size and load magnitude have negligible influence
on the optimized configuration. Symmetry constraints can make the result more beneficial to put into
production. The reduction of volume fraction can further reduce the structural weight. The optimized
design model is established according to the design parameters of a commercial 4.3MW-SR152 blade.
The optimized result shows that the web layout differs from the traditional ones with webs in chord
direction, vertical direction, and 45° angle with vertical direction appearing simultaneously. The
mechanical properties of the structures before and after optimization are compared. It reveals that
the optimized structure is stiffer than its unoptimized counterpart while maintaining the same mass,
with varying degrees of improvement. For the circular cavity, the maximum displacement is reduced
by 41.14% in the concentrated load case, and the vertex displacement is reduced by 17.17% in the
uniformly distributed force case. The maximum displacement of the blade cavity structure is reduced
by 51.81% in condition I and 16.64% in condition II, respectively. In addition, stress concentration
is also relieved with the maximum stress of the circular cavity structure reduced by 70.13% in the
concentrated load case and 17.15% in the uniformly distributed force case. In condition II, a notable
43.1% reduction is observed in the maximum stress of the blade cavity structure.
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