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ABSTRACT

This study presents the design of a modified attributed control chart based on a double sampling (DS) np chart
applied in combination with generalized multiple dependent state (GMDS) sampling to monitor the mean life of
the product based on the time truncated life test employing the Weibull distribution. The control chart developed
supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.
Three control limit levels are used: the warning control limit, inner control limit, and outer control limit. Together,
they enhance the capability for variation detection. A genetic algorithm can be used for optimization during the
in-control process, whereby the optimal parameters can be established for the proposed control chart. The control
chart performance is assessed using the average run length, while the influence of the model parameters upon the
control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design with multiple
linear regression. A comparative study was conducted based on the out-of-control average run length, in which the
developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller
samples on average than is the case for existing control charts. Finally, to exhibit the utility of the developed control
chart, this paper presents its application using simulated data with parameters drawn from the real set of data.

KEYWORDS
Modified DS np chart; generalized multiple dependent state sampling; time truncated life test; Weibull distribution;
average run length; average sample size

1 Introduction

A control chart is a statistical analysis tool used to monitor processes through time. It can also
identify changes or trends that could indicate a potential problem. Control charts are used to control
quality in production to ensure consistency and help identify areas for improvement. The concept of
statistical process control (SPC) was introduced by Walter A. Shewhart during the 1920s. One of his
key contributions to SPC was the development of the control chart, which is a tool used to monitor
and control a process over time. Shewhart’s control chart revolutionized the field of quality control by
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providing a way to monitor processes in real-time and make data-driven decisions to improve quality
according to Montgomery [1]. Presently, control charts have many applications in manufacturing and
are also used in healthcare, finance, and other fields. They aim to monitor and control processes and
ensure consistent quality over time. The two control chart types are variable and attribute control
charts. The most important difference between the two control charts is the type of data used to
monitor them. A variable control chart serves to monitor continuous or quantitative data that are
measurable using a numerical scale, such as weight, length, temperature, or time. On the other hand,
the number of defects or the proportion or percentage of defects in a sample of a process can be
monitored using an attribute control chart.

The np control chart finds widespread use in industry because it offers a simple and effective way
to monitor the stability of a process by tracking the number of non-conforming items in a sample.
However, it is known that the standard np charts are not effective at detecting process shifts when
the proportion of nonconforming items (p) is moderate or small. Therefore, some researchers have
focused on improving the efficiency of the np chart to detect process shifts through various methods
such as that of Gan [2], who proposed an optimized design for CUSUM np charts. Gan [3] developed
the concept of the modified exponentially weighted moving average (EWMA) chart together with the
np chart. Epprecht et al. [4] studied the properties of the np chart in cases where sample sizes varied
between small and large. Luo et al. [5] designed optimal variable sample sizes and variable sampling
intervals np charts in a steady-state mode. Double sampling (DS) was first presented by Croasdale [6],
who adopted the idea from the acceptance sampling plan and used it to apply the technique to the
X chart. Thereafter, several studies were conducted on double sampling with various control charts
or methods [7–10]. Rodrigues et al. [11] first proposed a DS np chart generated by a combination of
double sampling and Shewhart np control charts. According to these authors, the DS np chart performs
better than the standard np chart based on average run length (ARL). As a result, the average sample
size (ASS) is also decreased without affecting the ARL performance. Chong et al. [12] integrated the
concept of the DS np chart from Rodrigues et al. [11] and the conforming run length (CRL) chart.
A new control chart called a synthetic DS np chart is suggested to detect shifts in the proportion
of nonconforming items p. Zhou et al. [13] combined the methods of DS and variable sampling
intervals (VSI) to np charts based on multiple dependent state sampling (MDS). The proposed DS
np chart offers enhanced performance in terms of a reduced time to signal in out-of-control processes
and a decrease in expected cost per unit of time. A new method for designing the DS np chart with
approximated process parameters was proposed by Lee et al. [14]. The results show that the approach
allows for reducing the variation in average run length values. As a result, it is known that this method
reduces the variation in average run length.

There are also different techniques in sampling plans proposed by many researchers to improve
processes to be more efficient. One popular acceptance sampling technique is MDS sampling proposed
by Wortham et al. [15]. Since the acceptance or rejection of current lots depends on previous and
current lots, the MDS sampling plan is intended for a continuous production process whereby lots
are sent for serial inspection, which reduces the sample size. Several researchers have adopted MDS
sampling plans to develop a more efficient acceptance sampling plan [16–19]. Many researchers created
designs to apply MDS sampling in the area of control charts, such as Aslam et al. [20] who provided the
X chart using MDS sampling based on a double control limit. Aslam et al. [21] also designed a t-chart
for exponential distributions using MDS sampling. Meanwhile, an np chart using MDS sampling was
suggested by Aslam et al. [22]. They showed that the proposed control chart outperformed the existing
np control chart in terms of performance. A new control chart for the gamma distribution using MDS
sampling was proposed by Aslam et al. [23]. An adaptive control chart was created by Khan et al. [24]
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for monitoring the mean using EWMA statistics under MDS sampling. Aslam et al. [25] created
a novel t-chart using generalized multiple dependent state (GMDS) sampling and the presumption
that the time between events followed an exponential distribution. Raza et al. [26] constructed a new
control chart for monitoring multivariate Poisson count data under GMDS sampling. Both works
claim that GMDS sampling is more flexible and efficient than MDS sampling in designing the control
chart. Balamurali et al. [27] created an np control chart for considering the mean life of a product,
which follows the Pareto distribution of the second kind. An np control chart under MDS sampling
was designed by Balamurali et al. [28] based on a time-truncated life test. This control chart was
economically designed using a variable sampling interval scheme. With a small sample size and low
cost, the proposed chart was particularly useful in detecting process shifts. Aslam et al. [29] presented
control charts for attribute and variable data using modified MDS sampling. Based on an accelerated
life test, Aslam et al. [30] created an np chart using modified MDS sampling for monitoring the mean
lifetime of the items under a Weibull distribution. According to Woodall et al. [31], the use of MDS
sampling combined with control charts is equivalent to using control chart run rules. They proposed
methods based on Markov chains for determining the performance of control charts with run rules.
Currently, most data come from complex processes or uncertain environments, so some researchers
have applied neutrosophic statistics to construct control charts. For example, Aslam et al. [32] proposed
the X control chart using MDS under neutrosophic statistics. Khan et al. [33] also presented the
enhanced X control chart using GMDS sampling under neutrosophic statistics. Many products are
highly reliable, and for this reason, it is not possible to test the lifetime of the product until it fails.
Accordingly, the inspection process requires the design of a control chart under the time truncated life
test. As mentioned above, it was found that the work of Balamurali et al. [27], Balamurali et al. [28],
and Aslam et al. [29] not only designed the control chart using MDS sampling but also studied the
outcomes under time truncated life tests. Recently, references [34–37] designed a control chart under
time-truncated life tests for different distributions. From the literature review, the DS np chart is more
efficient than the existing np chart and also reduces the average sample size in the inspection process.
In addition, designing control charts using GMDS sampling is more efficient than MDS sampling.

During this study, the modified attributed np chart will be designed through a combination of
GMDS sampling with the DS np chart approach, based upon the time truncated life test where
the product lifespan adheres to a Weibull distribution. Genetic algorithm optimization during the
in-control process serves to establish the optimal parameters for the developed control chart. The
performance of the chart was assessed using the average run length, while sensitivity analysis was
investigated using an orthogonal experimental design with multiple linear regression. One objective
was to determine the influence of the model parameters on the solution delivered by the developed
control chart. Comparisons between the developed control chart and the existing control charts could
be drawn using the out-of-control average run length. Simulated data drawn from the parameters of
the real set of data are used to present an example of the developed control chart.

2 Materials and Methods
2.1 Weibull Distribution

The Weibull distribution is often employed in statistical quality control studies [16–19,28]. Because
of its flexibility and closed shape, the Weibull distribution serves as the most popular choice to model
the data lifespan.

Table 1 shows that researchers applied the Weibull distribution to the attributed control chart to
monitor the number of failures or mean life of products under a time truncated life test when the
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lifetime of the product follows a Weibull distribution. For the variable control chart, the Weibull
distribution is often used to monitor variation in the manufacturing process because of the flexible
selection of shape and scale parameters. Therefore, this research designs the modified DS np chart
using GMDS sampling to monitor the mean life of the product based on the time truncated life test
under the Weibull distribution. Let t represent the product lifespan under the Weibull distribution, so
the cumulative distribution function can be expressed as follows:

F (t, λ, δ) = 1 − e(−( t
λ ))

δ

, t ≥ 0, λ > 0, δ > 0, (1)

where λ is a scale parameter that is not known and δ is the known shape parameter. According to the
Weibull distribution, the average product lifespan is as follows:

μ =
(

λ

δ

)
�

(
1
δ

)
(2)

Table 1: A literature survey of the control charts on the Weibull distribution

Authors/Year Types of chart Topics

Aslam et al. [34]/2015 np chart Proposed control chart when
the lifetime of the product
follows a Weibull distribution
based on the number of failure
items in a truncated life test.

Akhundjanov et al. [38]/2015 Moving range EWMA chart Presented a control chart for
monitoring shifts in the
Weibull shape parameters.

Faraz et al. [39]/2015 Z and S2 chart Proposed control charts for
monitoring individual or joint
shifts in the scale and shape
parameters of a Weibull
distributed process.

Aslam [40]/2016 Mixed EWMA-CUSUM
chart

Proposed a mixed control
chart combining CUSUM
and EWMA statistics by
assuming that the quality
characteristic of interest
follows a Weibull distribution.

Aslam et al. [41]/2017 np chart Presented a control chart
using accelerated hybrid
censoring logic for the
monitoring of defective items
whose lifetime follows a
Weibull distribution.

(Continued)
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Table 1 (continued)

Authors/Year Types of chart Topics

Arif et al. [42]/2017 EWMA np chart Designed the attribute control
chart based on the number of
failures under a time
truncated life test when the
lifetime of the product follows
a Weibull distribution.

Balamurali et al. [28]/2019 np chart using MDS sampling Designed a control chart
using MDS sampling for
monitoring the mean life of
the products when the lifetime
follows a Weibull distribution
based on a time truncated life
test.

Huwang et al. [43]/2020 new EWMA chart Developed an EWMA chart
for monitoring the shape
parameters of a Weibull
process.

Aslam et al. [44]/2021 np chart using modified MDS
sampling

Designed a control chart for
monitoring the mean lifetime
of the products following a
Weibull distribution under an
accelerated life test.

Khan et al. [45]/2023 Moving average EWMA chart Presented a control chart to
monitor the number of
defective counts before the
specified time which follows a
Weibull distribution.

Let � (·) be the complete gamma function. In Eq. (3), under the Weibull distribution, the
probability of a given item failing before the experiment time t0 is shown:

p = 1 − e
(
−

( t0
λ

))δ

. (3)

The value of t0 can be represented as t0 = aμ0 for an experiment termination ratio of a using the
specific mean lifetime μ0. Consequently, the following can be used to rewrite Eq. (4):

p = 1 − e−aδ(
μ0
μ )

δ
( 1

δ
�( 1

δ ))
δ

. (4)

If the process mean is the same as the target mean, or μ = μ0, the process is said to be in-control.
Eq. (5) thus becomes:

p0 = 1 − e−aδ( 1
δ

�( 1
δ ))

δ

, (5)
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where p0 represents the probability of a given item failing. If the process means changes from the target
mean, this indicates that the process is out-of-control, shown as μ = f μ0 where f is a shift constant.
Next, p1 represents the probability of a given item failing when a process is out-of-control, which has
the following equation:

p1 = 1 − e−aδ
(

1
f

)δ
( 1

δ
�( 1

δ ))
δ

, (6)

From Eq. (6), we obtain the probability of a given item failing when there is a shift in process in
terms of the specified values of δ, a and f under the Weibull distribution.

2.2 Design of the Modified DS np Chart Using GMDS Sampling
The following section presents the modified DS np control chart using GMDS sampling to

monitor the mean life of the product created on the basis of time truncated life tests under the Weibull
distribution. The developed control chart includes a pair of inspection stages. In Stage 1, two warning
control limits are indicated by LWL and UWL, while the inner control limit is denoted as UCL1. In
Stage 2, there is a single outer control limit indicated as UCL2. If a sample point for Stage 1 lies between
LWL and UWL, the process can be considered in-control, whereas sample points found beyond the
inner control limit will be indicative of a process that is out-of-control. If sample points are located
between UWL and UCL1, it is necessary to take a second sample from the same subgroup, whereupon
the process can be considered in-control if these sample points fall within the outer control limit of
Stage 2, while k of m previous subgroups were found to be in-control for Stage 1. If this is not the case,
the process can be considered out-of-control. The operational process for this modified DS np chart
with GMDS sampling based on the time-truncated life test under the Weibull distribution can be seen
as follows:

1. Specify the limits indicated as LWL, UWL, UCL1 and UCL2.

2. The initial sample, of size n1 should be taken for the production process from each subgroup.
The lifespan of the item is tested, where t0 is the experiment time, and the nonconforming items
(d1) prior to t0 are counted.

3. In Stage 1 (see Fig. 1)
3.1 If LWL ≤ d1 ≤ UWL, the process can be considered in-control, then return to Step 2.

3.2 If d1 > UCL1, the process can be considered out-of-control.

3.3 If UWL < d1 ≤ UCL1, it is necessary to draw a second sample of size n2. The
nonconforming items (d2) in the second sample prior to t0 must be counted. Then go to
Stage 2.

4. In Stage 2 (see Fig. 1), if d1 +d2 ≤ UCL2 the process can be considered in-control where k of m
previous subgroups were found to be in-control for Stage 1 (LWL ≤ d1 ≤ UWL), then return
to Step 2. If this is not the case, it can be determined that the process is out-of-control.

Let d1 and d2 be random variables with binomial distributions with parameters n1, n2 and p0, where
p0 is the probability of a given item failing before t0. We can summarize the above steps in a flow chart,
as presented in Fig. 2. The modified DS np control chart using GMDS sampling is studied following
assumptions and limitations:

1. The developed control chart monitors the mean life of products under a time-truncated life
test when the lifetime of the product follows a Weibull distribution.
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2. The developed control chart is constructed based on a double sampling np chart together with
GMDS sampling where p0 follows the Weibull distribution.

3. At the start of the process, the process is assumed to fit the in-control region, that is μ = μ0.

The process mean may be shifted to the out-of-control region, that is μ = f μ0.

4. In this study, the genetic algorithm (GA) with the R program is used to find the optimal
parameters.

Figure 1: The modified DS np chart based on GMDS sampling procedure

Figure 2: Flowchart of the inspection procedure for the modified DS np chart based on GMDS
sampling

Therefore, the control limits for Stages 1 and 2 are shown as follows:

Stage 1

UWL = n1p0 + w
√

n1p0 (1 − p0) (7)
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LWL = max
(

0, n1p0 − w
√

n1p0 (1 − p0)
)

(8)

UCL1 = n1p0 + L1

√
n1p0 (1 − p0) (9)

Stage 2

UCL2 = (n1 + n2) p0 + L2

√
(n1 + n2) p0 (1 − p0) (10)

where w, L1 and L2 are control limit coefficients with L1 > w and L2 > 0. The developed control chart
becomes a DS np chart based on MDS sampling when k = m occurs, while it reduces to a DS np chart
if k = m = 0 occurs. Similarly, when w = L1 = L2 and k = m = 0 the developed control chart will
reduce to the classical np chart.

Based on the developed control chart, the probability that the process will be considered in-control
at Stage 1 is indicated by PS1 and provided as:

PS1 (p) = P (LWL ≤ d1 ≤ UWL)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�UWL�∑
d1=�LWL�+1

(
n1

d1

)
pd1 (1 − p)

n1−d1 if LWL is not integer

�UWL�∑
d1=LWL

(
n1

d1

)
pd1 (1 − p)

n1−d1 if LWL is integer

(11)

where �.� is the largest integer that is either less than or equal to the argument. The probability that
the second sample is taken from the same subgroup and the total number of nonconforming items in
the two samples (d1 + d2) is below the outer control limit is represented by PD and expressed as:

PD (p) = P (UWL < d1 ≤ UCL1) × P (d1 + d2 ≤ UCL2)

=
⎛
⎝ �UCL1�∑

d1=�UWL�+1

(
n1

d1

)
pd1 (1 − p)

n1−d1

⎛
⎝�UCL2�−d1∑

d2=0

(
n2

d2

)
pd2 (1 − p)

n2−d2

⎞
⎠

⎞
⎠ (12)

The probability declares that the process is in-control at Stage 2 when given that k of m from the
previous subgroup must be in-control at Stage 1, denoted by PS2 and defined as:

PS2 (p) = PD ×
m∑

j=k

(
m
j

)
(PS1)

j
(1 − PS1)

m−j (13)

According to the modified DS np chart using GMDS sampling, the probability that the process
was considered to be in-control is indicated as:

Pin (p) = PS1 (p) + PS2 (p)

= P (LWL ≤ d1 ≤ UWL)

+ P (UWL < d1 ≤ UCL1) × P (d1 + d2 ≤ UCL2) ×
m∑

j=k

(
m
j

)
(PS1)

j
(1 − PS1)

m−j (14)

The probability of declaring that a process is in-control when it is actually in-control (p = p0) can
be shown as follows:

Pin (p0) = PS1 (p0) + PS2 (p0) (15)
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Moreover, the probability of declaring that a process is in-control when it is actually out-of-control
(p = p1) is obtained as follows:

Pin (p1) = PS1 (p1) + PS2 (p1) (16)

The ARL0 indicating in-control average run length of the developed control chart is established
by:

ARL0 = 1
1 − Pin (p0)

. (17)

The ARL1 indicating out-of-control average run length of the developed control chart is deter-
mined by:

ARL1 = 1
1 − Pin (p1)

. (18)

Additionally, the average sample size (ASS) of the developed control chart for declaring that the
process is in-control is provided by:

ASS (p0) = n1 + n2P (UWL < d1 ≤ UCL1) (19)

where P (UWL < d1 ≤ UCL1) is the probability of taking a second sample.

2.3 Optimal Design of the Modified DS np Chart Using GMDS Sampling Based on the Weibull
Distribution

In this section, we used the following optimization problem to obtain the optimal parameters for
constructing the modified DS np chart using GMDS sampling as follows:

Minimize ASS (p0) (20)

Subject to ARL0 ≥ r0, n1 < n0 < n2 and n1 ≤ n2,
L1 > w and L2 > 0, m > k ≥ 1.

where n0 is the pre-determined in-control average sample size. For more details see [14]. The value of
ARL was used to assess the performance of the developed control charts. The ASS when the process
is in-control was also used to study the performance of the developed control chart. With optimal
average sample size, the control charts are more sensitive to detecting process variations. In this study,
the genetic algorithm (GA) with the R program is used to find the optimal parameters. The optimal
parameters n1, n2, k, m, a and control limit coefficients w, L1, L2 were determined for the specified
values of in-control ARL (r0), the shape parameter (δ), and n0. For this purpose, we consider r0 = 200,
370 and δ = 2, 3, whereas n0 = 50, 100. All the computations are carried out in the R program. The
developed control chart parameters along with ARL are obtained using the following algorithm:

1. Assign the values of r0, δ and n0.

2. Find out the values of the optimal parameters n1, n2, k, m, a and control limit coefficients w,
L1, L2 that result in minimum ASS for which ARL0 ≥ r0 by running the R programming under
Eq. (20).

3. Calculate the ARL1 in Eq. (18) using the optimal parameters n1, n2, k, m, a and control limit
coefficients w, L1, L2 from the steps above for various values of the shift constant (f ).

The pseudocode of the modified DS np chart based on GMDS sampling is shown as follows:
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Pseudocode of the modified DS np chart based on GMDS sampling under time truncated life test

BEGIN
Define the function f with input x
function f(x):
Extract variables from x
n1 = round(x[1]), n2 = round(x[2]), w = x[3], L1 = x[4], L2 = x[5], a = x[6], m = x[7], k = x[8]
SET delta = 2, shift = 1
Calculate p0, LWL, UWL, UCL1, UCL2, PS1, PD
p0 = calculate_p0(a, delta, shift) (Eqs. (5) or (6))
LWL = calculate_LWL(n1, p0, w) (Eq. (7)), UWL = calculate_UWL(n1, p0, w)) (Eq. (8))
UCL1 = calculate_UCL1(n1, p0, L1) (Eq. (9)), UCL2 = calculate_UCL2(n1, n2, p0, L2) (Eq. (10))
PS1 = calculate_PS1(LWL, UWL, n1, p0) (Eq. (11))
Pa2upper = calculate_Pa2upper(UWL, UCL1, n1, p0)
Calculate PD and PS2 using nested loops
PD = calculate_PD(UWL, UCL1, UCL2, n1, p0, n2) (Eq. (12))
PS2 = calculate_PS2(Pa2upper, PD, m, k) (Eq. (13))
Calculate ARL and ASS
ARL = calculate_ARL(PS1, PS2) (Eq. (17)), ASS = calculate_ASS(n1, n2, Pa2upper) (Eq. (19))
SET f1 = −ARL, f2 = ASS
Evaluate constraints
g1 = n1−n2, g2 = w−L1, g3 = 370−ARL
Check the feasibility and calculate the fitness value
if g1 <= 0 and g2 <= 0 and g3 <= 0: fitness = f1 else: fitness = −100000
return fitness
end function
Genetic Algorithm (GA) setup and execution
GA = initialize_GA(f, lower_bound, upper_bound, popSize, maxiter)
results = run_GA(GA)
show_summary(results)
END

3 Results
3.1 Numerical Results

The following section presents the assessment of the performance achieved by the modified DS
np chart with GMDS sampling through the use of ARL and ASS. The optimal parameters for the
developed control chart (n1, n2, k, m, a) along with the relevant control limit coefficients (w, L1, L2)

can be seen in Tables 2 and 3. In establishing the optimal parameters, it is necessary for ARL0 in
Eq. (20) to approximate as closely as possible to r0 = 200 and 370 for the fixed values of n0 = 50,
100, and δ = 2, 3. The calculation of ARL1 is made for various values of f under optimal parameters
whereby f lies in the range of 1.0 to 0.1. The findings determined from Table 2 can be expressed as
shown below:

1. When δ and n0 are fixed, an increase in r0 was linked to a decline in ASS.

2. When r0 and n0 are fixed, an increase in δ leads to an increase in ASS.
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3. It was found that if δ and r0 are fixed, the results show that if n0 increases, this will result in
ASS also increasing.

4. As ASS increases, the developed control chart shows greater efficiency in the detection of
process shifts. It is also apparent that ARL1 declines to a greater extent in relation to the same
shift size. These findings concur with the earlier reports of Adeoti et al. [46].

5. The findings also indicate a decrease in the values of ARL1 in line with a decrease in shift size.

Table 2: ARL of the modified DS np chart using GMDS sampling under r0 = 200, 370, and n0 = 50,
100

n0 = 50
r0 = 200 r0 = 370

δ = 2 δ = 3 δ = 2 δ = 3
n1 = 9, n2 = 60 n1 = 42, n2 = 55 n1 = 8, n2 = 57 n1 = 23, n2 = 59
w = 2.5439 w = 2.8678 w = 2.0321 w = 3.0320

f L1 = 4.4555 L1 = 3.7793 L1 = 2.5759 L1 = 4.2571
L2 = 1.6637 L2 = 3.6392 L2 = 4.7152 L2 = 3.4771
k = 3, m = 6 k = 6, m = 7 k = 2, m = 4 k = 5, m = 6
a = 0.8263,
ASS = 9.30

a = 0.9723,
ASS = 42.10

a = 0.9093,
ASS = 8.15

a = 0.9285,
ASS = 23.04

1.0 200.64 200.06 370.05 370.56
0.9 192.30 188.11 287.15 279.50
0.8 147.12 139.63 193.50 183.59
0.7 117.64 77.02 174.84 163.80
0.6 104.70 66.93 66.80 47.31
0.5 68.77 47.24 57.53 41.77
0.4 26.67 1.00 7.69 1.00
0.3 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00

n0 = 100
r0 = 200 r0 = 370

δ = 2 δ = 3 δ = 2 δ = 3
n1 = 41, n2 = 145 n1 = 80, n2 = 118 n1 = 22, n2 = 129 n1 = 55, n2 = 117
w = 2.9244 w = 2.8101 w = 3.0509 w = 1.3775

f L1 = 3.8604 L1 = 4.5778 L1 = 3.8044 L1 = 2.9970
L2 = 2.1466 L2 = 1.5150 L2 = 3.2938 L2 = 4.1485
k = 5, m = 6 k = 3, m = 5 k = 4, m = 5 k = 3, m = 4
a = 0.9200,
ASS = 41.17

a = 0.9346,
ASS = 80.18

a = 0.9368,
ASS = 22.05

a = 0.9483,
ASS = 55.11

1.0 200.99 200.00 370.60 370.65
0.9 189.59 182.50 229.10 366.45
0.8 162.19 145.83 223.50 279.75
0.7 150.78 120.10 191.75 269.52

(Continued)
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Table 2 (continued)

0.6 119.16 66.54 97.44 190.36
0.5 79.90 24.00 91.63 14.63
0.4 37.82 1.00 28.55 1.00
0.3 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00

Table 3: ARL of the modified DS np chart using GMDS sampling under n0 = 50, r0 = 200, 370 and
m = 4

r0 = 200
δ = 2 δ = 3

k = 2 k = 3 k = m = 4 k = 2 k = 3 k = m = 4
n1 = 12,
n2 = 86

n1 = 12,
n2 = 95

n1 = 14,
n2 = 92

n1 = 43,
n2 = 80

n1 = 34,
n2 = 94

n1 = 25,
n2 = 91

w = 2.8402 w = 2.7647 w = 2.6747 w = 2.8452 w = 2.9069 w = 2.7602
f L1 = 4.9713 L1 = 3.5293 L1 = 3.7245 L1 = 4.3429 L1 = 4.5738 L1 = 3.1215

L2 = 2.2273 L2 = 2.9607 L2 = 2.8176 L2 = 1.3644 L2 = 4.4251 L2 = 2.1994
a = 0.9105, a = 0.9109 a = 0.8792 a = 0.8840 a = 0.9039 a = 0.8338
ASS = 12.02 ASS = 12.01 ASS = 14.22 ASS = 43.10 ASS = 34.29 ASS = 25.13

1.0 200.00 201.03 200.00 200.00 200.51 200.11
0.9 155.54 120.62 187.09 182.78 177.29 189.15
0.8 139.24 116.09 181.36 176.15 175.75 186.23
0.7 63.16 51.22 155.43 144.41 127.21 162.33
0.6 37.56 33.37 97.44 97.01 72.46 137.44
0.5 18.63 18.26 47.27 19.37 17.31 80.04
0.4 5.35 5.27 25.98 1.00 1.00 25.78
0.3 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00

r0 = 370
δ = 2 δ = 3

k = 2 k = 3 k = m = 4 k = 2 k = 3 k = m = 4
n1 = 12,
n2 = 69

n1 = 12,
n2 = 72

n1 = 14,
n2 = 80

n1 = 26,
n2 = 62

n1 = 17,
n2 = 63

n1 = 20,
n2 = 59

w = 2.7659 w = 2.7743 w = 2.8009 w = 2.9583 w = 2.8827 w = 3.0649
f L1 = 3.6984 L1 = 3.2143 L1 = 3.1383 L1 = 4.2936 L1 = 3.2071 L1 = 4.4702

L2 = 3.0798 L2 = 1.5167 L2 = 2.0606 L2 = 2.7951 L2 = 3.7257 L2 = 2.4693
a = 0.8043 a = 0.8042 a = 0.7862 a = 0.9338 a = 0.9705 a = 0.9158
ASS = 12.19 ASS = 12.17 ASS = 14.18 ASS = 26.04 ASS = 17.04 ASS = 20.04

1.0 370.14 370.32 370.08 370.00 370.00 370.01

(Continued)
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Table 3 (continued)

0.9 209.53 129.45 323.20 252.02 222.94 299.01
0.8 174.31 111.80 292.22 153.04 131.05 198.91
0.7 161.51 104.96 165.76 125.55 121.13 145.51
0.6 80.82 80.66 139.42 52.39 20.79 55.90
0.5 72.74 72.59 107.90 38.36 11.22 38.63
0.4 11.46 5.74 36.76 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00

In Table 3, the ARL for the optimal parameters of the modified DS np chart using GMDS
sampling can be seen in the context of values for k = 2, 3, 4 and m = 4, where k = m, the developed
control chart applying GMDS sampling is reduced to MDS sampling. When the shift size is the same,
it can be seen that k = 3 offers the greatest sensitivity in the detection of process shifts, with k = 2 rated
slightly lower, while the poorest sensitivity was observed for k = m = 4, as may be observed from the
ARL1. It can be observed that the developed control chart with GMDS sampling exhibits the lowest
ARL1 when k = m − 1. No other value of k approaches this result, and the finding concurs with the
reported results of [25,26]. This confirms the greater sensitivity in detecting process shifts achieved
by the developed control chart with GMDS sampling in comparison to the results for the developed
control chart with MDS sampling.

3.2 Sensitivity Analysis
In some cases, the parameters presented in Tables 2 and 3 showed no clear trends or strong

correlations. The use of sensitivity analysis can, therefore, help to determine the extent of the
influence of these parameters upon the solution from the developed control chart. An orthogonal-
array experimental design is used along with multiple linear regression to conduct the sensitivity
analysis. For independent variables, the model parameters (a, m, δ, r0, and n0) are employed, while
the role of the dependent variables is fulfilled by the six test parameters (n1, n2, w, L1, L2, and k) along
with ASS and ARL0. The sensitivity analysis tests five model parameters (a, m, δ, r0, and n0), for which
the corresponding level planning can be observed in Table 4.

Table 4: Planning for five model parameters at different levels

Model parameter Level 1 Level 2 Model parameter Level 1 Level 2

δ 2 3 r0 200 370
a 0.4 0.8 n0 50 100

m 3 6

The data shown in Table 5 represents the results from the use of an L32 orthogonal array in the
experiment, whereby the five model parameters of the L32 array columns are defined. Accordingly, 32
experiments are required in the L32 orthogonal array experiment design. For the developed control
chart, the best solution was produced in each of the trials via GA optimization, which can be seen
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in Table 5. Multiple linear regression analysis using Minitab 19.0 software was then performed to
assess the impact of the various independent parameters on the control chart. ANOVA analysis and
multiple linear regression findings for each of the dependent variables are presented in Tables 6–10,
and these data can be employed to test statistical hypotheses. Stepwise regression is used to examine
the relationships between all values at a significance level of 0.05. The results in Tables 6a–10a indicate
that the values of n̂2, ŵ, k̂, AR̂L0 and AŜS are significantly influenced by at least one of the independent
variables. Table 6b reveals that n0 influences n̂2. Where the coefficient of n0 is positive, this is indicative
of a relationship whereby increasing n0 causes n̂2 to increase in turn. Therefore, n0 causes n̂2 to change
by 90.20%.

Table 5: Assignment of model parameters to the L32 orthogonal array and the resulting solution

Trial Model parameters Solution
a m δ r0 n0 n1 n2 w L1 L2 k ASS ARL0

1 0.4 3 2 200 50 24 51 2.8725 4.7133 1.0547 2 24.24 207.40
2 0.4 3 2 200 100 45 130 3.0150 3.3530 1.0102 2 45.43 201.86
3 0.4 3 2 370 50 42 60 3.0074 3.7802 3.1968 2 42.11 375.52
4 0.4 3 2 370 100 42 128 2.9870 3.2854 2.2429 2 42.00 375.08
5 0.4 3 3 200 50 36 60 3.2161 4.3097 2.3222 2 36.23 208.29
6 0.4 3 3 200 100 60 129 3.3091 4.8395 3.8636 2 60.64 200.50
7 0.4 3 3 370 50 7 57 3.3711 4.9495 1.9035 2 7.15 370.50
8 0.4 3 3 370 100 7 113 3.3815 3.6287 2.7589 1 7.00 370.02
9 0.4 6 2 200 50 29 65 2.8335 3.7658 1.2450 5 29.24 205.39
10 0.4 6 2 200 100 45 118 3.0755 3.9633 1.1358 5 45.53 201.95
11 0.4 6 2 370 50 22 65 3.1862 4.2079 1.1871 4 22.14 384.23
12 0.4 6 2 370 100 22 150 3.0091 4.8920 1.2810 3 22.39 384.56
13 0.4 6 3 200 50 36 72 3.0444 4.4546 1.1038 4 36.34 208.10
14 0.4 6 3 200 100 36 111 2.9094 3.3812 2.9678 3 36.00 207.97
15 0.4 6 3 370 50 7 61 3.9567 4.9899 2.2981 5 7.16 370.67
16 0.4 6 3 370 100 79 143 3.3983 4.1036 1.2079 4 79.35 375.52
17 0.8 3 2 200 50 17 66 2.8058 3.3188 1.1593 2 17.12 219.23
18 0.8 3 2 200 100 44 122 2.8691 3.2644 1.0168 2 44.21 205.15
19 0.8 3 2 370 50 18 68 2.9345 3.9863 1.0471 2 18.07 383.49
20 0.8 3 2 370 100 24 126 3.0376 3.3569 1.1195 2 24.18 376.90
21 0.8 3 3 200 50 11 72 2.8742 3.6765 1.0103 2 11.30 205.84
22 0.8 3 3 200 100 11 109 2.8671 3.4283 1.0517 2 11.46 205.89
23 0.8 3 3 370 50 39 89 3.0340 4.2022 1.1309 1 39.18 372.60
24 0.8 3 3 370 100 64 133 3.0573 3.7718 1.0453 2 64.25 372.17
25 0.8 6 2 200 50 17 62 2.8258 3.5193 1.0720 4 17.11 219.23
26 0.8 6 2 200 100 71 116 2.8970 4.9059 1.4949 4 71.35 203.28
27 0.8 6 2 370 50 35 69 2.9698 4.2856 1.1803 4 35.11 372.27
28 0.8 6 2 370 100 86 120 3.0262 3.1524 1.0841 5 86.10 370.53
29 0.8 6 3 200 50 11 60 3.0147 3.7385 1.1034 3 11.29 205.89
30 0.8 6 3 200 100 35 134 2.8122 4.2819 1.5467 4 35.39 203.67

(Continued)
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Table 5 (continued)

Trial Model parameters Solution
a m δ r0 n0 n1 n2 w L1 L2 k ASS ARL0

31 0.8 6 3 370 50 5 63 2.9077 4.5687 3.2154 3 5.17 376.70
32 0.8 6 3 370 100 37 118 2.9835 3.5130 1.5543 2 37.26 376.36

Table 6: Minitab output for the second sample size
(
n̂2

)
(a) Table of ANOVA

Source DF SS MS F-value p-value

Regression 1 28800 28800.0 286.28 0.000
Residual 30 3018 100.6
Total 31 31818

(b) Table of regression coefficients

Independent
variable

Coefficients Std. error T-value p-value VIF

Constant 5.00 5.61 0.89 0.380
n0 1.20 0.0709 16.92 0.000 1.00

Adjusted R2 = 90.20%, Durbin–Watson statistic = 2.1740

Table 7: Minitab output for control limit coefficients of warning limit
(
ŵ

)
(a) Table of ANOVA

Source DF SS MS F-value p-value

Regression 3 0.9427 0.31422 11.46 0.000
Residual 28 0.7678 0.02742
Total 31 1.7105

(b) Table of regression coefficients

Independent variable Coefficients Std. error T-value p-value VIF

Constant 2.639 0.199 13.26 0.000
a −0.571 0.146 −3.90 0.001 1.00
δ 0.1741 0.0585 2.97 0.006 1.00
r0 0.001105 0.000344 3.21 0.003 1.00

Adjusted R2 = 50.30%, Durbin–Watson Statistic = 1.9418
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In Table 7b, it can be observed that ŵ is influenced by a, δ and r0. Where the coefficients of δ

and r0 are positive, this confirms that increasing δ and r0 leads to an increase in ŵ, whereas a negative
coefficient for a shows that increasing a causes ŵ to decrease. It is therefore apparent that the effect
of a, δ and r0 is to change ŵ by 50.30%. The data in Table 8b confirm that k̂ is affected by m and δ.
Where m has a positive coefficient, this indicates that increasing m results in an increase in k̂, whereas
a negative coefficient for δ shows that increasing δ causes k̂ to decline. It is thus possible to conclude
that changes in m and δ will influence k̂ by 72.98%. In Table 9b, it is revealed that r0, n0 and w have an
influence upon AR̂L0. Where the coefficients of r0 are positive, this confirms that increasing r0 leads
to an increase in AR̂L0, while negative coefficients for n0 and w confirm that when n0 and w increase
there will be a corresponding decline in AR̂L0. From the data, it is apparent that r0, n0 and w have the
effect of changing AR̂L0 by 99.72%. Meanwhile, Table 10b reveals that r0, n1, n2 and L1 can influence
AŜS. Where n1, n2 and L1 have positive coefficients, an increase in n1, n2 and L1 causes AŜS to rise,
whereas, in contrast, a negative coefficient for r0 shows that an increase in r0 causes a decline in AŜS.
The data show that r0,n1 , n2 and L1 have the effect of changing AŜS by 100.00%.

Table 8: Minitab output for k̂

(a) Table of ANOVA

Source DF SS MS F-value p-value

Regression 2 34.000 17.0000 42.87 0.000
Residual 29 11.500 0.3966
Total 31 45.500

(b) Table of regression coefficients

Independent variable Coefficients Std. error T-value p-value VIF

Constant 1.125 0.659 1.71 0.098
m 0.6667 0.0742 8.98 0.000 1.00
δ −0.500 0.223 −2.25 0.033 1.00

Adjusted R2 = 72.98%, Durbin–Watson statistic = 1.9783

Table 9: Minitab output for in-control average run length
(

AR̂L0

)

(a) Table of ANOVA
Source DF SS MS F-value p-value
Regression 3 227599 75866 3664.48 0.000
Residual 28 580 21
Total 31 228179

(Continued)
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Table 9 (continued)

(b) Table of regression coefficients
Independent variable Coefficients Std. error T-value p-value VIF
Constant 38.9 11.1 3.49 0.002
r0 1.0019 0.0104 96.73 0.000 1.20
n0 −0.0699 0.0322 −2.17 0.038 1.00
w −9.19 3.81 −2.41 0.023 1.20
Adjusted R2 = 99.72%, Durbin–Watson statistic = 1.4151

Table 10: Minitab output for in-control average sample size
(

AŜS
)

(a) Table of ANOVA

Source DF SS MS F-value p-value

Regression 4 14189 3547.25 328444.48 0.000
Residual 27 0.3 0.01
Total 31 14189.3

(b) Table of regression coefficients

Independent variable Coefficients Std. error T-value p-value VIF

Constant −0.235 0.162 −1.46 0.157
r0 −0.00099 0.000219 −4.54 0.000 1.02
n1 1.00014 0.00106 942.38 0.000 1.47
n2 0.00249 0.000726 3.43 0.002 1.55
L1 0.1283 0.0335 3.83 0.001 1.07

Adjusted R2 = 100.00%, Durbin–Watson statistic = 1.7663

3.3 Comparative Study
Comparisons are drawn in this section between the performance of the modified DS np chart with

GMDS sampling and the control charts of Balamurali et al. [28], Aslam et al. [34] and Arif et al. [42].
The work of Balamurali et al. [28] described an attribute np chart that uses MDS sampling, while the
work of Aslam et al. [34] covered an attribute np chart based on single sampling. In addition, the work
of Arif et al. [42] presented the design of an attribute EWMA np chart. In all cases, the product lifespan
followed a Weibull distribution based on the time-truncated life test. Accordingly, comparisons of the
control charts’ performance can be shown using ARLS with identical or similar values for specific
parameters of the control charts, such as δ = 2, a = 0.9, m = 3 (for MDS and GMDS sampling),
a smoothing constant λ =0.5 (for the EWMA np chart), r0 = 200 and 370. Four control charts were
simulated under the same conditions to compare the ARLs. In the case of the developed control chart
proposed in this study, the optimization in Eq. (20) uses n0 = 30 and k = 2, and pseudocodes of the
existing control charts of Balamurali et al. [28], Aslam et al. [34], and Arif et al. [42] are shown as
follows:
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Pseudocode of np chart using MDS sampling under time truncated life test [28]

BEGIN
Define the function f with input x
function f(x):
Extract variables from x
n = round(x[1]), k1 = x[2], k2 = x[3]
SET m = 3, delta = 2, shift = 1, a = 0.9
Calculate p0, LWL, UWL, UCL1, UCL2, Pa1, Pa2upper, Pa2lower, Pa2, Pin
p0 = calculate_p0(a, delta, shift)
UCL1 = calculate_UCL(n, p0, k1), LCL1 = calculate_LCL(n, p0, k1)
UCL2 = calculate_UCL(n, p0, k2), LCL2 = calculate_LCL(n, p0, k2)
Pa1 = calculate_Pa1(LCL1, UCL1, n, p0)
Pa2upper = calculate_Pa2upper(UCL1, UCL2, n, p0)
Pa2lower = calculate_Pa2lower(LCL2, LCL1, n, p0)
Pa2 = calculate_Pa2(Pa2upper, Pa2lower)
Pin = calculate_ Pin(Pa1, Pa2, m)
Calculate ARL and ASS
ARL = calculate_ARL(Pin), ASS = n
SET f1 = −ARL, f2 = ASS
Evaluate constraints
g1 = 370−ARL, g2 = k1−k2
Check the feasibility and calculate the fitness value
if g1 <= 0 and g2 <= 0: fitness = f1 else: fitness = −100000
return fitness
end function
Genetic Algorithm (GA) setup and execution
GA = initialize_GA(f, lower_bound, upper_bound, popSize, maxiter)
results = run_GA(GA)
show_summary(results)
END

Pseudocode of np chart under time truncated life test [34]

BEGIN
Define the function f with input x
function f(x):
Extract variables from x
n = round(x[1]), k = x[2]
SET delta = 2, shift = 1, a = 0.9
Calculate p0, UCL, LCL, Pa1, Pin, and ASS
p0 = calculate_ p0 (a, delta, shift),
UCL = calculate_UCL(n, p0, k), LCL = calculate_LCL(n, p0, k)
Pa1 = calculate_Pa1(LCL, UCL, n, p0), ARL = calculate_ARL(Pa1), ASS = n
SET f1 = −ARL, f2 = ASS

(Continued)
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(continued)
Evaluate constraints
g = 370−ARL
Check the feasibility and calculate the fitness value
if g <= 0: fitness = f1 else: fitness = −100000
return fitness
end function
Genetic Algorithm (GA) setup and execution
GA = initialize_GA(f, lower_bound, upper_bound, popSize, maxiter)
results = run_GA(GA)
show_summary(results)
END

Pseudocode of EWMA np chart under time truncated life test [42]

BEGIN
Define the function f with input x
function f(x):
Extract variables from x
n = round(x[1]), k = x[2]
SET delta = 2, lamda = 0.5, shift = 1, a = 0.9
Calculate p0, p1

p0 = calculate_ p0 (a, delta, shift), p1 = calculate_p1(a, delta, shift)
Calculate P_out and ARL
P_out = 1−calculate_A(n, p0, k, lamda, p1) + calculate_B(n, p0, k, lamda, p1)
ARL = calculate_ARL(P_out)
SET f1 = −ARL, f2 = n
Evaluate constraints: g = 200−ARL
Check the feasibility and calculate the fitness value
if g <= 0: fitness = f1 else: fitness = −100000
return fitness
end function
Genetic Algorithm (GA) setup and execution
GA = initialize_GA(f, lower_bound, upper_bound, popSize, maxiter)
results = run_GA(GA)
show_summary(results)
END

Table 11 presents the optimal parameters at r0 = 200 and 370. The results show that the developed
control chart exhibits a smaller ARL1 for every shift size than is the case for those charts presented by
[28,34,42]. This confirms that the developed control chart offers greater sensitivity in the detection of
small shifts during the process. For instance, when f = 0.9, δ = 2 and r0 = 200, the ARL1 value for
the developed control chart shown in Table 10 is just 25.13, whereas it is 28.52 for the chart of [28],
78.75 using the chart of [34] and 54.34 from the chart of [42]. Furthermore, the developed control chart
made use of average sample sizes (ASS) of just 7.19 in each of the subgroups, whereas the sample size
employed by [28] was 16, for [34] the sample size was 22 and the sample size of [42] was 8. In comparison
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to the existing control charts, the developed control chart can employ smaller sample sizes for each of
the subgroups.

Table 11: Comparison in ARL of the developed control chart and existing charts by [28,34,42]

r0 = 200 r0 = 370

Developed
control
chart

np chart
using
MDS
sampling
[28]

np chart
[34]

EWMA np
chart [42]

Developed
control
chart

np chart
using
MDS
sampling
[28]

np chart
[34]

EWMA np
chart [42]

n1 = 7,
n2 = 39

n = 16 n = 22 n = 8 n1 = 7,
n2 = 36

n = 21 n = 26 n = 9

w = 2.2670 k1 = 1.8880 k = 2.6086 k = 2.8081 w = 2.1879 k1 = 1.9856 k = 2.8321 k = 2.9998
f L1 = 3.4100 k2 = 3.8587 L1 = 4.7016 k2 = 2.6616

L2 = 1.1305 L2 = 2.1475
ASS = 7.19 ASS = 7.10

1 205.04 200.51 201.64 200.73 370.09 370.75 377.84 370.19
0.9 25.13 28.52 78.75 54.34 14.25 48.61 79.85 79.37
0.8 3.25 4.58 12.11 10.10 3.12 5.72 13.78 12.10
0.7 1.25 2.05 3.08 2.69 1.13 1.85 3.12 2.82
0.6 1.00 1.58 1.94 1.21 1.00 1.32 1.56 1.20
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 The Application of the Developed Control Chart Using Real Data

The following section presents the implementation of a modified DS np chart using GMDS
sampling in the context of real data concerning the times to failure for 20 aluminum reduction cells
where the units are thousands of days [47].

0.468 0.725 0.838 0.853 0.965 1.554 1.658 1.764 1.776 1.139
1.990 1.142 2.010 1.304 1.317 2.224 2.279 1.427 2.244 2.286

First of all, the dataset must be examined to determine whether a Weibull distribution is applicable.
To check the goodness of fit, the Kolmogorov–Smirnov (K-S) test was used, while the unknown
parameters were estimated using the maximum likelihood method. The result for the K-S test is
0.11212, giving a p-value of 0.9391. It can thus be concluded that the data follow the Weibull
distribution. Meanwhile, the shape parameter δ̂ = 3.0489≈3, while the scale parameter λ̂ = 1.6813.
These values were estimated using the maximum likelihood estimate, leading to the value of μ̂ = 1.50.
For this research, it can be assumed that δ = 3, r0 = 370, n0 = 50 and μ0 = 150. The optimal
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parameters (n1, n2, w, L1, L2, k, m)= (23, 59, 3.0320, 4.2571, 3.4771, 5, 6) are shown in Table 2, while
a = 0.9285 and ASS = 23.04, resulting in the value of p0 from Eq. (5) = 0.4345 while t0 = 1.3928.
Calculation of the control limits for the developed control chart with the optimal values resulted in
LWL = 2.79, UWL = 17.20, UCL1 = 20.11, and UCL2 = 51.23. Generation of the initial 20 subgroups
used the in-control process (based on a binomial distribution in which p0 = 0.4345), whereupon the
generation of the subsequent 20 subgroups relied upon an out-of-control process making use of the
shifted size f = 0.9. Finally, the 20 subgroups can be generated based on a binomial distribution in
which p1 = 0.5425. In Stage 1, a binomial distribution with the parameters (n1, p0) = (23, 0.4345) is
employed for the in-control process while (n1, p1)= (23, 0.5425) is used for the out-of-control process
to provide a simulation for the number of nonconforming items d1. Meanwhile, in Stage 2, a binomial
distribution with the parameters (n2, p0) = (59, 0.4345) is employed for the in-control process while
(n2, p1) = (59, 0.5425) is used for the out-of-control process to provide a simulation for the number of
nonconforming items d2. Table 12 presents the simulated data. The values of d1 and d2 are plotted on
the developed control chart using GMDS sampling in Fig. 3. It can be seen from Fig. 3 that, at Stage 1,
the first 20 subgroups are the in-control process as all the points lie within the warning control limits
LWL and UWL. For the next 20 subgroups, the first example of size 23 is taken. Observe that the
35th subgroup has nonconforming items d1 = 19 whereas the 39th subgroup has nonconforming items
d1 = 18. As d1 = 18 and 19 falls in the interval UWL < d1 ≤ UCL1 then we go to Stage 2 and take
the second sample of size n2 = 59. For the 35th subgroup, the number of nonconforming d2 = 31 is
observed, and d1 + d2 = 50 < UCL2 with the result that the process is considered in-control because it
meets the requirement that k = 5 of the previous m = 6 subgroups are in-control processes. Moreover,
in the 39th subgroup, it is shown that d1 = 18, which falls in the interval UWL < d1 ≤ UCL1. At
Stage 2, we take a second sample of size n2 = 59 with d2 = 27 and obtain d1 + d2 = 45 < UCL2. Then
this subgroup result reveals that the process is in-control because it is shown that 5 of the previous 6
subgroups are in-control processes. Fig. 3 clearly shows that the developed control chart declares the
process to be in-control.

Table 12: Simulated dataset for the DS np chart using GMDS sampling at a fixed k = 5, m = 6, and
r0 = 370

Sub
group

First
sample
(n1 = 23)
d1

Sub
group

First
sample
(n1 = 23)
d1

Sub
group

First
sample
(n1 = 23)
d1

Sub
group

First
sample
(n1 = 23)
d1

Second
sample
(n2 = 59)
d2

d1 + d2

1 10 11 12 21 12 31 11
2 7 12 11 22 10 32 14
3 10 13 4 23 11 33 14
4 12 14 10 24 12 34 10
5 16 15 14 25 13 35 19 31 50
6 11 16 16 26 10 36 15
7 12 17 6 27 15 37 11
8 7 18 10 28 11 38 12
9 15 19 11 29 11 39 18 27 45
10 11 20 7 30 6 40 13
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Figure 3: The modified DS np chart using GMDS sampling for simulated data

5 Conclusions

The design of a novel attributed control chart is achieved through the application of the DS
np chart combined with GMDS sampling based on a time-truncated life test under the Weibull
distribution. The optimal parameters (n1, n2, k, m, a) and control limit coefficients (w, L1, L2) were
determined using a genetic algorithm with the R program when r0, δ and n0 were fixed. The developed
control chart performance was evaluated using the average run length, while the sensitivity analysis was
based on an orthogonal experimental design with multiple linear regression. These techniques sought
to investigate the influence of the model parameters upon the solution of the developed control chart.
The findings revealed that an increased value for n0 served to increase n̂2. In the case of ŵ, higher values
for δ and r0 tend to increase ŵ whereas a higher value for a leads to a decline in ŵ. For k̂, increases
in m will increase k̂, while in contrast, higher values for δ cause k̂ to decrease. Furthermore, increased
values for r0 will extend AR̂L0, whereas higher values for n0 and w lead to a decline in AR̂L0. It could
also be seen that when the values of n1, n2 and L1 rose, this led to a rise in AŜS, whereas an increase
in r0 caused reduced AŜS. The comparative study revealed that the developed chart offered greater
sensitivity in terms of the detection of small process shifts than was the case for the previously existing
control charts. Furthermore, the developed control chart appears superior in the detection of process
shifts when ASS rises and the other parameters remain fixed. The implementation of the developed
control chart in this study was based on simulated data which employed parameters taken from the real
set of data, thus exhibiting a true measure of the chart’s utility. In conclusion, it can be stated that the
developed control chart, which is based on the time truncated lifetime test under a Weibull distribution,
offers greater sensitivity in detecting small process shifts as well as utilizing smaller sample sizes than
would be necessary with the existing control charts. For future research, a steady-state ARL will be
used to evaluate the performance of the proposed control chart based on the Markov chain method for
a more accurate assessment. Moreover, neutrosophic statistics will be applied to the proposed control
chart when the data comes from a complex process or an uncertain environment.
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