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ABSTRACT

Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation of
equipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasing
attention and achieved some results. It might lead to insufficient performance for using transfer learning alone and
cause misclassification of target samples for domain bias when building deep models to learn domain-invariant
features. To address the above problems, a deep discriminative adversarial domain adaptation neural network
for the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstly
converted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neural
network with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domain
invariant features are learned from the fault data with correlation alignment-based domain adversarial training.
Furthermore, to enhance the discriminative property of features, discriminative feature learning is embedded
into this network to make the features compact, as well as separable between classes within the class. Finally, the
performance and anti-noise capability of the proposed method are evaluated using two sets of bearing fault datasets.
The results demonstrate that the proposed method is capable of handling domain offset caused by different working
conditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposed
method can achieve high diagnostic accuracy under varying noise levels.
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1 Introduction

With the modern industry’s rapid development, intelligent equipment health status monitoring
and management methods are vital to the reliable operation of industrial equipment [1]. As a key
mechanical component of most rotating devices, the harsh environment and long periods for the
operation of bearings could lead to frequent faults. The breakdown will lead to a reduction in produc-
tion efficiency, as well as a threat to personal safety and significant economic losses [2]. Researchers
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have developed numerous signal-processing techniques and data-driven methodologies for equipment
monitoring and fault detection, which improve the safety and dependability of mechanical equipment
[3–5]. In recent years, thanks to the arrival of the big data era and the evolution of sensing technology,
deep learning (DL)-based fault identification methods have gained vast development space [6,7].

The DL-based method constructs network model to extract the fault knowledge implicitly con-
tained in the monitoring data of mechanical equipment. Compared with traditional shallow networks
like support vector machine (SVM) [8], K-neighborhood network (KNN) [9], and artificial neural
network (ANN) [10], DL-based fault diagnosis methods undoubtedly possess higher recognition
accuracy and better interpretability. To perform bearing fault identification, Lu et al. [11] offered a
superposition denoising autoencoder. Building a deep belief network to be used for fault signal analysis
was put forward by Jiang et al. [12]. An adaptive deep convolutional neural network was proposed by
Fuan et al. [13], and it produced results in recognition that were more accurate. In order to increase
diagnosis accuracy and noise immunity, Zhao et al. [14] created a dynamic weighted wavelet coefficient
in conjunction with a deep residual network.

Although DL has achieved favorable results in rotating machinery fault classification, there are
still some limitations [15–17]. Current research generally considers that there is no discrepancy of
probability distributions between training data and test data. The distribution of sensing data acquired
under the various working conditions (e.g., load and noise) differs dramatically in practical engineering
applications, which makes the above assumptions challenging to sustain [18]. On the other hand, the
high cost of acquiring training data with labels also hinders the application of intelligent fault diagnosis
in practice [19,20].

Domain adaptation (DA) is a valuable method to alleviate the above limitations [21]. It feeds
the model data from source domain data with label and transfers the parameters to unlabeled target
domain [22]. The use of DA-based fault diagnosis methods has grown in popularity in recent years,
and they have made significant strides in resolving domain offset issues. Most scholars have broadly
classified DA work into four categories [23]: network-based approaches [24,25], instanced-based
approaches [26], mapping-based approaches, and adversarial-based approaches.

The main idea of mapping-based DA is to bridge the mapped data distribution discrepancy within
the feature space. Zhang et al. [27] introduced Maximum Mean Discrepancy (MMD) into the feature
extractor of domain adaptive convolutional neural networks. Qian et al. [28] suggested a joint domain
adaptation (JDA), which aims to better align the data distributions. It achieved good results on rolling
bearing and gearbox fault datasets. Another impressive approach is correlation alignment (CORAL)
[29], which aligns the second-order statistics of data at a lower computational cost.

Adversarial-based DA involves the introduction of a domain discriminator that extracts invariant
features across domains, which is achieved through adversarial training with a feature extractor [30].
Wang et al. [31] pioneered utilization of adversarial-based DA network in mechanical fault diagnosis,
combining MMD and the adaption batch normalization (AdaBN) to validate and give a consistent
strategy. Wang et al. [32] introduced a deep adversarial network with joint Wasserstein distance, which
directly identifies faults on the original signal. Jiao et al. [33] presented a residual joint adaptation
adversarial network that employs Joint Maximum Mean Discrepancy (JMMD) for adaptive feature
learning. A new domain adversarial transfer network with two non-fused deep convolutional neural
asymmetric encoders was designed by Chen et al. [34].

The research mentioned above have produced a few beneficial options for the domain shift
problem and had favorable results. However, several researchers have focused solely on reducing
the marginal distribution mismatch, neglecting the data’s discriminability [35]. Meanwhile, simple
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adversarial-based domain adaptation also suffers from insufficient distribution alignment capability.
To conquer the above limitations, a deep discriminative adversarial domain adaptation neural network
(DDADAN) for the bearing fault recognition method is proposed. The DDADAN employs an
improved deep convolutional neural network with wide first-layer kernels (IWDCNN) as a feature
extractor. It allows features to be well aggregated and separable by domain adversarial training
according to jointing discriminative feature learning and deep correlation alignment. Fig. 1 displays
the capability of the DDADAN. The major contributions of this paper can be summarized as follows:

(1) A novel deep adversarial domain adaptation intelligent fault diagnosis method is proposed,
which employs IWDCNN as a feature extractor to avoid noise disturbance in the data acquired in
industrial environments.

(2) In order to bridge the discrepancy in data distribution between the two domains, a deep
correlation alignment is implemented as a discrepancy metric across two domains. Discriminative
feature terms are also embedded into the model, which enable features to be clustered within classes
and differentiated between classes.

(3) Extensive testing on two sets of bearing fault datasets has revealed that DDADAN outperforms
other methods in terms of fault recognition accuracy and generalization capabilities. Experimental
analysis and feature visualization show that DDADAN can reduce cross-domain distribution discrep-
ancy, and enhance feature distinguishability.

Figure 1: Illustration of the capability of DDADAN. The source domain classifier cannot be directly
employed due to the distribution discrepancy. The proposed DDADAN can well bridges the distribu-
tional discrepancy and promotes the discriminability of the target domain features
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The following sections of the paper are organized as: An illustration of the domain adaptation
problem, accompanied by a brief explanation of the a priori knowledge, is provided in Section 2.
Section 3 provides an elaboration on the proposed method. The experiments are presented in Section 4
and the proposed method is evaluated by analyzing the results. Section 5 draws conclusions.

2 Preliminary
2.1 Problem Definition

In this paper, we defined the source domain data as Ds = {(
xs

i , ys
i

)}ns

i=1
, where labels containing

machine degradation or fault status information are available. Target domain is defined as Dt ={(
xt

j

)}nt

j=1
. It is the test data, and labels are not usable. Further, the Ds and Dt have the same label space

y = {0, 1, 2, . . . , K − 1}. The labels indicate the health status or fault status, respectively. However,
since the machine will experience different environment and operation conditions during its service
life, Ds and Dt are expected to obey distributions P(X) and Q(X), respectively [36].

In the domain shift problem, sensor data is collected under various operating conditions. A model
trained using labeled source domain data has limited adaptability when transferring to unlabeled target
domain data. Therefore, the purpose of this paper is to construct a deep discriminative adversarial
diagnosis method, which is based on domain adaptation theory. In the constructed method, the
extracted features make the domain discriminator difficult to distinguish coming from either the
source or the target domain. The domain discriminator then endeavors to differentiate which domain
the features come from. Through the performance of such adversarial training, the model learns
generalized knowledge.

2.2 Deep Correlation Alignment
The underlying domain-adversarial training can pull the distributions of the two domains closer,

but its robustness is limited. Accordingly, the deep correlation alignment algorithm [29] was introduced
to improve the model, i.e., a new loss is introduced−the deep CORAL loss (DCORAL). DCORAL
is similar to the distance algorithm MMD but its computational cost is cheaper. In contrast to
the CORAL algorithm [37], DCORAL overcomes its reliance on linear transformations. It non-
linearly aligns second-order statistics from various distributions to extract domain-invariant features.
In addition, it is easy to interface DCORAL with deep models [38].

Assuming that CS and CT are the covariance matrices of the source and target domain features,
respectively. The DCORAL can be represented as:

Lc = 1
4d2

‖CS − CT‖2
F (1)

where ‖·‖2
F is denoted as the F-norm of the square matrix.

The covariance of the features can be computed as:

CS = 1
ns − 1

(
D�

s Ds − 1
ns

(
1�Ds

)� (
1�Ds

))
(2)

CT = 1
nt − 1

(
D�

t Dt − 1
ns

(
1�Dt

)� (
1�Dt

))
(3)

where 1 is a column vector with 1 as each of its elements.
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3 Proposed Method

We elaborate on the DDADAN, including the architecture and training procedure in this section.

3.1 DDADAN
To address the discrepancy in fault data distribution under varying operating conditions in the

same equipment, we propose a deep discriminative adversarial domain adaptation model. The struc-
ture of DDADAN comprises three main components: a feature extractor, a deep discriminative label
classifier and a domain discriminator. This is illustrated in Fig. 2. Firstly, the proposed method utilizes
IWDCNN to extract deep features from frequency domain signals; Second, the domain discriminator
and the deep discriminative label classifier are set up in parallel. The classification labels of samples are
predicted using the deep discriminative label classifier; Finally, the domain discriminator is inspired
by the adversarial idea and is used to differentiate samples. The domain discriminator is used during
training to measure the distribution distance. Simultaneously, DCORAL is performed at the last
layer of the feature extractor to bridge distribution discrepancy. The discriminative feature learning
is executed at the fully connected layer of the label classifier.

Figure 2: Architecture of the DDADAN model

3.1.1 IWDCNN

As mentioned above, CNNs have been used extensively for fault diagnosis, where some models
have not achieved superior performance compared to traditional methods. For one-dimensional
signals, the first layer of convolution of the small kernel is prone to cause the model to be disturbed by
the high-frequency noise. Meanwhile, large-scale convolutional kernel tends to extract low frequency
information and small-scale convolutional kernel inclines to extract high frequency information.
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Therefore, in order to capture more valuable information in the vibration signal, IWDCNN is
proposed as a feature extractor based on WDCNN [26].

Firstly, we employ first convolution layer with a wide kernel to extract features. Four layers of
small-scale convolution kernels to deepen the network and obtain high level feature representations.
For the j-th convolution kernel, the mathematical expression of the convolution operation is as follows:

cl
j (i) = wl−1

j ∗ xl−1 (i) + bl−1
j (4)

where w and b denote weights and bias; ∗ denotes the convolution operation; and cl
j (i) is the output.

After the convolution procedure, the network requires the addition of an activation layer. The
activation function enables the network to gather a nonlinear representation of the input signal,
which in turn enhances its feature differentiability. The Gaussian Error Linear Unit (GELU) [39] was
introduced for improving the model’s generalizability. GELU adds the idea of stochastic regularity to
the activation, which is intuitively more in line with natural cognition. The approximate computation
of GELU is expressed as:

al
j (i) = GELU

(
cl

j (i)
) = 0.5cl

j (i)
(

1 + tanh
[√

2/π(cl
j (i) + 0.044715(cl

j (i))
3)

])
(5)

The parameters of the features are reduced using the max-pooling process to generate shift-
invariant features. The mathematical expression of max-pooling is as follows:

pl
j (i) = max

(i−1)w+1≤u≤iw

{
al

j (i)
}

(6)

where pl
j (i) denotes the output; (i − 1) w + 1 ≤ u ≤ iw denotes the pooling region.

Further, in order to minimize the internal covariance shift and hasten model training, a BN layer
is also added. After the convolutional layer and before the activation function, the BN layer is inserted,
and the h-dimensional input x = (

x1, x2, . . . , xh
)

for the BN layer is converted to:

x̂i = xi − E [xi]√
Var [xi]

(7)

bi = γix̂i + βi (8)

where bi is the output, γi corresponds to the scale parameter and βi represents the displacement
parameter.

Finally, the last convolutional layer is subjected to global average pooling to accelerate the
training process. This allows a significant decrease in network parameters and a direct dimensionality
reduction. Global average pooling is defined as:

gl
j (i) = average

(i−1)w+1≤v≤iw

{
al

j (i)
}

(9)

where gl
j (i) denotes the output of the average pooling layer; (i − 1) w+1 ≤ v ≤ iw denotes the pooling

induction region. A fully connected layer flattens the features on the output into a one-dimensional
vector which is then input to the domain discriminator and label classifier.

The combination of the above operations constitutes a feature extractor, which obtains the
transferable features. Here we use Gf to represent the feature extractor, where the mapping parameter is
θf . Following feature extraction, the source domain input sample xs

i is transformed into f s
i = Gf

(
xs

i , θf

)
and the target domain input sample xt

j is transformed into f t
j = Gf

(
xt

j, θf

)
.
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3.1.2 Deep Discriminative Label Classifier

Faults on the source and target domain samples are categorized using the label classifier. The
activation function ReLU and the classification function Softmax make up its two fully connected
layers. Given a dataset containing K defect classes, the label classifier’s output can be written as:⎡
⎢⎢⎣

p0(x)

p1(x)

· · ·
pK−1(x)

⎤
⎥⎥⎦ = 1

K−1∑
k=0

eσkx

⎡
⎢⎢⎣

eσ0x

eσ1x

· · ·
eσK x

⎤
⎥⎥⎦ (10)

where σ denotes the parameters to be learned.

The objective of training the label classifier is to identify the fault types as accurately as possible
based on the various classification features. Therefore, it is desired to minimize the loss of labeled
classifier during training. We denote the labeled classifier with parameter θy by Gy and its loss Lcl can
be calculated by cross-entropy loss as follows:

Lcl

(
θy, θf

) = −
K−1∑
k=0

I [y = k] log pK−1(x) (11)

where I [·] is the indicator function.

Discriminative feature learning [40] is introduced as a means to further differentiate the deep
features taking into account the intricate relationships between fault classes. Discriminative feature
learning, in contrast to center-based loss [41], penalizes the distance between a deep feature and
its related class center as well as widens the gap between various class centers. Meanwhile, the
computational complexity of center-based discriminative loss is lower, which can be described as
follows:

Lce = ε

ns∑
i=1

max
(

0,
∥∥f s

i − cyi

∥∥2

2
− m1

)
+

K−1∑
i,j=0,i �=j

max
(

0, m2 − ∥∥ci − cj

∥∥2

2

)
(12)

where ε is the trade-off parameter and m1 and m2 are two constraint margins; f s
i denotes the deep

feature output of the i-th training sample after feature extraction; cyi denotes the global class center
of the yi-th deep feature, yi ∈ {0, 1, 2, . . . , K − 1}; ci and cj indicate the batch class centers, which are
approximated by averaging the deep features of the current batch. The loss consists of two terms. The
former term is intended to measure the intra-class compactness of the features. Its distance between
samples within a class is constrained to be no greater than m1. The latter term, which is used to gauge
inter-class separability, constrains the distance between intra-class samples to be no less than m2.

To render features more identifiable, the proposed method embeds a center-based discriminative
loss term. Therefore, the loss of the final deep discriminative label classifier is given as:

Ly

(
θy, θf

) = Lcl

(
θy, θf

) + ϕ · Lce (13)

where ϕ is the trade-off parameter.
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3.1.3 Domain Discriminator

To obtain domain-invariant features, we introduce the domain discriminator Gd which reduces the
data distribution across the two domains. The inspiration for Gd comes from generative adversarial
networks (GAN) [42]. There are two fully connected layers in the domain discriminator. LeakyReLU
is the first layer’s activation function, and softmax is the second layer. The binary cross-entropy loss
function’s estimated loss can be characterized as follows:

Ld

(
θd, θf

) = 1
n

n∑
i=1

(rilog d (xi) + (1 − ri) log (1 − d (xi))) (14)

where, d (xi) represents the predicted domain label for the i-th input sample; ri denotes the actual
domain label.

For the output of the feature extractor, the above equation can be expressed as:

Ld

(
θd, θf

) = 1
ns

ns∑
i=1

Ld(θd, θf )(Gf (xs
i , θf )) + 1

nt

nt∑
j=1

Ld(θd, θf )(Gf (xt
j, θf )) (15)

where Gf (xs
i , θf ) and Gf (xt

j, θf ) represent the outputs after the feature extractor.

3.2 Optimization Strategy
The proposed method’s optimization objective necessitates that Gf extract features that may as

effectively separate the source and target domains as possible. Meanwhile, Gd is unable to distinguish
the difference between the two domains. The total loss can be established as:

L
(
θf , θy, θd

) = Ly

(
θy, θf

) − λ1Ld

(
θd, θf

) + λ2Lc (16)

where λ2 is the trade-off parameter. According to the optimization objective of the proposed method, a
set of saddle point parameters θ̂f , θ̂y, θ̂d of the function (16) is sought. Therefore, the following equation
holds:(

θ̂f , θ̂y

)
= arg min

θf ,θy
L

(
θf , θy, θ̂d

)
(17)

θ̂d = arg max
θd

L
(
θ̂f , θ̂y, θd

)
(18)

At the saddle point, the parameter θy minimizes the loss of label classification, and θd minimizes
the loss of domain discrimination. The parameter θf of the feature extractor minimizes the loss of label
classification while maximizing the loss of domain discrimination, i.e., the features are discriminative
and having domain invariance. The parameters θf , θy, and θd are updated by back-propagation as
follow:

θf ← θf − η
∂

(
Ly − λ1Ld + λ2Lc

)
∂θf

(19)

θy ← θy − η
∂Ly

∂θy

(20)

θd ← θd − η
∂Ld

∂θd

(21)
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where η is the learning rate. Due to the −λ1 factor, the parameter update process cannot be directly
implemented by stochastic gradient descent. Therefore, a gradient reversal layer (GRL) is introduced
among the domain discriminator and the feature extractor. During forward propagation, GRL is only
used as a constant transform. In backward propagation, the gradient is obtained from the domain

classifier by multiplying it by −λ1, i.e., by −λ1

∂Ld

∂θf

instead of
∂Ld

∂θf

.

In each iteration, the global class center cyi is modified as follows:

Δcj =

nb∑
i=1

δ (yi = j)
(
cj − f s

i

)

1 +
nb∑
i=1

δ (yi = j)
(22)

ct+1
j = ct

j − αΔct
j (23)

where α is the learning rate of the updated global class center; nb is batch size. In the first iteration,
the global class center is initialized to the batch class center. The global class center will be in closer
proximity to cyi as the number of iterations rises.

3.3 Fault Diagnosis Process of DDADAN
The completed diagnostic procedure for the DDADAN is illustrated in Fig. 3. Firstly, the vibra-

tion data is collected by accelerometers, and FFT is employed to gather the required data set. Then,
the feature extractor receives input from both the source domain data and the target domain data in
order to extract the deep features. The deep discriminative label classifier performs fault classification
based on the extracted features. And the domain discriminator predicts the domain labels. The loss
function and the total optimization objective are calculated by Eq. (16). Next, the backpropagation
algorithm is applied to update the parameters θf , θy, θd. Finally, classification predictions are generated
by feeding the test data to the trained model.

4 Experimental Study

In this research, fault diagnostic tests are performed using a set of public bearing datasets and a
collection of laboratory datasets to confirm the efficacy of the DDADAN.

4.1 Description of Dataset
4.1.1 Case1: Machinery Fault Simulator (MFS) Dataset

As shown in Fig. 4, the machinery fault simulator test bench mainly includes signal collector,
motor control system, tachometer, drive motor, test bearing housing and acceleration sensor. The
bearing type of the MFS test bench is MB ER-10K, which parameters are shown in Table 1. The
vibration signals of five various health states including ball fault (BF), combined inner ring fault (IRF),
normal condition (NC), outer ring fault (ORF) and inner and outer ring fault (CF). The sampling
frequency is set to 25.6 KHz. We construct six domain adaptation fault identification tasks: D01, D02,
D10, D12, D20 and D21 between three different speeds of 2400, 2800 and 3200 r/min, respectively. D01
indicates that under the same load, the source domain data was acquired at a speed of 2400 r/min
and the target domain data was sampled at a speed of 2800 r/min. The source and target domains
have sample counts of 100 and 80, respectively, with a sample length of 2048. The frequency domain
waveforms of the bearings in five health states at varying rotational speeds are shown in Figs. 5a–5c.
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Figure 3: DDADAN fault diagnosis flow chart

Figure 4: MFS bearing dataset test bench
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Table 1: MFS test bench bearing parameters

Number of rollers Roller diameter (in.) Pitch diameter (in.) Contact angle (degree)

8 0.3125 1.319 0

Figure 5: The frequency domain waveforms of the bearings in five health states at varying rotational
speeds. (a) 2400 r/min (b) 2800 r/min (c) 3200 r/min

4.1.2 Case2: Case Western Reserve University (CWRU) Dataset

The CWRU dataset [43] is used as experimental data for fault classification, and its experimental
setup is shown in Fig. 6. The testing bench mainly includes sensors, an electric motor and dynamome-
ter, etc. We chose a 12 kHz drive end vibration acceleration signal with dynamometer-generated rated
loads of 0, 1, 2, and 3 hp. Bearing fault data include, in addition to normal condition, ball fault, inner
ring fault and outer ring fault. Each fault state introduces three damage diameters: 0.007, 0.014 and
0.021 inch, separately. Therefore, there are ten different fault conditions under each load. To examine
the performance of the proposed DDADAN, 12 transfer tasks are constructed across varied loads.
The transfer tasks are designated as C01, C02, C03, C10, C12, C13, C20, C21, C23, C30, C31, C32, respectively.
Table 2 gives the settings for the CWRU dataset.
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Figure 6: CWRU bearing dataset test bench

Table 2: The settings for the CWRU dataset

Fault condition Ball fault Inner race fault Outer race fault Normal

Fault size (in.) 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021 0

Class labels 0 1 2 3 4 5 6 7 8 9
Train sample 100 100 100 100 100 100 100 100 100 100
Test sample 80 80 80 80 80 80 80 80 80 80

4.2 Methods Comparison
CNN: Convolutional neural network (CNN) [44] is a typical deep model used extensively in fault

diagnosis. CNN is trained with source domain data as one of the comparative methods.

DANN: DANN [45] is one of the most representative models of DA. DANN has been configured
to have the same structure and parameters as DDADAN.

MMD: MMD [46] is a broadly used discrepancy metric that facilitates network acquisition of
transferable features. The MMD-based method shares the same network parameters with DDADAN,
which is added MMD loss to its optimization objective.

EntMin: Entropy minimization (EntMin) [47] is performed by reducing the Shannon entropy
of the batch output matrix in the target domain, which reduces the prediction uncertainty. There is
significance in combining the base model with EntMin as one of the comparison methods.

To ensure a fair comparison, identical hyperparameters were adopted for all methods to be
updated by the Adam optimizer. The batch size was chosen to be 64 and the learning rate η was
adjusted to 0.002. The trade-off parameter λ1 is progressively raised from 0 to 1 for all DA methods
using the following formula:

λ1 = 2
1 + exp (−10g)

− 1 (24)
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where g is the global training step of DDADAN. The parameter λ2 is set to 0.02 and ϕ is set to 0.2.
For discriminative feature learning, the parameter ε is fixed to 0.5 and the learning rate of class center
α is set to 0.05. The constraint margins m1 and m2 are set to 0 and 100, respectively.

4.3 Experimental Results of the Dataset
4.3.1 Case1: Experimental Results of the MFS Dataset

Ten experiments were conducted for all four methods under the established six domain adaption
fault identification task. Also, to eliminate coincidences, there were ten repetitions of the experiment
for each transfer task. The accuracy obtained is the average of the results of ten trials. The final
obtained fault classification accuracy of DDADAN and the comparison methods are shown in Table 3.
It is noticeable that the highest classification accuracy of CNN is only 81.92%. That indicates without
transfer learning, diagnosis methods would perform poorly in cross-domain tasks. DANN method
learns domain invariant features and achieves an average accuracy of 92.35%. However, it will suffer
from a lack of transfer capability when faced with certain tasks. The MMD method aligns the
marginal distributions of the source and target domains, and the diagnostic accuracy is improved
up to 97.67%. The EntMin method reduces the uncertainty of target domain prediction, achieving
an average accuracy of 96.59%. Compared with the MMD method, the proposed method enhances
the discrimination of the target domain in addition to the aligned data distribution. Higher accuracy
is achieved on different transfer tasks, with an average accuracy of 98.89%. For tasks D02 and D20
with large discrepancy of data, the diagnostic accuracy of the DDADAN can still achieve more than
97.53%. Fig. 7 gives a comparison of the accuracy of several methods of fault diagnosis.

Table 3: Diagnostic accuracy of DDADAN and comparative methods on MFS dataset

Transfer task Fault diagnosis accuracy (%)

CNN DANN MMD EntMin DDADAN

D01 81.92 93.56 97.46 96.36 99.34
D02 70.33 90.25 96.63 96.49 97.53
D10 72.16 92.67 97.67 97.63 99.73
D12 78.50 94.42 97.16 96.26 98.62
D20 73.38 89.08 96.08 97.25 98.02
D21 69.33 94.12 97.50 95.33 99.11
Average 74.27 92.35 97.08 96.59 98.89

In order to obtain a more comprehensive understanding of the distribution of the learned features,
we apply the t-Distributed Stochastic Neighbor Embedding (t-SNE) [48]. The transfer tasks from
2400 to 2800 r/min were picked and reduced the data to two dimensions for visualization. The
features of the proposed method and the comparison method at the fully connected layer are shown
in Fig. 8. Evidently, the CNN without transfer learning extracts data with a significant discrepancy
in distribution, which is difficult to provide accurate identification of target domain samples. Fig. 8d
shows that DANN learns more domain invariant features, which is still having large discrepancy in
the data distribution. The MMD-based method obtains better results by bridging the data distribution
through the discrepancy metric, as shown in Fig. 8c. However, MMD’s classification boundary is hazy,
which shows lacking discriminative capacity. Since EntMin reduces the prediction uncertainty, which
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makes the target domain samples have improved discriminability. As shown in Fig. 8b, the EntMin
method misclassifies the fault samples class CRF to the BF, which shows it will result in losing the
original class diversity of the samples. As seen in Fig. 8a, features from various classes are simpler to
distinguished and features from the same class turn more compact. This implies that the model is able
to employ discriminative feature learning to acquire more distinct features.
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Figure 7: Comparison of the performance of several methods on the MFS dataset

4.3.2 Case2: Experimental Results of the CWRU Dataset

The diagnostic accuracy of DDADAN and comparative methods on CWRU dataset is shown in
Table 4. For different transfer tasks, it can be observed that the proposed DDADAN achieves a high
accuracy. The accuracy of the CNN method is only 83.53% on average. DANN achieves an average
diagnostic accuracy of 92.35% through adversarial training. In the face of some transfer tasks, it still
has inadequate diagnostic capability. The MMD-based method aligns the distributions of the both
domains. However, the target domain samples are not discriminatory enough. The EntMin-based
method achieves an average accuracy of 96.32%, except that its reduction of target domain prediction
uncertainty may contribute to lower prediction diversity. The accuracy of the proposed DDADAN is
more than 2.89% higher than other methods. Correlation alignment is introduced to guide domain
adversarial training, and the discriminative loss terms in the aligned feature space make the target
domain samples more distinguishable.

For clear overview of the features learned by several methods, the features are visualized utilizing
t-SNE. As shown in Fig. 9a, the proposed DDADAN well bridges the data distribution discrepancy,
and has distinct classification boundaries. The remaining four methods are not sufficient in bridging
the distribution.
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Figure 8: Varying methods for t-SNE visualization on the MFS dataset. (a) DDADAN (b) EntMin (c)
MMD (d) DANN (e) CNN

Table 4: Diagnostic accuracy of DDADAN and comparative methods on CWRU dataset

Transfer task Fault diagnosis accuracy (%)
CNN DANN MMD EntMin DDADAN

C01 82.38 93.75 98.83 97.54 98.90
C02 84.80 90.56 93.29 95.43 99.83
C03 86.56 95.92 95.93 94.31 100.00
C10 84.8 93.46 97.71 95.89 99.75
C12 86.42 94.75 95.54 96.47 99.96
C13 85.50 95.95 97.37 96.35 100.00
C20 79.92 89.17 92.63 94.28 97.92
C21 75.21 91.17 97.58 95.58 97.67
C23 89.42 89.94 95.98 93.41 100.00
C30 86.55 90.36 95.82 93.59 99.04

(Continued)
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Table 4 (continued)

Transfer task Fault diagnosis accuracy (%)
CNN DANN MMD EntMin DDADAN

C31 76.62 87.14 92.46 94.62 97.62
C32 84.12 89.99 93.35 94.25 99.88
Average 83.53 91.85 95.54 96.32 99.21
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Figure 9: Varying methods for t-SNE visualization on the CWRU dataset. (a) DDADAN (b) EntMin
(c) MMD (d) DANN (e) CNN

Fig. 10 displays the confusion matrix of the DDADAN and compared methods for the transfer
task C03. The CNN-based method performs poorly against the cross-domain task, with multiple
misdiagnosis and missed diagnosis cases. In contrast, there is a large improvement in fault recognition
of DANN, and the misclassification cases are basically only present on ball faults with different fault
sizes. Fewer outer ring fault features with sizes of 0.021 in. have been mistaken for other fault types
using the MMD-based fault diagnosis method. Notably, the EntMin method failed to detect the ball
fault with 0.021 in. This suggests that although the EntMin method enhances the discriminability
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of the target domain, there might be a loss of its predictive class diversity. With the suppression of
high-frequency noise in the input data and the enhancement of the discriminability of the features, the
proposed method can accomplish the accurate identification of various faults.

Figure 10: Test samples confusion matrix of the varying method on the transfer task C03 (a) DDADAN
(b) EntMin (c) MMD (d) DANN (e) CNN

4.4 Experiment in Noisy Environment
Environmental noise is unavoidable in industrial settings, therefore being a challenge for extracting

signal features. We opted to introduce Gaussian white noise to the vibration signal in order to test the
suggested method’s noise immunity. To replicate the industrial environment, which may be exposed to
a range of noise levels, noise with varied signal-to-noise ratios (SNR) is added:

SNRdB = 10 log10

(
Psignal

Pnoise

)
(25)

In our experiments, different models are trained by the dataset from MFS. The results of the
migration task D12 are shown in Fig. 11. From the figure, it can be seen that the diagnostic accuracy of
different models is affected to different degrees under the noisy environment, and the accuracy shows
a decreasing trend with the decrease of SNR. The proposed method’s diagnostic accuracy is more
negatively impacted when the SNR = −6 dB, and the accuracy is only about 92% properly. CNN
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and DANN have less than 70% diagnostic accuracy under the noise with SNR = −6 dB. Since the
MMD method has the same feature extractor as the DDADAN, diagnosis accuracy can be maintained
under different noise environments. DDADAN can maintain more than 97% accuracy under noise
with SNR ≥ 0 dB. Using the IWDCNN as a feature extractor implies that high frequency noise can
be effectively suppressed. In noisy environments, the suggested method can maintain high diagnostic
accuracy.
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Figure 11: Diagnostic accuracy of models under different noise

5 Conclusion

A deep discriminative adversarial domain adaptation method is proposed for fault identification
to address the distribution discrepancy of fault data in bearings under various operating conditions.
Firstly, the IWDCNN is employed to extract the deep features of the fault data. Then, domain-
invariant features are learned from fault data using correlation alignment-based domain adversarial
training, which measures the distribution between two domains. Finally, discriminative feature learn-
ing is incorporated into this network to make the features intra-class compact and inter-class separable.
To confirm the performance of the proposed method, a public dataset and a laboratory dataset are
analyzed. The experimental results demonstrate that DDADAN can perform a variety of transfer tasks
with high accuracy and robustness. The proposed method can still achieve an accuracy of more than
97.53% when dealing with the transfer diagnosis task with significant speed discrepancy. At the same
time, experiments are conducted under various noise levels, and the findings prove that the DDADAN
has effective noise-cancelling capabilities.

Since there is a labeling offset in the data gathered under varying working conditions, the proposed
method has limitations for fault identification in practical industrial circumstances. Therefore, we will
continue to research ways to improve fault diagnostic capabilities when the label spaces of the two
domains differ. Additionally, one of the future studies is the development of knowledge graph for
fault diagnosis under non-stationary conditions.
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